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We consider the problem of maximizing a nondecreasing submodular set function over various constraint
structures. Specifically, we explore the performance of the greedy algorithm, and a related variant, the
locally greedy algorithm in solving submodular function maximization problems. Most classic results on the
greedy algorithm and its variant assume the existence of an optimal polynomial-time incremental oracle that
identifies, in each iteration, an element of maximum incremental value to the solution at hand. In the presence
of only an approximate incremental oracle, we generalize the performance bounds of the greedy algorithm
and its variant in maximizing submodular functions over (i) uniform matroids, (ii) partition matroids, and
(iii) general independence systems. Subsequently, we reinterpret and, thereby, unify and improve various
algorithmic results in the recent literature for problems that are specific instances of maximizing monotone
submodular functions in the presence of an approximate incremental oracle. This includes results for the
SEPARABLE ASSIGNMENT problem, the ADWORDS ASSIGNMENT problem, the SET k-COVER problem, basic
utility games, winner determination in combinatorial auctions, and related problem variants.
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1. Introduction

Submodular set functions are widely used in the economics, operations research, and computer
science literature to represent consumer valuations, since they capture the notion of decreasing
marginal utilities (or alternatively, economies of scale in a cost framework). While these properties
make submodular functions a suitable candidate of choice for objective functions, submodular
objective functions also arise as a natural structural form in many classic discrete optimization
settings, such as the MAX SAT problem in Boolean logic, the Max CuT problem in graphs, and
the MAXxiMUM COVERAGE problem in location analysis, to name a few.

The role of submodularity in discrete optimization is akin to that of convex functions in con-
tinuous optimization, given their analogous prevalence, structural properties, and the tractability
of solving minimization problems on both classes of functions (Lovasz (1983), Fujishige (2005)).
Interestingly, submodular functions are also closely related to concave functions, and this raises
the question of the tractability of maximizing submodular functions. However, since many NP-
hard problems may be reduced to the problem of maximizing submodular functions, it is unlikely
that there exists a polynomial-time algorithm to solve this problem. Consequently, a vast body of
literature has focussed on developing efficient heuristics for various instances of this problem.

The greedy algorithm, that iteratively augments a current solution with an element of maximum
incremental value, has been shown to be an effective heuristic in maximizing nondecreasing sub-
modular functions over different constraint structures (see Conforti and Cornuéjols (1984), Farahat
and Barnhart (2004), Fisher et al. (1978), Nemhauser and Wolsey (1978), Nemhauser et al. (1978),
Sviridenko (2004), Wolsey (1982)). In most prior works, it was implicitly assumed that the greedy
algorithm has access to an incremental oracle that, given a current solution, returns in polynomial
time an element of highest incremental value to the current solution. However, it turns out that
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in some problems, determining an element with the best incremental profit may itself be an NP-
hard problem, thus necessitating the use of only an approrimate incremental oracle. In this work,
we generalize the performance bounds of the greedy algorithm and an interesting related variant,
the locally greedy algorithm (Fisher et al. (1978)), for maximizing nondecreasing submodular set
functions over various constraint structures, when the algorithm only has access to an approxi-
mate incremental oracle. Subsequently, we discuss how various results in the modern literature
for problems that arise in the context of assignment problems, Internet advertising, wireless sen-
sor networks, combinatorial auctions, and utility games, among others, may be reinterpreted and
improved using these generalized performance bounds.

1.1. Preliminaries

Let E be a finite ground set. A real-valued set function f:2¥ — R is normalized, nondecreasing
and submodular if it satisfies the following conditions, respectively:

(FO) f(0)=0;

(F1) f(A) < f(B) whenever AC BC F;

(F2) f(A)+ f(B)> f(AUB)+ f(ANB) for all A, BC E, or equivalently:

(F2a) f(Au{e})— f(A) > f(BU{e})— f(B) for all ACBC E and e € E\ B, or equivalently:
(F2b) f(AUC)—f(A)> f(BUC)— f(B) forall ACBCFE and CC E\ B.

Henceforth, whenever we refer to submodular functions, we shall, in particular, imply normalized,
nondecreasing, submodular functions. We also adopt the following notation: For any two sets
A, B C E, we define the marginal value (incremental value) of set A to set B as

pa(B) = f(AUB) - f(B).

Additionally, we will use the subscript e instead of {e} whenever A is a singleton, A = {e}. In
particular, (F2a) can equivalently be written as p.(A) > p.(B) for AC B.

A set system (E,F), where E is a finite set and F is a collection of subsets of F, is an inde-
pendence system if it satisfies the following properties:
(M1) e F;
(M2) If X CY € F then X € F.
Furthermore, any set X € F is called an independent set, whereas a set Y € 27 \ F is called a
dependent set. A maximal independent set in F is called a basis.

An independence system (FE,F) is a matroid if it satisfies the additional property:
(M3) If X,Y € F and | X| > |Y], then there is an z € X \'Y with YU {z} € F.
Matroids have the property that all bases in F have the same cardinality.

In this work, we will also focus our attention on the following special classes of matroids:

e Uniform matroids: F is a finite set, k is a positive integer, and F ={F C E: |F| < k}.

e Partition matroids: F = U"_| E; is the disjoint union of k sets, l1,...,l; are positive integers,
and

F={F:F=U" F, where F;,CE,;,|F;|<l; fori=1,...,k}.

e Laminar matroids (Gabow and Kohno (2001), Calinescu et al. (2007)): Let E be a finite
set. A family of subsets S C 2F is said to be a laminar family if for any two sets X,Y € S, at least
one of the three sets, X \Y, Y\ X, X NY is empty. Let S be a laminar family of sets, and each
set S € S is associated with an integer value kg. Then,

F={FCE:|FNS|<kg for each S € S}.

Following the seminal work of Edmonds (1971), submodularity and matroids have received a lot
of attention in the optimization community. The reader is referred to standard textbooks in com-
binatorial optimization (Cook et al. (1998), Korte and Vygen (2000), Lawler (1976), Nemhauser
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and Wolsey (1988), Schrijver (2003)) for a detailed exposition on submodularity, matroids, and
independence systems.

Since our focus is on developing approximation algorithms for a variety of problems, we must
formalize the notion of an approximation algorithm. An a-approximation algorithm for a max-
imization problem P is a polynomial-time algorithm A for P such that

OPT(I) < o~ A(I)

for all instances I of P, where OPT(I) and A(I) are the optimal value and the objective value
returned by the algorithm A for an instance I of P. Observe that by this definition, it must be
that & > 1. A fully polynomial-time approximation scheme (FPTAS) provides, for every
€ >0, a (14 €)-approximation algorithm whose running time is polynomial in both the size of the
input and 1/e. More generally, a polynomial-time approximation scheme (PTAS) provides a
(1+¢€) approximation algorithm whose running time is polynomial in the size of the input, for any
constant e.

1.2. Problem Description and Literature Survey
The problem we address may be stated as follows:

Zopt =max{f(S):SCE,SeF} (P)

where f is a normalized, nondecreasing, submodular function, and (E,F) is, in general, an inde-
pendence system. As stated earlier, our focus is on the performance of the greedy algorithm (and
its variants), described below, in solving some special cases of this general problem.

STANDARD GREEDY ALGORITHM
Initialization: S:=0, F' :=FE.
Incremental Oracle: Select an element e* € E’\ S such that

e” =argmax p.(S5).
e€EE\S

Admissibility Oracle: If SU{e*} € F
Then S:=SU{e*}.
Else E' := E'\ {e*}.

Loop back: While E'\ S # () goto Incremental Oracle.

End

Informally stated, the greedy algorithm starts with an empty set, and in each iteration adds an
element with highest marginal value to the solution using an incremental oracle, while ensuring
independence of the resulting solution set using an admissibility oracle (also known as independence
oracle). The algorithm continues as long as there remains an element which it has not previously
considered.

A special case of the problem (P) is the maximization of a linear function over a matroid. For this
problem, the greedy algorithm is known to be optimal (Rado (1957), Edmonds (1971)). Korte and
Hausmann (1978) studied the problem of maximizing a linear function over an independence system
and present tight bounds (that are functions of the rank quotient) on the performance of the greedy
algorithm for this problem. Nemhauser et al. (1978) considered the problem (P) over a uniform
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matroid and showed that greedy is a tight (e/(e — 1))-approximation algorithm for this problem.
In a companion paper, Fisher et al. (1978) studied the problem (P) over a general independence
system that is an intersection of M matroids and showed that greedy is an (M + 1)-approximation
algorithm. This result yields a 2-approximation factor when (E,F) is a matroid. The authors
also considered a simpler variant of the greedy algorithm, that they refer to as the locally greedy
heuristic, and showed that this algorithm is also a factor-2 approximation algorithm for the problem
(P) when (E,F) is a partition matroid. Subsequently, Conforti and Cornuéjols (1984) studied the
problem (P) over a matroid, but for a richer class of objective functions, f, by introducing the
notion of total curvature to characterize a set function. They showed that the performance of the
greedy algorithm for maximizing a nondecreasing submodular set function of total curvature o
is an (a + 1)-approximation. Moreover, by showing that 0 < «a <1 for nondecreasing submodular
functions and o« =0 if and only if the function is linear, they generalized the results of Rado-
Edmonds and Fisher et al. (1978) regarding the performance of the greedy algorithm.
Wolsey (1982) considered the problem (P) over an independence system (E,F) given by:

F={SCE:Y w.<W}

ecsS

where w,, for each e € F/, are nonnegative weights and W is a nonnegative integer. This system
is simply the set of all feasible solutions to a knapsack constraint, and exemplifies independence
systems where F may be exponentially large, and yet may be encoded succinctly in a problem
instance. In what follows, we will see examples where the ground set F itself may be exponentially
large and yet may be encoded concisely in a problem instance. Extending a result of Khuller
et al. (1999) regarding the performance of a greedy with partial enumeration algorithm for the
BUDGETED MAXIMUM COVERAGE problem, Sviridenko (2004) showed that this algorithm is also
an (e/(e—1))-approximation algorithm for the problem (P) over a knapsack independence system.
The (e/(e — 1))-approximation results of Sviridenko (2004) and Nemhauser et al. (1978) for their
respective problems are in fact best possible for any polynomial-time approach, unless P=NP (Feige
(1998)).

Upon the completion of this work, we learnt that recently Calinescu et al. (2007) have developed
a pipage rounding based (e/(e — 1))-approximation algorithm for the case of problem (P) where
(E,F) is a matroid and f is a sum of weighted rank functions of matroids, which are a rich subclass
of monotone submodular functions. Moreover, the authors also give a somewhat different proof for
the performance of the standard greedy algorithm with an approximate oracle for the problem (P)
when (E,F) is a p-independent family.

2. Motivation

Whereas all of the works highlighted in the previous section, with the exception of the recent paper
of Calinescu et al. (2007), assume the existence of a polynomial-time procedure (or incremental
oracle) in the greedy algorithm to find an optimal incremental element in each iteration, such an
oracle may not always be available. We motivate this scenario via an example where the ground
set, F, itself may be exponentially large. Consider the following problem studied by Fleischer et al.
(2006):
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SEPARABLE ASSIGNMENT

Instance: A set, U, of n items and a set, B, of m bins. Each bin ¢ € B has an independence
system Z; of subsets of items that fit in bin 7. A profit p;; for assigning item j to bin q.

Task: Find a subset of items, S C U, and an assignment of these items, S; € Z; to bin ¢, S;N S, =0
for i # k, so as to maximize profit, > . Zjesi Dij-

Observe that the family of feasible subsets for each bin ¢, Z;, is an independence system. Also note
that therefore, the constraints defining feasible packings for bin ¢, implicit in Z;, are separable from
the constraints for bin 7, i.e., the set of feasible packings of bin i are unaffected by the set of feasible
packings of bin j. Finally, the authors assume the existence of an a-approximation algorithm for
the single-bin subproblem for each bin i: select a feasible packing of items from Z; of maximum
profit. As an example, the GENERALIZED ASSIGNMENT problem is a special case of the SEPARABLE
ASSIGNMENT problem, where the single bin subproblem is the KNAPSACK problem. Specifically,
in the GENERALIZED ASSIGNMENT problem, items also have sizes w;; corresponding to each bin ¢,
and each bin itself is a knapsack of a particular capacity B;. Hence, the single-bin subproblem
corresponding to bin ¢ for GENERALIZED ASSIGNMENT would be to find a maximum profit subset
of items that fits in bin 7. However, for other special cases of SEPARABLE ASSIGNMENT, the single-
bin subproblem may be characterized by other forms of resource packing problems, such as the
RECTANGLE PACKING or the 2-DIMENSIONAL KNAPSACK problem.

As noted independently by Chekuri (2006) and by Fleischer et al. (2006), this problem is
an instance of maximizing a normalized, nondecreasing, submodular function over a (partition)
matroid. For the sake of completeness, and to illustrate a case for which the ground set E of
the matroid is exponentially large and finding the best incremental element may be NP-hard, we
describe this transformation here.

OBSERVATION 1. SEPARABLE ASSIGNMENT is an instance of maximizing a monotone submod-
ular function over a partition matroid.

Proof. For any instance of the SEPARABLE ASSIGNMENT problem, define a ground set F =
UsepF;, with an element eg € F; corresponding to each feasible packing, S € Z;, of bin i. The
constraints on SEPARABLE ASSIGNMENT now transform to picking at most one element from each
set E;. Let F' = U,;epF;, where F; C E; and |F;| <1, represent the set of elements picked. This
underlying constraint structure is therefore a partition matroid. However, note that the packings
of bins corresponding to any set F', may contain multiple copies of the same item. Therefore it is
important that one does not double-count the profit for these items. This may be taken care of by
writing the objective function as:

f(F)=> max{p; i€ Bes€ F,,j€S} .
jeu

Observe that this definition of f extends to all subsets F' C E, even when |F}| is more than 1.
Observe also that the summation is over all items j € U, and the maximum is over all bins ¢ that
contain item j. In other words, if an item j is in multiple bins corresponding to a set, F', then out
of all the bins, 4, that item j is in, we assign only the maximum p;; value to item j. It is not hard
to verify that indeed this function f is nondecreasing, and has decreasing marginal values. Suppose
that S € Z; is a feasible packing for bin i. Observe that the incremental value of element eg to a
set F', pegs(F), is given by:

pes(F) = f(FU{es}) — f(F) :Zmax{pij —max{py;:ep € F,Pe€I,j€ P} 0}

jeSs
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Intuitively, the incremental value of an element is the incremental profit value of the set of items
in the corresponding packing that the element represents. As the set F' grows, the likelihood of
the items in the packing, S, of bin ¢ having the highest profit, p;;, decreases and hence, f has
decreasing marginal values. Therefore, f is submodular. [

We have seen that in the underlying matroid, an element of the ground set corresponds to a
feasible packing in a bin. Consequently, the role of an incremental oracle in the greedy algorithm
for this problem is to pick a feasible packing among all feasible packings of maximum incremental
value to the existing solution. This would typically involve solving a knapsack problem (or even
a rectangle packing problem), since the set of all feasible packings might be exponentially large.
However, since such packing problems are typically NP-hard, we cannot hope to have an optimal
incremental oracle, unless P=NP. Hence, generalized results such as the one described below,
assuming instead the existence of an a-approximation oracle to find a “good” incremental element,
are in order.

In this work, we present bounds on the performance of a greedy algorithm that uses an a-
approximation algorithm as the incremental oracle to determine an incremental element to add
to the greedy solution. We begin by considering the problem of maximizing a nondecreasing sub-
modular function over uniform matroids. Generalizing a previous result due to Nemhauser et al.
(1978), we show that in the presence of an a-approximate incremental oracle, the standard greedy
algorithm is an (e'/®/(e’/® —1))-approximation algorithm for this problem. Further, we also discuss
how our result generalizes similar previous results due to Hochbaum and Pathria (1998) in the
context of the MAXIMUM COVERAGE problem, and Chekuri and Khanna (2006) with regards to
the MULTIPLE KNAPSACK problem with identical bin capacities.

Partition matroids generalize uniform matroids, in that the ground set E contains elements
of different kinds, with individual restrictions on how many elements may be selected of each
kind. In Section 4, we consider a variant of the standard greedy algorithm, namely the locally
greedy algorithm, previously proposed by Fisher et al. (1978) and consider the performance of
this algorithm for maximizing nondecreasing submodular set functions over partition matroids.
Extending a result of Fisher et al. (1978) to a-approximate incremental oracles, we show that
the locally greedy algorithm guarantees a tight factor-(a + 1) result for the submodular function
maximization problem over partition matroids. We also show that various optimization problems
that arise in the context of the winner determination in combinatorial auctions (Lehmann et al.
(2006)), generalized assignment problems (Fleischer et al. (2006)), AdWords assignment problems
(Fleischer et al. (2006)), basic utility games (Vetta (2002), Mirrokni and Vetta (2004)), wireless
networks (Abrams et al. (2004)), etc. may be cast into the framework of maximizing a submodular
function over a partition matroid. Consequently, we reinterpret, unify, and even improve upon
some of the results pertaining to these problems.

In Section 5, we consider the problem of maximizing a submodular function over an independence
system. If the independence system is an intersection of a finite number, M, of matroids, then
Fisher et al. (1978) showed that the greedy algorithm with an optimal incremental oracle is an
(M +1)-approximation algorithm for this problem. When only an a-approximate incremental oracle
is available, we show that the greedy algorithm is an (aM + 1)-approximation for the problem.
Based on this result, we improve upon a previous result of Fleischer et al. (2006) for the k-MEDIAN
WITH HARD CAPACITIES AND PACKING problem and we present a greedy (« + 1)-approximation
algorithm for it. Finally, we conclude in Section 6 by highlighting some interesting open questions
and future directions that result from this work.

3. Generalized Results over Uniform Matroids
Let (E,F) be a uniform matroid, i.e., F ={S C E: |S| <k} for some integer k. Consider the
problem of maximizing a normalized, nondecreasing, submodular function f over this uniform
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matroid. Using notation introduced by Farahat and Barnhart (2004), we represent this problem as
fs|Fo. We describe a generalized greedy algorithm below that uses an a-approximation algorithm
as the incremental oracle to find an element e with the best incremental value, p.(S) = f(SU{e}) —
f(S). Note that in the case of uniform matroids, the role of the admissibility oracle in the greedy
algorithm is trivial — as long as the size of the solution set, S, is strictly smaller than k, any element
is admissible.

GREEDY ALGORITHM FOR fg|Fy
Step 1: Set i:=1; let Sy:=0.

Step 2: Select an element e; € £\ S;_; for which « p.,(S;_1) > maxcep\s,_, pe(Si—1) using an
a-approximate incremental oracle.

Step 3: Set Sl = Si—l U{@Z}

Step 4: Set i:=i+ 1. If ¢ <k, then goto Step 2.

We use S; to represent the set generated by the greedy algorithm after i iterations. Let S¢ = S,
be the solution returned by the greedy algorithm. Let p; represent the incremental profit obtained
by the addition of element e; to the set S;_;. Let p} represent the optimal incremental profit that
could have been obtained, given the set S;_; was selected by the first ¢ — 1 iterations of the greedy
algorithm. Since we use an a-approximation oracle in order to determine the element with the
best incremental objective function value, it follows that p; < pi <« p;. Observe that if one had
access to an optimal incremental oracle, then it would be the case that p; > p; 1. However, since
we only use an approximate incremental oracle, this need not hold anymore. Thus, the use of an
approzimate incremental oracle does not preserve the nonincreasing property of incremental values
of elements selected by the greedy algorithm. We begin by noting the following characterization for
nondecreasing submodular functions:

LEMMA 1 (Nemhauser et al. (1978)). f is a nondecreasing submodular set function on E if
and only if f(T) < f(S)+ 2 erspi(S) for all S, T CE.

Suppose that z,,; = maxgcp{f(S5) :|S| <k}, with f is normalized, nondecreasing, and submod-
ular. We then show that:

THEOREM 1. If z, is the wvalue of the GREEDY ALGORITHM FOR fg|Fy, then Z;’—Zt <

(ak:)k 1/
(ak)k—(ak—1)k = el/a_1°~

Proof. Suppose that S¢ is the set generated by the greedy algorithm and T is an optimal solution
to the above problem. Let p! represent the best incremental value that could have been obtained
during the i*" iteration of the greedy algorithm. By substituting S = in Lemma 1 and observing
that |T'| <k, it follows that:

Zopt = F(T) <D F(G) < kply < k(apy).

jeT

Now, applying Lemma 1 to the solution of the greedy algorithm after j iterations, S;, implies that:

Zopt S F(S;)+ Y pilS)). (1)

iET\Sj
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Given that f(S;)= ZZ . pi and that
apji > Py > pi(S;) forallie B\ S,

equation (1) now yields the following inequality:
J
Zopt S sz + k (apj+l) 9
=1

which implies that

pg—&-l > Zopt sz .

Adding Zle p; on both sides of the above inequality, we get an inequality of the form:
Jj+1
(ak—1)
Z,Oz_ Zopt+7 sz (2)

1=1

We now prove by induction on j that:

Z (ak)! — (ak—1)
piz (ak)? Fort

For j =1, we have that p; > — 2,,:. Assume that the claim holds for 7 — 1. Now, applying the
induction hypothesis on equatlon (2) we have:

sz_ ak—1 (ak)?' — (ak —1)71

Zopt ak (ak)]_l Zopt -

Simplifying the right-hand side of the above expression yields the induction claim. Finally, setting
7 =k we have:

k
(ak)F — (ak —1)*
z2g = Z pPi = (Oék’)k Zopt

i=1

which proves the approximation ratio claim that:

Zopt (ak)* el/e

O
s (ak)F—(ak—1)F — e/ -1

z

The above result essentially follows in a manner similar to that of Nemhauser et al. (1978) and
serves to point out the effect of « on the approximation factor of the greedy algorithm. For the case
when « = 1, the result is precisely that of Nemhauser et al. (1978) and therefore tight. Theorem 1
also generalizes a similar result due to Hochbaum and Pathria (1998) (see also Hochbaum (1997))
in the context of the MAXIMUM COVERAGE problem and its applications. We discuss this in greater
detail in Section 3.2 below.
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3.1. Discussion on Running Time of Greedy Algorithm

Denote the running time of the a-approximate incremental oracle by P. It follows then that the
running time of the GREEDY ALGORITHM FOR fg|Fy is O(kP), where at most k elements need to
be selected from the uniform matroid. Observe that the running time of the algorithm itself does not
depend on the size of the ground set, F, which may possibly be exponentially large. As discussed
earlier, and motivated by the SEPARABLE ASSIGNMENT problem, in certain underlying problems,
the ground set £ may be encoded concisely, even though it is exponentially large. In that sense,
the greedy algorithm is an efficient algorithm as long as P is polynomial in the input size of the
underlying problem. Moreover, for problems such as the relaxed AD PLACEMENT problem, where
the number of elements to be selected is itself encoded using log k bits, it is often possible to modify
the greedy algorithm appropriately so that its running time is still polynomial, as demonstrated
by Goundan and Schulz (2007b) for the relaxed AD PLACEMENT problem.

3.2. Applications of Generalized Result
We begin by studying implications of Theorem 1 for the MAXIMUM COVERAGE problem in discrete
optimization. The MAXIMUM COVERAGE problem may be stated as follows:

MAXIMUM COVERAGE

Instance: A set of elements, U, a collection R of subsets of U, and an integer k. A nonnegative
profit, p;, corresponding to each element j € U.

Task: Select k subsets Uy, ...,U; of U, with each U; € R, such that the profit of the elements in
Uk_, U; is maximized.

Vohra and Hall (1993) noted that MAXiMUM COVERAGE is indeed a special case of fg|Fy.
Hochbaum and Pathria (1998) presented a greedy algorithm to solve MAXIMUM COVERAGE, and
a scenario where finding a subset that gives maximum improvement might be hard. They obtained
the same bound as the one in Theorem 1, assuming that one is able to pick an a-approximate
solution in each stage. Hochbaum and Pathria (1998) also described a number of applications that
can be modeled as the MAXIMUM COVERAGE problem in a setting of approximate improvement.

Theorem 1 also implies the bound on the performance of the greedy algorithm obtained by
Chekuri and Khanna (2006) for the MULTIPLE KNAPSACK problem with identical bin capacities.
The MuLTIPLE KNAPSACK problem may be stated as follows:

MUuLTIPLE KNAPSACK

Instance: Nonnegative integers, n, m, pi,...,Pn, Wi,-.., Wy, and Wy,... . W,,.

Task: Find m subsets Sy,...,S, C{1,...,n}, S;NS, =0 for i # k, such that Zjesi w; < W; for
i=1,...,mand ", > jes, Pj 1s maximum.

In the case that all m bins have the same capacity, W7 = Wy =--- =W,, = W, this problem is
an instance of fg|Fy. The transformation for this is essentially identical to that described for
SEPARABLE ASSIGNMENT in Observation 1. Using an FPTAS for the KNAPSACK problem as an
incremental oracle, the greedy (-5 +¢)-approximation result of Chekuri and Khanna (2006) follows
from Theorem 1.
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4. The Locally Greedy Algorithm and Partition Matroids

In this section, we generalize the performance bounds of a special version of the greedy algo-
rithm, namely the locally greedy heuristic of Fisher et al. (1978), to maximize a submodular func-
tion over a partition matroid. Recall that a partition matroid, (E,F) is given by F ={F : F =
Uk F; where F; C E;,|F;| <1; fori=1,...,k}. We assume that we only have at our disposal an
a-approximation algorithm to play the role of an incremental oracle for each element type, F;. We
shall refer to this problem as fs|Fp, where the subscript P denotes the partition matroid. The
locally greedy algorithm for this problem is as follows:

LocALLY GREEDY ALGORITHM FOR fg|Fp
Step 1: Set i:=1; let Sy:=0; m:=1.
Step 2: Set j:=1.

Step 3: Select an element e; € E;\ S,,_; for which « Pe; (Sm—1) > maxcep\s,, ; Pe(Sm—1) using
an a-approximation algorithm as the incremental oracle of type .

Step 4: Set S, :=S,,-1U{e;}; m:=m+1.
Step 5: Set j:=j+1.If j <I;, then goto Step 3.

Step 6: Set i:=i+ 1. If ¢ <k, then goto Step 2.

In the above algorithm, ¢ is a counter of the type, E;, of elements in consideration; j is a counter
for the number of elements selected within a particular type; and m represents the number of
elements selected by the greedy algorithm at any point. The locally greedy algorithm basically
begins by selecting “profitable” elements of the first type, E1, from E, until it has picked [; elements
from F,, and then it proceeds to do so for the second type of elements, F, in E and so on. Thus,
the number of elements, m, in the greedy solution, S¢, is at most Zle l;.

It is important to note that, the order in which the locally greedy algorithm deals with elements
of different types is completely arbitrary. Furthermore, the incremental oracle in the locally greedy
algorithm only need select an approrimate best element within each particular type, rather than an
approximate best element across all element types. Of course, with an a-approximate incremental
oracle over each type, one may simulate an a-approximate incremental oracle over all types in O(k)
time, by taking the a-best element of each of k types and selecting the best of them.

Our main result for the maximization of submodular set functions over partition matroids is
that:

THEOREM 2. If 2z, is the value of the solution provided by the LOCALLY GREEDY ALGORITHM
FOR fs|Fp, and z.py is the value of an optimal solution, then % <a+l.

Proof. Let S¢ represent the greedy solution and 7' an optimal solution to fs|Fp. Substituting
them in Lemma 1, we have that:

Zopt = F(T) < F(S)+ > pi(59).
JET\SCG

Now, suppose T'\ S¢ = U¥_, T;, where T; C E;. Also, suppose S¢ = UF_|S¢ where S¢ C E;. Let
e; be the element in S¢ that was selected with the lowest p value, which was at a point in the
algorithm when the current greedy solution, just before the addition of e;, was S¢. Mathematically,

pe; (5°) = min p,(S5°) .
eES”

(3
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In other words, p., (S¢) is the minimum incremental value selected by the greedy algorithm among
elements in S¢. But given that we are using an a-approximation algorithm, we also know that:

ape,(S) > pe(S¢) forall e € E;\ S°. (3)

Also, since Y cp so p;(SY) = Zle djem, p;(SY), it now follows that:

FS) D pi(59)

Zopt S
i=1 jeT;
k
<zt > pi(S). (4)
i=1 jeT;

Inequality (4) follows from the submodularity of f (see property (F2a)), since S¢ C S¢, for i =
1,..., k. Noting that T; C E;\ S¢ C E;\ S% and using inequality (3), the right-hand side of inequality
(4) yields further that:

k k
Zopt S 2gF DD ape(S9) =2+ ) alTi|pe,(5)

i=1 jET; i=1
< z,taz, (5)
Inequality (5) is implied from the way we picked e; to be the element with the lowest incremental
function value in S¢, and since we may assume without loss of generality that |T;| < |SE| <; (recall
that (F,F) is a matroid and f is nondecreasing, and therefore we can always add elements to S
so that |T;| < |SE)). O

If one uses an optimal incremental oracle in the greedy algorithm, implying o = 1, then Theorem 2
matches the result of Fisher et al. (1978), and guarantees a bound of 2 for the performance of
a locally greedy algorithm over fg|Fp. This result of Fisher et al. (1978) for the locally greedy
heuristic seems relatively unknown compared to their result for the performance of the standard
greedy algorithm for fs|Fy, where the subscript M denotes arbitrary matroids. In Section 4.2,
we reinterpret a few results in the literature based on the result of Fisher et al. (1978) for the
locally greedy heuristic. But first, we quickly comment on the running time of the locally greedy
algorithm.

4.1. Discussion on Running Time of Locally Greedy Algorithm

It is easy to see that the running time of the LOCALLY GREEDY ALGORITHM FOR fs|Fp depends
only on the number of elements, I;, to be picked of each type ¢, and the running time of the
incremental oracle of type i, P;, as O(Zf:1 [; P;). It does not depend on the size of the ground set,
E, which may potentially be exponentially large, as in SEPARABLE ASSIGNMENT. It follows that
the locally greedy algorithm is an efficient algorithm as long as the running time, P;, of each oracle
is polynomial in the size of the input of the underlying optimization problem.

4.2. Applications of Generalized Result for Partition Matroids
We now relate some recent work in the literature to the result of Fisher et al. (1978) for the locally
greedy heuristic:
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Winner determination problem in combinatorial auctions. When all buyers in a com-
binatorial auction possess nondecreasing submodular valuations, it has been observed that the
WINNER DETERMINATION problem is a special case of fg|Fp (see Appendix A for details). Inter-
estingly, we point out that the factor-2 greedy approximation algorithm proposed by Lehmann
et al. (2006) for this problem turns out to be exactly the locally greedy heuristic of Fisher et al.
(1978), as both algorithms are independent of item ordering. To complete the analogy between both
these greedy algorithms, we observe that Lehmann et al. (2006) assume access to a value oracle to
encode the submodular valuations of the players. That is, given a set S, the value oracle outputs
f(S). In the corresponding locally greedy algorithm, the existence of an optimal incremental oracle
follows from the existence of the value oracle, and from the fact that there are only n buyers whose
valuations need to be checked to find the best incremental element.

Convergence issues in competitive games. We can show that basic-utility games with
nondecreasing submodular social utility functions, as defined by Vetta (2002), are an instance of
fs|Fp, where the underlying elements of type ¢ in the partition matroid simply correspond to
elements in the player i’s strategy space. Furthermore, a one-round best-response path of this game
starting from (), as introduced by Mirrokni and Vetta (2004), corresponds to the execution of the
locally greedy algorithm. The factor-2 result of Mirrokni and Vetta (2004) for one-round paths
follows as a consequence. For further details, we refer the reader to Appendix B.

Set k-Cover problems in wireless sensor networks. Abrams et al. (2004) studied a variant
of the SET k-COVER problem that we show is an instance of fs|Fp (see Appendix C). They also
developed a distributed greedy algorithm that is a 2-approximation algorithm for the problem.
This distributed greedy algorithm is in fact analogous to the locally greedy algorithm.

Based on the result of Theorem 2, we now put into perspective other results in the literature
where in the absence of an optimal incremental oracle, the locally greedy algorithm uses an a-
approximate incremental oracle. As mentioned earlier, the SEPARABLE ASSIGNMENT problem is
an instance of fg|Fp. Fleischer et al. (2006) devised a polynomial-time local search (a+ 1+ €)-
approximation algorithm for SEPARABLE ASSIGNMENT, given an a-approximation algorithm for
the single-bin subproblem. It may be seen that any such a-approximation algorithm for the single-
bin subproblem corresponds exactly to an a-approximate incremental oracle for the locally greedy
algorithm. Theorem 2 therefore implies that:

COROLLARY 1. There is a polynomial-time locally greedy (o + 1)-approximation algorithm for
SEPARABLE ASSIGNMENT, given an a-approximation algorithm for the single-bin subproblem.

Fleischer et al. (2006) proposed a linear programming-based a e/(e —1)-approximation algorithm
for SEPARABLE ASSIGNMENT, given an «a-approximation algorithm for the single-bin subprob-
lem. However, observe that if a > (e — 1), then (o + 1) < awe/(e — 1). Hence, if we only have
“weak” approximation algorithms for the single-bin subproblem (such as in the RECTANGLE PACK-
ING problem), the locally greedy algorithm outperforms the LP-based algorithm for SEPARABLE
ASSIGNMENT.

Chekuri and Khanna (2006) proved that for the MULTIPLE KNAPSACK problem, the performance
ratio of a greedy algorithm solving the KNAPSACK problem successively is (2 + ¢€), and noted that
the same result holds even when the weights of items vary across bins. Also, Dawande et al. (2000)
proposed a similar greedy algorithm-based (2 + €)-result for a MULTIPLE KNAPSACK problem with
“assignment restrictions,” wherein items are restricted to be assigned only to certain specified sets
of bins. We note that both these results follow from Theorem 2 as well, since these problems are
special cases of SEPARABLE ASSIGNMENT.

Chekuri and Kumar (2004) studied a variant of the MAXIMUM COVERAGE problem, that they
called MAXIMUM COVERAGE WITH GROUP BUDGET CONSTRAINTS. They also considered the
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performance of a greedy algorithm that uses an a-approximate incremental oracle and showed that
the performance of their greedy algorithm for the cardinality version of MAXiMUM COVERAGE
WITH GROUP BUDGET CONSTRAINTS is (« + 1). By observing that the cardinality version of
MaXiMUM COVERAGE WITH GROUP BUDGET CONSTRAINTS is a special case of fg|Fp, and that
their greedy algorithm is analogous to the locally greedy algorithm, Theorem 2 implies the same
result.

The AdWords Assignment Problem. Search-based advertising is, increasingly, the most
popular form of advertising on the Internet, and a significant source of revenue for search portals
such as Google, Yahoo, and MSN, to name a few. In this paradigm, portals solicit advertisements
for particular keywords, called “AdWords” in the case of Google. The phrase, “linear program-
ming,” would be an example of one such keyword, with which advertisers might like to associate
their advertisement. When a user of a search portal types in a query, it is matched with a cor-
responding keyword and the associated advertisements are displayed on the search results page.
Hence, advertisers would have different valuations for their advertisement being associated with
different keywords, which in turn, would depend on which queries match each keyword.

If a search firm is aware of advertisers’ private valuations and, therefore, their willingness to
pay for each keyword, then one might think of framing the search firm’s problem of assigning
advertisements to keywords to maximize revenue as the following optimization problem proposed
by Fleischer et al. (2006):

ADWORDS ASSIGNMENT

Instance: A set of n bidders with a budget B; for each bidder ¢; a rectangular ad A; of length
l; and width w; that bidder ¢ would like to advertise; a set of m AdWords (keywords), each
AdWord j with a rectangular display area of length L; and width W;; bidder 7 has a maximum
willingness to pay, v;;, for having its ad associated with AdWord j.

Task: Find a feasible assignment of AdWords, S;, to bidder i so as to maximize total revenue,
where the revenue obtained from bidder ¢ is min(B;, ) ;5. vi;). In a feasible assignment, all ads
assigned to AdWord j must be feasibly displayed in the rectangular display without having to
rotate any of the ads.

It turns out this ADWORDS ASSIGNMENT is in fact a special case of maximizing a nondecreasing
submodular function over a partition matroid. We present this transformation below.

LEMMA 2. The ADWORDS ASSIGNMENT problem is a special case of maximizing a nondecreas-
ing submodular function over a partition matroid.

Proof. Consider an underlying ground set £ =Uj., F;, where each element es € F; corresponds
to a feasible assignment of ads, .S, that may be accommodated in the rectangular display corre-
sponding to AdWord j. A feasible solution to the ADWORDS ASSIGNMENT problem would constrain
that at most one element may be picked of each type, E;, thereby defining a partition matroid
on F.

For any subset, F' C F, suppose that F; = F'N E;. Furthermore, let FJ’ ={es € F;: adie S}.
Define a function, f, on a subset F' C E as follows:

F(F)=>) min (B, Y vy,lFj]) .

It is not hard to verify that f is exactly the objective function of ADWORDS ASSIGNMENT over
all feasible sets in the partition matroid, and therefore over all feasible solutions of ADWORDS
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ASSIGNMENT. Moreover, observe that f is indeed nondecreasing and has decreasing marginal values,
by construction. Hence the claim holds. [J

From the transformation presented above, it is not hard to see that the role of the incremental
oracle in a locally greedy algorithm for this problem would be played by an algorithm for the
RECTANGLE PACKING problem:

RECTANGLE PACKING

Instance: Set of n rectangles, R; = (I;,w;, p;), where [; < L and w; <W are the length and width
of R;, respectively, and p; is the profit associated with R;. Also, a big rectangle R of length L
and width W.

Task: Find a subset of rectangles S C {Ry,...,R,} that can be feasibly packed in R which
maximizes ) .. g Pi-

For RECTANGLE PACKING, the best-known result is a (2 + €)-approximation scheme due to Jansen
and Zhang (2004). Consequently, Theorem 2 implies that:

COROLLARY 2. The locally greedy algorithm, with a (2 + €)-approzimation scheme for RECT-
ANGLE PACKING as an approzimate incremental oracle, is a (3 + €)-approximation scheme for the
ADWORDS ASSIGNMENT problem.

The above result improves on the previous best (24 €)e/(e — 1) =~ (3.16 4 €)-approximation result
of Fleischer et al. (2006) for the ADWORDS ASSIGNMENT problem.

It is instructive to understand the difference between the locally greedy algorithm and the stan-
dard greedy algorithm. A standard greedy algorithm in any iteration tries to pick the “best”
incremental element in E over all element types, and does not constrain itself to pick only from
a certain subset F;. One might therefore expect that for partition matroids, the standard greedy
performs better than the locally greedy algorithm. However, as it turns out, even the standard
greedy algorithm achieves the same approximation factor as the locally greedy algorithm, and this
factor is tight.

OBSERVATION 2. For the problem fs|Fp, the worst-case performance of a standard greedy algo-
rithm as well as a locally greedy algorithm using an a-approximate incremental oracle is no better
than (a4 1).

Proof. Consider a partition matroid, with F = E; U E,, with Ey = {a,b}, F5 = {c}, where at most
one element may be picked from E; and E,, respectively, and a submodular function, f, defined as
f0)=0,f({a}) =, f({b}) = f({c}) =L, f({a,c}) = f({a,b}) =a+ L, f({b;c}) =1, f({a,b,c}) =
a4+ 1. It may be easily verified that f is indeed normalized, nondecreasing and submodular. More-
over, the optimal solution in this instance yields a value of f({a,c}) = a+ 1. However, the standard
greedy algorithm and the locally greedy algorithm may yield the solution f({b,c}) =1, by pick-
ing b in the first iteration, using an a-approximate incremental oracle. Thus the approximation
guarantee of both these algorithms is (a+1). O

We end this section by pointing out that indeed, for a lot of the problems discussed, there are algo-
rithms with better performance guarantees than that of the locally greedy algorithm. For example,
Fleischer et al. (2006) gave an (e/(e — 1))-approximation algorithm for the GENERALIZED ASSIGN-
MENT problem, that has recently been improved to (e/(e —1) — ¢€) by Feige and Vondrak (2006).
For the MULTIPLE KNAPSACK problem, there exists a PTAS constructed by Chekuri and Khanna
(2006). Abrams et al. (2004) also provided an (e/(e — 1))-approximation algorithm for their variant
of SET k-COVER. For the winner determination problem in combinatorial auctions with submod-
ular valuations, Feige and Vondrék (2006) developed an (e/(e — 1) — €)-approximation algorithm
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using a demand oracle, and Dobzinski and Schapira (2006) presented a (2 — 1/n)-approximation
algorithm using a value oracle. A demand oracle, given a set of prices p;, one for each element e;,
outputs a set S that maximizes f(S) — ZEZ_ cgPi- This assumption of the existence of a demand
oracle is a stronger assumption than that of a value oracle, as a demand oracle can simulate a
value oracle in polynomial time (Dobzinski and Schapira (2006)). Recall that the existence of a
value oracle is sufficient to show the factor-2 performance of a locally greedy algorithm for this
problem. Nevertheless, these results do hint that there might be better approximation algorithms
for the general class of problems, fg|Fp, itself.

Calinescu et al. (2007) have recently developed an (e/(e — 1))-approximation algorithm for the
problem of maximizing the sum of weighted rank functions of matroids over an arbitrary matroid
constraint. The sum of weighted rank functions are a rich subclass of monotone submodular func-
tions, and include most of the objective functions of problem instances discussed in this work, but
there do exist instances of monotone submodular functions that do not belong in the above class,
notably including the objective function illustrated for the ADWORDS ASSIGNMENT problem in

Lemma 2.

5. Generalized Results over Matroids and Independence Systems

An element e is said to be “admissible” into an independent set S if SU{e} remains independent.
Observe that for uniform matroids and partition matroids, the admissibility of an element into
an independent set S depends only on the number of elements of each type present in S. Since
the admissibility of an element into the greedy solution can be determined trivially for partition
matroids and does not involve the need of an admissibility oracle, as would be the case for general
matroids and independence systems, the above study was simple, and the running time of the greedy
algorithms was independent of the size of the ground set, F. If a polynomial-time admissibility
oracle does exist for a particular class of matroids or independence systems, then it is possible to
study the performance of a greedy algorithm with an a-approximate incremental oracle for such a
class of matroids.

Suppose that an independence system (E,F) is the intersection of M different matroids. In this
section, we shall generalize the result of Fisher et al. (1978), who proved that if an independence
system (F,F) is an intersection of a finite number, M, of matroids, then the standard greedy
algorithm is a (M + 1)-approximation algorithm. More formally, for the problem of maximizing a
nondecreasing submodular function over (E,F), we shall show that a greedy algorithm, with an
a-approximate incremental oracle as well as an admissibility oracle for (E,F) at its disposal, is in
fact an (M + 1)-approximation algorithm.

We begin with a description of a generic greedy algorithm for this problem.
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GREEDY ALGORITHM FOR fg|F
Initialization: Set i:=1;let Sy:=0, E,:=FE.
Step 1: If E;_, = (), STOP.

Step 2: Select an element e; € E;_; for which « p,(S;—1) > maxcep, , pe(Si—1) using an a-
approximate incremental oracle.

Step 3: Using the admissibility oracle, check if S;_;U{e;} € F.
Step 4a: If “no,” set F;,_;:=FE; 1\ {e;} and return to Step 1.
Step 4b: Set Si = Si,1 U {61‘}, Pi—1 = Pe; (Sifl) and Ez = Ei,1 \ {61‘}.

Step 5: Set i:=4+1 and return to Step 1.

Similar to the standard greedy algorithm described earlier for uniform matroids, the GREEDY
ALGORITHM FOR fs|F uses the a-approximate incremental oracle to select a candidate element of
“good” incremental value. The algorithm then uses the admissibility oracle to check if the selected
element is indeed admissible into the solution at hand, and modifies the ground set and solution
set accordingly. Observe from the definition of an independence system that if an element e is not
admissible to the candidate solution in an iteration ¢ of the algorithm, then it is never admissible
to the candidate solution after iteration i. Therefore, such elements may be removed from the
underlying set for future consideration.

THEOREM 3. Suppose (E,F) is an independence system that can be expressed as the intersection
of a finite number, M, of matroids, and f is a normalized, nondecreasing, submodular function. If
24 15 the value of the greedy heuristic solution, utilizing an a-approximate incremental oracle and
an admissibility oracle, for the following problem:

max{f(S):S e F}
and 2,y s the value of an optimal solution, then Z;’—;’t <aM+1.

Proof. The proof presented here is an augmented version of the original proof by Fisher et al.
(1978) for the case a =1, so as to overcome the difficulty that the sequence of incremental values
p; 18, in general, not monotone anymore. Let us define U; to be the set of elements considered in
the first (¢t + 1) iterations of the greedy algorithm before the addition of the (¢ + 1)st element. Let
rm(S) denote the rank of set S in matroid m (where the rank of S is the cardinality of the largest
independent subset of S in the matroid), and sp,,(S) be the span of S in matroid m, defined by:

spm(S)={e€ E:r,(Su{e})=r,(5)}.

In order to proceed with the proof, we shall utilize two lemmata shown by Fisher et al. (1978).
We include the short proofs for the sake of completeness.

LeEmMA 3 (Fisher et al. (1978)). U, CUY_, spm(S:) t=0,1,....

Indeed, if j € Uy, then either j € S; C Un]\le $pm(S;) for all m, or j is not admissible, implying
that j € sp,,,(S;) for some matroid m.

LEMMA 4 (Fisher et al. (1978)). If S\ a; <t fort=1,2,.... K, and pi_y > p; with p;,x; >

0 fori=1,..., K—1 and px =0, then Zf:)lpixigzi[;lpi.
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Consider the following linear program:

K-1 t—1
maX{Zpia:i | ingt,t: oo, K xiZO,i:O,...,K—l}.
i=0 j

It is easy to verify that its dual is:

K K-—1
mzin{tht_l | DY azpni=0,..., K-1, ztzo,t:O,...,K—l}.
t=1 t=i

As p; > pii1, the solution z; = p; — pir1,1=0,..., K —1 (where pr =0) is dual feasible with value
Zfil tpi1—pt) = Zf:)l p:- By weak LP duality, the claim follows.

So, suppose that S and T represent the greedy and an optimal solution, respectively, to the
above problem. Additionally, let |S| = K. Note that since (F,F) is an independence system and
not necessarily a matroid, |T'| need not be K.

Fort=1,...,K, let s;_y =|T N (U; \ Ui_1)|, where U, is the set of elements considered in the
first (¢t + 1) iterations before the addition of a (¢ + 1)st element to S;. We assume without loss of
generality that Uy =0 and Ux = E. Also, let p*(S;) = max.cp, p.(5;) for i=0,..., K.

Since f is a nondecreasing submodular set function, Lemma 1 yields:

2o = J(T) S J(S)+ D pelS). (6)
e€T\S

Suppose t € {1,2,..., K} and py) =min{p; | i=0,...,t —1}. Now for all elements e € TN (U, \

U;_1), we have that:
Pe(S) < pe(Se) < p*(Se) < p*(Sqy+1) < pgqe) - (7)
While the first inequality follows from the submodularity of f, the second and third follow from the
definition of p*. The final inequality follows from the fact that we are using an a-approximate oracle:
If e* is such that pe«(Syw)+1) = p*(Sq)+1), then by the fact that e* € Ey 441 was not considered

by the greedy algorithm in iteration ¢(t), the inequality follows. Given the above inequality, define
Py_1 = pgr)- We then have:

pe(S)Sp;_l for alleETﬂ(Ut\Ut,l), t:1,2,...,K. (8)

Note that by the way that we have defined p;_,, it has the nonincreasing property. In other words,
p,_, > p, for all t. This is based on the definition of ¢(t), which itself has the same nonincreasing
property. Additionally, p; = apgt41) < ap;.

Using this fact in equation (6), we now have that:

FT) < FS)+ D> pe(S)

ecT\S

< F(S)+ ) pelS)

ecT

=f)+Y D S

t=1 e€TN(U\Ut—1)

< F(S)+ D piisia )

where the last inequality follows from (8) and the definition of s;.
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Now, observe that since s,y = |T'0 (U, \Uy_1)|, it must be that 3;_ s,y = |T'NU,|. By Lemma 3,
we also have that U; C Ui\f:l $pm (St), which in turn gives us that:

M

TNT < TN span(S)] -

m=1

But since T is independent in each of the matroids and r,,(sp,,(S;)) =t, it follows that for each
m, |T'Nspm(Sy)| <t. This implies that:

¢ M
Zsi—l < Z‘THSPm(St)‘ <Mt (10)
i=1 m=1

where the above inequality is true for each t=1,2,... K.

Since p}, s, > 0 for all ¢, and p} has the nonincreasing property, by substituting z; = s;/M and
p; = pi in Lemma 4, inequality (10) now gives us that

K-—1 K-—1
S ps<MY g (11)
1=0 1=0

Substituting back inequality (11) into inequality (9), we now have that:
K-1
FIT) < F(S)+M Y p
i=0

< fS)+aM Y p (12)

— £(S)(1+alM)

where inequality (12) follows from the fact that p; < ap, for all t. O

In parallel to this work, Calinescu et al. (2007) have also recently noted a somewhat different
proof for the performance of the greedy algorithm for fs|F in the presence of an a-approximate
incremental oracle. In the next section, we offer further insights into the greedy algorithm and its
performance.

5.1. Discussion on the Running Time of the Greedy Algorithm

As we have noted in earlier sections for uniform and partition matroids, the greedy algorithm and
the locally greedy algorithm have a running time that depends only on the restrictions of the number
of elements that must be picked, and is independent of the size of the ground set, E. However,
the greedy algorithm presented for fg|F in fact has a running time that depends on the size of E.
Hence, if F is exponentially large, this would yield a poor running time for the greedy algorithm. It
must also be noted that this dependence of the running time on |E| only comes because sometimes,
the incremental oracle might pick an element e € E that need not be admissible. If however, there
were a hybrid incremental oracle that always finds a “good” incremental element that is necessarily
admissible, then the running time performance of the greedy algorithm will not necessarily depend
on |E|, but on the size of a largest independent set in E. In certain instances of fg|F, such as when
the independence system (E,F) is a matroid, it may be possible to bound the size of the largest
independent set polynomially in the size of the input of the underlying combinatorial optimization
problem. We now present an instance of such a problem, and as it turns out, the greedy algorithm
consequently provides the best-known approximation ratio for this problem in polynomial time.
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5.2. k-Median with Hard Capacities and Packing Constraints
Fleischer et al. (2006) presented the following variant of the k-Median problem, that they call the
k-MEDIAN WITH HARD CAPACITIES AND PACKING CONSTRAINTS problem.

k-MEDIAN WITH HARD CAPACITIES AND PACKING CONSTRAINTS

Instance: A set, U, of n items and a set, B, of m bins. Each bin ¢ € B has an independence
system Z; of subsets of items that fit in bin i. A profit p;; for assigning item j to bin i. An
integer k < m.

Task: Choose a set of K bins, |K| <k, and a subset of items, S C U, with a feasible assignment
of these items to the bins in K, S; € Z; for bin i € K, S; N S; =0 for i # [, so as to maximize

proﬁt, ziEK Ejesi Dij-

This problem has very similar flavor to the SEPARABLE ASSIGNMENT problem discussed in
Section 2. In fact, using the transformation of Observation 1, it can be seen that the underlying
constraint structure is a laminar matroid, defined by £ =U!", E;, and

F={F:FCE,FNE;|<1lfori=1,...,mand |F|<k}.

In the above matroid, it is easy to see that the size of the largest independent set (or basis of the
matroid) is k, which is polynomial in the input (since & <m). Moreover, the objective function for
this problem can be rewritten exactly as in Observation 1. Consequently, monotone submodularity
follows. Thus K-MEDIAN WITH HARD CAPACITIES AND PACKING CONSTRAINTS is an instance of
fs|Far-

Fleischer et al. (2006) devised a polynomial-time local search (a+ 1+ ¢)-approximation algorithm
for K-MEDIAN WITH HARD CAPACITIES AND PACKING CONSTRAINTS, assuming there is an a-
approximation algorithm for the single bin subproblem. The authors also remark that this result
is, to the best of their knowledge, the first constant-factor approximation to this problem.

Given an a-approximation algorithm for each of the single bin subproblems corresponding to
the m bins, one may easily design an a-approximate hybrid incremental oracle over all element
types. At the start of any iteration ¢, suppose that the current solution generated by the greedy
algorithm is S. If |S| <k — 1, then selecting the a-best incremental element among the [ element
types corresponding to the [ bins for which a feasible packing has not been selected as yet, would
indeed be a feasible selection. Hence the running time of a greedy algorithm for this problem is
polynomial in the input size. Specifically, if P; is the running time of the a-approximate oracle
corresponding to bin 4, then the running time of the algorithm is O(kY_;", P;). Since the problem
is an instance of fg|F); with a hybrid incremental oracle available, Theorem 3 implies:

COROLLARY 3. Given an a-approximation algorithm for the single bin subproblem, there is a
polynomial-time (a4 1)-approximation greedy algorithm for K-MEDIAN WITH HARD CAPACITIES
AND PACKING CONSTRAINTS.

Hence, by generalizing the results of Fisher et al. (1978), we are able to improve upon the
previous best-known result of Fleischer et al. (2006) for this problem. In a related context, Calinescu
et al. (2007) have developed an improved e/(e — 1)-approximation algorithm for the GENERALIZED
ASSIGNMENT problem subject to a laminar matroid constraint on the bins.
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6. Concluding Remarks and Open Questions

In this paper, we extend some classic results of Fisher et al. (1978) and Nemhauser et al. (1978)
on the performance of the greedy algorithm for maximizing monotone submodular functions over
independence systems and other special subclasses. Our work is based on the premise that the
greedy algorithm need not always to be able to pick an element of maximum incremental value,
and may only be able to select an element of “good” incremental value. We show that this is
indeed the case by posing some interesting and important discrete optimization problems as the
problem of maximizing a monotone submodular function over an independence system. Based on
our generalized results, we are able to reinterpret as well as present a new view to many recent
results. In certain cases, we are even able to establish improved approximation results based on
these insights.

We conclude by highlighting some interesting open questions that remain intimately connected
to this work and even served to motivate this study of submodular function maximization:

e Consider the problem fg|Fs, of maximizing a submodular function over an arbitrary matroid
constraint, given a value oracle. Calinescu et al. (2007) have recently conjectured that there exists
an e/(e — 1)-approximation problem for this problem. For a rich subclass of submodular functions,
Calinescu et al. (2007) show that there is indeed such an algorithm, based on pipage rounding and
considering an appropriate extension of a submodular function. We believe that a insightful first
step in proving the conjecture for fs|Fy, would be to develop an e/(e — 1)-approximation algorithm
to fs|Fp, the problem of maximizing a submodular function over a partition matroid, given the
special simple structure of the partition matroid.

e Consider the standard greedy and local greedy algorithms described for fs|Fp. One would
note that in the tight worst-case examples described in Observation 2, the greedy algorithms’
bad performance may be attributed to the greedy algorithm not selecting the “correct” optimal
incremental element in the first iteration. While simple randomizing over all optimal incremental
elements in any iteration does not necessarily improve the performance of the greedy algorithm,
smarter randomized schemes might lead to improved approximation algorithms for fs|Fp. Indeed,
Goundan and Schulz (2007a) propose an improved randomized (2 —1/n)-approximation algorithm
for fs|Fp. An interesting question is therefore if one might leverage an intermediate randomized
scheme coupled with a greedy strategy to develop improved approximation results for fg|Fp.

Appendix A: Winner Determination in Combinatorial Auctions.

Combinatorial auctions are mechanisms via which multiple non-identical items are sold to bidders who
express preferences over combinations of items, and not just single items. Such auctions assume particular
relevance when the items being sold are either complements or substitutes to each other. In particular,
Lehmann et al. (2006) studied the problem of an auctioneer who would like to allocate a set of items, X,
of decreasing marginal values amongst n submodular bidders so as to maximize total social welfare. More
formally, the problem may be stated as follows:

WINNER DETERMINATION

Instance: A set X of items; n bidders, each bidder j having a submodular valuation function, v, : 2%X —
R, which is normalized and nondecreasing.

Task: Find a partition of the items in X into pairwise disjoint sets, Si,...,5,, so as to maximize
" v;(9)).
j=1 "I\~

It has been observed in the literature that the WINNER DETERMINATION problem is a special case of
fs|Fp. We present this transformation here for completeness. Consider a ground set given by E = U;cx F;,
where an element e;; € E; corresponds to allocating item ¢ to bidder j. The constraint defined by the WINNER
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DETERMINATION problem, that any item ¢ € X may be assigned to at most one bidder, would therefore
transform to picking at most one element from each set F;. Clearly, the set of all feasible subsets of E
defined by this constraint would therefore be a partition matroid. Moreover, the objective function of the
auctioneer is to maximize social utility, ;_1:1 v;(S;), where (S1,...,95,) is a partition of X. This objective is
also nondecreasing and submodular, since it is a sum of nondecreasing submodular functions. Based on any
set F'C E, define

S = {ile;; € F}.

Furthermore, the objective function of the auctioneer may be rewritten as f(F)=3_"_, v;(S), which is
clearly monotone submodular on the base set, . This may be easily verified by noting that the marginal
value of any element e;; to a set F' is indeed nonincreasing, since the marginal value of the corresponding
item ¢ being allocated to bidder j is itself nonincreasing. Thus the WINNER DETERMINATION problem is
indeed an instance of fs|Fp, as noted by Lehmann et al. (2006).

Interestingly, we point out that the factor-2 greedy approximation algorithm proposed by Lehmann et al.
(2006) for this problem turns out to be exactly the locally greedy algorithm of Fisher et al. (1978), as both
algorithms are independent of item ordering. To complete the analogy between both these greedy algorithms,
we observe that Lehmann et al. (2006) assume access to a wvalue oracle for each player, to encode the
submodular valuations of the players. That is, given a set S of items, the value oracle for bidder j outputs
v;(S). In the corresponding locally greedy algorithm, the existence of an optimal incremental oracle follows
from the existence of the value oracle, and from the fact that there are only n bidders whose valuations need
to be checked to find the best incremental element. The authors do not make this connection and instead
claim that the family of greedy algorithms that they consider is wider than that of Fisher et al. (1978).

One might observe that in the transformation described earlier in this section, the structure of the sub-
modular objective function is “separable,” in the sense that the marginal utility of any item e;; depends only
on which other elements have been allocated to bidder j, i.e., elements of the form e;; in the current solution,
F C E. Tt is conceivable that one might leverage this special structure to devise improved approximation
algorithms for the WINNER DETERMINATION problem. Indeed, Dobzinski and Schapira (2006) proposed a
randomized (2 — 1/n)-approximation algorithm for this problem, where n represents the number of elements
of each type. Goundan and Schulz (2007a) have recently shown that this algorithm may be adapted to
provide a (2 —1/n)-approximation algorithm for fs|Fp as well. Interestingly, Khot et al. (2005) proved that
there can be no polynomial time approximation algorithm with a factor better than e/(e —1) for the WINNER
DETERMINATION problem, unless P=NP.

Appendix B: Convergence Issues in Competitive Games.

Vetta (2002) studied the following strategic game played amongst n players: associated with each player j
is a disjoint ground set V; of actions, and S, a collection of subsets of V. Any set s; €.S; corresponds to a
feasible strategy of player j. In addition, suppose that §; € S; corresponds to the null strategy for player j. A
strategy profile or state, S = (s1,...,5,), represents the corresponding strategies being played by each player.
Let S® s = (81,.- 3851585, 85415 - - .,8,) denote the state obtained if player j were to change its strategy
to s7. Assume that a; :1I; S; — R represents the private utility function of player j, and v:1I; S; — R, the
social objective function. Suppose that the social objective function, ~(.), is a monotone submodular set
function defined on U7_,V}, i.e.,

7(5) = 9(Uj_135),
where ¢ is a monotone submodular function defined on U;V;. Based on different assumptions on v and «;,
Vetta (2002) introduced the following types of games:

Utility Game: A strategic game as described above is said to be a utility game if it satisfies the Vickrey
condition:

a;(S) >~(S) —v(S @ ;) for all feasible states, S.

Valid Utility Game: A valid utility game is a utility game that satisfies the Cake condition:

Zaj(S) < ~(S) for all feasible states, S.
J
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Basic Utility Game: A basic utility game is a valid utility game that satisfies the Vickrey condition with
equality:
a; (S) =7(5) = (S ®0;) = g(Uisi) — g(Uiz;si)-

We reinterpret valid utility games, and in particular, basic utility games, as an equivalent decentralized
approach to maximizing a submodular function over a partition matroid, where at most one element may
be picked of each type. We illustrate this equivalence for basic utility games, and the equivalence for valid
utility games follows similarly.

Corresponding to an instance of a basic utility game, construct a ground set F' =Uj_; F; and add an
element e; in E; corresponding to each feasible strategy s, € S, of player j. That a player may select at most
one strategy from its feasible set of strategies would lead to a natural partition matroid on this underlying
ground set, E. Correspondingly, a function, f, may be defined on any subset F' C E as follows:

f(F)=g(Ue,ers;)-

It may be verified that f is monotone submodular on E, since g itself is monotone submodular on the
underlying ground set U,;V;. Observe that in the transformation so far, we have made no assumptions
whatsoever regarding the underlying private utilities of the players. Thus, by imbuing each player with any
private utility function, we may define a corresponding partition matroid game, where E; would correspond
to the strategy space of player j. Indeed, if the private utility of each player in the partition matroid game
is set to

oy (F) = f(F) = (F\ E) for any F C E,

then this partition matroid game defined would in fact be the basic utility game we sought to transform,
since this private utility matches the private utility of player j in the basic utility game.

Conversely, starting with any instance of fs|Fp wherein at most one element may be picked from each
type, we may similarly define a partition matroid game over the instance. By imbuing the player representing
elements of type j with the private utility function,

o;(F) = f(F) ~ f(F\E,) for any F C E,

we clearly satisfy the Vickrey condition with equality. Moreover, it is not hard to verify that these utilities
also satisfy the Cake condition (refer Theorem 2.5 of Vetta (2002)). Thus, we may define a basic utility
game corresponding to each instance of f¢|Fp as well. Additionally, by defining alternate private utilities
in the partition matroid game, one may draw a similar correspondence to valid utility games. Via this
correspondence, we may now reinterpret the results of Vetta (2002) for valid utility games as the performance
bounds of a decentralized approach to fg|Fp.

One of the main results of Vetta (2002) (Theorem 3.4) is that there exists a pure Nash equilibrium in any
valid utility game, and that the expected social value of any (pure or mixed strategy) Nash equilibrium is
at least half the social optimal value. This result may alternately be interpreted as:

COROLLARY 4. Any Nash equilibrium of a decentralized valid-utility game approach to fs|Fp is a factor
2 approzrimation to the optimal solution.

Vetta (2002) gave examples that imply that this factor 2 result is indeed tight. Unfortunately, Goemans
et al. (2005) show that for some instances of valid utility games (alternately, in a valid-utility game approach
for certain instances of fg|Fp), finding a Nash equilibrium is PLS-complete.

Interestingly, iterative improved response strategies in a valid-utility game framework for fg|Fp closely
resemble local search approaches to fs|Fp. Indeed, Fisher et al. (1978) gave similar bounds on the per-
formance of an interchange heuristic, a local improvement procedure. In an iteration of the interchange
heuristic, while there exists an element e outside the current solution, .S, that may be swapped with an
element in S so as to improve the value of the solution while maintaining independence simultaneously, S
is modified by interchanging the elements accordingly. The heuristic terminates when no feasible improving
element remains in the “swap” neighborhood. Fisher et al. (1978) showed that a locally optimal solution
obtained using the interchange heuristic is a 2-approximate solution to fg|Fp (and more generally, over
arbitrary matroids). Any locally optimal solution in a “swap” neighborhood to fs|Fp in fact corresponds
to a pure-strategy Nash equilibrium in a basic-utility game. The result of Fisher et al. (1978) implies that
any pure-strategy Nash equilibrium in a basic utility game is at least half of the social optimal value. The
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result of Vetta implied in Corollary 4 is more general, in that it holds for valid utility games and for mixed
strategy Nash equilibria as well, although the structure of both proofs are similar in spirit.

Mirrokni and Vetta (2004) also considered the notion of a state graph D = (V, £) corresponding to a utility
game, where each vertex in V represents a strategy state, S = (s1,...,8,). There is a directed edge in £ from
state S to S” with label j if the only difference between S and S’ is the strategy of player j; and player j
plays its best response in strategy state S to go to S’. A one-round best-response path is a path P that
starts from an arbitrary state and the edges of P are labeled in order iy,1s,...,%,, where iq,is,...,%, iS an
arbitrary ordering of the n players. One may easily define a similar state graph and related notions for a
partition matroid game.

We claim that starting with an initial state (01, 0s,...,0,) in the state graph of a basic utility game and
following a one-round best response path corresponds to the execution of the locally greedy algorithm of
the underlying partition matroid. To see this, without loss of generality, one may assume that the best
response path in consideration is labeled 1,2, ..., n. Furthermore, let the vertices in this path correspond to
So = (01,04,...,0,), S1 = (s1,02,...,0,), ..., Sp = (s1,82,...,8,) in order. Now, in any iteration j of the
locally greedy algorithm, the role of the incremental oracle is to pick an element e € E; of maximum possible
incremental value, p.(F;_1) = f(F;_1Ue) — f(F;_1), to the current solution at hand, F;_;. In the one-round
best response path being considered, the social objective at vertex S;_; is given by g(Uf;%si). By induction,
suppose that F;_; ={e;[i =1,...,57 — 1} where each e; corresponds to the strategy s; of player i in state
Si1={(81,---,8;_1,0;,...,0,). Clearly by definition,

F(Fio1) = g(UlZ1s:) =7(S;-1)-
Moreover, in transitioning from S;_; to S;, player j selects s so as the maximize

a;(T) = g(UZ1s;Us) — g(Ul1s)),

k3 k3

where T'= (s1,...,8;_1,5,...,0). However, observe that

o;(T) = f(F;-aUe) = f(F1) = pe(Fj-1),

where e would be the element in E; corresponding to the strategy s. Hence, it must be that the element
selected by the locally greedy algorithm is indeed the e; that corresponds to s;. The claim follows by
induction.

Mirrokni and Vetta (2004) showed that a one-round best response path starting from the initial state,
(01,04,...,0,), provides a 2-approximation to the state S that maximizes v(S). By our interpretation of this
path as the execution of the locally greedy algorithm, the same result follows from Theorem 2.

Appendix C: Set k-Cover Problems in Wireless Sensor Networks

Motivated by applications in wireless sensor networks, Abrams et al. (2004) considered the following variant
of the SET k-COVER problem:

SET k-COVER
Instance: A set of elements, U, a collection S of subsets of U, and an integer k > 2.

Task: Find a partition of the collection of subsets S into k parts, Cy,...,Cy, such that Zle | Us, ec, Sl
is maximized.

The intuition behind the formulation of this problem is as follows: the underlying elements of the set U are
meant to represent distinct regions being monitored by a sensor network, and each subset S; € S represents
the regions monitored by a particular wireless sensor ¢. The objective of the planner is to partition these
sensors into k parts so as to maximize the number of times the regions are covered by these parts. Each
part of the partition corresponds to a group of sensors that are activated for a particular period of time, and
different parts of the partition are activated at different times, so as to conserve the battery power of the
wireless sensors.



Goundan and Schulz: Submodular Function Mazimization Revisited
24 Article submitted to ; manuscript no.

Consider a ground set F = U‘JillEj, where any element e;; € E; corresponds to assigning set S; to partition
C;. That a set in S may be allocated to at most one partition defines a partition matroid on E. Moreover,
for any subset F C E, create a partition with C/ = {S;|e;; € F'}. Now, the objective function of the SET

k-COVER problem corresponds to:
k

FF)=Y"|Us,ecr Sil.
i=1
It is not hard to see that f is nondecreasing and submodular, using a similar argument as seen for MAXIMUM
COVERAGE. Therefore, this problem is an instance of fg|Fp. Abrams et al. (2004) proposed a number of
algorithms, including a distributed greedy algorithm, and showed that it is a 2-approximation algorithm for
the problem. This distributed greedy algorithm is in fact analogous to the locally greedy algorithm, and the
performance of the distributed greedy algorithm of Abrams et al. (2004) follows from Theorem 2.
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