
Exploiting separability in large-scale

linear support vector machine training

Kristian Woodsend ∗ Jacek Gondzio †

School of Mathematics and Maxwell Institute for Mathematical
Sciences, University of Edinburgh, The King’s Buildings, Edinburgh,

EH9 3JZ, UK
August 7, 2007, revised April 9, 2009

Abstract

Linear support vector machine training can be represented as a
large quadratic program. We present an efficient and numerically sta-
ble algorithm for this problem using interior point methods, which
requires only O(n) operations per iteration. Through exploiting the
separability of the Hessian, we provide a unified approach, from an op-
timization perspective, to 1-norm classification, 2-norm classification,
universum classification, ordinal regression and ε-insensitive regression.
Our approach has the added advantage of obtaining the hyperplane
weights and bias directly from the solver. Numerical experiments in-
dicate that, in contrast to existing methods, the algorithm is largely
unaffected by noisy data, and they show training times for our imple-
mentation are consistent and highly competitive. We discuss the effect
of using multiple correctors, and monitoring the angle of the normal
to the hyperplane to determine termination.

1 Introduction

With the exponential increases in storage capacity and computing power,
and fields such as text categorisation, image recognition, and bioinformat-
ics generating huge real-world data sets, scalability and efficiency become
important issues for machine learning approaches. Support Vector Ma-
chines (SVMs) are a powerful machine learning technique, and they offer
∗k.woodsend@ed.ac.uk
†j.gondzio@ed.ac.uk

1



state-of-the-art performance, but the training of an SVM is computation-
ally expensive and relies on optimization. The core of the approach is a
convex quadratic optimization problem (QP) which scales with the num-
ber of data points rather than the feature space dimension. This complexity
result makes applying SVMs to large scale data sets challenging, and in prac-
tise the optimization problem is intractable by general purpose optimization
solvers as each iteration scales cubically with the size of the training set.

The standard approach is to build a solution by solving a sequence of
small scale problems, e.g. Decomposition [26; 23] or Sequential Minimal Op-
timization [27]. State-of-the-art software such as SVMlight [18] and SVMTorch
[4] use these techniques. These are basically active-set techniques, which
work well when the separation into active and non-active variables is clear,
in other words when the data is separable by a hyperplane. With noisy
data, the set of support vectors is not so clear, and the performance of these
algorithms deteriorates. The Incremental Active Set (INCAS) method [9] is
an approach where variables change set one at a time, and is better able to
handle noisy data.

Other optimization techniques have also been tried. In SVMperf [19], an
equivalent reformulation was developed with fewer variables and suited to
cutting-plane algorithms, where time to converge is linear in the size of the
training set. Coordinate descent methods update one variable at a time by
minimizing a single-variable sub-problem, and this approach is implemented
in the LibLinear software package [17].

Approaches have been proposed to adapt the SVM training problem to
one that can be handled more efficiently. Mangasarian and co-workers have
proposed several, and the Reduced SVM can be seen as representative [22].
A random subset of the data is chosen to characterize the space, and this is
used to select a larger subset of the data for training. The approach of [20]
is similar in that a set of feature basis vectors are defined by a relatively
small number of points. To provide a continuously differentiable function
suitable for unconstrained optimization techniques, both approaches rewrite
the SVM training problem to use 2-norms for misclassification errors, and
additionally the Reduced SVM maximises the margin with respect to both
orientation and location relative to the origin. Both modifications were
originally described in [24], and both are used in the LibLinear software
package [17]. We make some comparisons with this software later, but in
general we are interested in developing an efficient method without needing
to resort to such modifications.

Another family of approaches are based on Interior Point Method (IPM)
technology (Section 2), which works by delaying the split between active

2



and inactive variables for as long as possible. IPMs generally work well on
large-scale problems, as the number of outer iterations required grows very
slowly with problem size [see 34]. A straight-forward implementation of the
standard SVM dual formulation using IPM would have complexity O(n3),
where n is the number of data points, and be unusable for anything but the
smallest problems. Within this family, several approaches based on different
formulations have been researched [7; 10; 13]. They are discussed further in
Section 2.2. They have in common an aim to exploit the low-rank structure
of the kernel matrix and reduce the problem to one where the algorithm
works on a small dense matrix of size m, the number of features, giving a
per-iteration computational complexity of O(nm2). These approaches, how-
ever, inherently suffer from either numerical instability or memory caching
inefficiencies.

In this paper, we present a set of efficient and numerically stable IPM-
based formulations (Section 3), which unify, from an optimization perspec-
tive, linear 1-norm classification, 2-norm classification, universum classifica-
tion, ordinal regression and ε-insensitive regression. We show that all these
problems can be equivalently reformulated as very large, yet structured,
separable QPs. Exploiting separability has been investigated for general
sparse convex QPs [28; 25], but not for the SVM problem. Further, we
show how IPM can be specialized to exploit separability in all these prob-
lems efficiently. We investigated performance for 1-norm classification. Our
implementation matches the other IPM-based techniques mentioned above
in terms of computational complexity. In practice it gives consistent and
highly competitive training times, and for some problems it outperforms
other implementations of the 1-norm classification problem (including the
active-set and cutting plane algorithms mentioned above) by a large margin.
Performance is confirmed through extensive numerical experiments (Section
4).

We now briefly describe the notation used in this paper. xi is the at-
tribute vector for the ith data point, and are the observation values directly.
There are n observations in the training set, and m attributes in each vec-
tor xi. X is the m × n matrix whose columns are the attribute vectors xi
associated with each point. The classification label for each data point is
denoted by yi ∈ {−1, 1}. The variables w ∈ Rm and z ∈ Rn are used for
the primal variables (“weights”) and dual variables (α in SVM literature)
respectively, and w0 ∈ R for the bias of the hyperplane. Scalars and column
vectors are denoted using lower case letters, while upper case letters denote
matrices. D,S,U, V, Y and Z are the diagonal matrices of the corresponding
lower case vectors.

3



2 Interior Point Methods

Interior point methods represent state-of-the-art techniques for solving lin-
ear, quadratic and non-linear optimization programmes. In this section the
key issues of implementation for QPs are discussed very briefly to highlight
areas of computational cost [for more details, see 34].

2.1 Outline of IPM

We are interested in solving the general convex quadratic problem

min
z

1
2
zTQz + cT z

s.t. Az = b (1)
0 ≤ z ≤ u,

where u is a vector of upper bounds, and the constraint matrix A is assumed
to have full rank. Dual feasibility requires that ATλ+s−v−Qz = c, where λ
is the dual variable associated with the constraints and s, v > 0 are the dual
variables associated with the lower and upper bounds of z respectively. An
interior point method (outlined in Algorithm 1) moves towards satisfying
the KKT conditions over a series of iterations, by monitoring primal and
dual feasibility and controlling the complementarity products

ZSe = µe

(U − Z)V e = µe,

where µ is a strictly positive parameter. At each iteration (steps 2–7), the
method makes a damped Newton step towards satisfying the primal feasi-
bility, dual feasibility and complementarity product conditions for a given
µ. Then the algorithm decreases µ before making another iteration. The
algorithm continues until both infeasibilities and the duality gap (which is
proportional to µ) fall below required tolerances. An alternative termination
criterion is discussed in Section 4.3.

The Newton system to be solved at each iteration (steps 3–5) can be
transformed into the augmented system equations:[

−(Q+ Θ−1) AT

A 0

] [
∆z
∆λ

]
=
[
rc
rb

]
, (2)

where ∆z,∆λ are components of the Newton direction in the primal and
dual spaces respectively, Θ−1 ≡ Z−1S + (U − Z)−1V , and rc and rb are

4



Algorithm 1 Outline of interior point method
Require: Initial point (z0, s0, v0, λ0)

1: (z, s, v, λ) := (z0, s0, v0, λ0)
2: while stopping criteria is not fulfilled do
3: Calculate matrix M
4: Factorize matrix M
5: Calculate search direction (∆z,∆s,∆v,∆λ) by solving M∆λ = −r̂b

and backsolving for other variables
6: Determine step size and calculate new iterates (z, s, v, λ)
7: Correct (z, s, v, λ) to obtain a more central point
8: end while
9: return (z, s, v, λ)

appropriately defined residuals. Furthermore, the normal equations are a set
of equations found by eliminating ∆z from the augmented system. Solving
them requires calculating M ≡ A (Q + Θ−1)−1 AT (step 3), factorizing M
(step 4), and then solving M∆λ = −r̂b for ∆λ (step 5). Using multiple
correctors to gain a more central iterate (step 7) is discussed in Section 4.4.

Calculating (step 3) and factorizing M (step 4) are the most compu-
tationally expensive operations of the algorithm. Interior point methods
are efficient for solving quadratic programmes when the matrix Q is easily
invertible; however, if the matrix is dense the time taken to invert M can
become prohibitive. In such a case, it is advantageous to solve system (2).

2.2 Previous IPM approaches to SVM training

For large-scale data sets, we assume that the number of data points n greatly
exceeds the number of features m, and we assume that the kernel matrix
Q ≡ Y XTXY is dense (see Section 3.1). Inverting this dense n× n matrix
directly requires O(n3) operations, and for large data-sets this approach is
impractical.

By exploiting the low-rank representation of the linear kernel, it is pos-
sible to design IPM algorithms where the only matrix to be inverted has
dimension m ×m, and the overall effort associated with computing its im-
plicit inverse representation scales linearly with n and quadratically with m.
This gives a significant improvement if n � m. A common approach is to
use low-rank corrections in the representation of the Newton system, and
exploit it through implicit inverse representation by applying the Sherman-
Morrison-Woodbury (SMW) formula. An algorithm based on the dual for-

5



mulation (4) and SMW formula has a computational complexity of O(nm2)
for the multiplication and O(m3) for the inversion at each IPM iteration [7];
a similar approach working in primal space has the same complexity [10].

The SMW formula has been widely used in interior point methods, where
it often runs into numerical difficulties. There are two main causes of the
difficulties: if the matrix Θ−1 that is inverted is ill-conditioned; and if there
is near-degeneracy in the data matrix (XY ). Ill-conditioning of the scaling
matrix Θ−1 is a feature of IPMs, especially in the later iterations. Near-
degeneracy in (XY ) will occur if there are multiple data points which lie
along or close to the separating hyperplanes, and this is accentuated if the
data is not well scaled. Neither of these problems can really be avoided by a
SMW-based algorithm. In [13], data sets of this type were constructed where
an SMW-based algorithm required many more iterations to terminate, and
in some cases stalled before achieving an accurate solution. The authors
also showed that this situation arises in real-world data sets.

Goldfarb and Scheinberg [13] proposed an alternative technique based on
Product Form Cholesky Factorization. In this technique, a Cholesky factor-
ization is computed for a very sparse matrix and then updated to take into
account each of the m+ 1 dense columns of A. The approach has the same
complexity O(nm2) as the previous approaches (although a small multiple
of flops are required), but better numerical properties: LDLT Cholesky fac-
torization of the IPM normal equation matrix with variables following the
central path has the property that L remains numerically stable despite D
becoming increasingly ill-conditioned, as happens in the later iterations of
IPM algorithms [12]. Although Goldfarb and Scheinberg exploit symme-
tries in their technique to reduce the computations required, their approach
suffers from some memory caching inefficiencies because each feature is han-
dled separately (this is investigated in Section 4.6). It is also intrinsically
sequential, and so does not facilitate a parallel computing implementation.

3 Support Vector Machines

In this section we briefly outline the formulations for Support Vector Ma-
chines used for linear classification and regression problems, and by showing
how optimality conditions between the primal weight variables w ∈ Rm and
the dual variables z ∈ Rn can be used to derive equivalent formulations, we
present a new, unified approach for SVM training that combines the sepa-
rability of the primal formulation with the small number of constraints of
the dual formulation. As will be seen, our separable formulations introduce

6



m additional variables and constraints to the standard dual problems, but
such an approach enables an IPM algorithm with a complexity that is linear
in the dataset size. Although the decision variables w and z̄ in the following
discussion are free, we chose to give them bounds which brings all variables
in line with (1). Efficient setting of these bounds is described in Section 4.2.

3.1 Classification

A Support Vector Machine (SVM) is a classification learning machine that
learns a mapping between the features and the target label of a set of data
points known as the training set, and then uses a hyperplane wTx+w0 = 0 to
separate the data set and predict the class of further data points. The labels
are the binary values “yes” or “no”, which we represent using the values +1
and −1. The objective is based on the Structural Risk Minimization (SRM)
principle, which aims to minimize the risk functional with respect to both
the empirical risk (the quality of the approximation to the given data, by
minimising the misclassification error) and maximize the confidence interval
(the complexity of the approximating function, by maximising the separation
margin) [29; 30]. A fuller description is also given in [5].

For a linear kernel, the attributes in the vector xi for the ith data point
are the observation values directly, while for a non-linear kernel the obser-
vation values are transformed by means of a (possibly infinite dimensional)
non-linear mapping Φ.

Training an SVM has at its core a convex quadratic optimization prob-
lem. For a linear SVM classifier using a 2-norm for the hyperplane weights w
and a 1-norm for the misclassification errors ξ ∈ Rn, this takes the following
form:

min
w,w0,ξ

1
2
wTw + τeT ξ

s.t. Y (XTw + w0e) ≥ e− ξ (3)
ξ ≥ 0

where e is the vector of all ones, and τ is a positive constant that parametrises
the problem.

Due to the convex nature of the problem, a Lagrangian function associ-
ated with (3) can be formulated,

L(w,w0, ξ, z, ν) =
1
2
wTw + τeT ξ −

n∑
i=1

zi[yi(wTxi + w0)− 1 + ξi]− νT ξ

7



where ν ∈ Rn is the vector of Lagrange multipliers associated with the
non-negativity constraint on ξ. The solution to (3) will be at the saddle
point of the Lagrangian. Partially differentiating the Lagrangian function
gives relationships between the primal variables w, w0 and ξ, and the dual
variables z at optimality:

w = XY z

yT z = 0
0 ≤ z ≤ τe.

Substituting these relationships back into the Lagrangian function gives the
dual problem formulation

min
z

1
2
zTY XTXY z − eT z

s.t. yT z = 0 (4)
0 ≤ z ≤ τe.

Measuring the misclassification error using ‖ξ‖2 rather than ‖ξ‖1 is also
standard practice. The primal formulation is the QP

min
w,ξ

1
2
wTw +

τ

2
ξT ξ

s.t. Y (XTw + w0e) ≥ e− ξ
ξ ≥ 0

and the dual formulation becomes

min
z

1
2
zT (Y XTXY +

1
τ
I)z − eT z

s.t. yT z = 0 (5)
0 ≤ z ≤ τe.

The relationship w = XY z holds for the 2-norm classification problem.
Using the form Q = (XY )T (XY ) enabled by the linear kernel, we can
rewrite the quadratic objective in terms of w, and ensure the relationship
between w and z to hold at optimality by introducing it into the constraints.
Consequently, we can state the classification problem (4) as the following

8



separable QP:

min
w,z

1
2
wTw − eT z

s.t. w −XY z = 0 (6)

yT z = 0
0 ≤ z ≤ τe.

The quadratic matrix in the objective is no longer dense, but simplified
to the diagonal matrix

Q =
[
Im 0
0 0n

]
∈ R(m+n)×(m+n)

while the constraint matrix is in the form:

A =
[
Im −XY
0 yT

]
∈ R(m+1)×(m+n).

Determining the Newton step requires calculating the matrix product:

M ≡ A(Q+ Θ−1)−1AT

=
[

(Im + Θ−1
w )−1 +XYΘzY X

T −XYΘzy
−yTΘzY X

T yTΘzy

]
∈ R(m+1)×(m+1). (7)

We need to solve A(Q+ Θ−1)−1AT∆λ = r for ∆λ. Building the matrix
(7) is the most expensive operation, of order O(n(m+ 1)2), while inverting
the resulting matrix is of order O((m+ 1)3).

[11] developed a near-equivalent formulation for M , through successive
block eliminations of the general form of the QP, as part of their OOQP
software. Their software appears to have received little attention from the
machine learning community.

To determine the hyperplane, we also require the value of the bias w0, a
variable in the primal problem (3). Note that the element of λ corresponding
to the constraint yT z = 0 is in fact the variable w0. Using our approach
and a primal-dual interior point method, we can obtain w0 directly from
the solver. This is in contrast to active-set methods, where w0 has to be
estimated from a subset of z values.

We use the same technique to develop a formulation for the 2-norm SVM
(5), leading to a separable QP with the following diagonal Hessian matrix
Q:

Q =
[
Im 0
0 1

τ In

]
∈ R(n+m)×(n+m).

9



3.2 Universum SVM

An approach to binary classification was proposed [32] where the problem is
augmented with an additional data set belonging to the same domain (but
not the same classes) as the classification data, called the Universum [31],
as intuitively it captures a general backdrop. The SVM is trained to label
points from the distributions of the binary classification sets, but make no
strong statement for the Universum distribution.

Let C be the set of classification points, with data XC and labels yC .
Similarly, let U be the Universum set with data XU and no labels. As with
normal binary classification, data points are penalized for being on the wrong
side of the hyperplane margin, measured by error ξC ∈ R|C|. Samples in the
Universum set should lie close to the hyperplane; ξ+U ∈ R|U| and ξ−U ∈ R|U|
are the errors if they are more than ε above or below the hyperplane. It
is possible to use different parameters for misclassification errors in the two
sets, here shown as τC and τU . The primal formulation is then:

min
w,w0,ξC ,ξ+U ,ξ−U

1
2
wTw + τCe

T ξC + τU
(
eT ξ+U + eT ξ−U

)
s.t. XT

C w + w0e ≥ e− ξC
XT
Uw + w0e ≥ εe− ξ+U

XT
Uw + w0e ≤ −εe+ ξ−U

ξC , ξ+U , ξ−U ≥ 0.

A dual formulation can be developed by following the procedure de-
scribed in Section 3.1 of forming the Lagrangian and partially differentiating
with respect to the primal variables. Let us define the block matrices and

vectors X =
[
XCXUXU

]
, y =

 yC
eU
−eU

, Y = diag(y), and dual variables

for the hyperplane constraints z =

 zC
z+U
z−U

. Using this notation, the dual

10



formulation becomes:

min
z

1
2
zTY XTXY z +

 −eCεe+U
εe−U

T z
s.t. yT z = 0

0 ≤ zC ≤ τCeC
0 ≤ z+U , z−U ≤ τUeU .

Using the relationship between w and z at optimality

w = XCYCzC +XUz+U −XUz−U

the Universum classification problem can be transformed into an equivalent
separable formulation

min
w,z

1
2
wTw +

 −eCεe+U
εe−U

T z
s.t. w = XY z

yT z = 0
0 ≤ zC ≤ τCeC
0 ≤ z+U , z−U ≤ τUeU .

3.3 Ordinal regression

Ordinal regression refers to a learning technique that bridges classification
and metric regression. Training samples are labelled with an ordinal num-
ber; in other words the classification categories are ranked. The task of the
supervised learning problem is to predict the position on the ordinal scale
of new samples. Unlike metric regression problems, the label numbers are
discrete and the metric distances between labels do not have any real signif-
icance, while unlike multiple classification problems, ordering information is
present.

Several approaches have been proposed to move beyond using multi-
ple classification techniques or naively transforming the ordinal scales into
numerical values and solving as a standard regression problem. In the for-
mulation of [16], the goal is to learn a function f(x) = wTx + w0 which
correctly orders the samples, so that f(xi) > f(xj)⇔ yi > yj for any pair of

11



examples (xi, yi) and (xj , yj). Using the set of pairings P = {(i, j) : yi > yj},
the authors formulate the following ordinal regression SVM:

min
w,ξ

1
2
wTw + τ

∑
(i,j)∈P

ξij

s.t. wT (xi − xj) ≥ 1− ξij ∀(i, j) ∈ P
ξij ≥ 0 ∀(i, j) ∈ P.

The objective promotes a large-margin linear function f(x) that also mini-
mizes the number of pairs of training examples that are incorrectly ordered.
The formulation has the same structure as the classification SVM, and so it
is open to the reformulation in Section 3.1.

There are two main disadvantages with the above formulation. The first
is that the hyperplane bias w0 does not play a role in the optimization
problem, and has to be estimated afterwards. The second disadvantage is
the number of constraints and the number of variables ξ grow quadratically
with the training data set size. Partly to address that, two new approaches
were proposed [3] for support vector ordinal regression where the size of the
training problem is linear in the number of samples. The first formulation
(“explicit thresholds”) takes only the ranks immediately adjacent to each
separating hyperplane to determine each threshold wj0. They introduce the
constraints w(j−1)

0 ≥ wj0 ∀j explicitly on the thresholds to enforce the cor-
rect ordering. The reverse ordering of wj0 is due to us using wTx + wj0 = 0
to define the hyperplane. Assume that there are r classes, indexed with
j ∈ J = {1, 2, . . . , r}, each with nj data samples. r− 1 parallel hyperplanes
separate the classes; the hyperplane with bias wj0 separates class j from class
j + 1. Xj ∈ Rm×nj

is the data matrix for class j. We define the misclas-
sification error vector ξj+ ∈ Rnj

and dual variables zj+ ∈ Rnj
for points in

class j which should lie above the hyperplane j − 1, and similarly errors
ξj− ∈ Rnj

and dual variables zj− ∈ Rnj
for points in class j below hyperplane

j. Variables ξj+ and zj+ are defined for all classes j = 1, . . . , r − 1, while ξj+
and zj+ are defined for all classes j = 2, . . . , r, but we can write a simplified
but equivalent formulation if we add auxiliary variables ξ1

+, z
1
+, ξ

r
−, z

r
− = 0.

We also introduce dual variables βj ∈ R for each of the ordering constraints.
Again it simplifies the formulation if we set w0

0 = +∞ and wr0 = −∞. Then,

12



with j = 1, . . . , r, the primal formulation is:

min
w,wj

0,ξ
j
−,ξ

j
+

1
2
wTw + τ

r∑
j=1

(
eT ξj− + eT ξj+

)
s.t. (Xj)Tw + wj0e ≤ −e+ ξj− ∀j

(Xj)Tw + w
(j−1)
0 e ≥ e− ξj+ ∀j

wj−1
0 ≥ wj0 ∀j

ξj−, ξ
j
+ ≥ 0 ∀j.

By following the same Lagrange duality technique as Section 3.1, and
using the relationship between w and (zj+− z

j
−) at optimality, an equivalent

separable formulation is:

min
w,z−,z+,β

1
2
wTw −

∑
j

eT (zj+ + zj−)

s.t. w =
∑
j

Xj(zj+ − z
j
−)

eT zj− + βj = eT zj+1
+ + βj+1 ∀j

0 ≤ zj−, z
j
+ ≤ τe ∀j

βj ≥ 0 ∀j.

In the second formulation (“implicit thresholds”) of [3], there are no con-
straints to correctly order the hyperplane biases. Instead, samples from all of
the classes are used to define each threshold, and this approach ensures the
correct ordering. Xj is defined as before. ξjk+ ∈ Rnk

is the misclassification
error vector for class k that should lie above the hyperplane j, and similarly
ξjk− ∈ Rnk

for classes lying below hyperplane j. zjk+ ∈ Rnk
and zjk− ∈ Rnk

are the dual variables for the hyperplane constraints. With j = 1, . . . , r− 1,
the primal formulation is then:

min
w,w0,ξ−,ξ+

1
2
wTw + τ

r−1∑
j=1

(
j∑

k=1

eT ξjk− +
r∑

k=j+1

eT ξjk+


s.t. (Xk)Tw + wj0e ≤ −e+ ξjk− ∀j and k = 1, . . . , j

(Xk)Tw + wj0e ≥ e− ξ
jk
+ ∀j and k = j + 1, . . . , r

ξjk− ≥ 0 ∀j and k = 1, . . . , j

ξjk+ ≥ 0 ∀j and k = j + 1, . . . , r.

13



Using the relationship w = −
∑r−1

j=1

(∑j
k=1X

kzjk− −
∑r

k=j+1X
kzjk+

)
,

our equivalent separable formulation is:

min
z−,z+

wTw −
∑
k

eT

k−1∑
j=1

zjk+ +
r−1∑
j=k

zjk−


s.t. w +

r−1∑
j=1

 j∑
k=1

Xkzjk− −
r∑

k=j+1

Xkzjk+

 = 0

j∑
k=1

eT zjk− =
r∑

k=j+1

eT zjk+ ∀j

0 ≤ zjk− ≤ τe ∀j and k = 1, . . . , j

0 ≤ zjk+ ≤ τe ∀j and k = j + 1, . . . , r.

3.4 Regression

Support Vector Regression (SVR) uses similar techniques to learn a mapping
between the input vector x and a real-valued target value y. In ε-insensitive
SVR, the loss function is defined as Lε ≡ max(0, |y − f(x)| − ε). This loss
is represented by the errors ξi and ξ̂i, which are the losses if the predicted
value f(xi) of the point xi is above or below the band around y of half-width
ε. Fuller descriptions are again given in [5, 29, 30].

The dual variables z, ẑ are the Lagrange multipliers relating to the two
sets of constraints. The objective function minimizes risk using the SRM
principle (balancing the complexity of the function against misclassifications
in the training data), resulting in the primal optimization problem

min
w,ξ,ξ̂

1
2
wTw + τeT (ξ + ξ̂)

s.t. y − (wTX + w0e) ≤ εe+ ξ

(wTX + w0e)− y ≤ εe+ ξ̂

ξ, ξ̂ ≥ 0

and its dual

min
z,ẑ

1
2

(z − ẑ)TXTX(z − ẑ)− yT (z − ẑ) + εeT (z + ẑ)

s.t. eT (z − ẑ) = 0 (8)
0 ≤ z, ẑ ≤ τe.

14



The relationship between w and (z, ẑ) is now w = X(z − ẑ).
We exploit separability in a similar way for Support Vector Regression,

by introducing into the standard dual formulation (8) the auxiliary variable
z̄ ≡ z − ẑ and the relationship w = X(z − ẑ):

min
w,z,ẑ,z̄

1
2
wTw + εeT (z + ẑ)− yT z̄

s.t. − z + ẑ + z̄ = 0
w −Xz̄ = 0

eT z̄ = 0
0 ≤ z, ẑ ≤ τe.

We define decision variables (w, z, ẑ, z̄) and the corresponding constraint
matrix

A =

 0 −I I I
I 0 0 −X
0 0 0 eT

 ,
while both Q and Θ are diagonal matrices. We need to set bounds on z̄ (i.e.,
−τe ≤ z̄ ≤ τe) so that Θz̄ is defined. The matrix M ≡ A(Q + Θ−1)−1AT

requiring factorization is therefore

M =

 Θz + Θẑ + Θz̄ −Θz̄X
T Θz̄e

−XΘz̄ (Im + Θ−1
w )−1 +XΘz̄X

T −XΘz̄e
eTΘz̄ −eTΘz̄X eTΘz̄e

 .
The Cholesky factorization LDLT of matrix K can be computed effi-

ciently using the Schur complement method.

LDLT = M =
[
In
F Lm

] [
Dn

Dm

] [
In F T

LTm

]
where

Dn = Θz + Θẑ + Θz̄

F =
[
−X
eT

]
Θz̄D

−1
n ,

while Lm and Dm are found from the Cholesky factorization

LmDmL
T
m =

[
(Im + Θ−1

w )−1 0
0 0

]
+
[
−X
eT

]
(Θz̄−Θz̄D

−1
n Θz̄)

[
−XT e

]
.

The formation of this smaller matrix is an O(n(m+1)2) operation, while
the factorization is of order O((m+ 1)3). Calculation of the other variables
require O(n) operations.

15



Technique Non-optimized Intel optimized
BLAS library BLAS library

Multiplication of individual elements 296.36 296.36
Outer products (DSYRK) 25.45 20.50
Matrix-vector multiplication (DGEMV) 27.18 22.00
Block-based matrix multiplication (DGEMM) 15.27 8.58

Table 1: Time taken (in seconds) to train an SVM, comparing different
techniques to calculate A(Q + Θ−1)−1AT . The data set given contained
5000 points of 320 attributes. 14 IPM iterations were required.

4 Numerical experiments and results

We implemented the 1-norm formulation (6) in HOPDM [14; 1] which was
modified to perform matrix multiplications in dense mode using the BLAS
library [21]. The experiments were performed using an Intel Pentium 4 PC
running at 3GHz, with 1GB RAM and 1024KB cache. BLAS functions were
provided by Intel’s Maths Kernel Library 1.

A comparison of several techniques for calculating A(Q + Θ−1)−1AT is
shown in Table 1. Any technique that takes advantage of the structure of the
problem gave better performance than multiplying the elements individually.
Computing A(Q + Θ−1)−1AT by outer products most directly exploits the
structure (as (Q + Θ−1) is diagonal), but the computation using DGEMM on
blocks of 32 data points at a time gave the best performance, probably due
to better use of the CPU’s cache.

The numerical results in this section were based on artificial data sets.
The training data sets used were created by uniformly sampling points in the
space [−1,+1]m. A separating hyperplane was defined by choosing random
integer values for w in the range [-1000,1000]. Points were labelled based
on the hyperplane. For the non-separable data sets, the required proportion
of data points were randomly selected and misclassified. In contrast to the
training data, the test data sets contain no misclassified points.

4.1 Confirmation of scalability

The complexity analysis above gave the computations required for each it-
eration as O(nm2) if n � m. To verify this, the software was trained first
using data sets with 255 features. Figure 1(a) shows that the length of time

1http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/index.htm

16



taken by an iteration varies linearly with the number of samples n. How-
ever, the total time taken by the algorithm increases super-linearly with
the number of samples, as the number of iterations required also increases
slowly.

The experiment was repeated for the number of features, using a data
set of 20,000 samples, and the number of features varied. Figure 1(b) shows
that, once there is a reasonably large number of features, approximately
m > 250, the algorithm scales quadratically with m, while the number of
iterations required remains roughly the same.

(a) (b)

 0.1

 1

 10

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000
 10

 15

 20

 25

 30

 35

 40

Ite
ra

tio
n 

tim
e 

pe
r 

sa
m

pl
e 

(s
)

N
um

be
r 

of
 it

er
at

io
ns

 r
eq

ui
re

d

Number of samples

Computation time per iteration
Linear growth in time
Number of iterations

 0.1

 1

 10

 100

 0  50  100  150  200  250  300  350  400  450  500
 0

 10

 20

 30

 40

 50

 60

 70

T
im

e 
pe

r 
ite

ra
tio

n 
(s

)

N
um

be
r 

of
 it

er
at

io
ns

 r
eq

ui
re

d

Number of features

Computation time per iteration
Quadratic growth in time
Number of iterations

Figure 1: The computational scalability of iteration time is predictable,
and results confirm O(nm2). The number of iterations required is less pre-
dictable, but grows slowly with n. (a) Computational complexity and iter-
ation count with respect to the number of samples n, using fully separable
data sets with 255 features. (b) Computational complexity and iteration
count with respect to the number of features m. Data sets were fully sepa-
rable with 20,000 samples.

4.2 Bounds on w

In the formulation (6) w is free, while the standard IPM formulation (1)
requires all variables to be in the positive quadrant. While free variables
can be implemented as w ≡ w+ − w−, where w+, w− ≥ 0, this approach
suffers from numerical difficulties: logically one of each pair (w+, w−) would
be zero, but this is prevented by the logarithmic barrier used in IPM. The
approach we adopted is to define bounds lw ≤ w ≤ uw, and the problem
can then be adjusted appropriately to shift the bounds to 0 ≤ w′ ≤ uw− lw.
From (6), w = XY z, so bounds can be safely set as τ

∑
i min(yixij , 0) ≤

17



wj ≤ τ
∑

i max(yixij , 0). For problems where the solution set of support
vectors is sparse, the optimal values for w differ substantially from either
bound. Since large bounds affect the numerical accuracy of the algorithm, it
is useful to tighten the bounds to within say a couple of orders of magnitude
of the true values of w once these are known (e.g. when searching for the
best parameters through repeated training).

4.3 Accuracy due to termination criteria

Several termination criteria are possible. Normally the measure of most
interest for an optimization problem is the value of the objective function,
and the algorithm stops when this value is reached to within a set relative
error, e.g. 10−8, but for SVMs the objective value is not of interest so may
not be a good basis for termination. Similarly, the errors associated with
primal and dual feasibility can be monitored, and the algorithm terminated
when these are within a small tolerance.

The approach normally used for SVM is to monitor the set of support
vectors, and terminate the algorithm when this is stable. The KKT com-
plementarity conditions are used to determine the support vectors.

With the formulation presented in this paper, we have access to the
weights variables w directly. It is therefore possible to monitor these values,
and measure the change in the angle φ of the normal to the hyperplane
between iteration i− 1 and i:

cosφ =
(w(i−1))Tw(i)

‖w(i−1)‖‖w(i)‖

We conducted experiments to see how these measures relate to classi-
fication accuracy, using a training set of 20,000 samples and 255 features,
with 5% misclassifications, and a separable test set of the same size.

Figure 2 shows how the duality gap and sinφ decrease as the IPM algo-
rithm progresses. Primal feasibility was reached quickly, while it took the
algorithm longer to attain dual feasibility. All measures were sensitive to
the scale of the bounds on w, which made it hard to define a set tolerance
for any of the measures. In particular, the values of w decrease with each
iteration, so it is not useful to monitor these to see if they are converging to
their final values.

A noticeable feature of the figures is that a high classification accuracy
is achieved at an early stage in the algorithm, long before the number of
support vectors has stabilized, indicating that the hyperplane has been ac-
curately identified at this point. Although at this stage the values of the

18



weights change in scale, proportionally they are stable, as can be seen by
measuring sinφ (Figure 2). Once suitable bounds on w have been estab-
lished, a tolerance of 10−4 on sinφ could be used to give earlier termination.

(a) (b)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  5  10  15  20  25  30  35  40

Cl
as

sif
ica

tio
n 

er
ro

r

Iterations

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  5  10  15  20  25  30  35  40

Re
la

tiv
e 

du
al

ity
 g

ap

Iterations

(c) (d)

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35  40

Ad
ju

st
m

en
ts

 in
 s

in
 p

hi

Iterations

 0

 5000

 10000

 15000

 20000

 0  5  10  15  20  25  30  35  40

# 
Su

pp
or

t V
ec

to
rs

Iterations

Figure 2: Performance of the algorithm relative to the number of IPM it-
erations, using a training data set with 5% of points mis-classified, 20,000
samples and 255 attributes. (a) Classification error using an unseen test set.
(b) Error in the value of the objective. (c) Change in angle of the normal
to the separating hyperplane. (d) The number of support vectors.

4.4 Multiple correctors

The use of multiple correctors [15] can reduce the number of IPM iterations
required, by improving the centrality of the current iterate. Several cor-
rectors can be calculated by repeatedly solving M∆λ = −r̂b for ∆λ. The
same factorization of M is used for all the correctors in an iteration, so it is
advantageous to perform multiple corrections when the effort involved the
back-solves (here O(nm + m2)) is significantly less than that of factorizing

19



M (here O(nm2 +m3)).
We conducted experiments to show the comparative performance of the

algorithm using multiple correctors, against the algorithm using a single
Mehrotra’s corrector. Both the number of iterations and the overall time
were improved by using multiple correctors. For example, using a data set
of 20,000 samples and 255 features, an average of 2.8 correctors were used
in each iteration, and the optimization required 2 fewer iterations.

4.5 Stability in case of near-linear dependency in X

We used the data set of [13] that caused an algorithm using the Sherman-
Morrison-Woodbury update to fail. This data set (shown in Figure 3) causes
degeneracy in the matrix (XY ), as there are multiple data points which lie
along the separating hyperplanes. Scaling one of the dimensions accentuates
the numerical instability. With our algorithm, there was no penalty in per-
formance, with the number of IPM iterations required always around 20 no
matter the scaling imposed on the data set (this is similar performance to
that reported by Goldfarb and Scheinberg for their Product Form Cholesky
Factorization algorithm). Stability of our approach is a consequence of the
use of primal-dual regularization, which replaces the linear systems in the
interior point method with better conditioned ones. This is achieved by
adding dynamically chosen small quadratic proximal terms to primal and
dual objectives in the IPM algorithm. Such an addition improves the condi-
tioning of the linear systems without slowing down the convergence of IPM.
For a detailed description of the method and extensive numerical results
which demonstrate its advantages the reader is referred to [1].

-4

-2

 0

 2

 4

-4 -2  0  2  4

Figure 3: The data set of [13] causing degeneracy in the constraint matrix.

20



4.6 Comparison against standard tools

(a) (b)

 0.1

 1

 10

 100

 1000

 1000  10000

T
ra

in
in

g 
tim

e 
(s

)

Size of training data set

HOPDM
SVMlight
SVMPerf
LibLinear
LibSVM
SVMTorch
SVM-QP
SVM-QP Presolve

 0.1

 1

 10

 100

 1000

 1000  10000
T

ra
in

in
g 

tim
e 

(s
)

Size of training data set

HOPDM
SVMlight
SVMPerf
LibLinear
LibSVM
SVMTorch
SVM-QP
SVM-QP Presolve

(c) (d)

 0.1

 1

 10

 100

 1000

 1000  10000

T
ra

in
in

g 
tim

e 
(s

)

Size of training data set

HOPDM
SVMlight
SVMPerf
LibLinear
LibSVM
SVMTorch
SVM-QP
SVM-QP Presolve

 0.1

 1

 10

 100

 1000

 1000  10000

T
ra

in
in

g 
tim

e 
(s

)

Size of training data set

HOPDM
SVMlight
SVMPerf
LibLinear
LibSVM
SVMTorch
SVM-QP
SVM-QP Presolve

Figure 4: Comparison of efficiency of SVM-HOPDM against other algorithms,
with respect to data set size, as noise is increased. Artificial data sets used
of 255 attributes. τ = 1. (a) Fully separable. (b) 1% misclassified. (c) 5%
misclassified. (d) 10% misclassified.

To assess the performance of our algorithm SVM-HOPDM, we tested it
against a range of state-of-the-art SVM tools: SVMlight [18], SVMperf [19],
LibLinear [17], LibSVM [2] and SVMTorch [4]. We also included the SVM-QP
active set algorithm [9] and the IPM-based algorithm (SVM-QP Presolve)
of Scheinberg that uses the Product Form Cholesky Factorization described
earlier [13]. They were all used with their software performance options
(such as cache size) set to their default values. We conducted SVM training
experiments using synthetically-constructed data sets as described earlier,
with 255 features. SVMTorch has been used as the comparison tool for other
IPM-based techniques, e.g. [7, 10, 13].

Figure 4 shows the comparative efficiency of the algorithms as the size

21



(a) (b)

 0.1

 1

 10

 100

 1000

 1000  10000

T
ra

in
in

g 
tim

e 
(s

)

Size of training data set

HOPDM
SVMlight
SVMPerf
LibLinear
LibSVM
SVMTorch
SVM-QP
SVM-QP Presolve

 0.1

 1

 10

 100

 1000

 1000  10000

T
ra

in
in

g 
tim

e 
(s

)

Size of training data set

HOPDM
SVMlight
SVMPerf
LibLinear
LibSVM
SVMTorch
SVM-QP
SVM-QP Presolve

(c) (d)

 0.1

 1

 10

 100

 1000

 1000  10000

T
ra

in
in

g 
tim

e 
(s

)

Size of training data set

HOPDM
SVMlight
SVMPerf
LibLinear
LibSVM
SVMTorch
SVM-QP
SVM-QP Presolve

 0.1

 1

 10

 100

 1000

 1000  10000

T
ra

in
in

g 
tim

e 
(s

)

Size of training data set

HOPDM
SVMlight
SVMPerf
LibLinear
LibSVM
SVMTorch
SVM-QP
SVM-QP Presolve

Figure 5: Comparison of algorithm efficiency, similar to Figure 4 but with
higher penalty for misclassifications (τ = 100). (a) Fully separable. (b) 1%
misclassified. (c) 5% misclassified. (d) 10% misclassified.

22



of the data set is increased, with a relatively low penalty for misclassifica-
tions (τ = 1). For separable data sets (a) all the algorithms show linear or
sublinear scaling. But the relative performance changes dramatically when
the data set contains noise, as is typically the case with real-world data
sets. We used synthetic data sets again, but this time introduced noise by
choosing (b) 1%, (c) 5% and (d) 10% of the points randomly and swapping
their target label. The computation time required by the active set meth-
ods is greatly increased by introducing noise, while other algorithms are less
affected.

The experiments were repeated for a higher misclassification penalty of
τ = 100 (Figure 5). It can be clearly seen that all except the IPM algorithms
are greatly affected by the level of noise, with training times increased by
several orders of magnitude, or the algorithms fail to converge.

The training times of SVM-HOPDM and SVM-QP Presolver, both based on
interior point methods, are similar in all eight cases, yet there was almost an
order of magnitude difference between the two algorithms. This difference
cannot be accounted for by a complexity analysis. We investigated this
further using Valgrind’s Cachegrind cache simulator2 set as a Pentium 4
processor cache, and the results for four data sets are shown in Table 2.
The algorithms required different numbers of iterations which complicated
the comparison, so we considered only the functions associated with forming
and solving the normal system matrix, and this accounted for some 70% to
80% of the instructions executed (the “coverage” in Table 2). The final
two columns of the table show instruction count and runtime ratios for the
two programs. It is clear that the number of executed instructions does not
explain the whole increase in runtime. The number of data read cache misses
(which is determined by how the algorithm accesses the data structure) is
also an important factor in runtime performance, yet it is rarely discussed
in comparisons of computational complexity of algorithms.

4.7 Real-world data sets

To investigate what performance results can be expected in real-world ap-
plications, we used the standard data sets Adult, Covtype, MNIST, Sen-
sIT and USPS.3 Each problem was solved using a linear kernel with τ =

2http://valgrind.org/
3All datasets are available from the LibSVM collection at

http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/. Due to memory restric-
tions, some data sets were reduced to the sizes given in Table 3. SVM-QP had tighter
memory restrictions, so the datasets were further reduced and the times linearly scaled

23



Data set SVM-HOPDM SVM-QP presolver SVM-QP/ SVM-HOPDM
n m Time Cov. D2mr Time Cov. D2mr Instructions Time

10000 63 3.69 70% 2.68% 16.44 72% 6.99% 2.36 4.46
10000 127 10.66 83% 1.73% 55.46 80% 7.56% 1.94 5.21
10000 255 15.67 79% 1.34% 127.53 79% 7.72% 2.73 8.14
20000 63 9.13 76% 2.97% 40.74 76% 6.95% 2.15 4.46

Table 2: Comparison of SVM-HOPDM and SVM-QP Presolver in terms of
instructions and cache misses. Synthetic data sets of dimension n samples
and m features were used. Time is the total runtime of the program, running
with hardware cache, in seconds. Coverage is the proportion of the program
included in the instruction and cache miss count. D2mr is the proportion of
Level 2 data read misses to total Level 2 data reads. The final two columns
show the ratio between the two programs, for instructions and runtime.
The increase in runtime of SVM-QP Presolver cannot be accounted for by
instructions alone, and cache performance has a significant effect.

1, 10 and 100. Table 3 shows the wall-clock times to perform the training
(including time taken to read the data).

The same results are shown as a performance profile [6] in Figure 6.
Here, the runtime ts,p for each solver s ∈ S on problem p ∈ P is transformed
into a ratio to the fastest solver for problem p:

rs,p =
ts,p

mins∈S ts,p
.

The performance profile is the cumulative distribution function of these
ratios for each solver

ρs(T ) =
size{p ∈ P : |rs,p ≤ T}

size{P}
,

that is the proportion of problems which can be solved with a runtime ratio
rs,p less than T . The value of ρs(1) is the proportion of problems that solver
s wins over other solvers. The value of limT→∞ ρs(T ) is the proportion of
problems solved at all. A high proportion of problems solved with small
ratios rs,p is shown by the profile being close to the upper left axes.

The results confirm that real-world data sets do tend to be noisy, as
most methods take considerably longer with high τ misclassification penalty

up; this is probably fair for the SVM-QP presolver but is rather favourable for the active
set solver.

24



Dataset τ HOPDM SVMlight SVMperf Lib- LibSVM SVMTorch SVM-QP SVM-QP

(n×m) Linear presolve

Adult 1 16.5 87.7 280.7 1.6 192.4 621.8 164.5 188.8
32561× 123 10 26.5 1043.3 3628.0 9.3 857.7 5046.0 284.1 206.8

100 27.9 10447.4 29147.2 64.2 5572.1 44962.5 544.8 216.9

Covtype 1 47.7 992.4 795.6 8.5 2085.8 2187.9 731.8 405.6
150000× 54 10 52.7 6021.2 12274.5 34.3 2516.7 10880.6 971.6 441.3

100 55.4 66263.8 58699.8 235.2 6588.0 74418.1 1581.8 457.4

MNIST 1 79.6 262.9 754.1 9.3 197.1 660.1 233.0 1019.1
10000× 780 10 83.4 3425.5 8286.8 65.4 1275.2 5748.1 349.4 1104.4

100 86.2 NC 196789.0 NC 11456.4 54360.6 602.5 1267.1

SensIT 1 55.2 913.5 8418.3 53.6 2542.0 2814.4 535.2 456.7
78823× 100 10 60.1 7797.4 > 125000 369.1 7867.8 21127.8 875.4 470.7

100 63.6 NC > 125000 NC 49293.7 204642.6 1650.1 489.3

USPS 1 13.2 15.0 40.9 4.4 10.4 7.7 51.2 117.4
7291× 256 10 14.2 147.4 346.6 27.7 20.9 23.9 64.7 127.4

100 14.3 1345.2 2079.5 NC 93.8 142.4 86.9 143.8

Table 3: Comparison of training times using real-world data sets. Each data
set was trained using τ = 1, 10 and 100. NC indicates that the method did
not converge to a solution.

values. The performance profile highlights that LibLinear is the fastest for
many of the problems, generally involving low values of τ . For higher values
of τ , however, HOPDM is faster than the other solvers. This is due to the
training time of our algorithm being roughly constant, relative to the value
of τ . It was at most one order of magnitude slower than the fastest solver
for any problem, which was the best performance of any of the solvers in
this regard: other solvers were two or three orders of magnitude slower, or
failed to converge at all. We consider this dependability, in terms of both
predictable training times and ability to train with a wide range of τ values,
to be a valuable property of our algorithm.

Table 4 confirms that there is no penalty to be paid in terms of prediction
accuracy. Experiments using unseen test samples show that the prediction
accuracy of our formulation is comparable with other methods.

5 Conclusions

Support Vector Machines are a powerful machine learning technique. How-
ever, it is not a trivial exercise to extend it to very large scale problems. Due
to the Hessian in the standard dual formulation being completely dense, in-
terior point methods have not traditionally been used. Instead, standard

25



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

P
ro

po
rt

io
n 

of
 p

ro
bl

em
s 

tr
ai

ne
d

Ratio of training time to best training time

HOPDM
SVMlight
SVMPerf
LibLinear

LibSVM
SVMTorch

SVM-QP
SVM-QP presolver

Figure 6: Performance profile of the SVM tools on the problems in Table 3.

SVM tools have mainly been based around active-set methods. These work
well for small and separable problems, but when the split between basic
and non-basic variables becomes less clear (as is the case with noisy data
sets), the performance of these algorithms starts to scale exponentially with
the number of samples. Previous IPM-based approaches have exploited the
structure of the linear kernel, to give algorithms with an overall complexity
of O(nm2). However, these algorithms have suffered from either numeri-
cal instability through use of the Sherman-Morrison-Woodbury formula, or
memory caching inefficiencies.

In this paper we have presented a new, unified set of formulations for
linear 1-norm and 2-norm classification, universum and ordinal classification,
and ε-insensitive regression, which all exploit the separability of the Hessian
in the objective of the standard SVM primal formulation, while keeping
a small number of constraints as in the dual. Like the other IPM-based
approaches, it has a per-iteration complexity of O(nm2 +m3). It relies upon
Cholesky decomposition for its numerical stability, but the factorization is
applied to allm features at once, allowing for a more efficient implementation
in terms of memory caching.

Numerical experiments showed that the performance of the algorithm
for large dense or noisy data sets is consistent and highly competitive, and
in some cases can surpass all other approaches by a large margin. Unlike
active set methods, performance is largely unaffected by noisy data. Using
multiple correctors, tightening the bounds on w, and monitoring the angle

26



Dataset τ HOPDM LibLinear SVMTorch

Adult 1 85.01% 84.98% 84.95%
32561× 123 10 84.98% 84.96% 85.01%

100 84.95% 84.95% 84.97%
Covtype 1 61.59% 61.59% 60.85%
150000× 54 10 61.92% 61.92% 59.84%

100 61.92% 61.92% 61.46%
MNIST 1 86.31% 86.31% 86.40%
10000× 780 10 86.43% 86.40% 86.41%

100 86.27% — 86.40%
SensIT 1 85.78% 85.42% 85.78%
78823× 100 10 85.80% 85.43% 85.82%

100 85.79% — 85.85%
USPS 1 96.41% 97.11% 97.11%
7291× 256 10 97.21% 97.11% 97.21%

100 97.01% — 96.66%

Table 4: Comparison of prediction accuracy on unseen test sets. For all
except Covtype, we used the standard test sets. Covtype does not have a
standard test set, so we used the first 150000 samples of the data set for
training and the final 100000 samples as the test set (there was no overlap).
The results show in terms of accuracy, our method is broadly equivalent to
other methods.

of the normal to the hyperplane all positively contributed to efficiency.

It is possible to extend these formulations to non-linear kernels, by ap-
proximating the positive semidefinite kernel matrix K with a low-rank outer
product representation such as partial Cholesky factorization LLT ≈ K [8].
This approach produces the first r columns of the matrix L (correspond-
ing to the r largest pivots) and leaves the other columns as zero, giving
an approximation of the matrix K of rank r. It is an attractive algorithm
for partial decomposition, since its complexity is linear with the number
of samples, it is faster than eigenvalue decomposition, and it exploits the
symmetry of K. A separable formulation suitable for non-linear kernels is

27



therefore:

min
w,z

1
2
wTw − eT z

s.t. w − LTY z = 0

yT z = 0
0 ≤ z ≤ τe.

(9)

Computational complexity is O(nr2 + nmr) for the initial Cholesky factor-
ization, and O(nr2 + r3) for each IPM iteration.

It is also possible to develop this algorithm to handle very large scale
problems in parallel. The key computation part is the calculation of the
matrix M ; as described earlier, this was handled on a block basis using
the BLAS library. By dividing the sample points equally amongst the pro-
cessors, the block-based matrix multiplications can be performed in par-
allel with no communication required between the processors. Then at
the end of the multiplication, a single gather operation is required on the
(m+ 1)× (m+ 1) matrix at each processor to form the matrix M and then
factorize it. Implementation details are addressed in [33]. This could point
the way forward for tackling large and complex data sets.

Acknowledgements

We would like to thank the anonymous reviewers for their careful reading
of our manuscript and the insightful comments they provided.

References

[1] Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in
interior point methods for linear and quadratic optimization. Optimiza-
tion Methods and Software 11, 275–302 (1999)

[2] Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines
(2001). Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm

[3] Chu, W., Keerthi, S.S.: New approaches to support vector ordinal re-
gression. In: ICML ’05: Proceedings of the 22nd international con-
ference on machine learning, pp. 145–152. ACM, New York, NY, USA
(2005)

28



[4] Collobert, R., Bengio, S.: SVMTorch: support vector machines for
large-scale regression problems. Journal of Machine Learning Research
1, 143–160 (2001)

[5] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector
Machines. Cambridge University Press (2000)

[6] Dolan, E., Moré, J.: Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming 91(2), 201–13 (2002)

[7] Ferris, M., Munson, T.: Interior point methods for massive support
vector machines. SIAM Journal on Optimization 13(3), 783–804 (2003)

[8] Fine, S., Scheinberg, K.: Efficient SVM training using low-rank ker-
nel representations. Journal of Machine Learning Research 2, 243–264
(2002)

[9] Fine, S., Scheinberg, K.: INCAS: An incremental active set method for
SVM. Tech. rep., IBM Research Labs, Haifa (2002)

[10] Gertz, E.M., Griffin, J.D.: Support vector machine classifiers for large
data sets. Technical memo, Argonne National Lab ANL/MCS-TM-289
(2005)

[11] Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic pro-
gramming. ACM Transactions on Mathematical Software 29(1), 58–81
(2003)

[12] Goldfarb, D., Scheinberg, K.: A product-form Cholesky factorization
method for handling dense columns in interior point methods for linear
programming. Mathematical Programming 99(1), 1–34 (2004)

[13] Goldfarb, D., Scheinberg, K.: Solving structured convex quadratic pro-
grams by interior point methods with application to support vector
machines and portfolio optimization. Submitted for publication (2005)

[14] Gondzio, J.: HOPDM: a fast LP solver based on a primal-dual interior
point method. European Journal of Operational Research 85, 221–225
(1995)

[15] Gondzio, J.: Multiple centrality corrections in a primal-dual method for
linear programming. Computational Optimization and Applications 6,
137–156 (1996)

29



[16] Herbrich, R., Graepel, T., Obermayer, K.: Advances in Large Margin
Classifiers, chap. Large margin rank boundaries for ordinal regression.
MIT Press (2000)

[17] Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A
dual coordinate descent method for large-scale linear SVM. In: ICML
’08: Proceedings of the 25th international conference on machine learn-
ing (2008)

[18] Joachims, T.: Making large-scale support vector machine learning prac-
tical. In: B. Schölkopf, C.J.C. Burges, A.J. Smola (eds.) Advances in
Kernel Methods: Support Vector Learning, pp. 169–184. MIT Press
(1999)

[19] Joachims, T.: Training linear SVMs in linear time. In: KDD ’06:
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 217–226. ACM, New York,
NY, USA (2006)

[20] Keerthi, S.S., Chapelle, O., DeCoste, D.: Building support vector ma-
chines with reduced classifier complexity. Journal of Machine Learning
Research 7, 1493–1515 (2006)

[21] Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Algorithm
539: Basic Linear Algebra Subprograms for Fortran usage [F1]. ACM
Transactions on Mathematical Software 5(3), 324–325 (1979)

[22] Lee, Y.J., Mangasarian, O.L.: RSVM: Reduced support vector ma-
chines. In: Proceedings of the SIAM International Conference on Data
Mining. SIAM, Philadelphia (2001)

[23] Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A convergent decom-
position algorithm for support vector machines. Computational Opti-
mization and Applications 38, 217–234 (2007)

[24] Mangasarian, O.L., Musicant, D.R.: Successive overrelaxation for sup-
port vector machines. IEEE Transactions on Neural Networks 10(5),
1032–1037 (1999)

[25] Mészáros, C.: The separable and non-separable formulations of convex
quadratic problems in interior point methods. Tech. Rep. WP 98-3,
Computer and Automation Research Institute, Hungarian Academy of
Sciences, Budapest (1998)

30



[26] Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for
support vector machines. In: J. Principe, L. Gile, N. Morgan, E. Wilson
(eds.) Neural Networks for Signal Processing VII — Proceedings of the
1997 IEEE Workshop, pp. 276–285. IEEE (1997)

[27] Platt, J.: Fast training of support vector machines using sequential
minimal optimization. In: B. Schölkopf, C.J.C. Burges, A.J. Smola
(eds.) Advances in Kernel Methods: Support Vector Learning, pp. 185–
208. MIT Press (1999)

[28] Vanderbei, R.J.: Linear Programming Foundations and Extensions.
Kluwer, Boston (1997)

[29] Vapnik, V.: Statistical Learning Theory. Wiley (1998)

[30] Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn.
Springer (1999)

[31] Vapnik, V.: Transductive inference and semi-supervised learning. In:
O. Chapelle, B. Schölkopf, A. Zien (eds.) Semi-supervised learning,
chap. 24, pp. 454–472. MIT Press (2006)

[32] Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.: Inference
with the Universum. In: ICML ’06: Proceedings of the 23rd interna-
tional conference on machine learning, pp. 1009–1016. ACM (2006)

[33] Woodsend, K., Gondzio, J.: Hybrid MPI/OpenMP parallel support
vector machine training. Technical Report ERGO 09-001, School of
Mathematics and Maxwell Institute for Mathematical Sciences, Uni-
versity of Edinburgh (2009). Submitted for publication.

[34] Wright, S.J.: Primal-dual interior-point methods. S.I.A.M. (1997)

31


