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Abstract

A method for generating a sequence of intensity-modulated radiation therapy step-and-shoot
plans with increasing number of segments is presented. The objectives are to generate high-
quality plans with few, large and regular segments, and to make the planning process more
intuitive.

The proposed method combines segment generation with direct step-and-shoot optimiza-
tion, where leaf positions and segment weights are optimized simultaneously. The segment
generation is based on a column generation approach. The method is evaluated on a test
suite consisting of five head-and-neck cases and five prostate cases, planned for delivery with
an Elekta SLi accelerator.

The adjustment of segment shapes by direct step-and-shoot optimization improves the
plan quality compared to using fixed segment shapes. The improvement in plan quality when
adding segments is larger for plans with few segments. Eventually, adding more segments
contributes very little to the plan quality but increases the plan complexity. Thus, the
method provides a tool for controlling the number of segments and, indirectly, the delivery
time. This can support the planner in finding a sound trade-off between plan quality and
treatment complexity.

Key words. intensity-modulated radiation therapy, step-and-shoot delivery, optimization,
column generation

1. Introduction

The advantage in dose conformity of intensity-modulated radiation therapy (IMRT) plans com-
pared to conventional plans comes at the expense of increased treatment complexity. For the
widely used step-and-shoot IMRT delivery technique, this complexity can be measured in terms
of the number of multi-leaf collimator (MLC) segments, the number of monitor units (MUs) and
the jaggedness of the segments. A challenge in step-and-shoot IMRT is to design “simple” plans,
i.e. plans with few, large and regular segments, that fulfill the prescribed treatment goals. This
paper is motivated by this challenge in combination with a desire to make the planning process
more intuitive.

There are many reasons for generating simple step-and-shoot plans. Such plans have few
monitor units and low integral dose, which reduces the risk of secondary cancers [12]. Simple plans
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have shorter delivery times than complex plans, which, in addition to increasing the throughput of
patients, avoids the risk of reduction in radiobiological effects due to prolonged delivery times [16,
27]. A simple plan is less sensitive to geometrical uncertainties and can be delivered with higher
accuracy than a plan with many small and irregular segments [8, 23].

It has been demonstrated that rather simple intensity patterns can generate high-quality
plans [2], indicating that few and regular segments can produce satisfactory plans if chosen
wisely. This has indeed been shown in [3,13], where approximately five segments per beam seem
to suffice for most cases. The number of MUs may sometimes be reduced significantly with only
small changes in plan quality, see [10].

Encouraged by these findings, we present a method for generating a sequence of step-and-
shoot plans with increasing number of segments. The objective is twofold. First, to generate
simple and high-quality step-and-shoot plans. Second, to support the planner in exploring the
trade-off between plan quality and complexity. The proposed method combines a segment gen-
eration module with direct step-and-shoot (DSS) optimization. This combination allows for
controlling the number of segments while fine-tuning their shapes and weights. The method
combines the flexibility of altering the set of segments with the practical benefits of DSS opti-
mization.

In DSS optimization, which is often referred to as direct aperture optimization, the segment
shapes and weights are optimized simultaneously. Similar approaches are described in [3, 4, 9,
11, 14, 15, 24, 25]. A major advantage of these approaches compared to the traditional two-step
IMRT approach is that the optimized plan is deliverable. There is therefore no need for any
post-process that might degrade the quality of the final plan. The degeneracy inherent in IMRT
problems is not an issue in these direct approaches, contrary to the two-step approach where
regularization is needed to obtain smooth fluence profiles, see e.g. [6]. In addition, a clinical
study has found that DSS optimization simplifies plans without reducing plan quality, compared
to plans generated with the two-step approach [26]. Our segment generation module is based on
the column generation approach for IMRT presented in [22].

The paper is organized as follows: The solution process of the method is described in Sec-
tion 2, with emphasis on DSS optimization and segment generation. The computational study is
described in Section 3. The results are given in Section 4 and a concluding discussion is carried
out in Section 5.

2. Method

In the proposed method, a sequence of step-and-shoot plans with increasing number of segments
is generated. This is done by alternating between generation of new segments and optimization
of segment shapes and weights. No leaf-sequencing is necessary and all plans in the generated
sequence are deliverable, so no post-processing is needed.

The initial segments, one per beam, are generated from the projection of the target(s) onto
the isocenter plane of each beam. If more than one segment is needed for reconstructing a
projection, e.g. if the projection is not contiguous along the leaves, a segment is created from
the largest contiguous part of the projection. Then, a number of loops are performed according
to Figure 1.

We now describe one loop in the solution process, where the words emphasized in bold
face correspond to boxes in Figure 1. In the first stage of the loop, a direct step-and-shoot
optimization is performed; see Section 2.1 for details. The optimization is run for few iterations
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and will, in general, not reach the optimal solution. Next, the leaf positions are fixed and a
segment weight optimization is performed to ensure that the segment weights are optimal
or close to optimal so the plan can be saved. If the planner is satisfied with the plan or
if the maximum number of loops is reached, the solution process is terminated. Otherwise,
the segment generation module is entered. This module uses the gradient of the objective
function with respect to the fluence to create the segments that are most likely to improve the
objective function value and thus improve the plan. For details, see Section 2.2. To adjust the
segment weights of the former and the new segments, another segment weight optimization
is performed directly after the segment generation module. Segments with weights at the lower
monitor unit limit set by the planner might then be removed in the segment removal module.
The motivation of this module is to get rid of the segments, often generated early in the solution
process, that contribute very little to the plan. The following rules are applied for the segment
removal: The segments generated in the current loop are immune and cannot be removed.
Further, at most k − 1 segments can be removed if k segments were just generated and no more
than one segment per beam can be removed in one loop.

Figure 1: Solution process.

2.1. Direct step-and-shoot optimization

The direct step-and-shoot optimization problem is given by

minimize
x,w

F (d(x,w))

s.t. Ax ≥ b
w ≥ w0,

(2.1)

where leaf-position variables are denoted by x, segment weight variables are denoted by w and
the dose distribution is denoted by d. The constraints Ax ≥ b represent MLC requirements such
as interdigitation, minimum gaps and minimum segment areas. The bounds on w are included
to ensure that all segments fulfill their lower monitor unit limit w0. These constraints ensure
that the solution to (2.1) is deliverable and that no post-processing is needed. A segment weight
optimization problem is equivalent to (2.1) with x fixed. This restricted problem is much easier
to solve since the number of variables is smaller and since d is linear in w, as opposed to the
non-convexity introduced by the leaf position variables.
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In our study, the objective function F is a weighted sum of standard IMRT penalty functions
such as one- and two-sided quadratic penalty functions and gEUD, see e.g. [7] for mathematical
formulations of the former and [17] for the latter. The parameters of the penalty functions are
set up according to RTOG protocols; see Section 3.2 and Table 1 for details. No so-called hard
nonlinear constraints are used.

2.2. Segment generation

Our segment generation strategy follows the one presented in [22]. Initially, a discretization of the
cross-sections of the beams into beamlets is performed. The beamlet weights, i.e. the elements
of the discretized fluence, are denoted by τ . The beamlets are aligned with the collimator for
each beam and the beamlet size is set to the leaf width across the leaves and to five millimetres
along the leaves. This size gives a good balance between computational time and quality of the
generated segments. Next, the gradient of F with respect to τ is calculated. New segments are
then generated by combining beamlets into feasible segments so that the sum of the gradient
components of the included beamlets is as small as possible. This can be formulated as the
integer programming problem

minimize
z

(
∂F
∂τ

)T
z

s.t. z ∈ Z,
(2.2)

where z is a binary vector specifying the beamlets that are exposed by a segment and Z is the
set of beamlet regions corresponding to feasible segments with respect to the MLC used. Note
that (2.2) is separable per beam.

We do not solve (2.2) using general-purpose integer programming methods. Instead, (2.2) is
solved by constructing a layered graph and formulating it as a shortest-path problem per beam as
suggested in [5]. For an introduction to shortest-path problems, see e.g. [18]. Every node in the
graph represents a leaf pair configuration and the weights of all arcs incident on a node equals
the sum of the gradient components for the exposed beamlets in the corresponding leaf pair
configuration. The leaf positions of the generated segments are thus restricted by the beamlet
size. Since the beamlet size along the leaves is as small as five millimetres and since the leaf
positions are fine-tuned afterwards when solving (2.1), this restriction should not be an issue.

With the shortest-path formulation, MLC requirements such as connectivity, interdigitation
and minimum gaps are handled in the graph construction, see [22]. Our algorithm also incor-
porates a penalizing strategy to avoid irregular segment shapes. This strategy is flexible in that
it can be tuned so that the segments generated are anywhere between the jagged segments that
are optimal with respect to (2.2), to purely rectangular-shaped segments.

Once segments have been generated for all beams, they are ranked and some, or all, are
added to the set of segments. The weights of the added segments are set to the lower monitor
unit limit specified by the user. Forthcoming optimizations will then adjust their weights.

The segment generation process is illustrated in Figure 2. A gradient map is shown in (a).
Blue beamlets have negative gradient components, white beamlets have zero gradient components
and red/yellow beamlets have positive gradient components. Ideally, the exposed beamlets of
the generated segment should coincide with the negative gradient components. This is however
not possible, in general, since the MLC requirements do not allow such a segment. The optimal
solution to (2.2), given by the optimal solution to the corresponding shortest-path problem,
results in the exposed beamlet pattern shown in (b). This pattern follows the central contiguous
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(a) (b) (c) (d)

Figure 2: The process of generating a feasible and regular segment from the gradient with respect
to beamlet weights. The gradient is shown in (a). The blue beamlets have negative gradient
components and the red beamlets have positive gradient components. The beamlet regions
denoted by dots in (b) and (c) are the solutions to the corresponding shortest-path problem
without and with the penalizing strategy, respectively. The generated segment is illustrated in
(d), where the red box gives the jaw positions.

region with negative gradient components closely. A few peripheral regions with negative gradient
components are excluded in order to avoid some of the regions with positive gradient components.
With the penalizing strategy, the solution to the shortest-path problem has a much more regular
beamlet pattern, seen in (c). The cost of this regularity is to exclude some regions with negative
gradient components located far from the center of the segment. These excluded regions may be
included later, either through the movement of the leaves of the current segment or as part of
a new segment. Either (b) or (c) can be used to generate a feasible segment. Here, the regular
shape in (c) is transformed into the segment shown in (d), where the jaw positions are specified
by the red box.

2.3. Illustration of the solution process

An illustration of the first four loops of our method on a test case is given in Figure 3. The figure
follows the evolvement for one beam. The top row shows, from left to right, the initial projection-
based segment and the first three generated segments in order of creation. The lower row shows
the gradient maps of the beam prior to solving the shortest-path problem at each stage. The
black lines outline the created segments. The gradients have identical color scales to illustrate
that the gradient approaches zero as the method proceeds. Again, blue areas have negative
gradient components and red areas have positive gradient components. Following the arrows, we
see how segments are created and how the gradients change in every loop. All three segments
generated include one or more component with positive gradient. In this way, more negative
gradient components can be included and the total sum of the included gradient components can
be decreased. The impact of the penalizing strategy can also be seen in the figure; some regions
of negative gradient components on the sides of the created segments are omitted. The increased
jaggedness of including them is judged to be worse than their contribution to the total sum of
the included gradient components by our penalizing strategy.
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Figure 3: Top: The initial projection-based segment and the first three generated segments for
one beam in order of creation. The red boxes show the jaw positions. Bottom: The gradient
maps prior to solving the corresponding shortest-path problem. Blue beamlets have negative
gradient components and red have positive gradient components. The black lines outline the
created segments.

3. Computational study

The main comparison performed in this study is between our proposed method, denoted by the
adjustable leaves approach, and a limited version of it, denoted by the fixed leaves approach.
The fixed leaves approach means that the dotted box in Figure 1 is skipped. This approach
resembles the column generation approach, described in [19, 22]. The main differences to these
column generation approaches are that the fixed leaves approach uses a nonzero lower bound on
the segment weights and removes segments during the solution process.

In the adjustable leaves approach, 10 segment weight iterations and 10 DSS iterations are
performed in each loop. In the fixed leaves approach, 20 segment weight iterations are performed
in each loop. The segment weight iterations are split equally between the two segment weight
optimizations in every loop. The plans generated with the two approaches are compared to
benchmark plans. The benchmark plans are generated by optimizing beamlet weights for 10
iterations, applying a leaf-sequencing algorithm to generate 50 segments and performing 90
iterations of DSS optimization. The objective function is the same as in the other approaches.

3.1. Treatment planning software

New functionality, such as the segment generation module, has been merged into ORBIT Work-
station [20], which is used for the treatment planning in this study.

To ensure high-speed dose calculations during the optimization without sacrificing the ac-
curacy of the dose in the generated plans, the following dose calculation strategy is employed:
After the segment removal in each loop, dose is computed with a collapsed cone convolution
algorithm [1]. The fluence engine is based on a two-source head-scatter model, where MLC
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transmission and flattening filter are accounted for. At other stages in the loop, the dose is cal-
culated with a faster pencil-beam algorithm. The optimization algorithm used is a quasi-Newton
sequential quadratic programming method.

3.2. Patient cases

The test suite consists of five head-and-neck cases and five prostate cases. The head-and-neck
cases are set up with seven or nine beams and the prostate cases are set up with five beams. All
cases have voxel sizes of (4× 4× 4 mm3).

The cases are planned for delivery with an Elekta SLi 6 MeV linac (Elekta Oncology Sys-
tems, Crawley, UK), equipped with an MLC i collimator. This MLC, which is widely used for
step-and-shoot delivery, does not allow for interdigitation and has a minimum gap requirement.
Further, jaws orthogonal to the leaf banks are not allowed to travel beyond the central axis.
These requirements make the segment generation more challenging and hence interesting. The
treatment planning is set up according to the RTOG 0615 protocol for the head-and-neck cases
and is based on the RTOG 0415 protocol for the prostate cases1. In Table 1, the planning re-
gions and specifications for the head-and-neck and prostate cases are listed. For the prostate
cases, the CTV is the prostate itself and the PTV margin is set to five millimetre, motivated
by [28]. The width of the rectum and bladder walls is set to four millimetres in the left-right and
anterior-posterior directions.

Head and neck Prostate
Structure Specification Structure Specification

PTV70

D95 ≥ 70 CTV D99 ≥ 78
D99 ≥ 65.1

PTV
D99 ≥ 74.1

D20 ≤ 77 D1 ≤ 81.9
D5 ≤ 80 Rectum/Bladder D30 ≤ 70
Dmean ≤ 74 walls D50 ≤ 53

PTV59.4

D95 ≥ 59.4 Femoral Heads D5 ≤ 53
D99 ≥ 55.2

Rectum

D15 ≤ 74
D20 ≤ 77 D25 ≤ 69
D5 ≤ 80 D35 ≤ 64

Brainstem Dmax ≤ 54 D50 ≤ 59
Spinal cord Dmax ≤ 45

Bladder

D15 ≤ 79
Mandible Dmax ≤ 70 D25 ≤ 74

Either parotid gland Dmean ≤ 26 D35 ≤ 69
Oral cavity Dmean ≤ 40 D50 ≤ 64

Table 1: Plan specifications for the head-and-neck cases and the prostate cases. The dose covering
x% of the volume is denoted by Dx and dose levels are given in Gy.

For all cases, the solution process is run for 20 loops and the lower bound on the segment
weights is set to 4 MU, in accordance with the findings in [23]. For the head-and-neck cases,
four segments distributed over the beams are created in every loop. For the prostate cases, three

1http://www.rtog.org
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Figure 4: A transversal slice of the HN2 head-and-neck case, displaying the contours of PTV70

(red), PTV59.4 (blue), cord (green), left parotid gland (yellow) and mandible (purple).

segments are created in every loop. The reason for this difference is that the head-and-neck
cases are set up with more beams than the prostate cases. A transversal slice of one of the
head-and-neck cases, referred to as HN2, is shown in Figure 4.

4. Results

For the sake of brevity, we only present results for the head-and-neck cases. The results for
the prostate cases are qualitatively similar and do not change the message we want to convey.
Section 4.1 contains the main results, a comparison of the plan quality of the generated sequences
in different measures for the head-and-neck cases. Some results from the solution process are
given in Section 4.2.

4.1. Plan quality comparisons

In the figures of this section, we show different measures of plan quality versus number of segments
for the generated plans for the HN2 case. The figures compare the adjustable leaves approach
(solid lines) with the fixed leaves approach (dotted lines). The HN2 case is one of the hardest in
the test suite and it therefore accentuates the differences between the approaches slightly more
than most of the other plans.

Figure 5 shows the conformity index of the target region PTV59.4. The conformity index is
calculated according to [21] using the D95 level of 59.4 Gy. The higher value of the index, the
more conform dose distribution to PTV59.4. It is clear that the conformity index values for plans
with few segments are much higher with the adjustable leaves approach than with the fixed leaves
approach. This difference is reduced as the number of segments increases. With 50 segments or
more, the two approaches produces plans with similar conformity index values.

The maximum dose levels to brainstem and cord are shown in Figure 6. These dose levels are
evaluated as the maximum dose to the regions when the volume equivalent to one voxel with the
highest dose has been removed. The horizontal lines show the corresponding criteria specified
in Table 1. Both approaches produce plans that fulfill both criteria, even though slightly more
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segments are needed for the fixed leaves approach.
The D95 and the D99 levels of the PTV70 target region are shown in Figure 7 together with

their criteria. Again, the adjustable leaves sequence reach the plan criteria with fewer segments
than the fixed leaves sequence. With more segments, however, the differences vanish and both
approaches fulfill both criteria. Figure 8 shows the same dose specification levels for the PTV59.4

target region. For the HN2 case, these criteria are harder to fulfill than the criteria for PTV70,
i.e. more segments are needed. The trend is the same as in the previous figures; large differences
with few segments and small differences with many segments.

The average regularity of the segments of the generated plans are shown in Figure 9. The
higher value in the figure, the more regular segments. This regularity measure is given by the
mean value of the quotients of segment area and segment perimeter for all segments in the plan.
The first property to observe is that the average regularity decreases with increasing number of
segments, for both approaches. This is due to that the regions of negative gradient components
get smaller as the solution process proceeds. The figure also shows that the adjustable leaves
approach produces less regular segments than the fixed leaves approach. There are two reason
for this. One is that the DSS optimization allows the segment shapes to become slightly more
irregular. The other is that the gradients of F with respect to τ get closer to zero earlier in
the solution process with the adjustable leaves approach. This implies that smaller segments are
created in the segment generation module.

The comparisons in Figures 5 – 9 have demonstrated that the impact of fine-tuning the
segment shapes with DSS optimization is more pronounced for plans with few segments. Plans
with many segments are rather similar, both in terms of regularity of the segments and plan
quality.
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Figure 5: Conformity index of PTV59.4 at
59.4 Gy for both approaches.
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Table 2 shows the mean relative violation for a subset of the generated head-and-neck plans,
with the mean taken over all plan criteria in Table 1. The relative violation for a given criterion
is given by max(0,

dc−dp

dp
) if it is a upper bound criterion and by max(0,

dp−dc

dp
) if it is a lower

bound criterion, where dp is the prescribed dose level and dc is the current dose level at the
specification level. The values in Table 2 are given in parts per thousand. If, for instance, the
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segments in each plan. The higher number, the more regular segment.

D95 level of PTV70 is 69 Gy for a plan, the relative violation for this criterion is 1/70. If all the
other 13 criteria are fulfilled, the mean relative violation becomes one part per thousand. To
limit the number of columns in the table, eight of the twenty plans in each sequence are selected.
The plans selected are those for which the number of segments is closest to 15, 20, . . . , 50. (If two
plans in a sequence are equally close, the one with the lowest mean relative violation is chosen.)
The rightmost column shows the mean relative violation values for the benchmark plans.

For all five cases, the mean relative violation is lower with the adjustable leaves approach
than with the fixed leaves approach. As seen in the figures for the HN2 case, the differences
between the approaches are larger for plans with few segments than with many segments. The
benchmark plans have rather similar values of the mean relative violations compared to the 50
segment plans in both approaches. The HN1 plan is better with the benchmark approach, while
the HN2 and HN5 plans are worse.

The numbers of segments required to achieve a mean relative violation less than 1.0 and
0.1 parts per thousand for all head-and-neck plans are given in Figure 10. Consequently, fewer
segments are required with the adjustable leaves approach, except that no generated plan fulfills
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the 0.1 requirement for the HN1 case. On average, the adjustable leaves approach requires 26
segments and the fixed leaves approach requires 38 segments to fulfill the 1.0 requirement. This
implies three to five segments per beam, which is in line with the findings in [3, 13]. The figure
also shows that the number of required segments varies rather much between the cases. It might
therefore be hard to predict the number of required segments for a case prior to planning. This
observation motivates our approach to present a sequence of plans to the planner.

The number of MUs increase with increasing number of segments for both approaches and
for all cases in this study. Our method thus produces plan sequences where the delivery time of
the plans increases in every loop. Therefore, the results presented above would not change qual-
itatively if we replace number of segments by monitor units or delivery time, i.e. the treatment
complexity increases as the method proceeds. The difference in MUs between the two approaches
vary from case to case, but the aggregated difference over all cases is rather small. Compared to
the benchmark plans, the number of MUs for the 50 segment adjustable leaves plans are higher
in four of the five head-and-neck plans. Selecting the adjustable leaves plans that achieve the
same mean relative violation as the benchmark plans in Table 2, it turns out that the number
of MUs for the benchmark plans and the selected plans are similar.

Figures 11 – 12 show the dose-volume histograms (DVHs) of the PTV59.4 and the PTV70

target regions for the HN2 case. The plan criteria are marked with triangles. The figures
compare three plans. The first is a 31 segment plan with 611 MU taken from the adjustable
leaves sequence, which is the plan with the smallest number of segments fulfilling all criteria
for this case. The second is a 31 segment 667 MU plan taken from the fixed leaves approach.
The third plan is our benchmark plan, with 50 segments and 682 MU. For both regions, the
benchmark plan has the most conform dose distribution and the fixed leaves plan the least
conform one. While the adjustable leaves plan fulfill all criteria, the benchmark plan fulfills all
but the D99 criterion for the PTV59.4 region. The low conformity of the fixed leaves plan results
in violation of the D99 criterion of the PTV59.4 region and of both dose limiting criteria of the
PTV70 region.

Number of segments Benchmark
Case Approach 15 20 25 30 35 40 45 50 50

HN1
Adjustable 42 15 6.7 3.7 2.8 0.2 0.9 0.7

0.1
Fixed 44 24 13 8.5 5.1 3.8 1.3 0.9

HN2
Adjustable 4.7 1.7 0.6 0.1 0 0 0 0

1.1
Fixed 22 15 4.2 2.5 1.2 1.1 0.9 0.1

HN3
Adjustable 1.3 0.6 0.4 0.2 0.2 0.1 0 0

0
Fixed 6.0 3.7 1.2 0.7 0.3 0.2 0.1 0.3

HN4
Adjustable 16 2.7 0.6 0.1 0 0 0 0

0
Fixed 33 13 5.7 2.1 0.5 0.5 0 0

HN5
Adjustable 4.1 1.2 1.0 0.5 0.5 0.3 0.6 0

0.8
Fixed 18 8.1 5.2 2.2 0.9 1.0 0.6 0.2

Table 2: Mean relative violations, in parts per thousand, for a selection of the generated plans
for all head-and-neck cases. The plans chosen from the sequences are the plans that have the
number of segments closest to the specified number of segments in every column.
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Figure 12: DVH of PTV70 for the HN2 case
for one plan with 31 segments from both
approaches and for the benchmark plan.

4.2. Solution process results

The leaf movements in four segments of one beam for the HN2 case with the adjustable leaves
approach are shown in Figure 13. The top row shows the initial segment and three generated
segments when created, while the bottom row shows the same segments at the end of the solution
process, i.e. after 20 loops. The initial segment, in the leftmost column, has been modified by 20
DSS optimizations. The other segments, generated in loops one, two and five, have been modified
by 19, 18 and 15 DSS optimizations, respectively. The leaf movements are rather small, but as
demonstrated in the plan comparisons of the previous section, this fine-tuning of the segment
affects the plan quality considerably.

The process of finding the optimal segment from a gradient map takes around a tenth of a
second on a standard computer (2.0 GHz Pentium 4 processor, 2 GB RAM). Using 20 loops with
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Figure 13: Leaf movements with the adjustable leaves approach. The red boxes show the jaw
positions. Top: The initial segment and three generated segments for one beam when created.
Bottom: The same segments at the end of the solution process, after 20 DSS optimizations.

7 beams for a case, we need to solve 140 such problems, resulting in a total computation time of
approximately 15 seconds for the segment generation part in the solution process. The current
implementation of the shortest-path problem has focused more on functionality than speed, so
we envisage that this solution time could be shortened with a more efficient implementation. The
overall computational time for one head-and-neck case is in the order of 40 minutes, i.e. each
loop takes about two minutes.

In the 20 loops performed, 80 segments are generated. This would result in final plans with
87 or 89 segments for the head-and-neck cases if no segments were removed. The mean number of
segments for the final plans for the head-and-neck cases is 56, meaning that around 30 segments
are removed on average in the solution process.

5. Discussion and conclusion

It has been shown that the rate of plan improvement is much higher with the adjustable leaves
approach than with the fixed leaves approach early in the solution process. This is a crucial
difference since it implies that the adjustable leaves approach can find adequate plans with
fewer segments and probably fewer MUs than the fixed leaves approach. Once a certain number
of segments have been generated with the adjustable leaves approach, adding more segments
merely increase the treatment complexity. The proposed adjustable leaves approach is therefore
suitable for supporting the planner in exploring the trade-off between treatment complexity and
plan quality.

One reason for the large differences between plans with few segments could be the lack
of flexibility inherent in the fixed leaves approach. The generated segments are based on local
gradient information. As the solution process proceeds, the segments therefore need to deform to
adjust to changes in the dose distribution. With no leaf-position optimization, this adjustment
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cannot be done. This lack of flexibility might be especially problematic for plans with few
segments. Another reason could be that the adjustable leaves plans have slightly more jagged
segments, which allows for more conform dose distributions.

In this study, the initial segments are constructed from the projection of the target(s). There
are two other ways of generating the initial segments in the current implementation. One is to
perform a few iterations of beamlet weight optimization and then create the initial segments
using a leaf sequencing algorithm, i.e. to mimic the first part of the solution process for the
benchmark plans. With this approach, more than one initial segment per beam can be generated
and the number of loops can be reduced. The other way is to start with no segments at all and
to generate the initial ones in the segment generation module. Then, some beams will have no
segments initially. This approach might be useful in the context of gantry angle optimization;
define a plan with redundant beams and run the method for some loops, then discard the beams
that have no segments. This could provide a good initial estimate for important beam directions.

In the proposed method, the number of segments in the plan is controlled, but we can-
not directly affect the number of MUs. (All we know is that the number of MUs increases
throughout the sequence of plans.) Trying to incorporate monitor units into the solution pro-
cess, either directly by including them into the optimization problem, or indirectly by controlling
the size of the segments, are topics for future work. Another future research direction is to tailor
the shortest-path formulation to the MLC used. Different graph constructions and penalizing
schemes for different collimators might improve the quality of the generated segments. Reducing
the overall optimization time and including hard constraints are other topics to explore. A more
mathematical description of the method will be presented in a forthcoming paper.

The flexibility of generating segments throughout the solution process combined with the
ability to alter the segment shapes in the DSS optimization gives a promising method for gen-
erating simple yet satisfactory step-and-shoot plans. The method has potential for supporting
the planner in finding satisfactory plans with fewer segments than what is traditionally used in
step-and-shoot radiotherapy.
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