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INTRODUCTION 

As is known to us, Cognition process is the instinct learning ability of human being, and 

this process is perhaps the most complex but highly efficient and intelligized information 

processing process. For the cognition process of the natural world, human always transfers the 

feature information to the brain through perception, and then the brain will process the feature 

information and remember the feature information for the given objects. Since the invention of 

computer, scientists are always working toward improving its artificial intelligence, and hope 

one day the computer could have their own genuine intelligent “brain” like the human brain. 

However, according to the cognition science theory, the human brain can be imitated but cannot 

be completely reproduced. Thus, to let the computer truly “think” by themselves seems easy yet 

there is still a long way to accomplish this objective.  

Currently, artificial intelligence is still an important and active direction of function 

imitation of the human brain. Yet traditionally, the Neural-computing and neural networks 

families are the majority part of the direction (Haykin, 1994). By imitating the working 

mechanism of human neuron of the brain, scientist found the neural networks computing theory 

according to experimental progresses such as Perception neurons and Spiking neurons (Gerstner 



    

& Kistler, 2002) in understanding the working mechanism of neurons. For a long time, the 

related research works mainly emphasize on neuron model, neural network topology, learning 

algorithm, and thus there are quite flourish large families (Bishop, 1995) such as, Back 

Propagation neural networks (BPNN), Radical Basis Function neural networks (RBFNN), Self 

Organization Map (SOM), and various other variants. 

Neural-computing and neural networks (NN) families have made great achievements in 

various aspects. Recently, statistical learning and support vector machines (SVM) (Vapnik, 1995; 

Scholkopf, & Smola, 2001) draw extensive attention, show attractive and excellent performances 

in various areas (Li, Wei & Liu, 2004) compared with NN, which imply that artificial 

intelligence can also be made via advanced statistical computing theory. Nowadays, these two 

methods tend to merge under statistical learning theory framework.  

BACKGROUND 

It should be noted as for NN and SVM, the function imitation is from the microcosmic 

view utilizing the mathematic model of neuron working mechanism. However the whole 

cognition process can also be summarized as two basic principles from the macroscopical view, 

i.e. the first is that human always cognizes things of the same kind, the second is that human 

recognizes things of a new kind easily without affecting the existing knowledge. These two 

common principles are easily concluded.  

In order to make the idea more clearly, we firstly analyze the function imitation 

explanation of NN and SVM. The function imitation of human cognitive process for pattern 

classification via NN and SVM can be explained as follows (Li & Wei, 2005). Given the training 

pairs (sample features, class indicator), we can train a NN or a SVM learning machine. The 

training process of these learning machines actually imitates the learning ability of human being. 



    

For clarity, we call this process “cognizing”. Then, the trained NN or SVM can be used for 

testing an unknown sample and determine the class indicator it belongs to. The testing process of 

an unknown sample actually imitates the recognizing process of human being. We call this 

process “recognizing”.  

From the mathematic point of view, both these two learning machines are based on the 

hyperplane adjustment, and obtain the optimum or sub-optimum hyperplane combinations after 

the training process. As for NN, each neuron acts as a hyperplane in the feature space. The 

feature space is divided into many partitions according to the selected training principle. Each 

feature space partition is then linked with a corresponding class, which accomplishes the 

“cognizing” process. Given an unknown sample, it only detects the partition where the sample 

locates in and then assigns the indicator of this sample, which accomplishes the “recognizing” 

process. Like NN, SVM is based on the optimum hyperplane. Unlike NN, standard SVM 

determines the hyperplane via solving a QP convex optimization problem. They have the same 

“cognizing” and “recognizing” process except different solving strategies. 

Now, suppose we have a complete sample database, and if a totally unknown and novel 

sample comes, both SVM and NN will not naturally recognize it correctly and conversely prefer 

to assign a most close indicator in the learned classes (Li & Wei, 2005).  

However, this phenomenon is quite easy for human to handle with. If we have learned 

some things of the same kind before, given similar things we can easily recognize them. If we 

have never encountered with them, we can also easily tell that they are fresh things. Then under 

supervised learning of them, we can then remember their features in the brain without changing 

other learned things. 



    

The root cause of this phenomenon is the learning principle of the NN or SVM 

“cognizing” algorithm, which is based on feature space partition. This kind of learning principle 

may amplify each class’s distribution region especially when the samples of different kinds are 

small due to incompleteness. This makes it impossible to automatically detect the novel samples. 

Here comes the concern: how to make it automatically identify the novel samples like human.  

MAIN FOCUS 

 Human being generally cognizes things of one kind and recognizes complete unknown 

things of a novel kind easily. So the answer is why not let the learning machine “cognize” or 

“recognize” like human being (Li, Wei & Liu, 2004). In other words, the learning machine 

should “cognize” the training samples of the same class regardless of the other classes, so that 

our intention is focused only on each single class. This point is important to assure that all the 

existing classes are precisely learned without amplification. To learn each class, we can just let 

each class be cognized or described by a cognitive learner. It uses some kind of model to 

describe each class instead of using feature space partition so as to imitate the “cognizing” 

process. Therefore, now there is no amplification occur different from NN or SVM. The 

bounding boundary of each cognitive learner scatters in the feature space. All the learners’ 

boundaries consist of the whole knowledge of the learned classes. For an unknown sample, the 

cognitive class recognizer then detects whether the unknown sample is located inside a 

cognitive learner’s boundary to imitate the “recognizing” process. If the sample is completely 

new (i.e., none of the trained cognitive learner contains the sample), it can be again described by 

a new cognitive learner and the new obtained learner can be added to the feature space without 

affecting others. This concludes the basic process of our proposed enclosing machine learning 

paradigm (Wei, Li & Li, 2007A).  



    

Mathematic Modeling 

 In order to realize above ideas for practical usage, we have to link the ideas with concrete 

mathematic models (Wei, Li & Li, 2007A). Actually the first principle can be modeled as a 

minimum volume enclosing problem. The second principle can be ideally modeled as a point 

detection problem. In fact, the minimum volume enclosing problem is quite hard to solve for 

samples from arbitrary distribution，and the actual distribution shape might be rather complex 

for calculating directly. Therefore, a natural alternative is to use regular shapes such as sphere 

(Fischer, Gartner, & Kutz, 2003), ellipsoid and so on to enclose all samples of the same class 

with minimum volume to approximate the true minimum volume enclosing boundary (Wei, 

Löfberg, Feng, Li & Li, 2007). Moreover, the approximation method can also be easily 

formulated as a convex optimization problem. Thus it can be efficiently solved in polynomial 

time using state-of-the-art available open source solvers such as SDPT3 (Toh, Todd & Tutuncu, 

1999), SEDUMI (Sturm, 1999), YALMIP (Löfberg, 2004) etc. Consequently, the point detection 

algorithm can be easily concluded via detecting its location inside it or not. 

Enclosing Machine Learning Concepts 

Using previous modeling methods, we can now introduce some important concepts. Note 

that the new learning methodology now actually has three aspects. The first aspect is to learn 

each class respectively, we call it cognitive learning. The second aspect is to detect unknown 

samples’ location and determine its indicator, we call it cognitive classification. While the third 

aspect is to conduct a new cognitive learning process, we call it feedback self-learning, and the 

third aspect is for imitation of the character of learning samples of new kind without affecting the 

existing knowledge. The whole process can be depicted in Fig 1. We now can give following two 

definitions. 



    

Class Learner. A cognitive class learner is defined as the bounding boundary of a 

minimum volume set which encloses all the given samples. The cognitive learner can be either a 

sphere or an ellipsoid or their combinations. Fig 2, Fig 3 and Fig 4 depict the examples of sphere 

learner, ellipsoid learner, and combinational ellipsoid learner in 2D. 

Self-Learning

Class Learner

 Recognizer

Is Novel ?

Cognize

Recognize

Output Learner

Output Results

Yes

No

 

Fig.1 Enclosing Machine Learning Process. The real line denotes the cognizing process. The dotted line 

denotes the recognizing process. The dash-dotted line denotes the feedback self-learning process. 

 

Fig. 2 Sphere Learner 



    

 

Fig.3 Ellipsoid Learner 

+

+

+

 

Fig.4 Combinational Ellipsoid Learner 

Remarks: As for the above illustrated three type learner, we can see that the sphere 

learner generally has the biggest volume, and next is single Ellipsoid learner, and the 

combinational Ellipsoid learner has the smallest volume.  

Recognizer. A cognitive recognizer is defined as the point detection and assignment 

algorithm.  

The cognitive learner should own at least following features to get commendable 

performance:  

A. regular and convenient to calculate 

B. bounding with the minimum volume 

C. convex bodies to guarantee optimality 

D. fault tolerant to assure generalization performance. 



    

The basic geometric shapes are the best choices. Because they are all convex bodies and 

the operations like intersection, union or complement of the basic geometric shapes can be 

implemented using convex optimization methods easily. So we propose to use basic geometric 

shapes such as sphere, box or ellipsoid to serve as base learner.  

The cognitive learner is then to use these geometric shapes to enclose all the given 

samples with the minimum volume objective in the feature space. This is the most important 

reason why we call this learning paradigm enclosing machine learning.  

Cognitive Learning & Classification algorithms 

We first investigate the difference between enclosing machine learning and other feature 

space partition based methods. Fig.5 gives a geometric illustration of the differences. For the 

cognizing (or learning) process, each class is described by a cognitive class description learner. 

For the recognizing (or classification) process, we only need to check which bounding learner 

the testing sample locates inside.  

+

+

+

(a) (b)
 

Fig.5. A geometric illustration of learning a three class samples via enclosing machine learning vs. 

feature space partition learning paradigm. (a) For the depicted example, the cognitive learner is the bounding 

minimum volume ellipsoid, while the cognitive recognizer is actually the point location detection algorithm of 

the testing sample. (b) All the three classes are separated by three hyperplanes.  



    

But for the partition based learning paradigm, among the learning process, each two 

classes are separated via a hyperplane (or other boundary forms, such as hypersphere etc.). While 

among the classification process, we need to check whether it is located on the left side or the 

right side of the hyperplane and then assign the corresponding class indicator.  We can see that 

the feature space partition learning paradigm in fact amplify the real distribution regions of each 

class. But the enclosing machine learning paradigm obtains more reasonable distribution region 

of each class. 

In enclosing machine learning, the most important step is to obtain a proper description 

of each single class of samples. From mathematic point of view, our cognitive class description 

methods actually are the so-called one class classification method (OCC) (Scholkopf, Platt, 

Shawe-Taylor, Smola, & Williamson, 2001). OCC can recognize the new samples that resemble 

the training set and detect uncharacteristic samples, or outliers, to avoid the ungrounded 

classification.  

By far, the well-known examples of OCC are studied in the context of SVM. For this 

problem, One Class Support Vector Machines (OCSVM) (Tax & Duin, 1999) is firstly proposed. 

The OCSVM first maps the data from the original input space to a feature space   via some map 

 , and then construct a hyperplane in   which separate the mapped patterns from the origin 

with maximum margin. The one-class SVM proposed by Tax (Tax, 2001) is named support 

vector domain description (SVDD), which seeks the minimum hypersphere that encloses all the 

data of the target class in a feature space. In this way, it finds the descriptive area that covers the 

data and excludes the superfluous space that results in false alarms.  

However, both OCSVM and SVDD depend on the Euclidean distance, which is often 

sub-optimal. An important problem in Euclidean distance based learning algorithm is the scale of 



    

the input variables. And thus Tax et al (Tax & Juszczak, 2003) proposes a KPCA based 

techniques to rescale the data in a kernel feature space to unit variance in order to reduce the 

input variable scale influences to minima. And People proposed to maximize the Mahalanobis 

distance of the hyperplane to the origin instead, which is the core idea of the One Class Minimax 

Probability Machine (OCMPM) (Lanckriet, Ghaoui & Jodan, 2002)  and the Mahalanobis One 

Class Support Vector Machines (MOCSVM) (Tsang, Kwok, & Li, S., 2006). Because the 

Mahalanobis distance is normalized by the covariance matrix, it is linear translation invariant. 

Therefore, we need not worry about the scales of input variables. 

What’s more, to alleviate the undesirable effects of estimation error in the covariance 

matrix, we can easily incorporate a priori knowledge with an uncertainty model and then address 

it as a robust optimization problem.  

Because Ellipsoid and the accompanying Mahalanobis distance own many commendable 

virtues mentioned above, we proposed to incorporate Ellipsoid and Mahalanobis into class 

learning. And then currently our main progress towards class learning or “cognizing” is that we 

proposed a new minimum volume enclosing ellipsoid learner and several Mahalanobis distance 

based OCC methods. In our previous works, we proposed a QP based Mahalanobis Ellipsoidal 

Learning Machine (QP-MELM) (Wei, Huang & Li, 2007A) and QP based Mahalanobis 

Hyperplane Learning Machine (QP-MHLM) (Wei, Huang & Li, 2007B) via solving the dual 

form, and applications to real world datasets show promising performances. However, as is 

suggested (Boyd, & Vandenberghe, 2004), if both the primal form and dual form of an 

optimization problem is feasible, then the primal form is more preferable. Therefore, we 

proposed a Second Order Cone Programming representable Mahalanobis Ellipsoidal Learning 



    

Machine (SOCP-MELM) (Wei, Li, Feng & Huang, 2007A). And according to this new learner, 

we developed several useful learning algorithms. 

Minimum Volume Enclosing Ellipsoid Learner 

In this new algorithm, we summarize several solutions (see Kumar, Mitchell, & Yildirim, 

2003; Kumar, P. & Yildirim, 2005; Sun & Freund, 2004). As for the SDP solution, we can 

directly solve its primal form using Schur complement theorem. As for the lndet solution, we can 

solve its dual efficiently in polynomial time. As for the SOCP solution (Wei, Li, Feng, & Huang, 

2007B), we can also efficiently solve its primal form in polynomial time. We suppose all the 

samples are centered firstly. So we only give results for minimum volume enclosing ellipsoid 

center at the origin for this case. But it is straightforward for lift the ellipsoid with center in a 

d dimension space to a generalized ellipsoid with center at the origin in a 1d  dimension space , 

for more detail, the reader may check the paper (Wei, Li, Feng & Huang, 2007A) for more detail.  

Given samples m nX R  , suppose    1( , ) : { : 1}
T

c x x c x c       is the demanded 

ellipsoid, then the minimum volume problem can be formulated as  
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,

1

1

min ln det
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. .

0
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
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                                                      (1) 

However, this is not a convex optimization problem. Fortunately, it can be transformed 

into following convex optimization problem 
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using matrix transform

1
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b c
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. 

In order to allow errors, using Schur Complete theorem, (2) can be represented in 

following SDP form 

 

 

, ,
1

min ln det

. . 0
1
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                                               (3) 

Solving (3), we can then obtain the minimum volume enclosing ellipsoid. Yet, SDP is 

quite demanded especially for large scale or high dimensional data learning problem. 

As for    1 2( , ) : { : }
T

c x x c x c R       , we can reformulate the primal form of 

minimum volume enclosing problem as following SOCP form: 
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                                       (4) 

Accordingly, it can be kernelized as 
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Where c  the center of the ellipsoid is, R  is the generalized radius, n is number of samples, 

and
T

C K Q ΩQ . 



    

So as to obtain more efficient solving method, except above primal form based methods, 

we can also reformulate the minimum volume enclosing ellipsoid centered at origin as following 

optimization problem: 

1

,
1

1

min ln det

1
. .

0, 1,2, ,

i

n

i
U

i

T

i i i

i

x x
s t
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
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                                                   (4) 

Where   balances the volume and the errors, 0i   is slack variable. 

Actually via optimization conditions and KKT conditions, this problem can be efficiently 

solved using following dualized representation form: 
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Where  is the dual variable. 

We see that (5) cannot be kernelized directly, therefore we need to use some tricks [] to 

kernelized its equivalent counterpart  
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Where  is the dual variable,
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Multiple Class Classification algorithms 

As is pointed out previously, cognitive learning is actually to use minimum volume 

geometric shapes to enclose each class samples for imitating the learning process of human brain. 

Thus for multiple class classification problem, a naturally solution is firstly to use minimum 

volume geometric shapes to approximate each class samples’ distribution, and then for giving 

unknown samples, we only need to check whether they are inside a learner or not. But these are 

for ideal cases, where no overlaps occur in each single class distributions. When overlaps occur, 

we proposed two algorithms to handle this case (Wei, Huang & Li, 2007C). 

For the first solution, we use a distance based metric, we would like to assign it to the 

closest class. This algorithm can be summarized as  

{1,2, , }
( ) arg min

k m
f x x c R


  


                                         (7) 

Where 


 denotes Mahalanobis norm. 

Another way is to use optimum Bayesian decision theory, and assign its indicator to the 

class with maximum posterior probability: 
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where d  is the dimension of the feature space and 
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class k . According to (8) the decision boundary between class 1 and 2 is given by  
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And this is equivalent to 

2 2

1 2

1 22 2

1 2

M MT T
R R

 
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x c x c
                                       (10) 

Therefore we can give a new decision rule  

2

2
( ) arg max( )

k M
k

k

f x T
R


 

x c
                                     (11) 

where log logk k kT d R P  can be estimated from the training samples.  

Remarks. Actually, we also proposed a single MVEE learner based two class 

classification algorithm (Wei, Li, Feng & Huang, 2007A), which owns both features of MVEE 

description and SVM discrimination. Then using One Vs One or One Against One, we can also 

get a multiple class classification algorithm. Except this, we are now working on a multiple class 

classification algorithm at complexity of a single MVEE based two class classification algorithm, 

which is expected to obtain promising performances. 

Gap tolerant SVM design 

Here we briefly review the new gap tolerant SVM design algorithm. This new algorithm 

is based on the minimum volume enclosing ellipsoid learner for assuring a compact description 

of all the samples. We firstly find the MVEE around all the samples and thus obtain a 

Mahalanobis transform. We then use the Mahalanobis transform to whiten all the samples and 

thus map them to a sphere distribution. Then we construct standard SVMs in this whiten space.  

The MVEE gap tolerant classifier design algorithm can be summarized as 

 

Step1, Solve MVEE and obtain   and center c  

Step2, Whiten data using Mahalanobis transform
1

2 ( )i it x c


   and get new sample 

pairs  
1

,
n

i i i
t y


 

Step3, Solve standard SVM and get the decision function ( ) sgn( )Ty x w t b  . 
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M
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Fig 6 MVEE gap tolerant classifier illustration 

Remarks. This algorithm is very concise and has several commendable features worth 

noting. The classifier designed using this algorithm has less VC dimension compared with 

traditional ones. Also this algorithm is scale invariant. For more details, the reader should refer to 

(Wei, Li & Dong, 2007). 

FUTURE TRENDS 

 In the future, more learner algorithms will be developed. Another important direction is 

to develop set based combinational learner algorithm (Wei, & Li, 2007; Wei, Li, & Li, 2007B). 

Also more reasonable classification algorithms will be focused. Except theoretical developments, 

we will also focus on applications such as novelty detection (Dolia, Page, White & Harris, 2004), 

face detection, industrial process condition monitoring, and many other possible applications. 

CONCLUSION 

In this article, we introduced enclosing machine learning paradigm. We focused on its 

concept definition, and progresses in modeling the cognizing process via minimum volume 

enclosing ellipsoid. We then introduced several learning and classification algorithms based on 



    

MVEE. And we also report a new gap tolerant SVM design method based MVEE. Finally, we 

give future development directions.  
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KEY TERMS AND THEIR DEFINITIONS 

Enclosing Machine Learning: It is a new machine learning paradigm which is based on 

function imitation of human being’s cognizing and recognizing process.  

Cognitive Learner: A cognitive learner is defined as the bounding boundary of a minimum 

volume set which encloses all the given samples to imitate the learning process.  

Cognitive Recognizer: A cognitive recognizer is defined as the point detection and assignment 

algorithm to imitate the recognizing process.   

MVEE Gap Tolerant Classifier: A MVEE Gap Tolerant Classifier is specified by the shape 

matrix and location of an ellipsoid, and by two hyperplanes, with parallel normals. The set of 

points lying in between (but not on) the hyperplanes is called the margin set. Points that lie inside 

the ellipsoid but not in the margin set are assigned a class, 1 , depending on which side of the 

margin set they lie on. All other points are defined to be correct: they are not assigned a class. A 

MVEE gap tolerant classifier is in fact a special kind of Support Vector Machine which does not 

count data falling outside the ellipsoid containing the training data or inside the margin as an 

error. 


