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1. Introduction 

Needs and requirements of human society or particular social groups form various demands, 

which are usually spread over a geographical area. An effective satisfaction of the demands is 

possible only if the corresponding service provider concentrates its sources at several places 

of the served area and if he provides the service in these places only or if he serves the 

demands at their positions by trips starting and terminating at these places. To denote source 

of a service, we shall use the term “facility”, which is mend to include a broad set of entities 

such as factories, warehouses, transportation terminals, schools, hospitals, day-care centres, 

public administration offices, emergency warning sirens and others. An addressee of the 

service will be denoted by the term “customer”, even if he has hardly anything common with 

this term in the market sense in many cases. 

Within frame of this paper we restrict ourselves on such problems, in which a finite number of 

customers and finite number of possible facility locations are considered, what could be pretty 

good approximation of most of real cases. The great deal of a service system design will be 

done, when question on a number of facilities and their locations are answered. We shall 

distinguish two classes of service systems, which differ in objectives. The first considered 

class is formed by so-called public systems and the second one is referred as private systems. 

When a system from the first class is designed, the objective is stated as minimization of a 

social cost subject to service each customer or, in addition, some customer’s equity in access 

to the service may be demanded. On the contrary to a public systems design, a private system 

designer accents profit maximization or capture of larger market share. In this case, service of 

some disadvantageous demands can be omitted. 

In the following sections we formulate several typical models of both private and public 

system designs and we shall discuss means of corresponding solving approaches. Then we 

show a way, how to rearrange all reported models to general one, problem instances of which 

are solvable by exact algorithms for considerable large size. 

2. Public Service Systems 

As preliminaries for model construction, we introduce the following notation of particular 

terms, which will be used throughout the whole paper. Let J denote a finite set of customers 



and if a quantity of customer’s demand can be expressed by a real number, then demand of 

customer j 

 
J be denoted by bj. Let I denote a finite set of possible facility locations and let 

dij denote the distance between location i I and the location of customer j J. The decision on 

facility location at place i I is modelled by zero-one variable yi {0,1}, which takes value 1 if 

a facility should be located at i and it takes value 0 otherwise. 

2.1 Maximum Distance Model 

In this problem a customer’s demand is covered if its distance from some located facility is 

less or equal than given constant D. This case corresponds to problems like emergency 

warning sirens locations or health centre location. The objective is to cover all the customer 

demands with minimum number of located facilities. The classical approach [Current, 2002], 

[Marianov, 2002] introduces set Nj={i I: dij D} of possible locations, from which demand 

of customer j can be satisfied. Then the model of the corresponding set covering problem can 

be established in the form: 

Minimize 
Ii

yi  (1) 

Subject to 
jNi

yi   1 for j J. (2) 

2.2 p-Centre Problem 

This problem consists in minimizing the maximum distance between customer and the nearest 

located facility, when pre-determined number of p facilities is given. This problem arises, 

when limited number of fire-stations or first-aid stations should be located so that time, in 

which the worst situated customer can be served, be as small as possible. To form a model of 

this problem, auxiliary variables zij {0,1} for each i I and j J are introduced to assign 

customer j to possible location i. Furthermore, we add an another variable w

 

0, which is used 

as upper bound of the distances between customer j and assigned location i. The p-center 

problem can be formulated as follows: 

Minimize w (3) 

Subject to 
i I

zij  = 1 for j J (4)  

zij  yi for i  I and j J (5)  

i I

yi  = p  (6) 



 
i I

dij zij   w for j J. (7) 

2.3 p-Median Problem 

A problem of this type arises, when the number of facilities is fixed and average distance or 

average weighted distance between customer and the nearest located facility should be 

minimized. In the public sector, one might want to locate, for example, public administration 

bureaus in such a way as to minimize the total distance that citizens must traverse to reach 

their closest bureau. If J denotes set of dwelling places in the area, bj number of inhabitants at 

j J and if we use the previously introduced variables, an associated model to this problem 

can be established this way: 

Minimize 
i I j J

 bjdij  zij (8) 

Subject to (4), (5), (6). 

3. Private Service Systems 

Making use of above introduced notation, we try to formulate models of two broadly spread 

problems in the private sector. 

3.1 Maximum Covering Location Problem 

Similarly to the previous models, the number of facilities is fixed at value p, but, on the 

contrary to public the systems, not each customer must be served. We consider that service of 

customer j brings profit, which is proportional to its demand bj. The customer is considered to 

be served if there is located at least one facility within distance D from the customer. Making 

use of sets Nj introduced in sub-section 2.1 and introducing auxiliary variables xj {0,1} taking 

value 1, if customer j is served, we can established the following model: 

Maximize 
Jj

bj xj (9) 

Subject to 
jNi

yi   xj for j J (10)  

i I

yi  = p.  (11) 

3.2 Fixed Charge Location Problem 

We consider a simpler version of the problem stated in [Current, 2002] or [Kubanová, 1997]. 

The number of facilities in not fixed here, but each facility location at i I is connected with 

fixed charge fi, which doesn’t depend on demand quantity satisfied from this location. 

Furthermore, costs cij are introduced to express cost connected with servicing customer j from 



a facility located at i. The objective is to satisfy all customer demands and to minimize the 

total costs including both fixed charges and service costs. This problem often emerges, when 

a distribution system is designed. Making use of previously introduced variables yi and zij, the 

model can be stated as follows: 

Minimize 
i I

 fi  yi + 
i I j J

 cij  zij (12) 

Subject to (4), (5). 

4. Solving Methods 

There are various exact methods for solving the particular problems mentioned above [Buzna, 

2003], [Current, 2002], [Erlenkotter, 1978] [Marianov, 2002],. Besides, having formulated 

linear mathematical programming model, some of general solvers based on branch and bound 

approach can be used [Jablonský, 2002]. As shown in [Chocholácek, 1998] for particular 

problem, special approaches win from the time consumption point of view, if special and 

general solver approaches are compared. Neverless, if the studied problem is modified e.g. by 

addition of a new constraint or by slight change in the objective function, then these special 

approaches are useless. 

That is why we focus on the possibility, how to rearrange the broad spectrum of problems to 

general one, for which a smart solving tool has been developed. The general problem has 

form of the above fixed charge location problem with limited number of used facilities. The 

model has the following form: 

Minimize 
i I

 fi  yi + 
i I j J

 cij  zij (13) 

Subject to 
i I

zij  = 1 for j J (14)  

zij  yi for i  I and j J (15)  

i I

yi   p  (16) 

The associated problem can be solved by the approach reported in [Janácek, 2000], where 

Lagrangean multiplier f is introduced for constraint (16), which is to be relaxed. Then the 

problem (14)-(16) can be reformulated this way: Find f  0, so that values of variables yi , i I 

of the optimal solution of problem (17), (14), (15) meet constraint (16) as equality. The 

considered objective function is 

                           ii
Ii

y)ff( + ijij
JjIi

xc . (17) 



If f is fixed, then problem (17), (14), (15) forms an uncapacitated location problem. To solve 

the problem for nonnegative values of f and {cij}, procedure BBDual [Janácek, 1997] was 

devised and implemented. Being tested during computational experiments with large 

networks, the procedure proved to be able to solve large size problems quickly enough to be 

used repeatedly in more complicated algorithms. 

To find demanded value f, an algorithm was completed [Janácek, 2000], in which function 

Q(f, c) gives number of variables yi which value is equal to one in the optimal solution of 

problem (17), (14), (15) for given f, c. 

0.  Set fmin = 0, fmax = }Ii:cmax{ ij
Jj

, f = (fmax - fmin )/2. 

1.  While (Q(f, c)  p ) and (fmax - fmin 

 

)  repeat  

If Q(f, c) > p then  set fmin = f , otherwise set fmax = f.  

Set f = (fmax - fmin )/2. 

It is necessary to remark that the optimal solution < y, z > of problem (17), (14), (15) for 

resulting f need not necessarily meet constraint (16) as equality [Janácek, 2000]. 

5. Problem Rearrangements 

In this section, there will be shown that it is possible to rearrange each of the above models to 

the form of model (13)-(16). The reformulation is not necessary for the fixed charge location 

problem (3.2). In that case, it is sufficient to omit the constraint, which bounds the number of 

used facilities. Furthermore, the p-median problem (2.3) with nonnegative coefficients can be 

considered as a form of the generalized problem for fi=0. 

The rearrangement of models 2.1, 2.2 and 3.1 can be done by the following way: 

Maximum Distance Model (2.1) can be reformulated to model (13)-(16) defining fi=1 for 

i I and cij=0 for j J and i Nj and cij=2 otherwise. 

p-Centre Problem (2.2) cannot be transformed directly to model (13)-(16), but such a model 

can be derived that its solution provides approximate solution of the p-centre problem and by 

repeating the solving process, the resulting solution can be made arbitrary precise. To reach 

this goal, lower and upper bounds on optimal value of w must be determined. Let us denote 

the current bounds wmin and wmax. The interval [wmin, wmax] is divided into r equidistant parts 

by values w1 < w2 < …< wr = wmax. Then the surrogate costs cij for j J and i I are 

established in accordance to the rule: cij=0 for dij<w1; cij=( J -p)k for wk

  

dij<wk+1 for 

k=1,..r-1; cij=( J -p)r for wr

 

dij. With this costs p-median problem can be solved and its 



largest value cij, for which optimal zij=1 determines k

 
and associated wk, wk+1 form new lower 

and upper bounds on the original problem. 

Maximum Covering Location Problem (3.1) 

To rearrange the former model, we introduce assignment variables zij {0, 1} taking value 1 if 

and only if customer j is assigned to place i I. Then we can rewrite the former model as: 

Maximize 
Jj jNi

 bj  zij (18) 

Subject to 
jNi

zij   1 for j J (19)  

zij  yi for j J and i  Nj (20)  

i I

yi  = p  (21) 

Further we add one “fictive” place i0 to each neighbourhood Nj obtaining new 

neighbourhoods Nj=Nj {i0}. Now we introduce slack variables zi0j for each constraint (19) 

and defining cij=bj for each j J and i Nj and ci0j=0 for each j J, we obtain model, in which 

constrains (19) take form of equality. 

After this arrangement, constant J *C

 

= J *max{cij: j J, i Nj}=C*
Jj jNi

zij can be 

subtracted from the (18) without loss of generality. This way, a new objective function with 

non-positive coefficients (cij-C) is obtained and when maximization is replaced with 

minimization of the objective function with nonnegative coefficients cij=C-cij, than the only 

difference between the general model and the obtained one consists in summation over sets 

Nj. This can be adjusted by introducing some prohibitive constant C>C

 

and coefficients cij=C 

for j J and i Nj together with the associated variables zij. 

6. Conclusions 

We have shown that a broad spectrum of location problems originating in both private and 

public sectors can be rearranged to the form of uncapacitated location problem with simple 

constraint on number of located facilities. Furthermore, an approximative approach based on 

uncapacitated location technique was referred, which very often reaches an optimal solution. 

An advantage of the suggested solving process consists in speed, with which it is possible to 

obtain an exact solution of a very large problem in comparison with general integer 

programming solvers. Results reported in this contribution accents importance of further 

development of exact solving techniques for uncapacitated location problem on various types 



of underlying networks. Unfortunately, our preliminary experience indicates that if 

capacitated constraints are considered in a location problem, its intractability increases and 

disables exact solving of large instances. Overcoming of this obstacle may represent a topic of 

a further research. 
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