
Support Vector Regression for imprecise data ∗

Emilio Carrizosa, José Gordillo
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Abstract

In this work, a regression problem is studied where the elements of the
database are sets with certain geometrical properties. In particular, our model
can be applied to handle data affected by some kind of noise or uncertainty and
interval-valued data, and databases with missing values as well. The proposed
formulation is based on the standard ε-Support Vector Regression approach.
In the interval-data case, two different formulations will be obtained, accord-
ing to the way of measuring the distance between the prediction and the actual
intervals. Computational experiments with real databases are performed.
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1 Introduction

Data cannot always be expressed by single feature vectors. In certain situations, interval
data is a better way of representing the values of certain variables. For example, intervals
are used for expressing ranges such as the range of temperature during a day, or age
intervals for a group of individuals. Intervals can also be used when one measures several
times a same variable for the same individual and this information must be summarized,
like the fluctuations of blood pressure or pulse rate of a patient. Other examples of
interval data appear in case of imprecise data, or when estimating a certain parameter
by a confidence interval, and, in general, whenever uncertainty or vagueness arises in our
problem.
Interval data also appear in the framework of Symbolic Data Analysis ([6, 8]). In certain
problems, large databases cannot be handled in an efficient way and it is necessary to
aggregate the data in such a way that the resulting dataset has a more manageable size
and it retains enough knowledge from the original database. Different approaches exist
to summarize the data by using classical variables (single values), multi-valued variables
(categorical variables which can have several results), interval-valued variables (the data
are aggregated into intervals and this is the case of our interest) or modal variables (a single,
interval or nominal variable which can have different values with different probabilities
associated).

From a Symbolic Data Analysis perspective, the first work published on this topic appeared
in [4]. Consider the classical linear regression model (see e.g. [17]),

Y = X>β + ε,

with Y the dependent variable, X = (1, X1, . . . , Xd) is the matrix of the predictor variables,
β = (β0, β1, . . . , βd)> is the vector of coefficients of the regression model and ε, the error.
The approach in [4] consisted in fitting the classical linear regression model on the midpoint
of the intervals of each variable of the dataset. The predicted lower and upper bounds for
the dependent variables were computed on the obtained model. This model is improved
in [14], where two linear regression models are used, one for predicting the midpoint of
the output and the other one for predicting the range. The predicted lower and upper
bounds for the dependent variable are recovered with the midpoint and range. In [29], a
comparison between these two models is shown. Other extensions of these models can be
found in [5, 30].

Related to our problem, we also find the concept of interval regression analysis, which is
the simplest version of possibilistic regression analysis, as introduced by Tanaka et al. (see
[28, 38, 39]). Given a database with crisp input and output, the aim of interval regression
analysis is to predict the dependent variable via an interval by using the predictor variables.
To do this, the coefficients of the model used for the regression are also intervals. Each
coefficient is expressed via its center and its radius.
In the original model, a linear programming formulation is given to solve the problem,
where the objective is to minimize the sum of radii of the predicted outputs, with the
constraint that the real value of the dependent variable must be included in the predicted
output (see [38]). Later, in [39], a quadratic formulation is given to include in the objective
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function a term to minimize the sum of the squared distances from the center of the
predicted output to the real value of the dependent variable.
Other improvements have been performed to study the role of outliers in the regression
process. In [28], two regression models are built for each database by using quantile
techniques, and two interval outputs are given for each observation, with the smallest one
included in the biggest one. The first model is built with a given proportion of the data
(this way, we can study the general behaviour of the data, without containing outliers),
whereas the second model is built with all the observations. Then, given a database, two
intervals will be assigned as a prediction, and this can be seen as a trapezoidal fuzzy
output. Support Vector Machines have been applied to such problem to build the two
models (see [24]) and to the general interval regression analysis case. In [26], an ε-SVR is
solved (with ε = 0) to obtain an initial crisp value of the output, which will be the center
of an interval output with radius equal to a value ε, computed by using the obtained
regression errors. This interval output will be given as initial seed to two Radial Basis
Function networks which identify the upper and lower sides of the output. In [25], the
quadratic formulation of [39] is integrated with the standard ε-SVR approach.

Concerning fuzzy regression analysis, several approaches have been developed. Roughly,
they can be classified in two main groups: the possibilistic approach (initially proposed in
[40]), where the objective function to be minimized is a measurement of the spread of the
predicted output, and the least-squares approach (introduced in [11, 16]), which minimizes
a distance, on fuzzy numbers, between the real and the predicted output.
SVMs have also been applied to fuzzy multiple linear regression models (see [22, 23]). Two
different models have been studied in these works: when the predictor and the dependent
variables are symmetric triangular fuzzy numbers (fuzzy input - fuzzy output) and when
the predictor variables are crisp and the dependent variable is a triangular fuzzy number
(crisp input - fuzzy output). The standard ε-SVR methodology is applied by imposing
that the mode and the extremes of the intervals must satisfy the usual constraints. In the
crisp input - fuzzy output case, nonlinear regressors are introduced via kernel methods.

Another interesting situation related to our work is the case of data affected by some
kind of noise or perturbation. A robust regressor must be constructed, insensitive to this
noise in the data. One model of Robust Support Vector Regression has been studied in
[41, 42], with noise in the input data (predictor variables). Although the data points are
assumed to be uncertain or noisy, that perturbation is bounded by a given hypersphere
of known radius. An optimization problem is formulated and solved via Second Order
Cone Programming. It will be seen that our model generalizes the formulation proposed
in [41, 42].

In this work, we study a regression problem with imprecise data, that is, the elements of
the dataset are affected by uncertainty. We propose two formulations based on standard
ε-Support Vector Regression (see [37]), by using two different distances (maximum and
Hausdorff distances) for measuring the error between predicted and real intervals. The
formulation is applied to the case of interval data, where our model has been tested on
real databases. The case of data affected by some kind of noise is also handled, and it will
be seen that our model generalizes the formulation proposed in [41, 42].
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The technique described in our paper is also useful for modeling the case in which there
exist missing values (see [32] for a complete study on statistical analysis in datasets with
missing values), that is, when the database is formed by feature vectors but some of their
coordinates do not appear in the dataset. Different techniques have been used in the
literature to handle missing data in classification problems (for a survey on the topic, see
[33, 34]). In our case, instead of imputing single values as usual for the missing coordinates,
they will be replaced by intervals which will be built by using the non-missing values of the
same class in the dataset. Different measurements will be taken into account to perform
the construction of these intervals.

The structure of this paper is the following. In Section 2, after an introduction to the
standard ε-Support Vector Regression for single-valued data, the extension to the case of
non-single objects is described. A general optimization problem is given, from which two
different formulations will be derived according to the distance used as a measurement
of the error between the predicted interval and the observed one for each object of the
dataset. The formulation with the maximum distance will be explained in depth in Section
3, whereas the formulation with the Hausdorff distance is given in Section 4. In each
formulation, the general model is particularized to the case of interval data and perturbed
data. In Section 5, a computational experiment with a cardiological database is performed.
Section 6 includes a new methodology for imputation of missing values where the blanks
are filled in by intervals built with the remaining values of the corresponding variable in
the dataset. Finally, Section 7 contains some discussion and concluding remarks.

2 Modeling the problem

2.1 ε-Support Vector Regression with points

In the standard ε-Support Vector Regression, ε-SVR for short (see e.g. [13, 18, 19, 37, 44,
45]), a database Ω ⊆ Rd × R is given, with elements (xi, yi) ∈ Rd × R, where xi is the
set of predictor variables and yi is the dependent variable, whose value is to be predicted
from the value of xi.
The aim of ε-SVR is to find ω ∈ Rd and β ∈ R such that, for each instance i ∈ Ω, the
affine function f(x) = ω>x + β yields a small deviation(at most ε) between the observed
value yi and the predicted value f(xi).
Since the deviation between yi and f(xi) must be at most ε, the following set of constraints
is obtained

|ω>xi + β − yi| ≤ ε, , ∀i ∈ Ω. (1)

The optimization problem to solve, as stated in [37], is the following,

min
ω,β

1
2

d∑
j=1

ω2
j

s.t. yi − ω>xi − β ≤ ε, ∀i ∈ Ω
ω>xi + β − yi ≤ ε, ∀i ∈ Ω.

(2)
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Figure 1: ε-Support Vector Regression

This optimization problem can be non-feasible. Hence, one must introduce some slack vari-
ables ξ, ξ∗ in the constraints (as in the Soft-Margin case for Support Vector Machines, see
e.g. [9, 12]) and a penalty term must be added to the objective function. The optimization
problem has then the following form

min
ω,β,ξ,ξ∗

1
2

d∑
j=1

ω2
j + C

∑
i∈Ω

(ξi + ξ∗i )

s.t. yi − ω>xi − β ≤ ε + ξi, ∀i ∈ Ω
ω>xi + β − yi ≤ ε + ξ∗i , ∀i ∈ Ω
ξi, ξ

∗
i ≥ 0, ∀i ∈ Ω,

(3)

with C and ε constants of the model, where ε is the maximum allowed deviation for
the instances of the database and C represents the trade-off between the flatness of the
prediction function and the sum of deviations larger than ε.
Figure 1 explains graphically the model. We seek a hyperplane to fit the points of the
dataset, but only the points whose deviation from the predicted value (the corresponding
point lying on the hyperplane) is bigger than ε will be penalized. That is, the points outside
the band defined by the hyperplane and the parameter ε, the so-called ε-insensitive tube,
will be penalized via the corresponding slack variable (variable ξ for points above the tube,
and ξ∗ for points below the tube).
Formulation (3), introduced by [44], corresponds to deal with the so-called ε-insensitive
loss function, which is defined as

|ξ|ε =
{

0 if |ξ| ≤ ε,
|ξ| − ε otherwise,

(4)

see Figure 2.

2.2 ε-Support Vector Regression with objects

Whereas in the standard ε-SVR approach, each instance in the database is of the form
(xi, yi) ∈ Rd×R, now we consider a database Ω ⊂ Rd×R formed by objects i = (Xi, Yi) ∈
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Figure 2: ε-insensitive loss function

Ω, where Yi is an interval in R, Yi = [l̃i, ũi], with l̃i ≤ ũi, and Xi is of the form Xi = xi+Bi,
with xi ∈ Rd and with Bi a subset of Rd with certain geometrical properties, namely, it is
convex, symmetric with respect to the origin and contains the origin. In other words, Bi

is the unit ball of a symmetric gauge γi (see [21]), that is,

Bi = {s ∈ Rd : γi(s) ≤ 1}. (5)

We consider the following two particular cases of interest:

1. γi is given by

γi(s1, . . . , sd) = max
j=1,...,d

2|sj |
uij − lij

, for lij < uij , j = 1, . . . , d, (6)

and then

Bi = {s ∈ Rd : γi(s) ≤ 1} = {s ∈ Rd : max
j=1,...,d

2|sj |
uij − lij

≤ 1}

= {s ∈ Rd : |sj | ≤
uij − lij

2
, ∀j = 1, . . . , d}. (7)

2. γi is given by

γi(s1, . . . , sd) =
1
ri

d∑
j=1

(|sj |p)
1
p , for some p, 1 ≤ p ≤ ∞, for ri > 0, (8)

and then

Bi = {s ∈ Rd : γi(s) ≤ 1} = {s ∈ Rd :
1
ri

d∑
j=1

(|sj |p)
1
p ≤ 1}

= {s ∈ Rd : ‖s‖p ≤ ri}. (9)

When γi is of the form (6), taking xi such that xij = lij+uij

2 , j = 1, . . . , d, one has that Xi =
xi + Bi, with Bi as in (7), is a Cartesian product of intervals, that is, Xi =

∏d
j=1[lij , uij ].

6



Interval data can be used for expressing ranges, for grouping several measurements of the
same variable from the same individual, in case of imprecise data or when the data have
been aggregated or summarized in an interval (like in Symbolic Data Analysis, see [6, 8]).
The second case, with γi of the form (8), can be used to model the case of noisy data. This
problem was first tackled in [41, 42] using Support Vector Machines as well. The data, in
that problem, have suffered some perturbations, which are supposed to be unknown, but
a bound on them is known, for a chosen p-norm in the input space.
In that case, we can write Xi = xi + Bi, with xi the original value of the instance and Bi,
as defined in (9), a ball representing the unknown perturbation and ri being a positive
constant which bounds the perturbation in p-norm, since x ∈ Xi iff x = xi + s, with
γi(s) ≤ 1, or equivalently, ‖s‖p ≤ ri, for each i ∈ Ω.
In case of dealing with balls, the concept of ε-SVR must be modified and one has that
our goal will be to compute the parameters ω and β of a hyperplane such that a given
distance from (Xi, Yi) to that hyperplane is at most ε, for every i in the database. Two
distances will be considered: the maximum distance dmax and the Hausdorff distance dH ,
defined on intervals [a, a], [b, b] as

dmax([a, a], [b, b]) = max{|a− b| : a ∈ [a, a], b ∈ [b, b]} (10)
= max{|a− b|, |a− b|}

dH([a, a], [b, b]) = max{ max
a∈[a,a]

min
b∈[b,b]

|a− b|, min
a∈[a,a]

max
b∈[b,b]

|a− b|} (11)

= max{|a− b|, |a− b|}.

Then, our aim will be to seek ω and β such that

d([min
x∈Xi

(ω>x + β), max
x∈Xi

(ω>x + β)], [l̃i, ũi]) ≤ ε, ∀i ∈ Ω, (12)

where d is a distance (such as dmax or dH) in the space of intervals.
Different solutions to the problem can be obtained. We are interested in finding the
solution with minimum norm of ω, as done in the standard Support Vector Regression
case (see [37, 45]).
The analog to Problem (2) is then

min
ω,β

1
2

d∑
j=1

ω2
j

s.t. d([min
x∈Xi

(ω>x + β), max
x∈Xi

(ω>x + β)], [l̃i, ũi]) ≤ ε, ∀i ∈ Ω.

(13)

In the next two sections, formulations for the problems with the maximum and the Haus-
dorff distances will be given.

3 Formulation based on the maximum distance

3.1 Formulation of the problem

Figure 3 gives a graphical explanation of the model for the maximum distance in the
interval data case. A hyperplane is sought to fit the boxes, and penalties appear when the
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maximum distance from the box to the corresponding vertical projection on the hyperplane
is larger than ε, that is, when not every point of the box is inside the ε-insensitive tube.
Variable ξ is used for the points above the tube and ξ∗ for the points below the tube.
Considering the maximum distance dmax between the predicted and the real interval,
constraint (12) can be written as

max
(x,y)∈(Xi,Yi)

|ω>x + β − y| ≤ ε, ∀i ∈ Ω. (14)

Constraint (14) can be divided into the following pair of constraints,

max
x∈Xi

max
y∈Yi

(y − ω>x− β) ≤ ε, ∀i ∈ Ω (15)

max
x∈Xi

max
y∈Yi

(ω>x + β − y) ≤ ε, ∀i ∈ Ω, (16)

and by taking into account that Yi is an interval [l̃i, ũi], we can rewrite them as

max
x∈Xi

(ũi − ω>x− β) ≤ ε, ∀i ∈ Ω (17)

max
x∈Xi

(ω>x + β − l̃i) ≤ ε, ∀i ∈ Ω. (18)

Then, the hard-margin optimization problem (13) will be

min
ω,β

1
2

d∑
j=1

ω2
j

s.t. max
x∈Xi

(ũi − ω>x− β) ≤ ε, ∀i ∈ Ω

max
x∈Xi

(ω>x + β − l̃i) ≤ ε, ∀i ∈ Ω.

(19)

In order to obtain a soft-margin version, one can introduce some slack variables ξ, ξ∗ in the
constraints (as done in the soft-margin case for Support Vector Machines, see [9, 12, 13])
and we must add a penalty term in the objective function, similar to (3),

min
ω,β,ξ,ξ∗

1
2

d∑
j=1

ω2
j + C

∑
i∈Ω

(ξi + ξ∗i )

s.t. ũi − min
x∈Xi

ω>x− β ≤ ε + ξi, ∀i ∈ Ω (20)

max
x∈Xi

ω>x + β − l̃i ≤ ε + ξ∗i , ∀i ∈ Ω (21)

ξi, ξ
∗
i ≥ 0, ∀i ∈ Ω.

3.2 An equivalent formulation

The following result gives an equivalent and more tractable formulation of our problem
by using duality for the constraints (20)-(21). Recall that the dual gauge γ0

i of γi in ω is
defined by γ0

i (ω) = max
γi(u)≤1

(ω>u).
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Figure 3: Formulation based on the maximum distance

Theorem 3.1. Problem with constraints (20)-(21) admits the following equivalent formu-
lation as a convex quadratic minimization problem with convex nonlinear constraints

min
ω,β,ξ,ξ∗

1
2

d∑
j=1

ω2
j + C

∑
i∈Ω

(ξi + ξ∗i )

s.t. ũi − ω>xi + γ0
i (ω)− β ≤ ε + ξi, ∀i ∈ Ω

ω>xi + γ0
i (ω) + β − l̃i ≤ ε + ξ∗i , ∀i ∈ Ω

ξi, ξ
∗
i ≥ 0, ∀i ∈ Ω,

(22)

where γi is the gauge associated to the object i ∈ I defining the ball Bi used in Xi = xi+Bi

and γ0
i is its dual gauge.

Proof.
The proof is analogous to Theorem 2.1 in [10]. We change constraints (20)-(21) by using
that Xi = xi + Bi, Bi being the unit ball induced by the gauge γi for each Xi.
One has that,

min
x∈xi+Bi

ω>x = min
γi(u)≤1

ω>(xi + u) = ω>xi + min
γi(u)≤1

ω>u = ω>xi − max
γi(u)≤1

(−ω>u).

By using that γ0
i (−ω) = max

γi(u)≤1
(−ω>u) (with γ0

i the dual gauge of γi) and since γ0
i (−ω) =

γ0
i (ω), one obtains that

min
x∈xi+Bi

ω>x = ω>xi − γ0
i (−ω) = ω>xi − γ0

i (ω). (23)

Analogously, one has that

max
x∈xi+Bi

ω>x = ω>xi + max
γi(u)≤1

(ω>u) = ω>xi + γ0
i (ω). (24)

Then, by using (23), the set of constraints (20) can be rewritten as

ũi − min
x∈xi+Bi

ω>x− β ≤ ε + ξi ↔ ũi − ω>xi + γ0
i (ω)− β ≤ ε + ξi, ∀i ∈ Ω, (25)
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and by using (24), the set of constraints (21) remains as follows,

max
x∈xi+Bi

ω>x + β − l̃i ≤ ε + ξ∗i ↔ ω>xi + γ0
i (ω) + β − l̃i ≤ ε + ξ∗i , ∀i ∈ Ω. (26)

Below, we consider the two cases of interest for the definitions of γi given in (6) and (8).
The first one is the case in which the elements of the database are boxes in dimension d,
that is, Xi =

∏d
j=1[lij , uij ], for every i ∈ Ω.

Corollary 3.1. Let γi be the gauge defined in (6). Then, Problem (22) admits the follow-
ing equivalent formulation as a convex quadratic problem with linear constraints

min
σ,τ,β,ξ,ξ∗

1
2

d∑
j=1

(σj − τj)2 + C
∑
i∈Ω

(ξi + ξ∗i )

s.t. ũi +
d∑

j=1

τjuij −
d∑

j=1

σjlij − β ≤ ε + ξi, ∀i ∈ Ω

d∑
j=1

σjuij −
d∑

j=1

τjlij + β − l̃i ≤ ε + ξ∗i , ∀i ∈ Ω

ξi, ξ
∗
i , σj , τj ≥ 0, ∀i ∈ Ω, j = 1, . . . , d.

(27)

Proof.

For this proof, we need to observe that, for s ∈ Rd, if γi(s) = max
j=1,...,d

2|sj |
uij − lij

(for an

object i of the database), then its dual gauge is

γ0
i (s) =

d∑
j=1

uij − lij
2

|sj |. (28)

Let us start with the set of constraints (25). If we replace xij =
lij + uij

2
, j = 1, . . . , d and

γ0
i (ω) =

d∑
j=1

|ωj |
uij − lij

2
, one obtains the following constraints,

ũi −
d∑

j=1

ωj(
lij + uij

2
) +

d∑
j=1

|ωj |(
uij − lij

2
)− β ≤ ε + ξi, ∀i ∈ Ω.

Let us define σj = max{0, ωj} and τj = max{0,−ωj}, for j = 1, . . . , d. One has that
ωj = σj − τj and |ωj | = σj + τj , and the constraints can be written as

ũi −
d∑

j=1

(σj − τj)(
lij + uij

2
) +

d∑
j=1

(σj + τj)(
uij − lij

2
)− β ≤ ε + ξi, ∀i ∈ Ω.

which yields

ũi +
d∑

j=1

τjuij −
d∑

j=1

σjlij − β ≤ ε + ξi, ∀i ∈ Ω. (29)
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We proceed analogously with the set of constraints (26): we replace the values of xi and
γ0

i (ω) and we obtain
d∑

j=1

ωj(
lij + uij

2
) +

d∑
j=1

|ωj |(
uij − lij

2
) + β − l̃i ≤ ε + ξ∗i , ∀i ∈ Ω.

Afterwards, we introduce the variables σj and τj , and after some computations, one obtains
d∑

j=1

σjuij −
d∑

j=1

τjlij + β − l̃i ≤ ε + ξ∗i , ∀i ∈ Ω. (30)

Joining constraints (29) and (30), we can rewrite our problem and we derive formulation
(27).

Remark 3.1. When γi was defined in (6), we assumed that lij < uij, ∀j = 1, . . . , d. In
the case of degenerated boxes (that is, when lij = uij for some coordinates), denote by JF

the set of indexes with lij = uij and denote by JV the set of indexes with lij < uij. Let us
define γi as

γi(s1, . . . , sd) =

 max
j∈JV

2|sj |
uij − lij

, if sj = 0, ∀j ∈ JF

+∞, otherwise.
(31)

One has that γ0
i (s) has the same form as (28) and then, formulation (27) remains valid.

Remark 3.2. When uncertainty only affects to the dependent variable Yi, and then the
predictive variables are single-valued, that is, lij = uij = xij, ∀i ∈ Ω, ∀j = 1, . . . , d,
Problem (27) can be rewritten as

min
ω,β,ξ,ξ∗

1
2

d∑
j=1

ω2
j + C

∑
i∈Ω

(ξi + ξ∗i )

s.t. ũi −
d∑

j=1

ωjxij − β ≤ ε + ξi, ∀i ∈ Ω

d∑
j=1

ωjxij + β − l̃i ≤ ε + ξ∗i , ∀i ∈ Ω

ξi, ξ
∗
i ≥ 0, ∀i ∈ Ω, j = 1, . . . , d.

(32)

Likewise, if uncertainty only affects to the predictive variables and the dependent variable
is single-valued, that is, l̃i = ũi = yi, ∀i ∈ Ω, the problem to solve is

min
σ,τ,β,ξ,ξ∗

1
2

d∑
j=1

(σj − τj)2 + C
∑
i∈Ω

(ξi + ξ∗i )

s.t. yi +
d∑

j=1

τjuij −
d∑

j=1

σjlij − β ≤ ε + ξi, ∀i ∈ Ω

d∑
j=1

σjuij −
d∑

j=1

τjlij + β − yi ≤ ε + ξ∗i , ∀i ∈ Ω

ξi, ξ
∗
i , σj , τj ≥ 0, ∀i ∈ Ω, j = 1, . . . , d.

(33)
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When we consider γi as defined in (8), we obtain our second case, which is of interest to
model the case with data affected by some kind of perturbations. Then, by observing that

the dual gauge of γi =
1
ri
‖.‖p is γ0

i = ri‖.‖q (with ‖.‖q the dual norm of ‖.‖p, p and q

satisfying that
1
p

+
1
q

= 1), we obtain the following result, previously derived by [41, 42],

as a straightforward consequence of our Theorem 3.1.

Corollary 3.2. Let γi be the gauge defined in (8). Then, Problem (22) admits the follow-
ing equivalent formulation,

min
ω,β,ξ,ξ∗

1
2

d∑
j=1

ω2
j + C

∑
i∈Ω

(ξi + ξ∗i )

s.t. ũi − ω>xi + ri‖ω‖q − β ≤ ε + ξi, ∀i ∈ Ω
ω>xi + ri‖ω‖q + β − l̃i ≤ ε + ξ∗i , ∀i ∈ Ω
ξi, ξ

∗
i ≥ 0, ∀i ∈ Ω,

(34)

where ‖.‖q is the dual norm of ‖.‖p, i.e.,
1
p

+
1
q

= 1.

This formulation (34), for l̃i = ũi = yi (when the output is crisp) is equivalent to that
given in [41, 42]. In these two papers, the authors formulate this problem by building the
robust counterpart of the problem (by using robust optimization methods, [2, 3]) and they
solve the problem in the Euclidean norm case, that is, for p = q = 2. Our formulation
(22) for any kind of gauge γi is thus much more general than that obtained for Support
Vector Regression with noisy data.

4 Formulation based on the Hausdorff distance

4.1 Formulation of the problem

Figure 4 explains graphically the model with the Hausdorff distance dH . In this case, ξ
and ξ∗ penalize the case when the distance from ũi to the highest value of the interval
obtained projecting the box on the hyperplane is bigger than ε (ξ for points above the
tube, ξ∗ for points below the tube). Analogously, η and η∗ are penalties for the distances
between l̃i and the lowest value of the projection on the hyperplane.
If we use the distance dH in (11) as a measurement between the predicted and the real
interval-valued output, constraint (12) can be written as

max
{
|ũi −max

x∈Xi

(ω>x + β)|, |l̃i − min
x∈Xi

(ω>x + β)|
}
≤ ε, ∀i ∈ Ω. (35)

This is equivalent to say that

|ũi −max
x∈Xi

(ω>x + β)| ≤ ε, ∀i ∈ Ω (36)

|l̃i − min
x∈Xi

(ω>x + β)| ≤ ε, ∀i ∈ Ω. (37)
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Constraints (36)-(37) can be divided into

ũi −max
x∈Xi

ω>x− β ≤ ε, ∀i ∈ Ω (38)

max
x∈Xi

ω>x + β − ũi ≤ ε, ∀i ∈ Ω (39)

l̃i − min
x∈Xi

ω>x− β ≤ ε, ∀i ∈ Ω (40)

min
x∈Xi

ω>x + β − l̃i ≤ ε, ∀i ∈ Ω. (41)

Then, when using Hausdorff distance dH in the constraints, Problem (13) can be written
as follows,

min
ω,β

1
2

d∑
j=1

ω2
j

s.t. ũi −max
x∈Xi

ω>x− β ≤ ε, ∀i ∈ Ω

max
x∈Xi

ω>x + β − ũi ≤ ε, ∀i ∈ Ω

l̃i − min
x∈Xi

ω>x− β ≤ ε, ∀i ∈ Ω

min
x∈Xi

ω>x + β − l̃i ≤ ε, ∀i ∈ Ω.

(42)

As we did in Section 3, a soft-margin version, feasible even when (42) is unfeasible, is
obtained here by adding slack variables ξ, ξ∗, η, η∗ as follows,

min
ω,β,ξ,ξ∗,η,η∗

1
2

d∑
j=1

ω2
j + C

∑
i∈Ω

(ξi + ξ∗i + ηi + η∗i )

s.t. ũi −max
x∈Xi

ω>x− β ≤ ε + ξi, ∀i ∈ Ω (43)

max
x∈Xi

ω>x + β − ũi ≤ ε + ξ∗i , ∀i ∈ Ω (44)

l̃i − min
x∈Xi

ω>x− β ≤ ε + ηi, ∀i ∈ Ω (45)

min
x∈Xi

ω>x + β − l̃i ≤ ε + η∗i , ∀i ∈ Ω (46)

ξi, ξ
∗
i , ηi, η

∗
i ≥ 0, ∀i ∈ Ω.

4.2 An equivalent formulation

By observing that Xi = xi + Bi (with Bi the unit ball induced by the gauge γi) and by
using expressions (23)-(24) in constraints (43)-(46), then, following an analogous reasoning
to that used in proof of Theorem 3.1, we obtain the following equivalent formulation.
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Figure 4: Formulation based on Hausdorff distance

Theorem 4.1. Problem with constraints (43)-(44) admits the following equivalent formu-
lation,

min
ω,β,ξ,ξ∗,η,η∗

1
2

d∑
j=1

ω2
j + C

∑
i∈Ω

(ξi + ξ∗i + ηi + η∗i )

s.t. ũi − ω>xi − γ0
i (ω)− β ≤ ε + ξi, ∀i ∈ Ω

ω>xi + γ0
i (ω) + β − ũi ≤ ε + ξ∗i , ∀i ∈ Ω

l̃i − ω>xi + γ0
i (ω)− β ≤ ε + ηi, ∀i ∈ Ω

ω>xi − γ0
i (ω) + β − l̃i ≤ ε + η∗i , ∀i ∈ Ω

ξi, ξ
∗
i , ηi, η

∗
i ≥ 0, ∀i ∈ Ω,

(47)

where γi is the gauge associated to the object i ∈ I defining the ball Bi used in Xi = xi+Bi

and γ0
i is its dual gauge.

We consider now the cases for the definitions of γi given in (6) and (8). In the first case
the objects are boxes in dimension d, that is, Xi =

∏d
j=1[lij , uij ], for every i ∈ Ω.

Corollary 4.1. Let γi be the gauge defined in (6). Then, Problem (47) admits the fol-
lowing equivalent formulation as a convex quadratic problem with linear and equilibrium
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constraints,

min
σ,τ,β,ξ,ξ∗,η,η∗

1
2

d∑
j=1

(σj − τj)2 + C
∑
i∈Ω

(ξi + ξ∗i + ηi + η∗i )

s.t. ũi −
d∑

j=1

σjuij +
d∑

j=1

τjlij − β ≤ ε + ξi, ∀i ∈ Ω

d∑
j=1

σjuij −
d∑

j=1

τjlij + β − ũi ≤ ε + ξ∗i , ∀i ∈ Ω

l̃i −
d∑

j=1

σjlij +
d∑

j=1

τjuij − β ≤ ε + ηi, ∀i ∈ Ω

d∑
j=1

σjlij −
d∑

j=1

τjuij + β − l̃i ≤ ε + η∗i , ∀i ∈ Ω

σj · τj = 0, j = 1, . . . , d
ξi, ξ

∗
i , ηi, η

∗
i , σj , τj ≥ 0, ∀i ∈ Ω, j = 1, . . . , d.

(48)

Remark 4.1. Since we define σj = max{0, ωj} and τj = max{0,−ωj}, for j = 1, . . . , d,
we have imposed the following constraint

σj · τj = 0, j = 1, . . . , d. (49)

In principle, equilibrium constraints should have also been added to Problem (27). How-
ever, they are redundant due to the convexity of the problem.

Remark 4.2. When γi was defined in (6), we assumed that lij < uij, ∀j = 1, . . . , d. In
the case of degenerated boxes (that is, when lij = uij for some coordinates), γi can be
defined as in (31), and γ0

i (s) has the same form as (28). Then, formulation (48) remains
valid.

Remark 4.3. If uncertainty only affects to Yi, and lij = uij = xij, ∀i ∈ Ω, ∀j = 1, . . . , d,
the problem to solve is the following convex quadratic problem with linear constraints

min
ω,β,ξ,ξ∗,η,η∗

1
2

d∑
j=1

ω2
j + C

∑
i∈Ω

(ξi + ξ∗i + ηi + η∗i )

s.t. ũi −
d∑

j=1

ωjxij − β ≤ ε + ξi, ∀i ∈ Ω

d∑
j=1

ωjxij + β − ũi ≤ ε + ξ∗i , ∀i ∈ Ω

l̃i −
d∑

j=1

ωjxij − β ≤ ε + ηi, ∀i ∈ Ω

d∑
j=1

ωjxij + β − l̃i ≤ ε + η∗i , ∀i ∈ Ω

ξi, ξ
∗
i , ηi, η

∗
i ≥ 0, ∀i ∈ Ω, j = 1, . . . , d.

(50)
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Likewise, if uncertainty only affects to the predictive variables and l̃i = ũi = yi, ∀i ∈ Ω,
Problem (48) can be written as the following convex quadratic problem with linear and
equilibrium constraints

min
σ,τ,β,ξ,ξ∗,η,η∗

1
2

d∑
j=1

(σj − τj)2 + C
∑
i∈Ω

(ξi + ξ∗i + ηi + η∗i )

s.t. yi −
d∑

j=1

σjuij +
d∑

j=1

τjlij − β ≤ ε + ξi, ∀i ∈ Ω

d∑
j=1

σjuij −
d∑

j=1

τjlij + β − yi ≤ ε + ξ∗i , ∀i ∈ Ω

yi −
d∑

j=1

σjlij +
d∑

j=1

τjuij − β ≤ ε + ηi, ∀i ∈ Ω

d∑
j=1

σjlij −
d∑

j=1

τjuij + β − yi ≤ ε + η∗i , ∀i ∈ Ω

σj · τj = 0, j = 1, . . . , d
ξi, ξ

∗
i , ηi, η

∗
i , σj , τj ≥ 0, ∀i ∈ Ω, j = 1, . . . , d.

(51)

Corollary 4.2. Let γi be the gauge defined in (8). Then, Problem (47) admits the follow-
ing equivalent formulation,

min
ω,β,ξ,ξ∗,η,η∗

1
2

d∑
j=1

ω2
j + C

∑
i∈Ω

(ξi + ξ∗i + ηi + η∗i )

s.t. ũi − ω>xi − ri‖ω‖q − β ≤ ε + ξi, ∀i ∈ Ω
ω>xi + ri‖ω‖q + β − ũi ≤ ε + ξ∗i , ∀i ∈ Ω
l̃i − ω>xi + ri‖ω‖q − β ≤ ε + ηi, ∀i ∈ Ω
ω>xi − ri‖ω‖q + β − l̃i ≤ ε + η∗i , ∀i ∈ Ω
ξi, ξ

∗
i , ηi, η

∗
i ≥ 0, ∀i ∈ Ω,

(52)

where ‖.‖q is the dual norm of ‖.‖p, i.e.,
1
p

+
1
q

= 1.

5 Computational experiment with interval data

5.1 Error measures

For the numerical experiments, different measurements of the fitness of the model will be
considered in each case (the standard measurements used in the literature of regression
with interval data in the framework of Symbolic Data Analysis, [14, 30, 29]). They are
obtained from the observed intervals Yi = [l̃i, ũi] and the corresponding predicted intervals
Ŷi = [l̂i, ûi], i ∈ Ω. The measurements are the lower bound root mean-squared error
(RMSEl) and the upper bound root mean-squared error (RMSEu), which are defined as
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Pulse rate Systolic blood pressure Diastolic blood pressure
[44, 68] [90, 100] [50, 70]
[60, 72] [90, 130] [70, 90]
[56, 90] [140, 180] [90, 100]
[70, 112] [110, 142] [80, 108]
[54, 72] [90, 100] [50, 70]
[70, 100] [130, 160] [80, 110]
[72, 100] [130, 160] [76, 90]
[76, 98] [110, 190] [70, 110]
[86, 96] [138, 180] [90, 110]
[86, 100] [110, 150] [78, 100]
[63, 75] [60, 100] [140, 150]

Table 1: Cardiological interval-valued database

follows,

RMSEl =

√
1
n

∑
i∈Ω

(l̃i − l̂i)2 (53)

RMSEu =

√
1
n

∑
i∈Ω

(ũi − ûi)2, (54)

where l̃ = (l̃1, . . . , l̃n)>, l̂ = (l̂1, . . . , l̂n)>, ũ = (ũ1, . . . , ũn)>, û = (û1, . . . , ûn)>, with n the
cardinal of Ω.
Another measurement which we introduce to compute the fitness is the mean Hausdorff
distance (dH), between the observed and predicted intervals, for the elements of the data-
base, defined as

dH =
1
n

∑
i∈Ω

dH([l̃i, ũi], [l̂i, ûi]). (55)

5.2 Results for resubstitution

We apply our methodology to solve the regression problem with interval data in a car-
diological database. The first results for the regression analysis with this dataset were
published in [4]. This dataset shows the records of the pulse rate, the systolic blood pres-
sure and the diastolic blood pressure (these records being intervals) for eleven patients
(see Table 1). The aim of the problem is to predict an interval for the ‘pulse’ variable,
given the interval values of the ‘systolic’ and ‘diastolic pressure’ variables.
First of all, we compute the predicted interval for the ‘pulse’ variable via a resubstitution
strategy (see [15]), that is, the complete set of instances will be our training sample, the
regressor will be computed and we will assign the predicted interval to each patient of the
training sample.
In Table 2 (left), we show the results obtained for different methods in the literature. CM
stands for the center method explained in [4]. In that work, a linear regression model on
the midpoint of the intervals was applied. MinMax [5] is a methodology where two models
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Resubstitution Leave-one-out
Method\ Measure RMSEl RMSEu RMSEl RMSEu

CM 11.09 10.41 24.78 28.41
MinMax 10.43 9.71 14.82 22.25
CRM 9.81 8.94 12.81 20.37
Interval ε-SVR 11.03 10.31 12.71 11.89

Table 2: Results via resubstitution (left) and leave-one-out (right) for the cardiological
interval-valued database

Real value CM MinMax CRM Interval ε-SVR
[44, 68] [59, 66] [56, 72] [52, 74] [57, 65]
[60, 72] [63, 79] [60, 84] [60, 82] [62, 80]
[56, 90] [83, 97] [77, 100] [80, 100] [83, 99]
[70, 112] [71, 86] [67, 89] [67, 90] [71, 88]
[54, 72] [59, 66] [56, 72] [52, 74] [57, 65]
[70, 100] [78, 92] [73, 95] [73, 97] [78, 95]
[72, 100] [77, 89] [72, 93] [73, 93] [77, 90]
[76, 98] [69, 102] [65, 104] [73, 99] [69, 105]
[86, 96] [82, 99] [77, 101] [79, 101] [83, 102]
[86, 100] [71, 87] [67, 91] [68, 90] [70, 89]
[63, 75] [65, 80] [66, 81] [62, 82] [66, 82]

Table 3: Predicted values of ‘pulse’ variable

are fitted independently for the lower and the upper bounds. CRM stands for the center
and range method in [14, 29], two linear independent models were used to predict the
center and the range of the interval outputs and, this way, to build the predictions of the
lower and upper bounds. We also present the best results obtained via our methodology
(interval ε-SVR).
From these four methods, the best performance is obtained with CRM. Although our
results are worse (for resubstitution) than those obtained with CRM, they are comparable
in general with those obtained via the classical regression model. From this, one can think
that a methodology based on ε-SVR can be competitive for this problem.
Table 3 shows the real interval values and the predicted outputs for the ‘pulse’ variable
for these four methods.
For our methodology, the formulations based on the maximum distance and on the Haus-
dorff distance (in the interval case) were used, but the results corresponds to the best
result (which was for Hausdorff-based formulation). Since the problems for the maxi-
mum distance were quadratic convex, they were solved by using AMPL+CPLEX. For the
programs with the Hausdorff distance we had to use, however, AMPL+MINOS.

5.3 Results for leave-one-out

The next experiment shows the performance of the regressor built via our methodology
when using a leave-one-out (LOO) strategy (see e.g. [20, 27]). It means that, in turns,
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C 0.00001 0.0001 0.001 0.01 0.1
ε\RMSE l u l u l u l u l u

0.0001 15.17 21.66 15.24 20.33 13.08 12.77 15.66 15.46 21.48 20.33
0.001 15.17 21.66 15.35 20.35 13.08 12.77 15.66 15.46 21.48 20.33
0.01 15.15 21.60 15.34 20.35 13.08 12.76 15.66 15.46 21.48 20.33
0.1 15.15 21.59 15.31 20.32 13.04 12.76 15.66 15.46 21.49 20.38
0.5 15.08 21.43 15.12 20.04 13.04 12.61 15.86 15.66 21.51 20.56
1 15.28 21.29 15.43 19.94 13.02 12.29 15.84 15.84 21.57 20.65
1.5 15.40 21.31 15.70 19.68 13.02 12.08 15.48 15.28 21.84 20.87
2 15.63 20.98 15.87 19.53 12.89 11.90 14.51 14.15 22.04 20.87
2.5 16.00 20.88 15.96 19.63 12.71 11.89 14.25 13.86 20.68 19.67
3 16.40 20.76 15.68 19.43 13.87 12.17 14.40 13.92 19.30 18.54
3.5 16.66 20.44 15.96 19.14 12.94 12.17 14.76 14.16 19.19 18.39
5 17.10 19.40 16.55 18.14 12.79 12.61 13.59 13.21 21.79 20.70
7 17.45 17.90 16.85 16.76 13.42 13.12 14.72 13.29 21.16 20.16
10 18.38 17.24 17.74 16.61 14.28 13.11 14.25 12.65 19.67 18.57

Table 4: RMSEl and RMSEu for the cardiological database via leave-one-out

we consider only one element in the test sample, we train the model with the remaining
elements and we test this model with the unitary test sample. We compute the error
between the real output and the predicted output and we repeat the process for every
element of the database. The fitness of the model will be studied via one of the measure-
ments (53)-(54), and via the mean Hausdorff distance as well. The LOO strategy is more
interesting than the resubstitution situation because it gives an idea of the behaviour of
the regressor for new possible observations.
The regression problem has been solved for several combinations of the parameters C
and ε, namely, for every pair (C, ε), with C = 10−5, 10−4, 10−3, 10−2, 10−1, and ε =
0.0001, 0.001, 0.01, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 5, 7, 10. We have considered the two choices
of d, but the results that we present belong to dH , because they are systematically better
than those obtained with dmax.
Table 4 displays the results for the measurements RMSEl and RMSEu for the different
combinations of the parameters. One can observe that the results obtained in the case of
C = 0.001 and C = 0.01 are better than the rest (especially, the former). The best results
for these measurements have been marked in bold in the table.
Table 5 shows the results obtained when we use the mean Hausdorff distance (55) to
measure the error between the predicted interval and the real one to study the fitness of
our model to the data. Good values can be found again for C = 0.001, 0.01 and the lowest
value of the distance is in bold.
Finally, in Table 2 (right), a comparison for the measurements (53)-(54) obtained for the
cardiological dataset via different methods is given. In particular, we present the results
obtained for CM ([4]), MinMax ([5]), CRM ([14, 29]) and our methodology.
One can observe that the results obtained with our method are better than with the other
models. In fact, attending to the RMSEl and RMSEu measurements, any result for
C = 0.001 or C = 0.01 would be better than those obtained so far in the literature. The
other methods were good in general with the training sample, but the error is bigger in
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ε\C 0.00001 0.0001 0.001 0.01 0.1
0.0001 23.74 23.03 14.92 16.11 18.47
0.001 23.74 23.08 14.92 16.11 18.47
0.01 23.69 23.08 14.91 16.11 18.47
0.1 23.71 23.04 14.89 16.10 18.50
0.5 23.68 22.76 14.84 16.15 18.60
1 23.82 22.89 14.65 16.10 18.57
1.5 23.93 22.91 14.49 15.82 18.62
2 23.89 22.94 14.31 15.24 18.52
2.5 24.04 23.07 14.26 14.94 17.76
3 24.18 22.71 14.98 15.01 17.11
3.5 24.13 22.69 14.68 15.13 16.94
5 23.70 22.40 15.05 14.15 17.58
7 22.95 21.67 15.90 14.78 17.47
10 22.84 22.09 16.07 14.69 17.03

Table 5: Mean Hausdorff distance (dH) between the predicted interval and the real interval
(leave-one-out)

the test sample, due to a problem of overfitting. The improvement with respect to CRM,
which was the best result so far, is quite remarkable in RMSEl and RMSEu, and thus,
one can conclude that our method is competitive to deal with regression with interval
data.

6 Computational experiment with missing data

6.1 Imputation for missing values via intervals

The term ‘missing data’ is used, when editing survey data, to denote invalid blanks in an
entry of any field of the survey (invalid in the sense that this value should appear).
Several strategies can be adopted when handling missing data, such as the imputation for
given records, which means to replace the missing values of a dataset by other plausible
values in such a way that the data must remain consistent.
In the literature, different methodologies for imputation can be found (see [31, 32, 34]
for a list of them), like the use of the mean (for quantitative variables) or the mode (for
qualitative variables) of the non-missing values of the database (see e.g. [1]). One of the
drawbacks of this method is that the variability within the sample is ignored and it can
contain relevant information which should be taken into account during the imputation
process (see [36]).
The methodology that we propose for imputation consists in replacing each blank by an
interval (instead of a single value) constructed with the non-missing values of the dataset.
That is, if a blank appears in the j-th variable of an observation, the non-missing values
in the j-th variable of the rest of observations are used to build the interval. Two different
strategies will be followed to construct these intervals.
The first one is to build an interval based on the mean and deviation of the remaining
values. This way, the standard deviation will have an important role in the imputation
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of missing values. For a missing value in the j-th variable of an instance of the training
sample, we fill it in by computing the mean xj and the standard deviation σxj for the
values in this column of the remaining observations, and afterwards, we replace the blank
by the interval [xj − kσxj , xj + kσxj ], where k is a parameter to be tuned.
The second strategy is based on the quantiles. We consider the interval which is defined
as [Qa, Q1−a], where Qa represents the a-th quantile, and thus the interval contains all
but a fraction 2a of all non-missing values.

6.2 Description of the experiment

Our formulation for regression with interval data has been applied to a real database,
obtained from the UCI Machine Learning Repository [7], for dealing with missing values.
The ‘automobile’ database contains 205 observations. Each record describes different char-
acteristics of a determined automobile, with nominal and numerical variables. However,
the nominal variables have been discarded for our experiment and thus, each observation
is represented by 16 numerical variables: 15 of them will be the predictor variables and the
last one, which is the price of the car, will be the dependent variable to be approximated
via regression. There are several missing values, in some predictor variables (variables 2,
9, 10, 12 and 13) and in the dependent variable as well, which will be imputed via an
interval.
The regression problem has been solved through 10-fold cross-validation (see [27]), that
is, the elements of the database are grouped in 10 sets, which form a partition, and each
one has been used in turn as test set against all 9 others taken together as training set
(that is, the process is repeated ten times).
We have used the formulation using dH . Before solving the corresponding optimization
problem (48), the two different strategies explained before have been used for imputing the
missing values. In the first strategy, we replace the blank by the interval [xj − kσxj , xj +
kσxj ], with xj and σxj computed with the non-missing values in the j-th column of the
elements of the training sample. The values studied for k are 0, 0.01, 0.05, 0.1, 0.2, 0.5,
0.75 and 1. Observe that the case k = 0 corresponds to considering the imputation to the
mean.
In the second strategy, the blank is replaced by the interval [Qa, Q1−a], Qa being the a-th
quantile. The values chosen for 2a are 0, 0.01, 0.05, 0.1, 0.2, 0.5 and 1. Observe that, when
2a = 0, we obtain the range of the variable, when 2a = 0.5, we obtain the interquartile
range, and when 2a = 1, the interval is reduced to a singleton, which is the median of the
variable.
For each record of the database, we obtain a predicted interval Ŷi = [l̂i, ûi]. Since the values
of the dependent variable (the ‘price’ of the car) are punctual, we compute ŷi = l̂i+ûi

2 , the
midpoint of the bounds of the interval, and we use it to compare the predicted and the
real values for the dependent variable.
Two measurements have been chosen to compute the fitness of our model in this database:
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Figure 5: Best results for the mean absolute error. Up: interval [xj − kσxj , xj + kσxj ].
Down: interval [Qa, Q1−a]

the mean absolute error (MAE) and the root mean-squared error (RMSE), defined as

MAE =
1
n

∑
i∈Ω

|yi − ŷi| (56)

RMSE =

√
1
n

∑
i∈Ω

(yi − ŷi)2, (57)

between the predicted value ŷi and the real value yi of the variable ‘price’ in the database.
There are four records in the database with a missing value in this variable. These missing
values have been transformed into an interval for the experiment to build the hyperplanes,
but they are not taken into account to measure the fitness.
The imputation process and all the modifications of the database have been performed
with Matlab 6.5. The optimization problems have been implemented with AMPL and
solved with LOQO [43] (by using the NEOS server, [35]). Different combinations of the
parameters C and ε have been considered.

6.3 Numerical results

The results for MAE for the different intervals are displayed in Tables 6-9 and for RMSE
in Tables 10-13. The best results for each k and a are shown in bold and are depicted in
Figures 5-6.
One can observe that the best results are obtained, in both imputation strategies, for non-
degenerate intervals with medium-size intervals. When imputing by [xj −kσxj , xj +kσxj ],
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Figure 6: Best results for the root mean-squared error. Up: interval [xj−kσxj , xj +kσxj ].
Down: interval [Qa, Q1−a]

although the best results for the two measurements (MAE and RMSE) are obtained for
k = 0.2 and k = 0.5, and we improve the results obtained when imputing to the mean
(case k = 0). It means that, in this case, it is better to use the value of the standard
deviation for imputing the missing value than only using the mean.
The situation is quite similar when imputing by [Qa, Q1−a]. Better results are obtained
for 2a = 0.1 and 2a = 0.2 than for 2a = 1 (imputation to the median).
Concerning the values of the parameters C and ε, one can assert that big values of C
(around 1000 or 10000) seem to be more suitable for this dataset. However, the variation
is bigger in the case of the parameter ε.
Then, we conclude that imputation via intervals seems to be a good strategy when dealing
with missing values in regression problems.

7 Concluding remarks and extensions

In this work, a regression problem based on Support Vector Regression has been studied,
where the elements of the database are, instead of points, sets with certain geometrical
properties. Two different formulations have been proposed, depending on the distance
used to measure the error between the predicted interval and the real one: the maximum
distance and the Hausdorff distance.
The obtained models generalize the standard ε-Support Vector Regression approach to
the case of having interval-valued data. In particular, the model for the maximum dis-
tance generalizes the formulation given in [41, 42] for data with some kind of noise or
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k ε\C 0.1 1 10 100 1000 10000 100000
0.001 7084.05 2597.63 2870.03 2437.70 2508.48 2551.69 3245.35
0.01 2619.93 2563.47 3574.43 2445.85 2487.04 2481.80 3199.14
0.1 2960.54 2831.10 2636.85 2394.53 2523.59 2433.77 3249.50
1 2953.87 2639.04 2483.76 2544.29 2457.99 2445.48 3388.20
2 4223.66 2643.36 2454.52 2476.50 2676.40 2433.98 3355.55

0 5 3082.13 3682.27 2504.87 2466.14 2774.77 3684.02 3377.33
10 2890.56 2726.73 2624.86 2636.46 2932.34 2503.47 3259.52
50 2960.48 3092.09 3159.90 4052.34 2390.83 2502.70 3385.84
100 4636.50 2992.28 2533.54 3198.47 2580.09 2424.05 3389.89
500 2718.73 2512.29 2463.92 2697.66 2572.34 2681.71 3371.90
1000 2765.21 2846.93 3305.12 2499.69 2988.98 2646.16 3353.96
1500 3305.86 2929.59 2497.11 2954.70 2767.32 2951.69 3320.76
0.001 3607.65 6784.85 6821.07 6805.25 6998.63 2487.02 4237.73
0.01 5540.41 6808.26 6832.51 6804.68 6647.92 2598.80 4375.45
0.1 7261.81 6807.43 6827.32 6805.62 6630.29 4863.78 4297.54
1 7233.58 6804.80 6821.61 7400.09 6600.58 2723.24 4383.17
2 7130.19 6791.17 6826.25 6784.95 6592.02 2519.69 4399.95

0.01 5 6561.17 6800.90 6826.71 7341.40 6548.18 2561.43 4358.44
10 6716.50 6798.11 6807.13 6777.38 6519.67 2501.01 4386.30
50 3564.61 2556.67 2689.38 2561.91 2481.90 2451.19 4442.67
100 2455.32 2716.08 2641.32 2555.88 2510.63 2411.16 4377.38
500 2883.64 2823.38 4171.47 2522.09 2497.71 2642.20 4471.80
1000 3173.87 2746.49 10541.40 6774.40 2474.22 2959.28 4421.30
1500 2634.10 2676.56 6912.14 2467.96 2445.17 2466.92 4373.35
0.001 2640.62 2580.88 2775.28 2485.06 2472.95 2517.13 3597.68
0.01 3079.12 2574.54 2517.89 2785.32 2493.22 2553.24 3601.02
0.1 2726.56 4329.75 2570.95 2426.76 2604.81 3608.90 3593.12
1 2817.53 4008.66 2828.27 4628.60 2473.74 2548.19 3633.81
2 2772.31 2571.82 2745.44 2637.02 2995.04 2503.41 3620.94

0.05 5 3851.89 2575.74 2541.39 2457.55 2467.97 2464.02 3035.87
10 2615.64 2499.67 2718.85 2439.87 2685.50 2859.88 2481.40
50 2482.93 4104.34 3117.36 3068.55 3072.74 3498.52 2689.93
100 2741.33 2922.98 2947.70 4000.05 2426.08 3586.14 6873.31
500 3942.21 2693.75 2604.93 3303.11 2458.49 3563.21 4754.05
1000 3138.34 2493.04 2481.85 2433.61 2502.43 3538.68 4437.42
1500 3281.92 2637.69 2900.00 2464.44 2479.78 3507.60 4627.46
0.001 2487.27 4287.86 4272.01 4140.04 2512.39 2614.55 3886.54
0.01 2708.81 4243.74 4285.99 2609.96 2468.04 2418.56 3863.26
0.1 4724.23 4200.64 4264.98 2518.12 2668.89 2556.64 3972.21
1 4107.99 4148.51 4315.94 2482.56 2607.79 2470.73 4002.59
2 4056.07 4166.55 4212.34 2465.01 2800.15 2525.05 3862.22

0.1 5 4051.51 4191.97 4061.04 2648.82 2453.27 3981.42 4070.27
10 4054.58 4254.53 4133.81 2643.40 2480.42 4025.49 4185.52
50 2500.49 2564.10 2580.00 3119.76 2470.50 4041.87 3990.38
100 2544.58 2562.04 2519.60 2495.86 2513.04 3816.27 3852.54
500 2839.62 3011.66 2458.90 2465.17 2413.05 4136.40 4111.86
1000 3327.81 2799.12 2643.84 2402.48 2669.99 4321.36 4092.51
1500 2516.18 2751.96 3136.47 2527.16 2580.17 4231.19 3902.97

Table 6: MAE. Interval [xj − kσxj , xj + kσxj ]
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k ε\C 0.1 1 10 100 1000 10000 100000
0.001 3266.65 2487.20 3445.20 2515.65 2865.73 2536.32 4856.38
0.01 2494.97 2491.87 2511.66 2684.68 3242.01 2522.41 4813.76
0.1 2717.68 2408.15 2720.75 3131.61 2660.02 2547.16 4788.83
1 2593.12 2451.42 2410.59 2452.80 2347.55 2908.88 4812.79
2 3277.46 2691.19 2400.75 2439.05 3822.34 2993.63 4813.51

0.2 5 3147.73 2642.14 2494.03 2535.89 3469.24 3369.44 4796.80
10 2723.01 3594.18 2722.38 2825.97 2515.16 2898.94 4791.76
50 4836.95 2974.49 3491.70 2611.63 2538.02 4914.68 4808.73
100 3177.15 2486.29 2666.38 2493.73 2491.49 4944.50 4805.36
500 2767.91 4651.08 2347.60 2451.43 2411.56 4909.12 4828.31
1000 3137.61 2479.42 2664.66 2459.33 2467.53 4838.63 4598.14
1500 2597.40 2750.55 2553.94 2725.11 2454.62 4731.55 4534.28
0.001 2687.74 2857.61 2927.70 2443.09 2520.80 2530.71 2344.20
0.01 2457.83 2576.90 2578.53 2579.90 2438.63 2546.31 3353.26
0.1 2525.85 2704.67 2423.09 2440.30 2483.32 2614.82 3272.27
1 2698.14 2475.53 2461.57 2515.08 3074.58 2454.19 2918.04
2 2936.45 3152.54 2460.78 2770.73 2857.64 2810.02 3490.04

0.5 5 3045.15 2863.01 2990.63 3180.89 2377.73 2775.91 3684.54
10 2526.67 2780.05 2924.33 2391.30 2475.90 2714.20 3593.76
50 3027.80 2405.48 3456.79 2582.61 2483.41 3453.92 3867.74
100 2789.75 2423.10 2528.53 2548.84 2478.88 2737.95 3921.96
500 2515.75 2504.36 2568.48 2644.91 2527.35 2989.54 3694.38
1000 2477.65 2954.94 3576.56 2729.56 2470.91 2521.73 3763.21
1500 3261.32 2469.13 2771.71 2486.26 2568.64 3522.15 3658.83
0.001 4053.53 2604.81 4455.91 2436.62 2435.64 2520.19 3475.13
0.01 3186.41 2628.14 3047.64 2440.83 2441.36 2501.16 3658.09
0.1 3632.12 2899.63 2596.82 2463.25 2552.02 2542.94 3231.59
1 2825.60 3755.32 2527.77 2553.73 4088.33 2873.78 2825.54
2 2995.87 2786.43 2584.52 2759.69 3916.15 2523.66 2532.38

0.75 5 2862.27 2538.60 2431.11 2640.30 3369.97 2441.96 2471.89
10 2707.33 2524.26 2467.86 3150.26 2397.07 2694.33 3133.98
50 3717.33 2778.60 2452.70 2505.23 2438.64 2559.73 3150.64
100 2577.34 2679.39 5498.55 2611.74 2437.13 2963.45 2585.39
500 3187.86 3222.31 4806.54 2486.58 2403.41 2401.88 3702.54
1000 2765.24 2659.92 2726.10 2499.20 2461.56 2769.43 2451.55
1500 3850.97 3079.70 2691.85 2687.26 2767.25 2540.09 3004.25
0.001 3048.78 2968.94 3617.10 2437.22 2460.91 2537.11 3231.23
0.01 2873.22 2597.23 2441.06 2382.82 2447.18 2460.87 3350.50
0.1 3156.44 2754.81 2450.10 2403.00 2431.00 2510.49 3376.16
1 2847.69 2445.55 2783.80 2408.15 4545.61 2536.21 3343.22
2 2602.67 2816.98 2554.30 2547.31 4510.02 2481.35 3358.79

1 5 3725.82 2868.65 2610.87 2484.54 4556.55 2617.10 3371.79
10 3602.39 2717.06 2462.77 2454.40 4581.36 3755.46 3381.21
50 4891.44 5154.38 5123.45 5112.75 5151.09 2991.89 3425.14
100 4886.65 5123.78 5109.16 5132.04 5160.88 3686.20 3278.78
500 4849.02 5218.67 5180.17 5081.83 5092.26 3280.42 3420.74
1000 4713.15 5030.80 5125.62 5174.21 5238.59 3446.51 3372.58
1500 4683.77 5236.12 5122.57 5341.90 5147.82 3600.50 3347.99

Table 7: MAE. Interval [xj − kσxj , xj + kσxj ]
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2a ε\C 0.1 1 10 100 1000 10000 100000
0.001 4291.69 2737.43 2505.15 2672.89 2426.22 2801.65 4485.76
0.01 4275.44 3355.66 2540.66 2498.26 2943.94 2456.37 4431.00
0.1 4309.66 6200.28 3959.74 2481.90 2471.10 4225.71 4478.33
1 4166.17 3400.28 2566.21 4247.22 3736.12 2521.28 4507.87
2 3721.11 2474.54 2463.66 3120.38 4889.16 2533.68 4514.86

0 5 3781.38 5091.83 2530.84 2780.67 9073.02 3810.04 4430.49
10 3700.08 2831.72 2569.97 2596.62 6988.85 4448.89 4467.91
50 4275.74 3948.21 4910.17 8588.59 7703.47 4822.49 4956.24
100 4036.68 4129.18 6783.78 7997.96 7713.47 5217.57 4521.87
500 4033.36 4599.32 7028.35 7781.45 8128.09 4496.62 4502.25
1000 4292.28 4463.94 7019.17 6792.90 7292.11 4436.09 4508.77
1500 4169.41 4396.28 7842.06 7304.79 8621.70 5043.53 4402.42
0.001 5311.40 5079.97 6540.28 6424.83 6263.68 2646.48 5071.51
0.01 5889.63 5172.37 5673.55 6495.11 6329.34 2651.91 5087.50
0.1 5570.80 5420.45 6062.06 6695.22 5623.35 2426.38 5141.43
1 4815.58 5990.27 6534.49 6153.96 6697.46 2548.35 5135.84
2 5204.30 5526.95 6440.05 6742.79 7087.13 2621.72 5101.77

0.01 5 5126.71 5639.25 5784.98 7383.08 6789.23 4135.82 5128.00
10 5495.88 7119.94 6168.64 6170.35 6275.96 5344.65 5153.16
50 4275.74 3948.21 4910.17 8588.59 7703.47 5307.97 5100.92
100 4036.68 4129.18 6783.78 7997.96 7713.47 5196.32 5318.96
500 4033.36 4599.32 7028.35 7781.45 8128.09 5092.20 5336.05
1000 4292.28 4463.94 7019.17 6792.90 7292.11 5043.82 5215.09
1500 4169.41 4396.28 7842.06 7304.79 8621.70 5046.74 5114.58
0.001 4394.94 4283.89 4204.72 4173.29 4180.29 2822.52 7113.29
0.01 4379.66 4242.87 4197.99 4193.68 4021.62 2442.97 6726.00
0.1 4355.82 4242.08 4188.42 4166.00 4006.45 2422.46 6614.03
1 4337.90 4238.24 4186.07 4156.91 4019.94 4061.94 6656.69
2 4301.24 4233.77 4173.84 4172.52 4101.51 2959.08 6561.90

0.05 5 4339.47 4243.06 4177.87 4199.46 4122.69 5070.31 6561.98
10 4324.31 4235.61 4176.33 4152.86 4246.53 10942.30 6480.23
50 2872.30 3826.83 2982.67 2485.20 2520.76 7959.29 6650.94
100 2740.72 2587.04 2784.63 2823.22 2485.34 7401.63 6958.09
500 2954.76 2847.77 2764.50 2534.77 3702.37 7357.32 6901.62
1000 2909.84 3022.14 2640.74 2457.48 5057.82 7264.25 6886.16
1500 4304.01 3020.11 3295.84 2834.52 5720.23 7175.78 6835.20
0.001 2730.15 2808.35 2640.26 2643.20 5949.74 2686.89 5168.97
0.01 2602.98 2535.97 2477.90 3687.32 5985.68 2459.33 5120.17
0.1 2526.36 2676.62 2498.03 6466.95 5956.40 3002.50 5129.39
1 2614.56 3001.23 2432.44 6228.66 5967.36 2688.10 5475.37
2 2861.44 2476.09 3082.08 5892.53 6069.97 2427.51 5125.53

0.1 5 3007.66 2460.56 2504.33 5973.97 5961.31 5196.28 5262.28
10 2717.68 2484.63 2501.98 5959.15 5969.95 5302.96 5065.44
50 4582.01 2665.71 2556.45 2697.51 2335.63 5435.45 3310.36
100 5229.03 4246.36 5500.82 3367.34 2850.65 5377.14 2878.69
500 6055.45 2910.80 10261.70 2570.64 2577.44 5409.49 2970.82
1000 4149.11 3249.08 3504.15 3092.69 2830.00 5539.88 3327.95
1500 4374.19 2606.48 3885.12 3922.38 2545.78 5277.26 2569.53

Table 8: MAE. Interval [Qa, Q1−a]
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2a ε\C 0.1 1 10 100 1000 10000 100000
0.001 3713.64 4507.69 2739.16 2631.08 2485.23 2503.60 5096.85
0.01 3470.88 3140.55 2490.55 2620.89 2451.64 2541.10 5466.23
0.1 2720.40 3511.33 2582.64 2558.39 2413.21 2468.90 5120.19
1 3297.89 2517.90 3283.58 2475.44 2542.20 2449.83 5387.51
2 3023.56 2685.01 2787.95 2469.61 3650.91 2512.33 5283.59

0.2 5 4213.48 2598.65 3504.22 2441.16 3784.45 3690.87 5259.67
10 7344.67 3162.90 3073.63 2477.49 2776.21 2504.30 5258.30
50 3742.55 3620.95 2536.11 2539.38 2565.72 2881.43 5281.44
100 3137.27 4717.39 2985.77 2410.96 2459.75 3722.22 5096.50
500 2845.11 3410.62 3147.78 2490.84 2464.36 2536.91 5114.92
1000 3016.49 2582.90 2479.67 3174.91 2352.88 4414.38 5179.80
1500 3112.88 2580.87 2569.94 4780.88 2560.05 4336.05 5201.37
0.001 5582.25 2686.18 2523.61 2443.64 2455.10 2551.12 4652.50
0.01 2858.91 2704.00 2700.13 2517.27 2434.09 2526.01 4667.21
0.1 2462.98 2566.49 3997.70 2440.53 2459.68 2499.97 4664.88
1 2922.46 2602.72 3114.66 2458.81 2451.84 2477.96 4664.77
2 3196.45 3023.06 2611.94 2516.18 2547.76 2396.60 4620.23

0.5 5 2827.81 3079.18 2635.87 2433.38 2415.74 2518.03 4690.50
10 2482.14 2555.84 2482.86 2442.57 2817.84 4960.84 4671.36
50 2813.10 2592.58 2446.82 2493.37 2469.03 4710.72 4690.14
100 3124.95 2413.04 2462.09 2628.51 2455.13 4764.77 4709.35
500 3641.64 2581.96 2455.13 2670.04 2430.39 4714.70 4706.35
1000 2960.57 2681.66 2469.85 2412.67 2838.71 4707.30 4692.92
1500 3278.53 7794.27 2425.08 2526.81 2544.17 4624.87 4686.43
0.001 2936.66 2513.41 3493.27 2542.79 2583.91 2473.06 5549.70
0.01 3498.00 2591.50 2887.49 2506.64 4155.10 2446.67 3180.51
0.1 3206.63 2551.58 3224.95 2500.39 2547.80 3768.62 2370.66
1 3124.48 2616.88 2539.67 3672.65 2526.31 2517.42 2814.52
2 2651.65 2485.84 2517.61 3136.46 2533.92 2395.90 2539.67

1 5 2618.35 2460.57 2676.35 3332.55 2454.69 2791.44 2580.10
10 2747.55 4577.51 2478.98 2462.48 2505.84 3470.90 2580.50
50 2615.08 2471.55 2476.49 2511.89 2431.25 3437.53 4084.30
100 2566.75 3063.95 2765.69 2577.83 3672.04 2776.26 3994.31
500 2928.37 2803.62 2639.36 2507.08 4427.28 4404.41 3922.63
1000 3021.27 2587.06 2877.91 2467.84 4482.99 4602.07 4091.80
1500 2700.60 2590.89 2849.27 2482.05 4508.11 4594.18 3809.55

Table 9: MAE. Interval [Qa, Q1−a]
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k ε\C 0.1 1 10 100 1000 10000 100000
0.001 11319.10 3575.72 4071.37 3626.59 3671.97 3905.55 5612.24
0.01 3637.03 3731.72 5344.16 3534.49 3692.20 3769.12 5528.25
0.1 4128.08 3769.99 3822.51 3538.38 3768.07 3556.32 5576.15
1 4114.21 3934.61 3679.58 3639.90 3546.70 3663.06 5645.37
2 5336.41 3684.13 3633.02 3636.32 3881.87 3312.15 5631.39

0 5 4214.51 6327.43 3636.38 3689.72 3961.85 5003.38 5656.34
10 3952.54 3809.05 3769.64 3972.95 4126.21 3773.16 5610.92
50 4341.77 4308.66 4296.98 5289.17 3442.81 3684.07 5685.06
100 5864.19 4244.98 3764.20 4512.33 3561.44 3610.47 5668.92
500 3835.73 3619.88 3481.19 3866.38 3696.39 3859.00 5647.23
1000 3905.33 3826.13 4247.28 3669.99 3764.37 3611.11 5618.51
1500 4632.51 3923.86 3553.37 3757.30 3755.07 3997.66 5583.04
0.001 5133.28 8218.76 8236.87 8215.47 8700.49 3735.69 7480.06
0.01 6883.62 8225.75 8245.97 8213.51 8023.19 3806.07 7594.46
0.1 9130.52 8224.52 8242.91 8214.26 8005.52 6725.50 7533.80
1 9033.00 8222.46 8236.50 9147.00 7974.81 4219.05 7587.40
2 8958.34 8207.06 8240.85 8191.92 7965.77 3744.07 7594.77

0.01 5 8248.49 8223.48 8239.37 9117.14 7914.36 3731.60 7591.21
10 8137.41 8216.37 8218.28 8170.04 7884.24 3851.65 7613.09
50 6197.62 3628.40 3622.79 3770.23 3630.50 3659.00 7623.50
100 3821.61 3677.69 3750.67 3764.96 3711.95 3510.43 7613.53
500 4037.90 3957.69 5499.51 3677.59 3615.02 3571.24 7615.88
1000 3991.06 4191.06 12322.40 8997.97 3568.99 4565.58 7577.69
1500 3935.83 3694.13 8844.46 3475.48 3446.13 3411.15 7472.52
0.001 3789.05 3739.20 4005.49 3660.79 3613.42 3861.29 4826.76
0.01 4208.50 3696.61 3571.41 3806.09 3752.19 3742.04 4831.36
0.1 3920.85 5134.08 3612.19 3513.57 3656.49 4820.96 4819.56
1 3973.86 5657.70 4046.10 8168.62 3424.11 3736.03 4862.35
2 4186.57 3811.67 3800.23 3778.87 4378.85 3606.65 4838.58

0.05 5 6708.62 3835.02 3609.89 3557.34 3514.21 3636.19 4031.60
10 3594.31 3642.04 3779.38 3494.61 3550.80 3877.10 3510.46
50 3760.81 5612.43 4165.71 4479.93 4941.81 4460.55 3959.37
100 3869.34 4207.07 4013.66 6083.34 3526.17 4794.56 10046.00
500 4884.67 3891.77 3659.79 4935.17 3515.85 4765.23 7755.52
1000 4252.70 3548.48 3558.99 3518.94 3603.99 4730.03 7747.10
1500 4802.01 3884.58 4042.52 3610.62 3546.17 4692.98 7909.41
0.001 3703.82 6397.87 6283.50 5953.76 3657.51 3871.00 6935.82
0.01 3948.21 6304.60 6239.19 3962.57 3597.24 3573.01 7003.83
0.1 7673.07 6201.15 6324.74 3648.30 3499.53 3835.95 6967.70
1 6072.82 6215.08 6350.76 3575.25 3756.95 3686.94 6971.93
2 5940.69 6351.52 6228.91 3556.87 4595.88 3592.04 7021.61

0.1 5 5990.23 6408.07 6062.28 3724.65 3615.24 6974.15 7027.77
10 6008.50 6333.60 6095.35 3721.05 3771.07 6851.05 7201.36
50 3775.48 3710.31 3695.59 5370.07 3562.66 6857.61 7076.19
100 3808.47 3702.25 3664.39 3680.84 3667.41 6819.46 6921.27
500 4056.45 4293.35 3589.10 3528.88 3439.63 6992.88 7093.70
1000 4455.30 4180.02 3733.45 3495.54 4074.33 7097.27 7077.80
1500 3729.98 3785.89 4258.38 3558.07 3949.87 7039.57 6991.32

Table 10: RMSE. Interval [xj − kσxj , xj + kσxj ]
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k ε\C 0.1 1 10 100 1000 10000 100000
0.001 4574.58 3708.67 5225.38 3673.44 3970.93 3870.86 6993.52
0.01 3748.62 3627.15 3550.45 3827.51 4776.32 3813.32 6912.75
0.1 3677.97 3483.01 3714.66 4179.88 3764.01 3813.42 6806.42
1 3811.98 3593.63 3540.67 3648.11 3286.57 3746.24 6947.60
2 4414.92 3905.95 3500.10 3540.76 6296.83 4417.05 6898.57

0.2 5 4862.08 3732.55 3655.27 3620.85 5739.01 5458.80 6895.83
10 3894.01 4470.63 3762.47 3890.03 3631.28 3733.86 6894.30
50 6714.45 4262.35 5102.91 3636.12 3782.98 7000.88 6878.72
100 4222.14 3518.63 3869.43 3585.53 3678.72 7072.95 6873.88
500 4054.90 6667.62 3460.92 3610.74 3570.69 7024.06 6774.66
1000 4148.46 3552.59 3790.67 3572.28 3609.00 6933.84 6648.84
1500 3660.92 3918.37 3635.78 3605.39 3521.59 6804.78 6444.16
0.001 3827.30 3756.42 4182.10 3626.63 3671.05 3896.95 3288.79
0.01 3638.59 3751.82 3608.76 3632.17 3601.46 3798.62 5649.47
0.1 3678.91 3638.62 3595.67 3619.23 3470.27 3821.41 5321.87
1 3879.33 3641.26 3514.20 3600.65 4752.06 3617.68 3994.55
2 4753.87 4504.39 3623.02 3749.10 3907.21 3800.86 4542.81

0.5 5 4892.93 4145.48 4070.11 4216.28 3457.10 4084.12 4701.40
10 3682.97 4299.43 3968.99 3441.36 3305.31 3813.45 4664.51
50 4272.42 3583.43 4787.04 3735.99 3645.94 4513.71 4897.98
100 4546.60 3574.94 3819.47 3664.57 3664.18 3785.50 4911.87
500 3718.34 3573.21 3770.37 3833.47 3579.05 3946.12 4757.06
1000 3619.25 3941.42 4793.98 3947.26 3618.14 3637.59 4791.72
1500 4807.29 3554.54 4039.48 3551.92 3582.28 4733.42 4699.28
0.001 5692.42 3646.05 5367.72 3469.55 3601.36 3907.02 4788.49
0.01 4401.95 3693.44 4365.82 3508.17 3582.36 3793.01 4685.99
0.1 5847.80 4064.32 3665.05 3574.77 3611.85 3626.17 4184.07
1 4123.32 4724.75 3575.64 3459.81 5234.26 3821.28 3824.70
2 4426.78 3748.97 3733.31 3797.69 5367.48 3810.22 3772.94

0.75 5 4316.04 3626.03 3575.34 3641.89 4666.53 3577.78 3636.48
10 3783.91 3594.02 3701.41 4700.05 3398.10 3640.88 4242.38
50 4922.31 3983.20 3415.49 3553.63 3592.78 3488.82 4222.12
100 3689.64 3913.53 7551.17 3654.46 3584.48 4313.92 3772.08
500 3983.94 4661.12 6806.15 3675.50 3492.38 3494.97 6035.49
1000 4029.09 3995.88 3737.45 3639.03 3587.36 3723.70 3658.42
1500 5999.36 4100.38 3754.91 3690.52 3844.67 3796.85 3926.40
0.001 4128.16 4183.07 5183.64 3604.22 3594.73 3857.57 5583.93
0.01 4565.07 3665.57 3553.93 3478.67 3643.82 3756.18 5598.08
0.1 4468.78 3753.63 3620.01 3543.12 3388.10 3600.83 5603.10
1 4235.98 3714.19 3868.05 3517.73 7611.00 3718.95 5583.40
2 3969.07 3937.75 3669.67 3668.33 7745.81 3664.83 5583.25

1 5 5150.88 3812.56 3626.69 3639.56 7839.28 3573.74 5582.38
10 5377.14 3962.76 3552.08 3559.00 7905.63 5283.59 5583.96
50 7027.88 7320.04 7338.28 7346.38 7325.76 4755.49 5623.92
100 7022.92 7314.54 7352.96 7336.78 7345.32 5881.55 5563.69
500 6963.32 7445.11 7373.33 7347.38 7271.79 5684.45 5605.52
1000 6780.99 7225.78 7385.82 7270.21 7428.40 5604.50 5471.64
1500 6765.66 7431.36 7231.79 7529.79 7351.45 5699.92 5422.52

Table 11: RMSE. Interval [xj − kσxj , xj + kσxj ]
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2a ε\C 0.1 1 10 100 1000 10000 100000
0.001 7968.61 3910.66 3562.75 3675.89 3460.60 4308.48 8193.99
0.01 7938.79 4683.53 3574.54 3654.03 3979.48 3574.31 8205.21
0.1 7955.27 8417.59 5318.17 3579.03 3561.28 5535.62 8172.67
1 6734.64 5352.00 3542.58 5981.18 4841.99 3727.49 8189.25
2 4852.48 3734.37 3664.87 4251.67 6572.50 3506.82 8207.09

0 5 4973.24 6335.80 3678.04 3820.11 10625.30 5510.75 8165.20
10 5207.01 3965.71 3710.32 3713.61 8744.16 8116.04 8174.45
50 7706.58 6846.75 8156.00 11650.40 10358.50 8354.07 8524.69
100 7596.27 7426.39 9532.59 10707.50 10315.40 8681.55 8197.47
500 7516.51 7657.07 9775.03 10414.20 10861.30 8099.91 8161.31
1000 7718.19 7538.32 9791.77 9451.85 9987.97 8087.81 8025.75
1500 7339.38 7478.43 10475.40 9907.25 11624.50 8524.43 7936.27
0.001 8892.04 8581.60 10067.90 9243.79 9104.63 3942.26 7681.38
0.01 9928.79 8651.02 8772.08 9317.38 9116.48 3685.38 7695.02
0.1 9057.31 8770.58 8892.17 9485.06 7927.92 3521.19 7800.90
1 8379.20 9357.95 9399.96 8909.44 9393.96 3679.78 7786.19
2 8715.52 8769.67 9246.86 9575.23 9775.81 3741.27 7735.61

0.01 5 8673.46 8845.89 8430.49 11249.00 9380.46 5552.93 7752.27
10 9031.78 11147.50 8864.21 8989.99 8995.75 8131.85 7759.13
50 7706.58 6846.75 8156.00 11650.40 10358.50 8069.66 7729.19
100 7596.27 7426.39 9532.59 10707.50 10315.40 7894.22 8117.64
500 7516.51 7657.07 9775.03 10414.20 10861.30 7705.56 8145.81
1000 7718.19 7538.32 9791.77 9451.85 9987.97 7579.69 7953.88
1500 7339.38 7478.43 10475.40 9907.25 11624.50 7514.13 7820.83
0.001 7886.85 7747.20 7695.03 7660.69 7622.62 4153.65 9860.66
0.01 7869.29 7726.26 7689.52 7659.47 7540.20 3549.52 9370.97
0.1 7827.95 7723.30 7680.84 7646.88 7491.78 3579.58 9308.24
1 7805.06 7717.44 7675.62 7645.76 7474.06 5039.17 9433.61
2 7781.42 7715.29 7669.08 7646.78 7485.76 4049.39 9329.04

0.05 5 7778.51 7717.78 7668.35 7654.05 7511.77 7453.97 9425.49
10 7770.10 7710.68 7665.13 7640.24 7594.50 14022.10 9475.32
50 4397.67 5021.15 4101.25 3620.44 3680.86 10855.90 9791.83
100 3979.29 3616.86 3817.97 3748.67 3498.77 10093.80 10269.40
500 4012.51 3888.82 3647.72 3727.22 5062.00 10026.20 10140.20
1000 4210.01 3872.18 3689.93 3587.36 6670.04 9955.74 10017.80
1500 5464.91 4054.66 4302.52 3826.73 8160.03 9855.79 9980.20
0.001 3992.11 3830.82 3775.93 3617.94 7715.03 4042.37 8536.53
0.01 3636.74 3657.39 3431.14 4961.07 7718.45 3614.14 8557.16
0.1 3785.67 3847.89 3673.14 8370.87 7714.75 4111.38 8581.80
1 3780.40 3930.47 3574.96 8022.96 7716.50 3772.44 8746.28
2 3934.12 3671.28 4199.21 7681.82 7753.24 3348.94 8471.32

0.1 5 4032.47 3660.44 3618.07 7719.23 7713.52 8674.74 8609.38
10 3627.16 3677.70 3628.80 7723.33 7716.01 8712.29 8324.23
50 6429.00 3895.79 3729.50 3818.91 3378.95 8799.26 5145.93
100 6009.14 5435.54 6937.80 4621.81 3992.93 8754.91 3903.91
500 7584.26 4069.28 17300.90 3559.37 3729.92 8728.74 4158.34
1000 5973.41 4198.71 5428.70 4827.98 3777.36 8792.98 4301.99
1500 6663.31 3693.41 5278.47 5465.87 3612.07 8649.68 3583.70

Table 12: RMSE. Interval [Qa, Q1−a]
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2a ε\C 0.1 1 10 100 1000 10000 100000
0.001 4904.20 5977.53 3779.70 3780.04 3713.63 3899.80 8984.28
0.01 5605.16 4370.99 3640.12 3686.47 3673.52 3709.78 9073.41
0.1 3972.21 4818.86 3545.38 3746.84 3569.74 3667.19 9035.25
1 4991.24 3677.55 4312.87 3652.74 3479.27 3599.70 9164.58
2 4142.54 3760.06 4126.02 3631.37 5494.16 3684.83 9110.87

0.2 5 4941.05 3740.66 5289.66 3522.49 5953.85 4675.27 9101.67
10 10211.20 4497.64 4159.79 3691.60 4056.16 3507.80 9099.23
50 5234.92 4479.16 3707.86 3655.00 3711.63 3744.11 9093.04
100 4211.10 6210.85 4078.55 3566.51 3662.80 4908.79 8938.82
500 4011.09 4884.89 4351.68 3494.58 3641.45 3498.33 8996.82
1000 3993.23 3670.69 3627.86 4506.54 3292.85 7525.17 8986.34
1500 4302.15 3674.50 3526.23 8138.59 3727.43 7432.20 8991.76
0.001 7163.69 3970.14 3715.58 3599.01 3635.16 3925.24 8408.00
0.01 4157.72 3770.84 3777.42 3586.69 3521.96 3605.14 8406.13
0.1 3699.77 3707.69 5791.96 3553.77 3537.00 3439.75 8407.97
1 4125.27 4101.13 4794.39 3638.59 3580.44 3759.09 8413.68
2 3943.05 3963.96 3663.00 3546.00 3605.33 3507.68 8392.49

0.5 5 4007.52 4347.11 3681.40 3569.72 3391.72 3559.15 8405.38
10 3708.23 3660.54 3646.33 3577.59 3979.59 8747.95 8395.11
50 3936.52 3602.18 3642.20 3553.99 3646.75 8410.29 8419.92
100 4592.71 3558.81 3636.78 3632.43 3583.06 8456.23 8424.25
500 5224.26 3737.88 3635.14 3929.26 3517.29 8416.79 8420.44
1000 4390.37 3827.70 3512.69 3441.22 3984.74 8400.83 8405.19
1500 4736.09 13161.50 3563.73 3519.90 3610.17 8357.03 8385.13
0.001 4561.81 3653.66 5075.52 3733.18 3796.50 3824.43 7271.65
0.01 4604.51 3653.84 4994.71 3689.30 5342.39 3588.68 4003.83
0.1 5056.89 3797.15 5038.06 3590.37 3705.12 4931.95 3453.53
1 4258.65 3673.15 3599.40 5071.63 3650.23 3729.52 3885.88
2 3824.71 3657.81 3635.45 4393.82 3624.19 3537.44 3643.37

1 5 3854.98 3619.83 3838.18 4231.54 3572.68 3964.56 3607.47
10 4064.15 7036.31 3598.74 3598.12 3705.30 4540.52 3757.86
50 3753.95 3602.27 3614.52 3620.03 3624.17 4451.16 7087.42
100 3779.20 4301.07 3627.77 3587.51 4821.67 3912.93 6824.13
500 4085.39 3940.26 3743.10 3634.84 5704.04 5521.75 6674.31
1000 4261.96 3580.81 4019.48 3585.85 5771.53 5886.58 6757.16
1500 3893.08 3707.88 4017.28 3587.48 5802.82 5898.73 6337.29

Table 13: RMSE. Interval [Qa, Q1−a]
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perturbations, which are supposed to be unknown but bounded for a given norm.
Several computational experiments with real datasets have been performed. In particular,
our formulation allows to improve the results obtained in [29] for a cardiological example.
Our tool has also been tested when imputation for missing data is done via intervals based
on the mean and deviation of the non-missing values or on quantiles, obtaining good results
for regression when using non-degenerate intervals. All these experiments display our tool
as a competitive model for regression with uncertainty on the data.
As possible extensions, we propose the study of other formulations for our model. One can
observe that, in formulation (13), the optimization problem has been posed when using the
Euclidean norm for the objective function. However, the use of the l1-norm or the l∞-norm
gives us similar expressions which are linear programs in case of considering the maximum
distance for the constraints of the problem. Furthermore, other different distances (apart
from maximum and Hausdorff distances) can be introduced in the constraints of Problem
(13). Experiments with all these formulations can be done in the future to try to select
the most suitable formulation for our problem.
Likewise, the introduction of kernels in the model is another topic which deserves further
studies.
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