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Abstract

Radiation therapy is an important modality in treating various can-
cers. Various treatment planning and delivery technologies have emerged
to support Intensity Modulated Radiation Therapy (IMRT), creating sig-
nificant opportunities to advance this type of treatment. We investigate
the possibility of including the dose prescription, specified by the Dose
Volume Histogram (DVH), within the convex optimization framework for
inverse IMRT treatment planning. Specifically, we study the quality of
approximating a given DVH with a superset of generalized Equivalent Uni-
form Dose (gEUD)-based constraints, the so-called Generalized Moment
Constraints (GMCs).

The newly proposed approach is promising as demonstrated by the
computational study where the rectum DVH is considered. Unlike the
precise dose-volume constraint formulation that necessitates the use of
expensive computing resources, our convex optimization approach is fea-
sible for implementation on a single-processor treatment planning station.
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1 Introduction and motivation

Radiation therapy is an important modality in treating various cancers. IMRT,
an advanced form of radiation delivery developed over the past two decades, is
possible with state-of-the-art tools for optimizing this type of treatment. Treat-
ment planning for IMRT typically involves solving a highly complex inverse
problem, often with the use of optimization methods.

Dose prescriptions are frequently expressed in terms of partial-organ doses or
a fractional dose-volume histogram, however, a precise implementation of such
prescriptions is often associated with great computational difficulties and most
often a compromise sub-optimal solution is settled for in practice. We investi-
gate the possibility of including this type of dose prescription within the convex
optimization framework for inverse IMRT treatment planning. More precisely,
we study the quality of approximating a given DVH with multiple gEUD-type
constraints, the Generalized Moment Constraints (GMC). The techniques out-
lined in this paper are well suited to be embedded into the robust IMRT treat-
ment planning framework [6, 5, 12] – the approach that theoretically allows to
minimize the negative impact of inherent uncertainties related to setup error
and organ movement.

For a given volume of interest, e.g., an organ at risk or a clinical target vol-
ume, a DVH or Dose-Volume Histogram specifies the complete dose distribution
to the volume with the exception of its spatial information. Namely, for any
given dose T , the DVH curve in its cumulative form specifies percentage of the
total volume DVH(T ) that receives dose greater (or equal) than T . Knowing
the DVH curve allows us to deduce various aggregate properties of the dose
distribution, e.g., an average dose to a unit volume may be computed as a ratio
of an integral of DVH(T ) over all possible values of T to the total volume, etc.

gEUD or Generalized Equivalent Uniform Dose values in the context of radi-
ation therapy treatment planning were introduced in [11], and have already been
studied as an alternative to the DVH-based dose prescription [3, 13]. gEUD-
values have the desirable property of being either convex or concave functions
of the dose, making them attractive for specifying the treatment plan optimiza-
tion goals. However, until recently, the modeling capabilities of the gEUD-type
constraints were poorly understood. Once the volume of interest is discretized
into a collection of voxels V , the (discrete approximation to) gEUD value cor-
responding to the parameter a is computed as gEUDa = 1

|V |
∑

v∈V dv
a, with dv

representing a dose to a voxel v ∈ V and |V | being the total number of voxels.
Surprisingly, the fundamental relationship between the DVH and the gEUD’s

is given to us by probability theory. The relationship is more general than what
we require, so adapted to our needs it may be phrased as follows:

Fact 1.1. Given a DVH, the infinite sequence of values {gEUDa}a=1,2,3,..., is
determined uniquely. Conversely, the sequence {gEUD1, gEUD2, gEUD3, . . .},
uniquely determines the DVH.

For more details and a rigorous derivation please see Section 3 and the Appendix.
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The motivation to find an alternative to purely DVH-based dose distribution
prescription stems, in part, from the fact that previous attempts to embed
such requirements in the treatment planning process were typically associated
with immense computational difficulties, and quite frequently, the necessity to
resort to an iterative interactive human-to-planning-station process. To give an
illustration, consider the following scenario where we introduce a single-point
DVH constraint.

It is quite common that the planner is asked to find a treatment plan where
the DVH for a given organ at risk lies below a certain collection of points -the
critical DVH points- of the form (T, P ) where T is the critical dose value and
P is the maximal volume-percentage of the organ that may receive the dose
exceeding T . Such a requirement may be embedded into the inverse treatment
planning model with use of binary variables: let the organ be discretized into
collection of voxels V , dv be a dose to a single voxel for v ∈ V , T be one
such critical dose value with the corresponding maximal allowed organ volume-
percentage P , and M be the absolute maximal dose allowed to any voxel in
the organ. Then the requirement that the resulting DVH lies below the point
(P, T ) may be accommodated by adding |V | binary (indicator) variables iv to
the model as follows:

dv ≤ T + iv · (M − T ), v ∈ V,
1

|V |
∑

v∈V iv ≤ P,

iv is 0 or 1 for all v ∈ V.

(1)

Similar procedure would have to be repeated for each critical DVH point, if
there is more than one such point. Unfortunately, a set of constraints like the
above becomes extremely difficult to handle computationally, with the inherent
difficulty mostly due to the discrete nature of the newly introduced binary indi-
cator variables (and hence non-convexity of the problem’s feasible region). The
worst-case computational difficulty of a problem like this grows exponentially
with the number of such discrete variables; roughly speaking, in the worst-case
one would need to enumerate all the possible combinations for iv’s to find the
solution, thus facing an order of 2|V | mathematical operations required. Al-
though our algorithmic capacities to handle particularly structured problems
of this type and the sheer computational power have advanced greatly within
the past few decades, the real-world IMRT application of this approach falls
only within the realm of super-computing [9, 10]. In practice, the precise DVH
requirements and the constraints like the above are almost never used, and a
compromise sub-optimal solution is searched for instead.

Taking into account the above mentioned computational challenge, another
point of concern is the physical applicability of just a limited number of single-
point DVH constraints as above: suppose we have specified only two critical
points on the DVH for the organ, say, at most 50% of the bladder receives dose
above 60Gy, while no voxel in the bladder receives a dose above 81Gy. But what
may happen in between these two points? In other words, is it ok for 99% of the
bladder to receive a dose of 59Gy, or for 49% to receive 80Gy? Obviously, the
later would be hardly a desirable outcome of the treatment planning process.

4



Thus, it is conceivable that one might need to specify a nearly complete dose
distribution within the acceptable margins, and indeed, many single-point DVH
constraints may be called upon.

From the computational point of view the advantage of using the gEUD-type
constraints, as opposed to the above mentioned single-point DVH constraints, is
that, in contrast, the gEUD’s may allow us to preserve a favorable computational
structure, namely, the convexity of the underlying mathematical problem. In
turn, this allows for much more efficient (and even polynomial-time in the prob-
lem dimensions) algorithms to be used [2, 14]. Fact 1.1 establishes a one-to-one
correspondence between an infinite sequence of gEUD values and the prescribed
DVH curve. The above has the implication that, if during the treatment plan-
ning process we are able to restrict our search space of all possible treatment
plans to the ones that correspond to only the prescribed (infinitely many) gEUD
values for all a = 1, 2, 3, . . ., then as the result of running an optimization al-
gorithm on such a model we would expect a treatment plan that produces the
desired DVH, or, alternatively, a certificate that no such plan exists.

Consequently, the question we want to address is the following: can we start
with a desired DVH for various volumes of interest and build those into our
inverse treatment planning model, treating dv, v ∈ V , as (a subset of all) the
decision variables, i.e., the variables we can control, and preserving the convexity
relying on the statement above?

From now on we consider a single volume of interest discretized into a col-
lection of (iso-volumetric) voxels V , with a maximum dose to a voxel bounded
by 1. The last assumption is made without loss of generality since any dose
distribution may be scaled so that the maximum allowed dose is equal to 1 unit.

For a given a we have

1

|V |
∑

v∈V

da
v = gEUDa, (2)

where
1

|V |
∑

v∈V

da
v is

{
convex in dv, if a ∈ (−∞, 0]

⋃
[1,∞),

concave in dv, if a ∈ [0, 1]

(recall that dv ≥ 0).
Firstly, to utilize the full power of Fact 1.1 we would have to incorporate

infinitely many equality-type constraints (2) into our model, which could be
quite challenging. Fortunately, if we are willing to accept some limited deviation
from the prescribed “ideal” DVH, we do not need to specify all of the gEUD
values: typically just a few will suffice to get a good approximation.

Secondly, in order to preserve the convexity of our model’s feasible region,
we need to use the inequality-type constraints like

{
1

|V |
∑

v∈V da
v ≤ gEUDa, if a ∈ (−∞, 0]

⋃
[1,∞),

1
|V |

∑
v∈V da

v ≥ gEUD
a
, if a ∈ [0, 1]

(3)

with gEUDa, gEUD
a

being some predetermined values, e.g., d2
1 ≤ 1 for a = 2

and V = {1}. Unlike the statement of Fact 1.1, now we would have to specify
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a range rather than a single gEUD value. Noting that the inequalities in the
above may be interpreted as equalities, 1

|V |
∑

v∈V da
v = gEUD∗

a where gEUD∗
a ∈

[gEUD
a
, 1] or gEUD∗

a ∈ [0, gEUDa], we expect to observe a whole range of
resulting DVH curves that satisfy these constraints.

In what follows we examine the quality of approximating the desired dose
distribution specified by DVH with multiple gEUD-type constraints, the Gen-
eralized Moment Constraints. If our approach is to be treated as a black box,
the input would be the targeted DVH for the volume of interest, and the output
would be the set of convex constraints on the dose variables dv, v ∈ V which, if
satisfied, guarantees the approximation of the desired dose distribution within
the corresponding error margin. We refer to any dose distribution that satisfies
a given set of GMCs on dv ≥ 0, v ∈ V as feasible.

Remark 1.1. Fact 1.1 provides means to generate cuts to strengthen a convex
relaxation of mixed integer constraints (1). In particular, in Section 4 we de-
scribe a second-order cone formulation of moment constraints that bound gEUD
values, which can further be well approximated with linear inequalities at modest
(polynomial) cost.

2 Two geometric questions about DVH

2.1 What is the intuitive interpretation of gEUD-type
constraints for DVH?

Consider the following example. Suppose the volume of interest consists of only
two voxels, that is, V = {1, 2}. We would like to investigate all the possible DVH
curves that satisfy a single DVH-type equality constraint (2) corresponding to
a = 1 with the corresponding gEUD value of, say, 1

2 , that is, the DVH curves
that come from dose distributions satisfying 1

2 (d1 + d2) = 1
2 . Note that the

requirement d1, d2 ≥ 0 is implicit.
Clearly, since only two voxels are considered, each comprising 50% of the

total volume, the DVH is a step function with three flat segments corresponding
to 100%, 50% and 0% of the volume. The range of all possible values for d1, d2

satisfying d1 + d2 = 1 will give us the locations of the first drop of the DVH
step function from 100% to 50% and the the second drop from 50% to 0%.

Since the resulting DVH is invariant under re-indexing of d1 and d2, e.g., two
distinct distributions {d1 = 1, d2 = 0} and {d1 = 0, d2 = 1} result in the same
DVH, for the purpose of reconstructing all possible DVH curves that come from
feasible dose distributions we may assume d2 ≥ d1. Observe that DVH(d1−) =
1, DVH(d1+) = 1/2 together with DVH(d2−) = 1/2, DVH(d2+) = 0, see
Figure 1; here we adopt the standard calculus notation for d− and d+ to mean
ever so slightly to the left and to the right from the point d respectively. Also
note that once d1 is fixed, d2 is obtained from the gEUD-type equality constraint
as d2 = 1 − d1. Now, ranging d1 from 0 to 1

2 we may reconstruct all possible
DVH curves satisfying d1 + d2 = 1; note that d1 may not exceed 1

2 since we
assume d2 ≥ d1.
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Observe that all the DVH’s as described, in addition to being a step functions
with two drops from 100% to 50% and from 50% to 0%, must satisfy one and
only one requirement: the area under the DVH must be equal to 1

2 . Taking
this argument further, if we increase the number of voxels, then obviously the
number of possible drops in the DVH is also bound to increase in the limit
producing a smooth curve, while the area under the DVH curve has to stay

unchanged, and thus, any DVH such that
∫ 1

0
DVH(x)dx = 1

2 would correspond
to a feasible distribution.

Figure 1: A family of DVH curves satisfying a gEUD-type equality constraint.

The bottom line in the above example is that any gEUD-type constraint
imposes some restrictions on the resulting DVH curve. It is that by carefully
superimposing several such gEUD-type constraints one hopes to achieve the
desired quality of approximation to the ideal DVH.

Based on the shape of the curve da, d ∈ [0, 1], for the conventional gEUD-
based constraints (3) we may provide three distinct interpretations for the a
parameter given its value, emphasizing the anticipated effect of a particular
constraint on the feasible dose distribution:

• if a ≤ 0, the emphasis is placed on the low-dose part of the distribution; in
particular, constraint (3) puts more relative importance on ensuring that
there are not too many voxels with small dose values dv; and therefore, this
type of constraint is expected to be primarily used for the target volumes;

• if a ∈ [0, 1], the emphasis is also placed on the low-dose part of the dis-
tribution; however, unlike the case a ≤ 0 now constraint (3) puts more
relative importance on ensuring that there are not too few voxels with
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small dose values dv; and therefore, this type of constraint is expected to
be used for the organs at risk;

• if a ∈ [1,∞), the emphasis is placed on the high-dose part of the distribu-
tion; constraint (3) puts more relative importance on ensuring that there
are not too many voxels with high dose values dv; and therefore, this type
of constraint is expected to be used for the organs at risk as well.

It is worth mentioning that despite somewhat counter-intuitive interpretation
for a ∈ [0, 1], namely, the reversed sign of the inequality in (3), the constraints
of this type prove useful in approximating the desired dose distribution.

In general, the distribution of finite a’s selected can be guided by clinical
knowledge regarding the serial or parallel nature of the organ at risk or the
target.

2.2 How to judge the quality of approximating the DVH?

To quantify the quality of the approximation we address the following question:
given a set of (convex) GMCs, a desired dose distribution prescribed by the DVH
and an energy level T , what is the minimal and maximal volume-percentage
Pmin(T ), Pmax(T ) that may receive dose greater or equal than T , subject to
these constraints.

To illustrate this concept we refer the reader to the example in the previous
subsection: consider T = 1

3 , clearly {d1 = 1/2, d2 = 1/2} is a feasible distribu-
tion and therefore Pmax(T ) = 1, on the other hand, there is no feasible distri-
bution with d1, d2 ≤ 1

3 and d1 + d2 = 1 so Pmin(T ) > 0 while {d1 = 0, d2 = 1}
is feasible and therefore Pmin(T ) = 1

2 , see Figure 1.
By varying T through the whole range of possible doses for the volume from

0 to the maximum possible dose Dmax = 1 one may reconstruct the absolute
error margins for this type of approximation as

DVHmin(T ) = Pmin(T ), DVHmax(T ) = Pmax(T ), T ∈ [0, 1],

meaning that there is no dose distribution that would simultaneously satisfy
the set of the given gEUD-type constraints and fall out of the feasible envelope
spanned by the two curves DVHmin,DVHmax containing the original DVH.

Coming back to the illustration, the absolute error margins are formed by
connecting with straight segments the points {(0, 1/2), (1/2, 1/2), (1/2, 0), (1, 0)}
for DVHmin and {(0, 1), (1/2, 1), (1/2, /12), (1, 1/2), (1, 0)} for DVHmax, and con-
tain precisely the feasible envelope (comprising of the two shaded blocks in Fig-
ure 1) spanned by two “extreme” distributions corresponding to {d1 = 1/2, d2 =
1/2} and {d1 = 0, d2 = 1}.

3 A probabilistic approach to DVH

In this section we introduce a probabilistic point of view on the dose distribution
for the volume of interest, discretized into a collection of |V | voxels, and relate
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this perspective to the GMCs – a generalization of conventional gEUD-based
constraints.

The fundamental object in the theory of probability is a random variable:
an unknown function mapping the space of (random) events into the space of
outcomes – the values of this function. The theory studies the properties of the
unknown function, the random variable, given some partial information about
it. So, from the mathematical point of view there is nothing random about
random variables, it is the lack of complete information that we aim to overcome.
This is exactly the scenario we are faced with while attempting to understand
the properties of the dose distribution, namely the associated DVH, given that
the specific values of dose to the voxels, thought of as a random variable -an
unknown function assigning the dose value based on the voxel index as an input-
are not available, and only some aggregate gEUD-like values are specified.

Let D be a discrete random variable (see, for example, [15]) taking on |V |,
possibly distinct, values dv, v ∈ V all with equal probability of 1

|V | ; think of

a |V |-faceted die with each face marked with value dv, v ∈ V . A cumula-
tive distribution function (c.d.f.) associated with D at a point T is defined as
FD(T ) = Pr{D ≤ T} – the probability that the random variable D does not ex-
ceed value T . Now, observe that the previously defined Dose-Volume Histogram
curve satisfies the following important relationship:

DVH(T ) = 1 − FD(T ).

On the other hand, the gEUD value corresponding to a,

gEUDa =
1

|V |d1
a +

1

|V |d2
a + · · · + 1

|V |d|V |
a,

is easily recognized as the a-moment of the D random variable. So, indeed, the
question of how restrictive are the gEUD-type constraints with regards to the
resulting DVH, may be equivalently translated into the question of extracting
all possible cumulative distribution functions FD of discrete random variables
D that have their a-moments in the given range.

More generally, given a univariate function f and a random variable D, one
may define an f-generalized moment as

E[f(D)] =
1

|V |f(d1) +
1

|V |f(d2) + · · · + 1

|V |f(d|V |),

and subsequently use the constraints of the form

1

|V |
∑

v∈V

f(dv) ≤ GMf , (4)

hence the term Generalized Moment Constraint, to further refine the resulting
set of feasible distributions and the corresponding DVH curves. An example
of already familiar constraint of this type is f(d) = da, a ≥ 1, resulting in a
conventional gEUD-based constraint as described before. Finally, note that if f
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is convex on [0, 1], then the resulting constraint (4) is convex as well. In Section 4
we will illustrate that the use of the GMCs allows us to attain the desired set
of acceptable DVH’s for a particular organ at risk under consideration.

The motivation for generalized gEUD-based constraints is as follows. If we
want to control the dose distribution around a critical dose threshold T , say on
a subset [α, β] ⊇ T of [0, 1], with help of the moments only, ideally we would
use

f(d) =

{
1, if α ≤ d ≤ β,
0, otherwise,

for the f -generalized moment constraint, since E[f(D)] will have non-zero con-
tributions only from the voxels with dose values in [α, β]. Consequently, if we
wish to bound the number of such voxels from above by GMf · |V |, then in-
equality (4) would do the job. Likewise, the same inequality with f and GMf

replaced by −f and −GMf would bound the number of such voxels from be-
low. However, f is not convex, so the convexity of the resulting model would
be jeopardized as well.

Instead of the non-convex indicator function f discussed so far, we propose
to use an indicator function of [α, β] ⊆ [0, 1], fused with two monomial functions
on [0, α] and [β, 1], defined with parameters ℓ, r ∈ [−1, 0] or ℓ, r ≥ 1:

f(α,β,ℓ,r)(d) =






−1 , if d ∈ [α, β],

−
(

d
α

)−ℓ
, if d ∈ [0, α],

−
(

1−d
1−β

)−r

, if d ∈ [β, 1],





if ℓ, r ∈ [−1, 0],

0 , if d ∈ [α, β],(
α−d

α

)ℓ
, if d ∈ [0, α],(

d−β
1−β

)r

, if d ∈ [β, 1],





if ℓ, r ∈ [1,∞),

see Figure 2. Clearly, f(α,β,ℓ,r) is convex, and thus, constraint (4) is convex
as well. Function f(α,β,ℓ,r) may be viewed as a convex approximation of the
[α, β]-indicator function f , and thus is expected to have a similar effect with re-
gards to controlling the dose distribution, and the f(α,β,ℓ,r)-moments generalize
the gEUD values, mean-tail-dose values [7], etc. From the modeling perspec-
tive, the choice of f(α,β,ℓ,r) allows for its efficient embedding into the so-called
second-order conic programming problem [2], which is particularly well-suited
for efficient computational optimization methods [1]. Moreover, our numerical
investigation indicates that these functions nearly exhaust all the convex GMCs
that have non-negligible effect on the proximity of feasible dose distributions to
the desired DVH.

Perhaps one of the most celebrated relationship between the moments of a
random variable and its cumulative distribution function is Tchebychev’s in-
equality, that gives an explicit formula for the probability of a random variable
D to deviate in a given range kσ from its mean µ(= gEUD1) given the variance
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Figure 2: f(α,β,ℓ,r) for ℓ, r ∈ [−1, 0] and ℓ, r ≥ 1.

σ2(= gEUD2 − gEUD2
1), i.e., the first and shifted second moments:

Pr{|D − µ| > kσ} <
1

k2
.

Unfortunately, for higher-order moments such an explicit expression is not avail-
able. One has to resort to the use of numerical optimization methods in order
to compute the maximum probability mass on a given subset S ⊆ [0, 1], Prmax

S ,
over all probability measures F on [0, 1], subject to a set of GMCs:

Prmax
S := max

∫
S

dF (x)
subject to ∫

[0,1]
fi(x)dF (x) ≤ GMfi

, i = 1, . . . ,m.
(5)

The details on how to compute Prmax
S are discussed in [17]: we generalize the so-

called semi-definite optimization approach of [4] to accommodate our problem
formulation, moreover, we provide a natural linear programming relaxation of
this problem that proves to be numerically superior in our setting.

The relationship between Prmax
S and the error margins provided by Pmin(T )

and Pmax(T ) is easily established observing

Pmin(T ) = 1 − Prmax
[0,T ],

Pmax(T ) = 1 − (1 − Prmax
[T,1]) = Prmax

[T,1]
(6)
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where the second equality uses the fact that Pr{D ≤ T} = 1 − Pr{D > T}.
Finally, we mention an important property of the probability distributions

that attain Prmax
S :

Fact 3.1. The maximal probability mass Prmax
S may always be attained by a

piece-wise linear c.d.f., i.e., by a monotone non-decreasing step function with at
most m + 1 jumps.

The last property indicates that if we restrict ourselves only to smooth dose
distributions for the volume of interest, then the extreme values Prmax

S as com-
puted in (5) might not be achievable under this assumption. One may think of
adding more constraints to the optimization problem (5) and thus reducing the
search space of all feasible c.d.f.’s. Note that, from the practical point of view,
the smoothness of the dose distribution is a realistic assumption due to photon
and electron scatter, and the use of multiple beam orientations. So, in fact, the
true absolute error margins might be tighter than what is predicted by (6).

4 A case study

4.1 The setup

Consider the following dose-volume criteria for the rectum during treatment of
prostate cancer, given by the collection of critical DVH points (T, P ) in Table 1.
The critical points are further connected with the straight linear segments to

Dose (T ), Gy Volume (P ), %
20 100
25 50
50 30
60 25

73.8 15
79.2 0

Table 1: Target for the rectum DVH.

create a corresponding target DVH. Note that at Princess Margaret Hospital
the volumes of rectum (and bladder) that are evaluated are limited to 1.8cm
superior or inferior of the CTV, thus 20Gy received by the whole rectum volume
is considered acceptable.

The design of the target dose prescription and its DVH is a separate sub-
ject and goes beyond the scope of this paper, however, we should mention its
key guiding principle – the target DVH should be aimed at balancing out the
clinical acceptability of the dose distribution with the collection of DVH critical
points not being too restrictive at the same time; think of the “worst”, but still
clinically acceptable dose distribution.
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The target DVH is scaled so that the maximum allowed dose is equal to 1
unit, i.e., we scale T by 1/79.2. The set of 13 GMCs is listed in Table 2, each
defined as four parameters of f(α,β,ℓ,r) with the right-hand side GMf(α,β,ℓ,r)

of
constraint (4) computed as E[f(α,β,ℓ,r)(D)], with D corresponding to the target
DVH. To interpret those, note that, for example, constraints four through eight

α β ℓ r GMf(α,β,ℓ,r)

1 1 -0.125 -1 0.9039
1 1 -0.25 -1 0.8204
1 1 -.5 -1 0.6843
0 0.2525 1 1 0.5008
0 0.2525 1 2 0.3228
0 0.2525 1 4 0.2104
0 0.2525 1 8 0.1476
0 0.2525 1 16 0.1005

.05 .3 -1 -1 0.7004
0 0.9318 1 1 0.0750
0 0.9318 1 2 0.0500
0 0.8585 1 1 0.1247
0 0.7575 1 1 0.1648

Table 2: The set of GMCs.

are conventional gEUD-based constraints, while tenth, twelfth and thirteenth
are mean-tail dose constraints [7]. The constraints in 2 were selected experimen-
tally, with the choice of parameters partially driven by the clinical knowledge
of the nature of the organ.

4.2 DVH margins and extreme distributions analysis

We compute the absolute error margins DVHmin and DVHmax for the specified
set of GMCs, see Figure 4(a).

Although the absolute error margins might look somewhat alarming, a more
thorough analysis of the extreme dose distributions reveals much more favorable
situation in terms of achieving the desired proximity to the target DVH. While
the error margins signify that there are no feasible distributions lying outside
of the feasible dose envelope spanned by DVHmin and DVHmax, there is no
feasible dose distribution that will be threateningly close to DVHmax, which
may be associated with unacceptable risk of treatment complications. Due to
the nature of the selected GMCs, any significant dose escalation above the target
DVH on a sub-interval of [0, 1] has to be compensated by the corresponding drop
in the dose outside of this interval, thus resulting in much more conservative
dose distributions to the rectum volume, see Figure 4(b,c,d,e,f). We depict a few
extreme dose distributions that correspond to a sequence of increasing values
of dose threshold T , and represent three typical dose profiles observed for such
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dose distributions: close proximity to the target DVH in (b,c,f), and two (d) or
three (e) dose value clusters.

Moreover, neither the beam geometry nor the proximity of the rectum to
the target nor the effect of dose scatter were taken into account, all having the
potential to further restrict the set of feasible DVH’s, and thus, to improve the
quality of approximating the target DVH with the set of GMCs described.

4.3 GMC model formulation

We describe how to embed the GMCs into a particularly well structured opti-
mization problem, the second-order conic optimization problem

min cT x
subject to

Ax = b,
x ∈ K,

where c, x ∈ Rn, b ∈ Rm, A is m × n real matrix, and K is an n-dimensional
second-order cone, also known as Lorentz cones,

SOC =





x ∈ Rn : xn ≥




n−1∑

j=1

x2
j




1/2





,

or, more generally, K is a direct product of k distinct second-order cones, K =
SOC1×SOC2×· · ·×SOCk, so that their dimensions add up to n. Note that the
second-order conic optimization problem allows to specify nonnegative variables
by using 1-dimensional second-order cones.

The optimization problem as above is amenable to very efficient computa-
tional optimization methods, the so-called interior-point methods [1, 2, 14]. To
name a few most successful numerical optimization packages that are capable
of solving such problems, we mention a commercial solver Mosek (mosek.com),
and freeware packages SDPT3 (www.math.nus.edu.sg/∼mattohkc/sdpt3.html)
and SeDuMi (sedumi.mcmaster.ca).

Constraint (4) with convex f = f(α,β,ℓ,r) may be re-written as

f(α,β,ℓ,r)(di) ≤ Ψi, i = 1, . . . , |V |,
|V |∑

i=1

Ψi ≤ |V | · GMf .
(7)

In particular, we focus on the case |ℓ|, |r| being integer powers of 2, e.g., ℓ =
−1/4,−1/2,−1, 1, 2, 4, etc. This restriction significantly simplifies the represen-
tation of the GMCs as second-order conic constraints, and from the practical
point of view of approximating the desired DVH does not seem to have any sub-
stantial negative implications. For a representation of the epigraph of f(α,β,ℓ,r)

with arbitrary rational values of ℓ, r ∈ [−1, 0] ∪ [1,∞) see [2].
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Note that the second constraint in (7) may be easily handled by introducing

a non-negative slack variable s ≥ 0 by
∑|V |

i=1 Ψi + s = |V | · GMf . It is left to
show how to represent f(α,β,ℓ,r)(di) ≤ Ψi for each i = 1, . . . , |V |.

Let us fix i, and consider

f(α,β,ℓ,r)(di) ≤ Ψi. (8)

Let pℓ, pr be two nonnegative integers so that either ℓ = −2−pℓ , r = −2−pr or
ℓ = 2pℓ , r = 2pr . The procedure below allows to represent constraint (8) -the
epigraph of f(α,β,ℓ,r) for di ∈ [0, 1]- as a second-order conic constraint. We need
(4pℓ + 2) additional variables, 2pℓ + 2 second-order cones and 3pℓ + 1 linear
constraints for the ℓ-monomial branch of f(α,β,ℓ,r) on [0, β]. Similarly, we need
(4pr + 2) additional variables, 2pr + 2 second-order cones and 3pr + 1 linear
constraints for the r-monomial branch of f(α,β,ℓ,r) on [α, 1]. In addition, we use
2 more non-negative slack variables, and thus 2 more second-order cones, with 2
additional linear constraints, to merge the two branches together to obtain (8).

Case 1: ℓ, r ∈ [1,∞), that is, ℓ = 2pℓ , r = 2pr .
We start with constructing partial constraint to (8) that corresponds to

f(α,β,ℓ,r)(di) ≤ zpℓ
, di ∈ [0, β] ⊆ [0, 1]. (9)

Introduce z0 ≥ max
{
0, α−di

α

}
by

1
αdi + z0 + s0 = 1,
z0, s0 ≥ 0.

(10)

Note that this requires 2 additional nonnegative variables, and thus, 2 additional
1-dimensional second-order cones SOC1, SOC2, and 1 linear constraint.

Observe that if (ξ1, ξ2, ξ3) ∈ SOC =
{

(ξ1, ξ2, ξ3) ∈ R3 : ξ3 ≥
√

ξ2
1 + ξ2

2

}
,

then by considering the planar slice of the second-order cone SOC along ξ3−ξ2 =
1, noting that ξ2

1 + ξ2
2 ≤ ξ2

3 ⇔ ξ2
1 ≤ (ξ3 + ξ2)(ξ3 − ξ2), we have ξ2

1 ≤ ξ2 + ξ3,
an epigraph of a branch of parabola in variables ξ1 ∈ R and (ξ2 + ξ3) ≥ 0, see
Figure 3.

Now, for k = 1, . . . , pℓ let

−zk +ξ2,k + ξ3,k = 0,
−ξ2,k + ξ3,k = 1,

zk−1 −ξ1,k = 0,
zk ≥ 0, (ξ1,k, ξ2,k, ξ3,k) ∈ SOCk+2 ⊂ R3,

(11)

this requires 4pℓ additional variables, pℓ 3-dimensional and pℓ 1-dimensional
second-order cones, and 3pℓ linear constraints. Observe that combining (10)
with (11) we have exactly f(α,β,ℓ,r)(di) ≤ zpℓ

for di ∈ [0, β].
Similarly, we may construct a partial constraint to (8) that corresponds to

f(α,β,ℓ,r)(di) ≤ zpr
, di ∈ [α, 1] ⊆ [0, 1], (12)
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Figure 3: A branch of parabola as a section of SOC cone.

by replacing z0 ≥ max
{
0, α−di

α

}
with z0 ≥ max

{
0, di−β

1−β

}
in a new independent

instance of (10), and adding a new independent set of constraints (11) with
k = 1, . . . , pr.

Finally, to merge the branches (9) and (12) together, we write Ψi ≥ zpℓ
, Ψi ≥

zpr
by introducing two more non-negative slack variables with two linear con-

straints

Ψi − zpℓ
+ ν1 = 0,

Ψi − zpr
+ ν2 = 0,

ν1, ν2 ≥ 0.
(13)

Case 2: ℓ, r ∈ [−1, 0], that is, ℓ = −2−pℓ , r = −2−pr .
Constraint (8) may be represented in almost the same way as in the previous

case, with the following exceptions.

• In (10), we replace z0 ≥ max
{
0, α−di

α

}
and z0 ≥ max

{
0, di−β

1−β

}
with z0 ≤

min
{
1, di

α

}
, i.e., −1

α di+z0−s0 = 0, z0 ≤ 1, s0 ≥ 0, and z0 ≤ min
{

1, 1−di

1−β

}

for the ℓ and r-monomial branches of f(α,β,ℓ,r), respectively. Note that the
constraint z0 ≤ 1 may be easily recast as a nonnegativity constraint ζ0 ≥ 0
by replacing z0 with −ζ0 + 1.

• In (11), we interchange the roles of zk and zk−1 and replace the nonneg-
ativity constraint on zk by zk ≤ 1, that is, depending on the monomial
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branch, for k = 1, . . . , pℓ or k = 1, . . . , pr, we let

−zk−1 +ξ2,k + ξ3,k = 0,
−ξ2,k + ξ3,k = 1,

zk −ξ1,k = 0,
zk ≤ 1, (ξ1,k, ξ2,k, ξ3,k) ∈ SOCk+2 ⊂ R3.

Again, the constraint zk ≤ 1 may be easily recast into nonnegativity of ζk

by letting zk = −ζk + 1;

• Finally, we replace (13) by

Ψi + zpℓ
− ν1 = 0,

Ψi + zpr
− ν2 = 0,

ν1, ν2 ≥ 0.

Note that zpℓ
and zpr

bounds −f(α,β,ℓ,r) from below on [0, β] and [α, 1],
so we need to change the sign of Ψi as compared to (13).

5 Conclusion and future work

We investigate the use of the multiple GMCs, as the means to control the
proximity of the planned dose distribution to the desired idealized dose pre-
scription. The newly proposed approach is promising as demonstrated by the
computational study where the rectum DVH is considered. Unlike the precise
dose-volume constraint formulation that uses mixed integer programming tech-
niques and in practice often necessitates the use of expensive super-computing
resources, e.g., [10], our convex optimization approach is more likely to be
suitable for clinical implementation, since the resulting optimization model is
amenable to highly-efficient optimization methods that may be implemented on
even a single-processor computing station.

The future work in this direction includes the following goals:

• computational comparison of GMC-based IMRT optimization approach
with conventional treatment planning formulations,

• investigation of practically relevant OAR and target partial dose-volume
constraints to identify a subclass of dose distributions suitable to GMC-
based approximation,

• embedding of GMC approximation toolbox for DVH in CERR [8], en-
hanced with the database of current DVH/GMC conversion protocols for
selected target and OAR DVH’s.

Appendix

We discuss the interplay between the gEUD values and the DVH, as stated
in Fact 1.1, in a bit more details. Namely, we introduce one as the Taylor
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expansion coefficients of the Fourier transform of the other. Thus, roughly
speaking, the restriction of the feasible dose distributions to only the ones that
satisfy a particular finite set of GMCs may be viewed as equivalent to considering
only the specified Fourier coefficients in the expansion of the corresponding
DVH’s. We state a more general classical result from probability theory and
draw the conclusion of Fact 1.1 as its corollary.

For simplicity, here we assume the dose distribution, represented by a ran-
dom variable D, to have a corresponding DVH with no jumps, i.e., a continuous
function, moreover, we assume the derivative of the DVH curve also changes
continuously – think of describing the dose to a volume of interest in the limit-
ing case when the volume of each voxel goes to 0. With this assumption, D is a
continuous random variable. The discussion below may be extended to a more
general case of DVH’s with jumps, for the corresponding rigorous probabilistic
argument see the chapter on characteristic functions in [15].

Recall that D is a continuous random variable if we can write

Pr{D ≤ T} = FD(T ) =

∫ T

−∞
fD(ξ)dξ

for some fD(ξ) ≥ 0, fD(ξ) is called a probability density function of D. We say
that D is supported on [0,M ] if fD(ξ) may be taken to be 0 outside of [0,M ],
in the later case we can also write

FD(T ) =

∫ T

0

fD(ξ)dξ.

Given D, its moment-generating function is defined as

MD(t) =

∫ ∞

−∞
etξdFD(ξ) =

∫ ∞

−∞
etξfD(ξ)dξ

if there exists h > 0 such that MD(t) < ∞ for |t| < h. Note that if D is
supported on a finite interval [0,M ], i.e., has a compact support, MD(t) is
well-defined for all t.

An important property of the moment-generating function of D is that its
k-th derivative at 0 satisfies

M
(k)
D (0) =

∫ ∞

−∞
ξkfD(ξ)dξ = E[Dk],

where E[Dk] is referred to as the k-th moment of D. Observe that the last
identity may be verified by switching the order of differentiation and integration
and using dominated convergence theorem. If D has a compact support, MD(t)
is real-analytic and thus may be expanded into converging Taylor series around
0 for any t:

MD(t) = 1 + E[D] · t +
E[D2]

2!
· t2 +

E[D3]

3!
· t3 + · · · .
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Note that the sequence {E[Dk]}k=0,1,2,... defines MD(t) uniquely.
The Fourier transform [16] of fD(ξ) is defined as

F [fD(ξ)](ω) = f̂D(ω) =
1√
2π

∫ ∞

−∞
e−iωξfD(ξ)dξ,

with its inverse transform

F−1[f̂D(ω)](ξ) =
1√
2π

∫ ∞

−∞
eiωξ f̂D(ω)dω.

Recall that a sufficient condition for

F−1[F [fD(ξ)](ω)](ξ) = fD(ξ)

with continuous fD(ξ) is absolute integrability of fD(ξ), that is

∫ ∞

−∞
|fD(ξ)|dξ < ∞.

A more general analogue of f̂D(ω) as above called FD-characteristic function
may be found in [15].

Theorem 5.1 (Theorem 9.5.1 and its corollary, [15]). If FD is a probability
distribution with an absolutely-integrable characteristic function Φ, then FD has
a bounded continuous density fD = 1√

2π
Φ̂.

Now, observe that if D is a continuous random variable with compact sup-
port in [0,M ] and a continuous density fD(ξ), then we may recover the proba-
bility distribution of D from its moment generating function which is uniquely
determined by E[Dk] moments of D. To understand this, note that

MD(t) =
√

2πF [fD(ξ)](it),

and since the absolute integrability is clearly satisfied for fD(ξ), defined as

fD(ξ) =
1

2π

∫ ∞

−∞
eiωξMD(−iω)dω.

Therefore, as a consequence of the theorem above we have

Corollary 5.1. If D is a continuous random variable on [0, 1] with a continuous
density function fD(ξ), then there is one-to-one correspondence between the
sequence of moments of D, {E[Da]}a=1,2,..., and its c.d.f. FD.

Finally, to establish the Fact 1.1, we have to refine our definition of gEUD
values. Let

g̃EUDa =

∫ 1

0

ξadF (ξ),
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and note that a more customary definition of gEUD values, presented at the
beginning of this paper, corresponds to a discrete approximation of the integral
above, based on voxel-based dose distribution approximation. To get arbitrar-

ily close approximation to the g̃EUDa, one may think of setting voxel volume
asymptotically close to 0.

Now, observe that indeed, due to physical properties and limitations of the
dose distribution, the following holds true.

• The ratio of the dose to a voxel by the voxel volume is confined to a
bounded interval, i.e., it is non-negative and is bounded from above by
some absolute maximum. If nothing else, imposed by the technical capa-
bilities of a linac.

• In the limiting case of voxel volume going to 0, due to scatter the DVH
histogram is a sufficiently smooth curve.

Therefore, the corollary above is applicable and we have one-to-one correspon-

dence between
{

g̃EUDa

}

a=1,2,...
and DVH(T ) = 1 − FD(T ), T ∈ [0, 1].

Strictly speaking, Fact 1.1 should have been stated in terms of g̃EUDa values.

However, since gEUDa approximates g̃EUDa arbitrarily close for small enough
voxel resolution, and Fact 1.1 is used only for motivation, the later gEUD value
definition refinement was purposefully omitted to ease the presentation of our
approach.
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(a) the absolute error bounds (blue curves), spanning 
the envelope containing the target DVH (red curve)

(b) the extreme feasible DVH (in purple) represents a 
good rectal DVH that is clinically achievable and 
meets all relevant dose-volume criteria

(c) the extreme feasible DVH (in purple) represents a 
good rectal DVH that is clinically achievable and 
meets all relevant dose-volume criteria. The large 
volume receiving a low dose is not likely to be of 
clinical significance.

(d) the extreme feasible DVH (in purple) represents a 
good rectal DVH that is clinically achievable and meets 
all relevant dose-volume criteria. The proximity of the 
rectum to the prostate suggest the high dose portion of 
this DVH may not be entirely achievable.

(e) the extreme feasible DVH (in purple) represents a 
good rectal DVH. The dose received by 45% of the 
volume exceeds the normal dose-volume criteria, 
however, this is balanced with exceptional sparing of 
the high dose volume. The proximity of the rectum to 
the prostate suggest the high dose portion of this DVH 
may not be entirely achievable.

(f) the extreme feasible DVH (in purple) represents a 
good rectal DVH that is clinically achievable and meets 
all relevant dose-volume criteria. The proximity of the 
rectum to the prostate suggest the intermediate dose 
portion of this DVH may not be entirely achievable.

Figure 4: DVH margins and extreme distributions for the set of GMCs.




