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Abstract—New images of a three-dimensional scene can be
generated from known image sequences using lightfields. To get
high quality images, it is important to have accurate information
about the structure of the scene. In order to optimize this infor-
mation, we define a residual-function. This function represents
the difference between an image, rendered in a known view from
neighboured images and the original image at the same position.
In order to get optimal results, we minimize the residual-function
by defining a nonlinear least-squares problem, which is solved
by an appropriate optimization method. We use a nonmonotone
variant of the Levenberg-Marquardt method.
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I. INTRODUCTION

It is an important problem to obtain images of an object or a
scene in positions where no images are available. It would be
advantageous, if one could generate this desired image from
already given neighboured images.

One important point in order to get high quality images
is to have accurate information about the geometry of the
object or the scene. When we generate new images using a
scene geometry which represents the real geometry well, we
get good images, too. Otherwise we get images with more
blurring, distortions and superpositions. This also implies that
the quality of the rendered image suggests the quality of the
scene geometry.

But how can we decide wether the quality of an image is
good or bad? For this, we render an image from its neigh-
bours in a position, where already an original image of the
scene exists. Then we compare both images. If the difference
between the two images is small, also the rendered image
and the original image look very similar, the quality of the
rendered image is good and so the assumed scene geometry,
too. Otherwise, if the difference is large, the assumed scene
geometry is bad and must be improved.

We compare the images pixel-wise. Between each pixel of
the original image and the pixel at the same position in the
rendered image we compute the absolute mean difference per
color-channel.

The scene geometry itself is represented by a triangle-
mesh. Our objective is to reconstruct this triangle-mesh in
such a way that there are no differences between the rendered
and the original image. This occurs, if the result of the
residual-function is a vector of zeros. Because we have an

overdetermined system of equations, in general there is no
exact unique solution. So we want to find the solution which
is as close as possible to zero. This leads to a nonlinear least-
squares problem, where we minimize the sum of the squares
of the residual-function result in order to optimize the whole
scene geometry. We solve this problem with the Levenberg-
Marquardt method where we use a nonmonotone extension to
get better results.

In Section 2 we define our objective function. In Section
3 we explain the optimization with the Levenberg-Marquardt
method and the non-monotone version. Section 4 contains
remarks about the implementation. In Section 5 we show some
numerical results and images.

II. THE OBJECTIVE FUNCTION

A. Scene geometry and images

The scene geometry is represented by a triangle mesh of V
vertices vi (1 ≤ i ≤ V ). These vertices can be shifted in each
direction in space, so the geometry will be determind by 3V
parameters
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In the experiments we use an 8× 8 triangle mesh so we have
192 parameter.

The used color model for the images is the RGB-color
model, so we have three channels per pixel. Each image has
a resolution of w × h pixels. In our experiments, we use a
resolution of 256× 256 and 512× 512.

B. Image rendering

To generate a new image from its neighboured images we
use an appropiate renderer from the lgf3-library [10]. The
data which are needed for rendering are the neighboured
images with camera parameters and the triangle mesh which
represents the scene geometry certainly.

Here we define the rendering as the mapping

f : R3V → R3wh (2)
x 7→ f(x) =: y (3)

where x is the above defined parameter vector, which deter-
mines the scene geometry. The vector y as result of f contains
the rendered image in the form

y = (y1,1, . . . , y1,w, . . . , yh,1, . . . , yh,w)> (4)
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where yi,j denotes the color of the pixel in the i-th row and
j-th column and is defined as

yi,j = (yR
i,j , y

G
i,j , y

B
i,j)

>. (5)

Each of the three components of yi,j can be integer values
between 0 and 255. So each pixel can receive 2563 different
colors.

Since it is not necessary for the understanding of the context,
we do not show here the exact definition of f . For more
information about lightfield rendering see [2], [4], [8] for
example.

C. Image comparison

We compare the rendered image with the original image.
For this purpose we compute the absolute mean difference
per color channel for every pixel using the mapping

g : R3wh → Rwh (6)
y 7→ g(y) (7)

with
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and
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∀i = 1, . . . , wh. (10)

The original image is stored in the vector ŷ and the rendered
image in the vector y.

The smaller the difference between the channels of yi and
ŷi is, the smaller becomes the value of gi(yi). If the difference
of all channels is equal to zero, gi(yi) = 0, too.

We note, that the range of gi consists of 766 possible
elements {0, 1

3 , 2
3 , 1, . . . , 255}.

D. The residual function

We get the residual function as a composition of image
rendering and image comparison

R : R3V → Rwh (11)
x 7→ R(x) := (g ◦ f)(x). (12)

In order to find the optimal scene geometry x∗, we have to
solve the overdetermined system

R(x) = 0 (13)

which has less degrees of freedom than equations (3V < wh)
and so there need not exist any exact solution.

E. The objective function

We have to find a solution x∗ for which the value ‖R(x)‖
becomes minimal. Here we denote with ‖ · ‖ the Euclidean
norm. For this, we define our objective function

F : R3V → R (14)

x 7→ F (x) :=
1
2
‖R(x)‖2 (15)

and want to determine a vector x∗, which minimizes F .
This leads to the nonlinear optimization problem without
constraints

min
x∈R3V

F (x), F (x) =
1
2
‖R(x)‖2 (16)

This is a nonlinear least-squares problem.

F. Derivatives of the objective function

To solve (16) we need informations about the derivatives of
first and second order of F . The first derivative is

F ′(x)> = J(x)>R(x) ∈ R3V (17)

where J(x) is the wh × 3V Jacobian matrix of R(x). The
second derivative is

F ′′(x) = J(x)>J(x) + B(x) ∈ R3V×3V (18)

where B(x) contains derivatives of second order of R(x). To
compute all of these is very expensive. Since ‖B(x)‖ → 0 if
‖R(x)‖ → 0 and this happens near an optimal solution x∗,
we can omit B(x) in (18).

III. OPTIMIZATION

For the optimization we use the Levenberg-Marquardt
method [7], [9]. This is an iterative method, whose search
direction interpolates between the direction of the gradient-
method and the Gauss-Newton method. So it combines the
positive features of both methods. First, it can ensure the
convergence far away from a minimizer point, second it
has fast local convergence near a minimizer point. In the
Levenberg-Marquardt method, both the search direction and
the step length will be computed simultaneously. To compute
one step dk, we solve the system of equations

(JT
k Jk + λI)dk = −JT

k Rk (19)

based on the second order Taylor approximation of the objec-
tive function in xk where Jk = J(xk) and Rk = R(xk). Jk

denotes the Jacobian matrix of Rk and I the identity matrix.
The step length and search direction of dk depend on the
choice of the Levenberg-Marquardt parameter λ. If λ = 0,
the direction we get is the same as for the Gauss-Newton
method. The step length is maximal. If we let λ → ∞, the
search direction is the direction of the steepest descent with a
very small step length, because limλ→∞(JT

k Jk +λI)−1 → 0.
The choice of λ depends on the ratio of the actual reduction

to the predicted reduction of the objective function. The actual
reduction ∆ared is defined as

∆ared = Fk − Fk+1 (20)
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The predicted reduction ∆pred based on the quadratic approx-
imation of F in the k-th iteration point xk

F̃ (xk + dk) = F̃k(dk) = Fk + d>k J>k Rk +
1
2
d>k (J>k Jk)dk. (21)

is defined as

∆pred = −1
2
d>k J>k Rk +

1
2
λ‖dk‖2 (22)

The ratio ∆ared/∆pred specifies the quality of the approxima-
tion F̃k. The bigger the ratio is, the better F is approximated
by F̃ in a neighbourhood of xk.

Algorithmus 3.1 (MLM(Monotone Levenberg Marquardt)):
To solve (16), start from x0. Given µ > 0, ν > 1, λ > 0,
F (x0). Set k = 0.

1) Compute Rk, Jk and F ′k = JT
k Rk. If a stop criterion is

fulfilled, STOP!
2) Solve (JT

k Jk + λI)dk = −JT
k Rk to obtain dk.

3) Compute Fk+1 = F (xk + dk).
4) Compute ∆ared = Fk − Fk+1,

∆pred = −(F ′kdk + λ‖dk‖2)/2.
5) If ∆ared/∆pred < µ, set λ = λ ∗ ν, GOTO 2.
6) If µk ≤ ∆ared/∆pred, set λ = λ/ν and k = k + 1,

GOTO 1.
In section IV-C we give information on our stop criterion in
the algorithm.

The algorithm MLM generates a monotonically decreasing
sequence of objective function values.

To prevent the algorithm from being trapped early in the
iteration in the bottom of a valley, Zhang and Chen [11]
relax the monotonicity requirement by the introduction of a
nonmonotone linesearch rule. This enhances the possibility of
finding a global optimum and leads to the algorithms NMLM1
and NMLM2 defined below.

In Section V, we give an example (Example 1: Er-
langer) where only the nonmonotone algorithms NMLM1 and
NMLM2 obtain an acceptable solution, whereas the monotone
Levenberg-Marquardt method MLM fails. Only for relatively
simple scene geometries (see the Examples Perri and Claus),
also MLM produces acceptable results.

Define the actual reduction as

∆ared = Fmax − Fk+1 (23)

where Fmax is defined by

Fmax = max{Fk, Fk−1, · · · , Fk−M} (24)

and Fi does not exists for negative i. Let M ≥ 0 be given.
Algorithmus 3.2 (NMLM1(Nonmonotone LM1)): To solve

(16), start from x0. Given µ > 0, ν > 1, λ > 0, η > 0,
M ≥ 0, F (x0). Set k = 0.

1) Compute Rk, Jk and F ′k = JT
k Rk. If a stop criterion is

fulfilled, STOP!
2) Solve (JT

k Jk + λI)dk = −JT
k Rk to obtain dk.

3) Compute Fk+1 = F (xk + dk).
4) Compute ∆ared = Fmax − Fk+1,

∆pred = −(F ′kdk + λ‖dk‖2)/2.

5) Compute µ̃k =

{
µ, if M = 0
min{µ, η

‖F ′k‖2 ‖dk‖2
∆pred

}, if M > 0

6) If ∆ared/∆pred < µ̃k, set λ = λ ∗ ν, GOTO 2.
7) If µ̃k ≤ ∆ared/∆pred, set λ = λ/ν and k = k + 1,

GOTO 1.
For a further relaxation, ∆pred is set to

∆pred = −1
2
d>k J>k Rk (25)

which is based upon the quadratic Levenberg-Marquardt
model of F in xk

F̂ (xk + dk) = Fk + d>k J>k Rk +
1
2
d>k (J>k Jk + λI)dk. (26)

Algorithmus 3.3 (NMLM2(Nonmonotone LM2)): To solve
(16), start from x0. Given µ > 0, ν > 1, λ > 0, λmin > 0,
η > 0, M ≥ 0, F (x0). Set k = 0.

1) Compute Rk, Jk and F ′k = JT
k Rk. If a stop criterion is

fulfilled, STOP!
2) Solve (JT

k Jk + λI)dk = −JT
k Rk to obtain dk.

3) Compute Fk+1 = F (xk + dk).
4) Compute ∆ared = Fmax − Fk+1, ∆pred = −F ′kdk/2.
5) Compute µ̂k

µ̂k =

{
µ, if M = 0
min{µ, η

‖F ′k‖2 ‖dk‖2
∆pred

‖J>k Jk + λI‖∞}, if M > 0
6) If ∆ared/∆pred < µ̂k, set λ = λ ∗ ν, GOTO 2.
7) If µ̂k ≤ ∆ared/∆pred, set λ = max(λ/ν, λmin) and

k = k + 1, GOTO 1.

IV. IMPLEMENTATION OF THE OPTIMIZATION

A. Computation of the Jacobian matrix

We compute the Jacobian matrix J of the residual function
numerically because we do not have any information about
the analytical derivatives. For this we favour the use of
central differences over the use of forward differences. Indeed
computing central differences is twice as expensive. But we
get a smaller truncation error and so the iteration points will
be computed more accurately.

The adaption of the step length is important in the com-
putation of the Jacobian matrix. Sufficiently small changes in
the vector x do not result in changes in the rendered image,
because an image consists of finite colors. Expressed in more
mathematical terms, f maps to discrete values.

So, if we compute all columns Jj (1 ≤ j ≤ 3V ) of J with
a small change δ, given by the machine precision, such that
f(x + δej) = f(x) = f(x − δej), where ej denotes the j-th
unity vector, we have

R(x + δej) = R(x− δej) (27)

and therefore J contains only zeros.
The optimal step length δ = 0.01 used in our experiments

was estimated experimentally.

B. Efficient storage of the Jacobian matrix

In our experiments the percentage of elements of the Jaco-
bian matrix equal to zero was about 99 percent. So, we save
it as a sparse matrix. This has two advantages:

To begin with the acceleration of the matrix-matrix multipli-
cation. In each iteration we multiply the transposed Jacobian
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matrix of R with the Jacobian matrix itself. In our experiments,
the Jacobian matrix has a dimension of 262 144×192. Saved as
a full matrix, the time to multiply them is about 300 seconds,
which is not an acceptable time, seeing that we compute up
to 100 iterations. Saved as a column oriented sparse matrix,
one multiplication takes about 0.5 seconds.

Moreover, we save a lot of memory. Each entry of the
Jacobian matrix is represented by a double (8 byte). Saved
as a full matrix, it needs about 384MB, saved as a column
oriented sparse matrix only 8MB. Note that more refinement of
the mesh or a higher resolution of the images yields a Jacobian
matrix, whose size exceeds the main memory rapidly, if we
would save it as a full matrix.

C. Choice of the stop criterion

The most widely used stop criterion ‖F ′(xk)‖ < ε where
ε > 0 is a small number cannot be used for our problem.
The reason is the finite difference approximation of ‖F ′(x)‖,
which can only attain a finite number of values.

We let the algorithm stop if the Levenberg-Marquardt
parameter λ exceeds the threshold λmax = 1014. Here the
computed length of dk is so small that there are would be no
difference between Fk+1 and Fk because of the discrete state
of the residual function.

V. RESULTS

In the following we show three examples of lightfields,
where we reconstruct the scene geometry.

We perform the numerical experiments on an Intel Pen-
tium 4 CPU 3GHz with 2GB RAM and a nVidia GeForce
MX440SE graphics card.

In the algorithm we choose the following parameter

µ = 0.55, ν = 2, η = 10−3, λmin = 1.0, λmax = 1014. (28)

For the numerical computation of the Jacobian matrix we set
δ = 0.01. As initial value we set the Levenberg-Marquardt
parameter λ = 1.0. We represent the scene geometry with a
regular 8×8 triangle mesh. As initial data for the optimization
we choose a flat mesh parallel to the original image.

A. Example 1: Erlanger

In Fig. 1 we show two rendered images (1c) and (1d) as
results after the optimization of the scene. All images have a
resolution of 512× 512 pixels.

We generate a new image in the same position and with
the same camera parameters as the original image (1b) using
5 source images. Fig. (1a) shows the rendered image before
the optimization of the scene geometry. We see the blurring
and superpositions clearly, which arise due to the wrong scene
geometry. Fig. (1d) was generated using the optimized scene
geometry after applying of a monotone algorithm. For the
generation of image (1c) we use the scene geometry which is
the result of the optimization with the nonmonotone algorithm
NMLM2 with M = 4.

We see that after application of the monotone algorithm
some superpositions do not yet disappear entirely. Nevertheless

it is a good result. We got still better results with the non-
monotone algorithm. In the rendered image, no more blurring
is recognizable.

The images (2a) and (2b) in Fig. 2 were generated in the
same position as the images in Fig. 1, but this time using 10
source images. Due to the wrong scene geometry in Fig. (2a)
this results in still more superpositions and blurring than in
(1a). Here the nonmonotone Levenberg-Marquardt algorithm
NMLM2 with M = 8 yields very good results (see (2b)),
too. The images (2c) and (2d) show the differences between
the original image (1a) and the rendered images (2a) and (2b)
respectively .

Fig. 3 shows the optimized scene geometry from two
different vantage points. The third image shows the optimized
triangle mesh without texture.

B. Example 2: Perri

In Fig. 4 the first two images show the rendered images
before and after the optimization, respectively. We used 10
source images to generate them. All images have a resoulution
of 512× 512 pixels. The last two images of Fig. 4 show the
difference between the original image and the rendered images
again. In this lightfield there were hardly any differences
between the results of the nonmonotone and the monotone
algorithms. All of them give good results. The application of
the nonmonotone algorithms leads to an objective function’s
value that is smaller.

Fig. 5 shows the optimized scene geometry from two
different vantage points. The third image shows the optimized
triangle mesh without texture.

C. Example 3: Claus

In Fig. 6 the first two images also show the rendered
images before and after the optimization, respectively. We
used 7 source images to generate them. All images have a
smaller resolution of 256 × 256 pixels. The last two images
of Fig. 6 show the difference between the original image
and the rendered images, too. Indeed, the differences between
the results of the nonmonotone and the monotone algorithms
are not as small as for the Perri lightfield. Nevertheless, the
results of the algorithms differ hardly. The objective function’s
value after the optimization with the nonmonotone algorithm is
about 10 percent smaller than the value after the optimization
with a monotone algorithm.

Fig. 7 shows the optimized scene geometry from two
different vantage points. The third image shows the optimized
triangle mesh without texture.
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(a) rendered image before opti-
mization

(b) original image

(c) rendered image after optimiza-
tion with nonmonotone algorithm

(d) rendered image after optimiza-
tion with a monotone algorithm

Fig. 1.

(a) rendered image before opti-
mization

(b) rendered image after optimiza-
tion with nonmonotone algorithm

(c) difference image before opti-
mization

(d) difference image after opti-
mization with nonmonotone algo-
rithm

Fig. 2.

(a) view from online-renderer
testULGHW-Renderer

(b) view from online-renderer
testULGHW-Renderer

(c) optimized proxy. View from
offview

Fig. 3.

(a) rendered image before opti-
mization

(b) rendered image after optimiza-
tion with a monotone algorithm

(c) difference image before opti-
mization

(d) difference image after opti-
mization with a monotone algo-
rithm

Fig. 4. Perri
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(a) view from online-renderer
testULGHW-Renderer

(b) view from online-renderer
testULGHW-Renderer

(c) optimized proxy. View from
offview

Fig. 5.

(a) rendered image before opti-
mization

(b) rendered image after optimiza-
tion with a monotone algorithm

(c) difference image before opti-
mization

(d) difference image after opti-
mization with a monotone algo-
rithm

Fig. 6. Claus

(a) view from online-renderer
testULGHW-Renderer

(b) view from online-renderer
testULGHW-Renderer

(c) optimized proxy. View from
offview

Fig. 7.
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