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Abstract

In this paper, we study polynomial-time interior-point algorithms in view of information ge-
ometry. Information geometry is a differential geometric framework which has been successfully
applied to statistics, learning theory, signal processing etc. We consider information geometric
structure for conic linear programs introduced by self-concordant barrier functions, and develop a
precise iteration-complexity estimate of the polynomial-time interior-point algorithm based on an
integral of (embedding) curvature of the central trajectory in a rigorous differential geometrical
sense. We further study implication of the theory applied to classical linear programming, and
establish a surprising link to the strong “primal-dual curvature” integral bound established by
Monteiro and Tsuchiya, which is based on the work of Vavasis and Ye of the layered-step interior-
point algorithm. By using these results, we can show that the total embedding curvature of the
central trajectory, i.e., the aforementioned integral over the whole central trajectory, is bounded
by O(n3.5 log(χ̄∗A + n)) where χ̄∗A is a condition number of the coefficient matrix A and n is the
number of nonnegative variables. In particular, the integral is bounded by O(n4.5m) for combi-
natorial linear programs including network flow problems where m is the number of constraints.
We also provide a complete differential-geometric characterization of the primal-dual curvature
in the primal-dual algorithm. Finally, in view of this integral bound, we observe that the pri-
mal (or dual) interior-point algorithm requires fewer number of iterations than the primal-dual
interior-point algorithm at least in the case of linear programming.

Key words: interior-point methods, information geometry, polynomial-time algorithm, linear
programming, semidefinite programming, embedding curvature, computational complexity, dif-
ferential geometry, convex programming

1 Introduction

1.1 Setting and background

Let E be an n-dimensional vector space, let Ω ⊂ E be a proper open convex cone, and let E∗ be the

space of linear functional on E. We denote by 〈 · , · 〉 the duality product between elements in E
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and E∗. Let Ω∗ ⊂ E∗ be the open dual cone {s ∈ E∗ | 〈s, x〉 > 0, ∀x ∈ cl(Ω)\{0}} of Ω. Associated

with Ω and Ω∗, we consider the following dual pair of convex linear programs:

min 〈c, x〉, s.t. x ⊂ (d + T) ∩ cl(Ω) (1)

and

min 〈d, s〉, s.t. s ∈ (c + T∗) ∩ cl(Ω∗), (2)

where c ∈ E∗ and d ∈ E, T ⊂ E is (n − m)-dimensional linear subspace, and T∗ ⊂ E∗ is m-

dimensional linear subspace which are mutually “orthogonal”, i.e., for any s ∈ T and x ∈ T∗, we

have 〈x, s〉 = 0.

This is a generic framework of conic linear programming which includes classical linear program-

ming established by Dantzig [12], and semidefinite programming by Nesterov, Nemirovski [42] and

Alizadeh [1]. Linear programming is widely used as one of the major models in various areas of engi-

neering and information processing, surviving over 60 years. Now we can even solve a linear program

with one billion variables and three hundred million constraints [22]. Semidefinite programming

has been extensively studied in the last decade with the development of efficient polynomial-time

interior-point algorithms and due to its wide applicability in computer science, control theory, statis-

tics, learning theory and pattern recognition etc. [10, 72]. The diverse development of interior-point

algorithms was initiated by the seminal paper by Karmarkar who proposed the projective-scaling

method for classical linear programming [27].

The purpose of this paper is to establish a direct connection between the complexity theory

of polynomial-time interior-point algorithms for conic convex programs and information geometry.

These two theories, the former established by Nesterov and Nemirovski [42] the latter by Amari

and Nagaoka [3, 4, 6, 41, 51], are among several major innovative developments in computational

mathematics and mathematical informatics in the last two decades.

We will demonstrate that information geometry provides a quite suitable differential geomet-

rical framework for analyzing polynomial-time interior-point algorithms for convex programming.

Information geometry is a differential geometric framework for informatics and has been successfully

applied to several areas such as statistics, signal processing and machine learning. From mathemat-

ical point of view, information geometry is nothing but differential geometry of convexity. Recently,

importance of convexity in the context of modeling is recognized more and more due to the suc-

cess of convex modeling in various areas of engineering and mathematical sciences based on convex

optimization [10, 11, 40]. Therefore, it would be nice if we could develop a theory which tightly

connect information geometry and convex optimization, the two major areas where convexity plays

fundamental roles, in particular from the viewpoint of complexity.

Based on this perspective, we will develop a polynomial-time path-following interior-point algo-

rithm for conic convex programming based on information geometry. The iteration-complexity of the
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path-following algorithm is estimated precisely with an integral of (directional) embedding curvature

of the central trajectory in a rigorous differential geometrical sense.

We further study implication of the theory when applied to classical linear programming, and

establish a surprising link to the strong curvature integral bound for primal-dual central trajectory

established by Monteiro and Tsuchiya [39], which is based on the work of Vavasis and Ye of the

layered-step interior-point algorithm [71]. The Vavasis-Ye algorithm is a powerful algorithm which

becomes a strongly polynomial-time interior-point algorithms for combinatorial linear programs. This

direction of research is somehow connected to the problem of existence of a strongly polynomial-

time algorithm for linear programming, one of the fundamental open problems in computational

complexity theory and computational mathematics [61].

In the following, we will provide brief introductory descriptions on the topics we will deal with.

[Differential geometric approach to interior-point algorithms, mainly based on Rieman-

nian geometry]

So far, there has been several papers which attempted to establish connections between differential

geometry and interior-point algorithms. The approach attracts us from the early days of interior-

point algorithms when people find that a path called central trajectory plays the fundamental role

[23, 32, 49, 52]. One of the first literatures which touches on geometrical structure of the interior-point

algorithms is Bayer and Lagarias [8, 9]. Karmarkar [28] suggested an interesting idea of introducing

analyzing the interior-point algorithm based on Riemannian geometry and the central trajectory

curvature integral. Nesterov and Nemirovski [42] introduced the general theory of polynomial-time

interior-point algorithms based on the self-concordant barrier function. After this seminal work,

geometrical study of interior-point method is conducted by several authors including [17, 44, 43]

in the context of general convex programs, where structure of geodesic and Riemannian curvature

etc. are studied based on the Riemannian geometrical structure defined by taking the Hessian of

the self-concordant barrier function as the Riemannian metric. While the aforementioned Hessian

structure sounds natural in geometrical approach to interior-point algorithm, a difficulty arises when

we try to find a direct link between the Riemannian curvature of the central trajectories and the

iteration-complexity of the interior-point algorithms.

Another meaningful geometrical machinery for development of polynomial-time interior-point al-

gorithms is symmetric cones and Euclidean Jordan algebra [18]. They provide a transparent unified

framework of treating polynomial-time primal and primal-dual interior-point algorithms for sym-

metric cone programming, the case when Ω in (1) is a symmetric cone [19, 20, 21]. Symmetric

cone programming [10] is an important subclass of conic linear programming which includes linear

programming and semidefinite programming as special case. It also contains second-order cone pro-

gramming [2, 66, 36], another convex optimization problem which has many applications. Symmetric

cones are studied in detail from the viewpoint of Riemannian geometry [18] and Hessian geometry

3



[51].

[Iteration-complexity bound based on an integral over the central trajectory (in partic-

ular for linear programming)]

Another thread of research stemmed from [28] concentrates on estimating the number of iterations

of interior-point algorithms with a certain integral over the central trajectory, putting aside the

Riemannian geometry. Many of these results are on primal-dual interior-point methods for linear

programming [29, 30, 32, 34, 35, 57] which are known to be the best. The first concrete result

is due to Sonnevend, Stoer and Zhao [53], who introduced a fundamental integral on the central

trajectory which, roughly, is proportional to the iteration-complexity of the interior-point algorithms.

Stoer and Zhao [74] subsequently established a rigorous bound of the number of iterations of a

predictor-corrector type primal-dual algorithm based on the integral (see also [73]). Later Monteiro

and Tsuchiya proved that the number of iterations is estimated “precisely” with the integral in an

asymptotic sense [39].

On the other hand, in the middle of 90’s, Vavasis and Ye developed an interesting interior-point

method called layered-step interior-point method [71] (see also [33, 37] for variants). The algorithm

is a modification of the Mizuno-Todd-Ye (MTY) predictor-corrector (PC) algorithm [34], where a

step called the layered-step is taken once in a while instead of an ordinary predictor-step. A great

feature of this algorithm is that its iteration-complexity is O(n3.5 log(χ̄A + n)), just depends on A

but neither b nor c, where n is the number of nonnegative variables and χ̄A is a condition number of

the coefficient matrix A of a linear program [16, 24, 54, 62, 63, 71], and bounded by 2O(LA), where

LA is the input bit length of A. Monteiro and Tsuchiya extensively studied relationship between the

Vavasis-Ye algorithm and the standard MTY-PC algorithm, and succeeded to obtain an iteration-

complexity bound of the MTY-PC algorithm which yet depends on b and c but in a weaker sense

[38]. Finally, Monteiro and Tsuchiya established that the aforementioned integral introduced by

Sonnevend, Stoer and Zhao is bounded by O(n3.5 log(χ̄∗A +n)) over the whole central trajectory [39],

where χ̄∗A is a scaling invariant condition number of the coefficient matrix A introduced in [38] as an

extension of χ̄A and χ̄∗A ≤ χ̄A ≤ 2LA holds.

[Information geometry and interior-point algorithms]

Now we turn our attention on information geometry. Information geometry [3, 6, 41] is a differ-

ential geometrical framework successfully applied to many areas in informatics including statistics,

signal processing, machine learning, statistical physics etc. Riemannian metric and two mutually

dual connections are introduced based on a strongly convex function. In particular, the dually flat

space which is “flat” with respect to the both connections plays fundamental role in information

geometry.

One of the key observations in connecting interior-point algorithms to information geometry is

that the trajectories appearing in the primal interior-point methods are “straight lines” under the
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gradient map of the logarithmic barrier function. This fact is observed by Bayer and Lagarias [8, 9],

and Tanabe [56, 59]. Tanabe studied the map under the name of center-flattening transformation,

in connection with differential geometrical framework for nonlinear programming (see, e.g., [55]). Iri

[25] studied integrability of vector and multivector field associated with the interior-point methods

generated by the logarithmic barrier function, which is somewhat connected to this structure.

The connection between information geometry and interior-point algorithms was firstly pointed

out in Tanabe and Tsuchiya [60], in the context of linear programming. Specifically, they demon-

strated that the mathematical structure of the interior-point algorithms for linear programs is very

closely related to the dually flat space defined by the logarithmic barrier function. The affine-scaling

trajectories, which contain the central trajectory as a special case, are dual geodesics. Tanabe fur-

ther studied fiber structure of primal and dual problems in linear programming from information

geometric viewpoint [58] (see also [59]).

Subsequently, Ohara introduced an information geometrical framework for symmetric positive

semidefinite matrices defined by the logarithmic determinant function. See, for example, [48] for

details. Ohara studied a class of directly solvable semidefinite programs from the viewpoint of infor-

mation geometry and Euclidean Jordan algebra, and found that the concept of doubly autoparallel

submanifold plays a fundamental role for such class [45, 46]. In these papers, he further developed

a predictor-corrector type path-following algorithm for semidefinite programming based on informa-

tion geometry, and analyzed a relation between the embedding curvature and performance of the

predictor-step. The algorithm we will develop and analyze in this paper is based on this algorithm.

Doubly autoparallel submanifold for symmetric cones is later studied in [47, 69].

Finally, we should mention that [17] introduces one parameter family of connections in the Rie-

mannian geometrical setting defined by the self-concordant barrier, and studies behavior of the

associated geodesics. This is exactly the same as α-connections in information geometry.

[Other geometrical approaches]

Curvature of the central trajectory for linear programs has been studied from various other

viewpoints. Deza et al. [14] studied interesting behavior of the central trajectory for Klee-Minty

cubes with numerous redundant constraints. Dedieu et al. [13] analyzed average total curvature of

the central trajectory by using techniques from integral geometry and algebraic geometry. They

analyze curvature of the central trajectory as a curve in (high)-dimensional Euclidean space, and

this setting seems somewhat different from ours.

1.2 Outline and main results

Now we are ready to outline the structure and the main results of this paper. Sections 1 to 3

are preliminary sections to introduce information geometry, interior-point methods based on the

Nesterov-Nemirovski self-concordant barriers.
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The original results are presented from Section 4. We consider the information geometrical struc-

ture based on the p-logarithmically homogeneous self-concordant (i.e., p-normal) barrier function

ψ(x) associated with the cone Ω. The Riemannian metric is defined as the Hessian of ψ. The

Legendre transformation −∂ψ(x)/∂x defines a one-to-one mapping between Ω and Ω∗, and ∇- and

∇∗-connection are defined based on this structure. In particular, the interior P of the primal fea-

sible region is a ∇-autoparallel submanifold, and the interior D of the dual feasible region is a

∇∗-autoparallel submanifold. The central trajectory γ is the path defined as the collection of the

optimal solution x(t) of the problem

min t〈c, x〉+ ψ(x), s.t. x ∈ (d + T) ∩ cl(Ω), (3)

where t > 0 is a parameter. The interior-point algorithms follow this path approximately. It is known

that x(t) is an (p/t)-approximate solution, i.e, 〈c, x(t)−xopt〉 ≤ p/t (xopt is an optimal solution). As

one dimensional submanifold in Ω (or Ω∗), the central trajectory is written as γ ≡ {γ(t)|t ∈ (0,∞]},
where x(t) = x(γ(t)). The central trajectory is characterized as γ = P ∩ Hom(D), the intersection

of ∇-autoparallel submanifold P and ∇∗-autoparallel submanifold Hom(D), where Hom(D) is a

“homogenization” of D.

Then we develop a predictor-corrector path-following algorithm. We define the neighborhood

N (β) ⊂ int(Ω) of the central trajectory γ, where β ∈ (0, 1) is a parameter to determine its width.

We trace the path in the dual coordinate (∇∗-affine coordinate), i.e., in the space of the dual variables.

One iteration of the algorithm consists of a predictor-step and a corrector-step. In the predictor-step,

the iterate is supposed to be sufficiently close to the path γ and we take the largest step along the

tangent of the path within the neighborhoodN (β). Then the iterate is pulled back toward the central

trajectory with the corrector step. This algorithm is developed based on information geometry, and

a bit different from the traditional predictor-corrector algorithm in the literatures. We will prove

polynomiality of the algorithm based on the theory of Nesterov and Nemirovski. Specifically, we will

show that the algorithm is able to move from a neighbor point of γ(t1) to a neighbor point of γ(t2)

(t1 < t2) in O(
√

p log(t2/t1)) iterations, going through the neighborhood N (β) of the path γ.

Then in Sections 5 and 6, we will develop the most interesting results in this paper. In Section 5,

we will show that the number of iterations of the predictor-corrector algorithm developed in Section

4 with the neighborhood N (β) is written as follows, completely in terms of information geometry:

(# of iterations of the interior-point method to follow the central trajectory from γ(t1) to γ(t2))

=
1√
β

∫ t2

t1

1√
2
‖H∗

P(γ̇, γ̇)‖1/2dt +
o(1)√

β
.

Here, H∗
P(·, ·) is the embedding curvature of the primal feasible region with respect the dual connec-

tion, and γ̇ is the tangent vector of the central trajectory. We note that the above estimate becomes

zero when H∗
P(·, ·) = 0. This corresponds to the case where P is doubly autoparallel [45, 46, 69].
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In Section 6, we apply the result to the concrete case of classical linear programming. With the

help of the results developed by Monteiro and Tsuchiya [37, 38, 39] and Vavasis and Ye [71], we

will show that the total curvature integral (improper integral from 0 to ∞) exists and is bounded as

follows: ∫ ∞

0

1√
2
‖H∗

P(γ̇, γ̇)‖1/2dt = O(n3.5 log(χ̄∗A + n)),

where χ̄∗A is a scaling-invariant condition number of the coefficient matrix A ∈ Rn×m of the standard

form linear program [38, 39]. Thus, surprisingly, the bound does not depend on b nor c. The condition

number χ̄∗A is known to be O(2LA) where LA is the input size of A, and for the class of combinatorial

linear programs including network problems where A is a 0-1 matrix, we have the bound
∫ ∞

0

1√
2
‖H∗

P(γ̇, γ̇)‖1/2dt = O(n4.5m),

just depends on the dimension of the problem. This result may have its own interest as a theorem in

information geometry, describing a global structure of the central trajectory as a geometrical object.

Through the analysis, we also provide a complete characterization of the primal-dual curvature

studied in [39] in terms of information geometry. As a direct implication, we show that the primal

(or) dual algorithm always require fewer iterations than primal-dual algorithms in view of the integral

bound.

1.3 Note on Revision (March 2009)

We found that the embedding curvature was not expressed correctly in the first version released

on December 2007 (the last two lines of p.10 and (10)). The expression was used in the proof of

Lemma 5.3. We removed that part in revision and rewrote the proof of Lemma 5.3 (without using

the expression). The lemma itself holds without any change of statement. Other typos were also

corrected in revision.

2 Information Geometry and Dually Flat Space

In this section, we briefly describe a framework of information geometry. For details see [4, 6, 51].

[Dually flat spaces]

Let E and E∗ be an n-dimensional vector space and its dual space, respectively. We denote by

〈s, x〉 the duality product of x ∈ E and s ∈ E∗. Let {e1, . . . , en} be basis vectors of E and {e1∗, . . . , en∗}
be its dual basis vectors of E∗ satisfying 〈ei, e

j
∗〉 = δj

i . For x ∈ E we consider the affine coordinate

system (x1, . . . , xn) with respect to {e1, . . . , en}, i.e, x =
∑

xiei. This coordinate system is referred

to as x-coordinate. Similarly, for s ∈ E∗ we consider the affine coordinate system (s1, . . . , sn) with

respect to {e1∗, . . . , en∗}, i.e., s =
∑

sie
i∗. This coordinate system is referred to as s-coordinate.
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Let Ω be an open convex set in E. We consider Ω as a manifold with global coordinate x as

explained above and introduce dually flat structure on it. Let ψ(x) be a smooth strongly convex

function on Ω. Then the mapping s(·) : Ω → E∗ defined by:

s(·) : x 7→ s, si = −∂ψ/∂xi (4)

is smoothly invertible on its image Ω∗ ≡ s(Ω) ⊂ E∗ because the Hessian matrix of ψ is positive

definite. Thus, we can identify Ω∗ with Ω, and call (s1, . . . , sn) dual coordinates of Ω. The set Ω∗

becomes convex in E∗ under appropriate regularity condition, e.g., if ψ(x) → ∞ as x → ∂Ω. We

illustrate the situation in Fig. 1.

Convex in       coordinate

Convex in       coordinate

Figure 1: Dually flat space.

The conjugate function ψ∗ on Ω∗ is defined by

ψ∗(s) = sup
x∈Ω

{〈 − s, x〉 − ψ(x)}.

Note that the inverse mapping of x(·) : Ω∗ → Ω is represented by

x(·) : s = (si) 7→ x = (xi), xi = −∂ψ∗/∂si. (5)

In this paper we call the mapping s(·) and x(·) the Legendre transformations.

Riemannian metric tensor G on Ω defines an inner product of TxΩ, the tangent space of Ω at x.

For basis vector fields ∂/∂xi on Ω, their inner product are given by the components of G, i.e.,

(Gx)ij = G

(
∂

∂xi
,

∂

∂xj

)
.

In information geometry, we define G by the Hessian matrix of ψ, i.e.,

(Gx)ij ≡ ∂2ψ

∂xi∂xj
(x).

8



Then, for the basis vector fields ∂/∂si, it holds that

(Gs)ij ≡ G

(
∂

∂si
,

∂

∂sj

)
=

∂2ψ∗

∂si∂sj
(s).

Note that we have G−1
x = Gs for s = s(x), and further the Jacobi matrix for the coordinate trans-

formation from x to s coincides with −Gx, i.e,

∂s

∂x
≡

(
∂si

∂xj

)
= −Gx.

For V ∈ TxΩ, the length
√

Gx(V, V ) of V is denoted by ‖V ‖x.

Now we introduce affine connections on Ω, which determines structure of the manifold such as

torsion and curvatures. The most significant feature of information geometry is that it invokes two

affine connections ∇ and ∇∗, which accord with dualities in convex analysis, rather than the well-

known Levi-Civita connection in Riemannian geometry. The affine connections ∇ and ∇∗ are defined

so that the x- and s-coordinates are, respectively, ∇- and ∇∗-affine, in other words, their associated

covariant derivatives satisfy

∇ ∂

∂xi

∂

∂xj
= 0, ∇∗∂

∂si

∂

∂sj
= 0, ∀i, j. (6)

Consequently, we also have the following alternative expressions in the other coordinates:

∇ ∂
∂si

∂

∂sj
=

n∑

k=1

Γij
k

∂

∂sk
, Γij

k (s) ≡
n∑

k=1

Gkl
∂3ψ∗

∂si∂sj∂sl
.

∇∗∂

∂xi

∂

∂xj
=

n∑

k=1

Γ∗kij

∂

∂xk
, Γ∗kij (x) ≡

n∑

k=1

Gkl ∂3ψ

∂xi∂xj∂xl
.

The definition (6) implies that both ∇ and ∇∗ are flat connections, i.e., the associated torsions and

Riemann-Christoffel curvatures vanish. Given the structure (G,∇,∇∗) constructed above, Ω is called

a dually flat manifold. We say ψ and ψ∗ potential functions of the structure.

[Autoparallel Submanifolds and Embedding Curvature]

Let M be the intersection of Ω and an arbitrary affine subspace A ⊂ E represented in x-

coordinate, i.e.,

M≡ Ω ∩ A, A ≡ {x|x = c0 +
k∑

i=1

yici, ci ∈ E, yi ∈ R}, (7)

then, by the definition in (6), M is interpreted as a flat submanifold in terms of∇. We call a subman-

ifold M defined in (7) ∇-autoparallel. In particular, a one-dimensional ∇-autoparallel submanifold

is called a ∇-geodesic. Similarly, a ∇∗-autoparallel submanifold M∗ is defined by the intersection

of Ω and x(A∗), where A∗ ⊂ E∗ is an arbitrary affine subspace represented in s-coordinate, and
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we call a one-dimensional ∇∗-autoparallel submanifold a ∇∗-geodesic. Let M be a ∇-autoparallel

submanifold of Ω and consider its homogenization in x-coordinate, i.e.,

Hom(M) ≡ {x|x = tc0 +
k∑

l=1

yici, t > 0} =
⋃

t>0

tM, tM≡ {x|x = tx′, x′ ∈M}.

Then, Hom(M) is a ∇-autoparallel submanifold of Ω and {t, y1, . . . , yk} is a ∇-affine coordinates for

Hom(M). An analogous notation is applied to a∇∗-autoparallel submanifold in Ω using s-coordinate.

We sometimes say x- and s-autoparallel meaning that ∇- and ∇∗-autoparallel.

Let M be a k-dimensional submanifold in the dually flat manifold Ω. We define the embed-

ding curvature HM(·, ·) as follows. Since the tangent space TxΩ at x ∈ M has the orthogonal

decomposition with respect to the Riemannian metric G, i.e.,

TxΩ = TxM⊕ TxM⊥,

we can define the orthogonal projection Π⊥x : TxΩ → TxM⊥ at each x. For tangent vector fields X

and Y on M, let HM(X,Y ) be a normal vector field on M defined by

(HM(X,Y ))x = Π⊥x (∇XY )x ∈ TxM⊥.

at each x. Such a tensor field HM is called the (Euler-Schouten) embedding curvature or the second

fundamental form ofM with respect to ∇. Similarly, we can introduce the dual embedding curvature

H∗
M by replacing ∇ with ∇∗, i.e,

(H∗
M(X,Y ))x = Π⊥x (∇∗XY )x ∈ TxM⊥.

It is shown that M is ∇-autoparallel (∇∗-autoparallel) iff HM = 0 (H∗
M = 0).

For later use, we provide a concrete formula of Π⊥ in x-coordinate and s-coordinate. Suppose that

TxM⊂ E is represented by the kernel of a certain linear operator A : E → Rm, i.e., TxM = KerA.

Define another operator AT : Rn → E∗ by

〈ATy, x〉 = (y|Ax), ∀y ∈ Rm,

where (·|·) is the standard inner product of Rm. Then, the orthogonal projection Π⊥ : E →
(KerA)⊥ = TxM⊥ is

Π⊥ = G−1
x AT(AG−1

x AT)−1A = GsA
T(AGsA

T)−1A, (8)

where Gs = G−1
x , and Gx is regarded as an operator that maps X = (Xi) ∈ E to S = (Si) ∈ E∗:

Gx : X 7→ S, where Si =
n∑

j

∂2ψ

∂xi∂xj
Xj .
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Figure 2: Embedding curvature.

The formula (8) is a coordinate expression of Π⊥ in x-coordinate. Π⊥ in s-coorinate is given by

GxΠ⊥G−1
x , since −Gx is the operator of coordinate transformation from x-coordinate to s-coordinate

at the tangent space Tx(M).

Remark: In the rest of the paper, we identify E and TxΩ, the tangent space at x ∈ Ω, via the

isomorphism: ei 7→ (∂/∂xi)x. Hence, for example, the sum x + X of x ∈ Ω and X ∈ TxΩ = E makes

sense in this identification, which would be often used to describe the algorithm later. Similarly, we

also identify E∗ and TsΩ∗, the tangent space at s ∈ Ω∗.

[Self-concordant functions]

Finally we introduce widely known concept of the self-concordant function and self-concordant

barrier [42], and describe their properties in terms of the above geometric notions. Let (G,∇,∇∗)
be dually flat structure on Ω generated by the potential function ψ. If the inequality

∣∣∣∣∣〈X,
∂3ψ

∂x3
(X, X)〉

∣∣∣∣∣ ≤ 2(G(X, X))3/2 = 2‖X‖3
x,

or, equivalently, ∣∣∣∣∣∣

n∑

i,j,k

∂ψ3(x)
∂xi∂xj∂xk

XiXjXk

∣∣∣∣∣∣
≤ 2




n∑

i,j

∂ψ2(x)
∂xi∂xj

XiXj




3/2

holds over all x ∈ Ω and X ∈ E, we call ψ a self-concordant function on Ω. The following property

is a remarkable feature of the self-concordant function (see Appendix 1 of [42]):
∣∣∣∣∣〈X,

∂3ψ

∂x3
(Y, Z)〉

∣∣∣∣∣ ≤ 2‖X‖x‖Y ‖x‖Z‖x. ∀X, Y, Z ∈ E and x ∈ Ω. (9)

A self-concordant function ψ is said to be a self-concordant barrier if it satisfies

ψ(x) →∞ as x → ∂Ω.
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If, in addition, the self-concordant barrier satisfies the condition

|〈s(x), X〉| ≤ √
q(Gx(X, X))1/2, or, equivalently,

∑

i

∣∣∣∣
∂ψ(x)
∂xi

Xi

∣∣∣∣ ≤
√

q




n∑

i,j

∂ψ2(x)
∂xi∂xj

XiXj




1/2

for all x ∈ Ω, then we call ψ(x) q-self-concordant barrier on Ω.

Let Ω be an open convex cone. A barrier function ψ(x) on Ω is called a q-logarithmically

homogeneous barrier if

ψ(tx) = ψ(x)− q log t

holds for t > 0. If ψ(x) is a q-logarithmically homogeneous barrier, then the Legendre transformation

s(·) defined by (4) satisfies the following equalities for all x ∈ Ω, X ∈ E and t > 0:

s(tx) = t−1s(x), (10)

Gtx = t−2Gx,

〈s(x), x〉 = q, (11)

〈s(x), X〉 = G(x,X).

See Proposition 2.3.4 of [42] for their proofs. A self-concordant barrier is referred to as a q-normal

barrier if it is q-logarithmically homogeneous. A q-normal barrier is known to be a q-self-concordant

barrier. A remarkable feature of the q-normal barrier is that the conjugate function ψ∗(s) again

becomes a q-normal barrier with domain Ω∗ and Ω∗ becomes the dual cone of Ω. The Legendre

transformation x(·) defined by (5) satisfies the analogous relations for all s ∈ Ω∗, S ∈ E∗ and t > 0:

x(ts) = t−1x(s), (12)

Gts = t−2Gs, (13)

〈x(s), s〉 = q, (14)

〈x(s), S〉 = G(s, S). (15)

3 Self-concordant Barrier Function, the Newton method, and Interior-
point Algorithms

In this section, we describe basic results on the polynomial-time interior-point algorithms for general

convex programs by Nesterov and Nemirovski [42]. We also explain the algorithm in words of

information geometry. For later convenience, we will use a bit different notations from the previous

sections.

Let E be a k-dimensional vector space, and let C be open convex set of E, and let y be an

affine coordinate of E. Let φ be a self-concordant barrier whose domain is C. Information geometric

structure explained in the previous section is introduced by taking φ as the potential function.

12



The Riemannian metric is denoted by G, and the dual coordinate is introduced by the Legendre

transformation g = −∂φ/∂y.

For y ∈ C and r ≥ 0, we define an ellipsoid

D(y, r) ≡ {v = y + V |‖V ‖y ≤ r, V ∈ E}.

This ellipsoid is referred to as the Dikin ellipsoid (with radius r).

It is known that the local norm ‖ · ‖y changes moderately and is compatible among each other

within the Dikin ellipsoid of radius 1.

Theorem 3.1 (Theorem 2.1.1 of [42], see also [50] and [26]) Let u ∈ C. If v ∈ D(u, r), r < 1, then,

v ∈ C, and, for any V ∈ E, we have

(1− r)‖V ‖u ≤ ‖V ‖v ≤ 1
1− r

‖V ‖u.

Let ĝ ∈ g(C) = {g(y) | y ∈ C}, and we consider computing a point ŷ ∈ C such that the Legendre

transformation g(ŷ) = ĝ. This is the problem of computing the inverse Legendre transformation.

Generally there is no explicit formula for the inverse Legendre transformation. Such point is char-

acterized as the optimal solution to the optimization problem

min
y

〈ĝ, y〉+ φ(y), s.t. y ∈ C, (16)

and we compute it with the Newton method. The minimum point y ∈ C of φ satisfying the condition

ĝ = g(y) = 0 is referred to as the analytic center, and plays an important role in the theory of

interior-point algorithms (Fig. 3).

The Newton displacement vector Ny(ĝ) at y of the Newton method to solve (16) is given as the

unique vector satisfying

〈ĝ, V 〉 = 〈g(y), V 〉 −Gy(Ny(ĝ), V ) ∀V ∈ E.

The norm ‖Ny(ĝ)‖y of the Newton displacement vector measured with the Riemannian metric G at

y is referred to as the Newton decrement.

We have the following fundamental result which guarantees that the inverse Legendre transfor-

mation is computed efficiently with the Newton method.

Theorem 3.2 (Theorem 2.2.2 of [42], see also [50] and [26]) Suppose that ‖Ny(ĝ)‖y = β < 1, and

let y+ be the point obtained by performing one step of the Newton iteration, i.e.,

y+ = y + Ny(ĝ).

Then

‖Ny+(ĝ)‖y+ ≤ β2

(1− β)2
,

13



and therefore, if β ≤ 1/4,

‖Ny+(ĝ)‖y+ ≤ 16β2

9
.

The sequence {yk} generated by the Newton method initiated at a point y0 such that ‖Ny0(ĝ)‖y0 < 1

converges to the point y∞ ∈ C such that g(y∞) = ĝ.

It is easy to see that Ny(0) is the Newton displacement vector for minimizing φ(y) to obtain the

analytic center. We describe a few properties Ny(0) which is utilized later.

Proposition 3.3 If φ is a q-self-concordant barrier function, then, for any y ∈ C, we have

‖Ny(0)‖y ≤ √
q. (17)

This fact is readily seen from the definition of q-selfconcordant barrier function and the Newton

displacement vector. Here we note that Ny(0) is well-defined even when the feasible region is not

bounded hence the analytic center does not exist. Even in such a case, the above proposition holds.

The following property about Ny(0) is used later. Let y ∈ C, g0 = g(y), α ∈ R. Then, we have

Ny(αg0) = (1− α)Ny(0), ‖Ny(αg0)‖y = |α− 1|‖Ny(0)‖. (18)

This readily follows from the general property of the Newton displacement vector.

Based on Theorems 3.1 and 3.2, we can prove the following proposition which is used later. See

Appendix for the proof.

Proposition 3.4 Let y1, y2 ∈ C, and let g1 = g(y1), g2 = g(y2). Let

η = ‖Ny1(g2)‖y1 , ζ = ‖y2 − y1‖y1 .

Suppose that η ≤ 1/16. Then, the following holds.

1. We have

1− 8η ≤ ζ

η
≤ 1 + 8η. (19)

2. In addition, if

ζ ≤ 1
64

,

then,

1− 22ζ ≤ η

ζ
≤ 1 + 22ζ.

Let b ∈ E∗ be a linear functional of E, and let us consider the following minimization problem:

min 〈b, y〉 s.t. y ∈ cl(C). (20)

14



Based on the self-concordant barrier function φ with the barrier parameter q, the path-following

interior-point algorithm solves the problem by following the central trajectory [23, 31, 32, 49, 52]

defined as the set of optimal solution y(t) of the following problem with parameter t(> 0) (Fig. 3):

min t〈b, y〉+ φ(y), s.t. y ∈ cl(C).

The point y(t) satisfies the equation

tb +
∂φ

∂y
= 0, or equivalently, tb− g(y) = 0.

Let yopt be an optimal solution of (20). It is known that

〈b, y(t)〉 − 〈b, yopt〉 ≤
√

q

t
.

The path-following algorithm is able to follow the central trajectory from the neighbor of y(t1) to

that of y(t2), where t2 > t1, in O(
√

q log(t2/t1))-iterations. Later we will address a version of such

an interior-point path-following algorithm.

Analytic Center

Optimal Solution Central Trajectory
Objective Function

Figure 3: Central trajectory and analytic center.

Now we introduce two vector fields which play important roles in the theory of interior-point

algorithms, namely, V aff
y and V cen

y . The vector field V aff
y is defined as the negative gradient of the

objective function b with respect to the metric G and is referred to as the affine-scaling vector field

[15, 16]. The vector field V aff
y is characterized as the one satisfying the following condition at each

y ∈ C:
Gy(V aff

y , V ) = −〈b, V 〉, ∀V ∈ E.
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We note that the vector field V aff
y is nothing but the natural gradient [5] known in neural networks

and machine learning. The interior-point algorithm based on the affine-scaling vector field is called

the affine-scaling algorithm [7, 15, 16, 64, 65, 67, 70]. The affine-scaling algorithm is probably one

of the earliest instances where the idea of natural gradient is proved to be important in designing an

efficient algorithm.

The other vector field V cen
y is the Newton displacement vector field Ny(0) for minimizing the

barrier function φ. The vector field V cen
y is referred to as the centering vector field.

The affine-scaling vector flow and the centering vector flow are shown in Fig. 4. It is easy to see

that the integral curves of V aff
y and V cen

y are ∇∗-geodesics.

(a) (b)
Optimal Solution Optimal SolutionObjective Function Objective Function

Figure 4: Integral curves of the affine-scaling vector field and the centering vector field for linear
programming (they are ∇∗-geodesics). (a) the affine scaling vector integral curves; centering vector
integral curves.

The central trajectory γ is characterized exactly as the integral curve of the affine-scaling vector

field starting from the analytic center which also is an integral curve of the reversed centering vector

field. On y(t) ∈ γ, we have the relation

ẏ(t) = V aff
y = −ρ(y)V cen

y , ρ(y) > 0.

This means that V aff
y and/or −V cen

y are good approximations to the tangent ẏ(t) of the central

trajectory in a sufficiently small neighborhood of the central trajectory. This has the following

meaning in constructing an implementable path-following algorithm.

If an iterate y is exactly on γ, y = y(t), say, and if we develop a predictor-corrector type algorithm
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to trace γ, then definitely the direction which should be adapted for predictor-step is the tangent

ẏ(t). However, if we trace γ numerically by an iterative procedure, iterates cannot be exactly on

the central trajectory. Generically, we define a neighborhood of the central trajectory, and iterates

are generated in this neighborhood. In such a case, we need an appropriate substitute for ẏ(t). The

vector field V aff
y and −V cen

y may well be used for such purpose.

Finally, we consider the following situation for later consideration. Let E be an n-dimensional

vector space, and Ω ⊂ E be the open convex cone equipped with the q-self-concordant barrier

function ψ, and consider the information geometric structure (G,∇,∇∗) based on ψ (We take ψ as

the potential). Let a0 ∈ E∗, and let ai, i = 1, . . . , k be linearly independent elements of E∗, and let

A : E → Rk as

Ax =



〈a1, x〉

...
〈ak, x〉


 . (21)

Let

S = {s = s(y) | s(y) = a0 −
k∑

i=1

aiy
i, y ∈ Rk} ∩ Ω∗ = (a0 + S∗) ∩ Ω∗,

where S∗ = {V ∈ E∗ | V = −∑k
i=1 aiy

i, y ∈ Rk}. Then S becomes a k-dimensional ∇∗-autoparallel

submanifold and φ(y) = ψ∗(a0 −
∑k

i=1 aiy
i) becomes the q-self-concordant barrier function whose

domain is

C = {y ∈ Rk| s(y) ∈ Ω∗}.

We may consider information geometric structure on C induced by the potential function φ(y). The

induced inner product is written as, for two tangent vectors Vy and Wy, Gs(y)(ATVy, A
TWy), where

AT is the mapping from TyC to Ts(y)S ⊂ Ts(y)Ω defined as

Vs(y) ≡ ATVy =
∑

i

aiVyi.

We define ‖Vy‖y as G(ATVy, A
TVy). Then,

‖Vs(y)‖s(y) = ‖ATVy‖s(y) = ‖Vy‖y.

Let h ∈ E, and consider the convex optimization problem

min 〈h, s〉+ ψ∗(s), s ∈ S(= a0 + S∗). (22)

This is essentially equivalent to the following convex optimization problem over C:

min −〈f, y〉+ φ(y), s.t. y ∈ C, (23)

where f = Ah. The Newton decrement ‖Ny(f)‖y is ‖ATNy(f)‖s(y).
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On the other hand, the Newton displacement vector NS∗
s (h) for (22) at s ∈ S is directly defined

as the vector minimizing the following second-order approximation of the objective function.

min 〈h, V 〉+
1
2
G(V, V ), V ∈ S∗,

where G is the Hessian of ψ∗ at s ∈ Ω and plays the role of metric. Then, we have the following

proposition. The proof is omitted.

Proposition 3.5 Under the setting above, let s = s(y). Then,

NS∗
s (h) = −ATNy(−f), ‖NS∗

s (h)‖s = ‖Ny(f)‖y.

The following is a corollary of Theorem 3.3.

Corollary 3.6 Suppose that ‖Ns(h)‖s ≤ β < 1, and let s+ be the point obtained by performing one

step of the Newton iteration, i.e.,

s+ = s + NS∗
s (h).

Then

‖NS∗
s+ (h)‖s+ ≤ β2

(1− β)2
,

and therefore, if β ≤ 1/4,

‖NS∗
s+ (h)‖s+ ≤ 16β2

9
,

The sequence {sk} generated by the Newton method such that ‖NS∗
s0 (h)‖s0 < 1 converges to the point

s∞ ∈ S, which is the unique optimal solution to (22).

Before proceeding to the next session, we derive the Newton displacement vector Ny(−f) and

NS∗
s (h), and the Newton decrement ‖Ny(f)‖y = ‖NS∗

s (h)‖s. Taking account that ∂2ψ∗(s)/∂s∂s =

Gs = G−1
x and ∂2φ(y)/∂y∂y = AGsA

T, we see that the Newton displacement vector for the optimal

solution of (23) is written as

Ny(−f) = (AGsA
T)−1 (f + g(y)) = (AGsA

T)−1(f + A
∂ψ∗(s)

∂s
) = (AGsA

T)−1 (f −Ax(s)) .

The Newton displacement vector for (22) is derived as NS∗
s (d) = −ATNy(−f), and the Newton

decrement becomes

‖NS∗
s (d)‖s ≡

√
(f −Ax(s))T(AGsAT)−1(f −Ax(s)). (24)

The following proposition is an analogue of Proposition 3.4.

Proposition 3.7 Let s1, s2 ∈ D, and let s2 be the optimal solution of (22). Let

η = ‖NS∗
s1

(d)‖s1 , ζ = ‖s2 − s1‖s1 .

Suppose that η ≤ 1/16. Then, the following holds.
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1. We have

1− 8η ≤ ζ

η
≤ 1 + 8η.

2. In addition, if

ζ ≤ 1
64

,

then,

1− 22ζ ≤ η

ζ
≤ 1 + 22ζ.

Proof. The proof goes similar to Proposition 3.4, just by using Corollary 3.6.

4 Main Idea and a Path-following Algorithm

In this section, we present a framework of treating conic linear programs based on information geom-

etry. Then we develop a predictor-corrector type path-following algorithm, and state a polynomiality

result of the algorithm (proof is given in the appendix).

4.1 Framework

Now we return to the dual pair of the problems (1) and (2). Let

P ≡ (d + T) ∩ Ω and D ≡ (c + T∗) ∩ Ω∗.

Then (1) and (2) are written as

min 〈c, x〉, s.t. x ∈ cl(P), (25)

and

min 〈d, s〉, s.t. s ∈ cl(D), (26)

respectively. It is easy to see that, for any x ∈ cl(P) and s ∈ cl(D), we have 〈x, s〉 ≥ 0.

We also assume that

P 6= ∅, D 6= ∅. (27)

This is a standard assumption, and under this assumption, (25) and (26) have optimal solutions

satisfying the following condition:

〈x, s〉 = 0, x ∈ cl(P), s ∈ cl(D).

Let ψ(x) be a p-normal barrier whose domain is Ω. Then the conjugate function ψ∗(s) of ψ(x)

is a p-normal barrier whose domain is Ω∗ [42]. Based on ψ(x) and ψ∗(s), we introduce the central

trajectories of (25) and (26).

Associated with (25), we consider the following optimization problem with parameter t

min t〈c, x〉+ ψ(x) s.t. x ∈ cl(P). (28)
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The optimality condition of this problem is written as:
(

tc +
∂ψ

∂x
=

)
tc− s(x) ∈ T∗, x ∈ d + T, x ∈ Ω. (29)

Let xP(t) be the unique optimal solution to (28), and γP(t) be the point in Ω expressed as xP(t) =

x(γP(t)) in x-coordinate. We define the central trajectory γP as:

γP = {γP(t)| t ∈ [0,∞)}.

γP(t) converges to the optimal solution of (25) as t →∞.

Similarly, we consider the following optimization problem with parameter t associated with (26).

min t〈d, s〉+ ψ∗(s) s.t. s ∈ cl(D). (30)

The optimality condition for this problem is
(

td +
∂ψ

∂s
=

)
td− x(s) ∈ T, s ∈ c + T∗, s ∈ Ω∗. (31)

Let sD(t) be the unique optimal solution to (28), and γD(t) be the point in Ω expressed as sD(t) =

s((γD(t)) in s-coordinate. We define the central trajectory γD as:

γD = {γD(t)| t ∈ [0,∞)}.

γD(t) converges to the optimal solution of (26) as t →∞.

We also note that γP(t) (in s-coordinate) and γD(t) (in x-coordinate) are alternatively charac-

terized as the optimal solutions of the following optimization problems.

min 〈d, s〉+ ψ∗(s) s.t. s ∈ cl(tD). (32)

min 〈c, x〉+ ψ(x) s.t. x ∈ cl(tP).

These relations are readily verified by writing down the optimality conditions and using the definition

of the Legendre transformation. Interior-point algorithms approach the optimal solutions by tracing

the central trajectories γP and γD.

Now we consider the information geometric structure on Ω as a dually flat manifold taking the

p-normal barrier function ψ(x) as the potential function. We identify Ω and Ω∗ by the Legendre

transformation. Then it is easy to see that P is an (n−m)-dimensional∇-autoparallel (x-autoparallel)

submanifold and D is an m dimensional∇∗-autoparallel (s-autoparallel) submanifold. Note that a∇-

autoparallel (∇∗-autoparallel) submanifold is not necessarily∇∗-autoparallel (∇-autoparallel). Thus,

in view of x-coordinate, the primal feasible region P is an autoparallel manifold and the dual feasible

region D is a curved submanifold, while, in view of s-coordinate, D is an autoparallel manifold and

P is a curved submanifold. See Fig. 5.

The intersection of the two submanifolds is a unique point which is a point on the central trajec-

tory. We have the following proposition. We omit the proof here.
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Point on the centraltrajectory
Figure 5: Primal and dual feasible regions in x-coordinate (left) and s-coordinate (right) .

Proposition 4.1 P ∩ D is nonempty and is a unique point iff the condition (27) is satisfied, and

written as the optimal solution of (28) with t = 1 in x-coordinate, and written as the optimal solution

of (30) with t = 1 in s-coordinate (see Fig. 5).

In view of this proposition, we have the following characterization of γP and γD as the intersection

of two submanifolds:

γP(t) = P ∩ tD and γP = P ∩Hom(D),

and

γD(t) = D ∩ tP and γD = D ∩Hom(P).

The situation is illustrated in Fig. 6 for the primal central trajectory γP .

It is well-known that the following result holds:

〈xP(t), sD(t)〉 =
p

t
, (33)

and

xP(t) =
x(sD(t))

t
and sD(t) =

s(xP(t))
t

. (34)

(The relation (34) holds from (29), (31), (10) and (12). The relation (33) holds from (34), (11) and

(14)).

In the following, we mostly deal with the central trajectory γP for the primal problem. We

introduce a path-following algorithm to trace γP in the dual space Ω∗ ⊂ E∗. The primal feasible

region P is a curved submanifold embedded in the dual space Ω∗, and we follow the path P∩Hom(D)

in Ω∗, utilizing s-coordinate.
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(Primal
feasible 
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Figure 6: Central trajectory.

Let a1, . . . , am ∈ E∗ be the basis of T∗, and we define the linear operator from E → Rm as in

(21). Then D = c + T∗ is written as, in s-coordinate,

D = {s ∈ Ω∗ |s = c−ATy, y ∈ Rm}.

On the other hand, for b ∈ Rm satisfying Ad = b we can express P as, in x-coordinate,

P = {x ∈ Ω |Ax = b}.

In the following, we use x-coordinate and s-coordinate as coordinate systems to carry out concrete

calculations. Furthermore, we will use vector and matrix notations rather than traditional tensor

notations with lower and upper indices. We abuse notations of identifying vectors and linear operators

with its coordinate representations.

Now we derive the differential equation of the central trajectory γP written in the s-coordinate.

The point γP(t) on the central trajectory γP in x-coordinate is the optimal solution of

min t〈c, x〉+ ψ(x) s.t. Ax = b.

The optimality condition implies that

tc− s = ATy, Ax = b, s = −∂ψ(x)
∂x

.

One more differentiation with respect to t yields that

c + Gxẋ = ATẏ, Aẋ = 0,
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where Gx = −∂s/∂x = ∂2ψ/∂x∂x. Note that Gx is the metric with respect to x-coordinate.

Multiplying the first equality by G−1
x and then multiply A from left we have

ẏ = (AG−1
x AT)−1AG−1

x c (35)

and

ṡ = −Gxẋ = (Gx −AT(AG−1
x AT)−1A)G−1

x c = Gx(I −Π⊥)G−1
x c = G−1

s (I −Π⊥)Gsc. (36)

Let us consider the linear approximation

sL(t′) = s(t) + (t′ − t)ṡ(t)

to the trajectory γP at s(t) ∈ tD. It readily follows from (35) and (36) that

sL(t′) ∈ t′D (as long as sL(t′) ∈ Ω∗). (37)

Here we make an important observation. Though we derived it as the tangent of the central

trajectory, the right hand side of (36) is well-defined for any x ∈ Ω. Therefore, we consider the

vector field V ct which is written, in s-coordinate, as the righthand side of (36). This vector field is

well-defined over Ω. The integral curves of this vector field describe all central trajectories of the

problems of the form

min 〈c, x〉, s.t. x ∈ (d′ + T) ∩ cl(Ω), (38)

including (1). We have the following proposition. The proof is omitted.

Proposition 4.2 The following holds:

1. Let γ be the maximal integral curve of V ct passing through d′ ∈ Ω. Then, γ ∩ Hom(D) is the

central trajectory of the linear program (38).

2. Suppose that (38) has an interior feasible solution, i.e., a feasible solution x such that x ∈ Ω.

Then, its central trajectory is written as an integral curve of V ct.

Finally, we make an observation about the second derivative of the integral curve of V ct. Let s(t)

be an integral curve of V ct
s . Then ṡ is written as in (36). The second derivative is written as follows

as covariant derivative of V ct.

s̈(t) = ∇∗V ct
s

V ct
s . (39)

This readily follows from that s-coordinate is ∇∗-affine. In this respect, the second derivative of the

curves form a vector field. We denote this vector field as s̈(·).
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4.2 Path-following Algorithm

In this section, we introduce the path-following algorithm we will analyze. The algorithm follows the

central trajectory γP with a homotopy Newton method. We denote by N (β) the neighborhood of

the central trajectory γP where β ∈ (0, 1) is a scalar parameter to determine its width. The iterates

are generated in N (β). Smaller β yields smaller neighborhood. A more precise definition of N (β) is

given later.

[Ideal algorithm] (See Fig. 7)

1. Let γP(t) be a point on the central trajectory γP with parameter t as defied in (36). Let

s(t) = s(γP(t)), and let ṡ(t) be the tangent direction at t as defined in (36).

2. (Predictor step)

Let sL(t+∆t) = s(t)+∆tṡ, and let ∆tmax > 0 be the maximum ∆t such that sL(t+∆t) ∈ N (β).

(sL(t + ∆t) ∈ (t + ∆t)D as we observed in (37).)

3. (Corrector step) Move to s(t + ∆tmax) from sL(t + ∆tmax).

4. t := t + ∆t and return to step 1.

Central Trajectory

Figure 7: Path-following algorithm.

In this ideal algorithm, we made an unrealistic assumption that the predictor-step is performed

from a point exactly on the central path. In reality, we cannot do this since we cannot perform perfect

centering. In order to construct an implementable algorithm, we need to resolve this problem. We

also need to define the neighborhood of the central trajectory. Now we explain how to deal with

these issues.
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[Predictor-step]

The central trajectory γP which we follow is an integral curve of the vector field V ct we introduced

in the last section. Therefore, we take V ct as the direction in the predictor step. Let s̄ ∈ tD, and let

s̄L(t′) = s̄ + (t′ − t)G−1
s (I −Π⊥)Gsc. (40)

As we observed in (37), we have s̄L(t′) ∈ t′D for certain interval containing t. We choose step ∆t

and adopt s̄L(t + ∆t) as the result of the predictor step.

[Neighborhood of the central trajectory]

Below we explain the neighborhood of the central trajectory and the corrector step. They are

closely related each other since the neighborhood is determined in such a way that the corrector step

performs well. In view of this, we proceed as follows. Let s̄ ∈ tD. Recall that s(t)(= s(γP(t))) is

characterized as the optimal solution to the problem (32). The corrector step at s is the Newton

step for the point s(t) ∈ tD to solve the problem (32).

By using the Newton decrement ‖NT∗
s (d)‖s for (32), we introduce the neighborhood Nt(β) of the

center point s(t) on the slice tD as follows:

Nt(β) ≡ {s ∈ tD | ‖NT∗
s (d)‖s ≤ β.}

The neighborhood N (β) of the central trajectory is determined as

N (β) ≡ ∪t∈(0,∞)Nt(β) = {s ∈ Hom(D) | ‖NT∗
s (d)‖s ≤ β.}

[Corrector-Step]

After the predictor-step is performed, we have

s̄P ≡ s̄L(t + ∆t) ∈ (t + ∆t)D ∩N (β).

As we discussed above, the corrector-step is the Newton step for the convex optimization problem

(32) (with t := t + ∆t) whose optimal solution is s(t + ∆t). The point s̄P is a feasible solution to

this problem, and we apply a single step of the Newton method. This is the corrector step.

Now we are ready to fully describe the implementable algorithm. Below η is a constant to

determine accuracy of line search. The numbers 1/4 and 1/2 in Step 1 are picked just for simple

presentation and is not essential.

[Implementable algorithm]

1. Let β ≤ 1/4, and let 1/2 ≤ η.

2. Let s̄ ∈ tD such that s̄ ∈ N (16
9 β2).
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3. (Predictor step) Let ∆t > 0 be such that

‖NT∗
s̄L(t+∆t)(d)‖s̄L(t+∆t) ∈ [β(1− η), β],

where s̄L(·) is as defined in (40). Let s̄P := s̄L(t + ∆t).

4. (Corrector step) At s̄P, compute the Newton direction for the corrector-step Ns̄L(t+∆t)(d) as

above, and let s̄+ = s̄P + NT∗
s̄P (d).

5. t := t + ∆t, s̄ := s̄+ and return to step 1.

Finally, we present a theorem on polynomiality of this algorithm.

Theorem 4.3 The predictor-corrector algorithm above generates the sequence {(tk, sk)} satisfying

sk ∈ tkD ∩N (β), tk ≥
(

1 +
λ

2
√

p

)k

.

The proof of this algorithm is not shown here but in the appendix. We just outline the idea of the

proof. We analyze the sequence {sk/tk} rather than {sk} itself. {sk/tk} is a feasible solution to the

dual problem (26). We will show that the predictor-corrector algorithm coincides another predictor-

corrector algorithm for the dual problem (26) where “the negative centering direction” is utilized as

the search direction for the predictor step. Once notifying this fact, the polynomial-time complexity

analysis goes through by a rather standard argument established by Nesterov and Nemirovski [42].

In the next sections, we will relate the iteration-complexity of the predictor-corrector algorithm

developed in this section to geometrical structure of the feasible regions. Before proceeding, we

explain a bit about the main idea. We observed that the central trajectory as the intersection of

two submanifolds P and Hom(D). In view of s-coordinate, P is a curved manifold (Hom(D) is flat),

therefore, when we move along the tangent of the trajectory, we will move away from P. We increase

the step as long as possible within the range where the corrector step works effectively to bring the

iterate closer to P again (See Fig. 7). This observation leads to the intuition that the steplength

would be closely related to how P is embedded in Ω∗ as a curved submanifold. In [45, 46], Ohara

analyzed how the embedding curvature is related to performance of a predictor step. In the next

section, we develop a concrete analysis of the iteration-complexity of interior-point algorithms based

on the embedding curvature.

5 Curvature Integral and Iteration-Complexity of IPM

The goal of this section is to prove a main result of this paper which bridges the iteration-complexity of

the predictor-corrector algorithm and the information-geometric structure of the feasible region. The
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iteration-complexity of the predictor-corrector algorithm is expressed in terms of a curvature integral

along the central trajectory γP involving the directional embedding curvature H∗
P(γ̇P(t), γ̇P(t)).

In the following, we make the following assumption:

Let 0 ≤ t1 ≤ t2 be constants. The step-size ∆t(s) in [Implementable algorithm] of Section 4.2

taken at s ∈ N (β) ∩ {tD | t1 ≤ t ≤ t2} converges to zero when β goes to zero.

If this assumption is not satisfied, then we conclude that γP becomes straight (in s-coordinate) at

least for a short interval (under the assumption of smoothness). If we assume that the ψ is analytic

(so is ψ∗), violation of the assumption implies that γP is a (half) straight line in s-coordinate leading

to the optimal solution directly.

Now we describe the theorem.

Theorem 5.1 Let 0 < t1 < t2, and let K(s1, t2, β) be the number of iterations of the predictor-

corrector algorithm in Section 4.2 started from a point s1 ∈ N (β)∩t1D to find a point in N (β)∩t2D.

Then we have the following estimate on the number of iterations of the predictor-corrector algorithm.

1. If we perform “exact line search” to the boundary of the neighborhood N (β),

K(s1, t2, β) =
1√
β

1√
2

∫ t2

t1
‖H∗

P(γ̇P , γ̇P)‖1/2dt +
o(1)√

β
.

2. If we perform inexact line search with accuracy η, then,

1√
β

1√
2

∫ t2

t1
‖H∗

P(γ̇P , γ̇P)‖1/2dt +
o(1)√

β

≤ K(s1, t2, β) ≤ 1√
(1− η)β

1√
2

∫ t2

t1
‖H∗

P(γ̇P , γ̇P)‖1/2dt +
o(1)√

β
.

The theorem is immediately seen from Lemmas 5.3 and 5.4. To prove Lemma 5.3, we need

Lemma 5.2.

Before going to prove Lemma 5.2, we will explain the situation with Fig. 8. We denote by s(t) the

point on the central trajectory with parameter t written in s-coordinate. Let s̄ ∈ N (c1) ∩ tD. This

point will be considered as the current iterate in later analysis. The integral curve of V ct
s passing

through “the current iterate” s̄ is denoted by s̄(·). Note that s̄(t) = s̄. Recall that

s̄L(t′) ≡ s̄ + (t′ − t) ˙̄s = s̄ + (t′ − t)V ct
s̄ (41)

is the linear approximation to the integral curve and the predictor-step is taken along this straight

line. In order to estimate the step-size ∆t in the predictor-step, we need to develop a proper bound

for ‖NT∗
s̄L(t+∆t)(d)‖s̄L(t+∆t).
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Central trajectory
Figure 8: The situation of Lemma 5.2 .

Lemma 5.2 Let 0 < t1 < t2 and let c1 be a positive constant, and let

T (t1, t2, c1) ≡ ∪t1≤t≤t2N (c1) ∩ tD.

Let

R = max
s∈T

‖V ct
s ‖s, M = max

s∈T
‖G−1/2

s ĠsG
−1/2
s ‖.

(‖ · ‖ on the right hand side of M is the usual (conventional) operator norm, and Ġs is derivative of

Gs with respect to V ct)

For sufficiently small c1 such that c1 ≤ 1/100, there exists M1, M2 and M3, for which the

following property holds (see Fig. 8).

“Let s̄ ∈ T ∩ tD, and take the step ∆t along s̄L(·) to obtain the point s̄L(t + ∆t). If ∆t ≤
min(1/(2R), (log 4)/M) and s̄L(t + ∆t) ∈ T , then,

‖NT∗
s̄L(t+∆t)(d)‖ =

∆t2

2
‖s̈(t)‖s(t) + δ + r1(∆t, s(t), s̄) + r2(∆t, s(t), s̄) + r3(∆t, s(t), s̄),

where δ ≡ ‖NT∗
s̄ (d)‖s̄, |r1| ≤ M1∆t3 and |r2| ≤ M2δ and |r3| ≤ M3(∆t2 + δ)2.”

Proof. Our task is to find a proper bound for the Newton decrement ‖NT∗
s̄L(t+∆t)(d)‖. To this

end, we need to analyze “vertical move” and “horizontal move,” and need to compare quantities at

different points. See Fig. 9. We start with the following observations.

1. Since the metric G is a smooth function and positive definite, and since T is a compact set,

there exists a norm ‖ · ‖− and ‖ · ‖+ with which the local norm ‖ · ‖s at each point in T
is bounded from below and above, respectively, i.e., for any V ∈ E∗ and s ∈ T , we have

‖V ‖− ≤ ‖V ‖s ≤ ‖V ‖+.
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2. At any s̄ ∈ T ∩ tD and V ∈ E∗,

(1−R∆t)‖V ‖s̄ ≤ ‖V ‖s̄L(t+∆t) ≤
1

1−R∆t
‖V ‖s̄ (s̄L(t) = s̄(t) = s̄).

(Proof) To see this, we observe that s̄L(t + ∆t) is contained in the Dikin ellipsoid of radius

R∆t at s. Indeed, this is the case, since

s̄L(t + ∆t) = s̄− (∆t‖V ct
s̄ ‖s̄)

V ct
s̄

‖V ct
s̄ ‖s̄

Since − V ct
s̄

‖V ct
s̄ ‖s̄

is the displacement vector to the surface of the Dikin ellipsoid with radius 1

(centered at s̄), we see that taking the step ∆t means that moving to the surface of the Dikin

ellipsoid with radius ∆t‖V ct
s̄ ‖s̄ (≤ R∆t).

C

B

E

A

D

Figure 9: The predictor-corrector algorithm .

3. Let s̄ ∈ T ∩ tD. Recall ‖NT∗
s̄ (d)‖s̄ is the Newton decrement at s̄ for the point s(t) in tD of the

central trajectory. We have the following result:

‖NT∗
s̄ (d)‖s̄(1− 8‖NT∗

s̄ (d)‖s̄) ≤ ‖s(t)− s̄‖s̄ ≤ ‖NT∗
s̄ (d)‖s̄(1 + 8‖NT∗

s̄ (d)‖s̄)

and

‖s(t)− s̄‖s̄(1− 22‖s(t)− s̄‖s̄) ≤ ‖NT∗
s̄ (d)‖s̄ ≤ ‖s(t)− s̄‖s̄(1 + 22‖s(t)− s̄‖s̄).

(Proof) This readily follows from Proposition 3.7 and that c1 ≤ 1/100.

4. There exists a positive constant M ′ such that for any s̄ ∈ tD ∩ T ,

‖s̈(t)− ¨̄s(t)‖s̄(t) ≤ M ′‖NT∗
s̄(t)(d)‖s̄(t).

(Proof) Recall that ˙̄s = V ct
s̄ . Since

¨̄s(t) = s̈(s̄(t)) = ∇∗V ct
s̄(t)

V ct
s̄(t),

29



we see that s̈(·) is a smooth function of s̄ (see (39)). Therefore, there is a positive constant M ′′

with which the following bound for any s1, s2 ∈ T ,

‖s̈(s1)− s̈(s2)‖+ ≤ M ′′‖s1 − s2‖−.

Then it readily follows from the claim 1 that

‖s̈(s1)− s̈(s2)‖s2 ≤ M ′′‖s1 − s2‖s2 .

We let s1 = s(t) and s2 = s̄(t) in the above relation and use the claim 3. Then the statement

readily follows.

5. We have

‖NT∗
s̄(t+∆t)(d)‖s̄(t+∆t) ≤ exp(M∆t)‖NT∗

s̄(t)(d)‖s̄(t) ≤ 2‖NT∗
s̄(t)(d)‖s̄(t).

(Proof) Let t′ ∈ R. The Newton decrement is written as (see (24)):

‖NT∗
s̄(t′)(d)‖s̄(t′) =

√
(b−Ax(s̄(t′))(AGs̄(t′)AT)−1(b−Ax(s̄(t′))).

We focus on

(b−Ax(s̄(t′)))T(AGs̄(t′)A
T)−1(b−Ax(s̄(t′))),

and integrate it along the trajectory. The curve s̄(·) is the integral curve of V ct which is the

central trajectory for the problem (38) with d′ = x(s̄). Therefore, for any t′ on the integral

curve, we have x(s̄(t′))−x(s̄) ∈ T and hence A(x(s̄(t′))−x(s̄)) = 0. This means that Ax(s̄(t′))

is the constant vector Ax(s̄) independent of t′. Therefore,

‖NT∗
s̄(t′)(d)‖2

s̄(t) = (b−Ax(s̄))T(AGs̄(t′)A
T)−1(b−Ax(s̄)) = (b−Ax(s̄))T(AGs̄(t′)A

T)−1(b−Ax(s̄)).

Since we have ‖G−1/2
s ĠsG

−1/2
s ‖ ≤ M ,

d

dt
‖Ns̄L(t′)(d)T

∗‖2
s̄L(t+∆t)

=
∣∣∣∣
d

dt
(b−Ax(s̄))T(AGs̄(t′)A

T)−1(b−Ax(s̄))
∣∣∣∣

= |(b−Ax(s̄))T(AGs̄(t′)A
T)−1G−1

s ĠsG
−1
s (AGs̄(t′)A

T)−1(b−Ax(s̄))|
≤ |(b−Ax(s̄))T(AGs̄(t′)A

T)−1AG
1/2
s̄(t′)G

−1/2
s ĠsG

−1/2
s G

1/2
s̄(t′)A

T (AGs̄(t′)A
T)−1(b−Ax(s̄))|

≤ |(b−Ax(s̄))T(AGs̄(t′)A
T)−1AG

1/2
s̄(t′)G

−1/2
s ĠsG

−1/2
s G

1/2
s̄(t′)A

T (AGs̄(t′)A
T)−1(b−Ax(s̄))|

≤ ‖G−1/2
s ĠsG

−1/2
s ‖‖G1/2

s̄(t′)A
T (AGs̄(t′)A

T)−1(b−Ax(s̄))‖2

≤ M(b−Ax(s̄))T(AGs̄(t′)A
T)−1(b−Ax(s̄))

= M‖NT∗
s̄L(t′)(d)‖2

s̄L(t′)

Therefore, we have

‖NT∗
s̄L(t+∆t)(d)‖2

s̄L(t) ≤ exp(M∆t)‖NT∗
s̄L(t)(d)‖2

s̄L(t)
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and hence if ∆t ≤ (log 4)/M , then,

‖NT∗
s̄(t+∆t)(d)‖s̄(t+∆t) ≤ 2‖NT∗

s̄(t)(d)‖s̄(t).

6. Let w, z be vectors of the same dimension. If ‖z‖ ≤ r, then,

|‖w + z‖ − ‖w‖| ≤ r.

(Proof) Easily follows from the triangular inequality.

Now we are ready to prove Lemma 5.2. We have

s̄(t + ∆t)− s̄L(t + ∆t) =
(∆t)2

2
s̈(s̄(t)) + r′1(∆t, s̄),

where ‖r′1‖+ ≤ M ′
1∆t3 (Fig. 9). On the other hand, due to the claims 3 and 5, we have

s(t + ∆t)− s̄(t + ∆t) = r′2(∆t, s, s̄),

where ‖r′2‖+ ≤ M ′
2δ. Due to the claim 4, we have

(∆t)2

2
s̈(s̄(t)) =

(∆t)2

2
s̈(s(t)) + r′3(s, s̄),

where ‖r′3‖+ ≤ M ′
3∆t2δ. Putting these estimates altogether, we have,

s(t + ∆t)− s̄L(t + ∆t) = (s̄(t + ∆t)− s̄L(t + ∆t)) + (s(t + ∆t)− s̄(t + ∆t))

=

(
(∆t)2

2
s̈(s̄(t)) + r′1(∆t, s̄)

)
+ r′2(∆t, s, s̄)

=

(
(∆t)2

2
s̈(s(t)) + r′3(s, s̄)

)
+ r′1(∆t, s̄) + r′2(∆t, s, s̄). (42)

Therefore, for some constant M ′
4 > 0, we have

‖s(t + ∆t)− s̄L(t + ∆t)‖+ ≤ M ′
4(∆t2 + δ).

Now it follows from the claim 3 that

‖Ns̄L(t+∆t)T
∗ (d)‖s̄L(t+∆t) = ‖s(t + ∆t)− s̄L(t + ∆t)‖s̄L(t+∆t) + r′4,

where

|r′4| ≤ 44‖s(t + ∆t)− s̄L(t + ∆t)‖2
+ ≤ 44M ′2

4 (∆t2 + δ)2.

Applying the claim 6 to (42), we have

‖s(t + ∆t)− s̄L(t + ∆t)‖s̄L(t+∆t) =

∥∥∥∥∥
(∆t)2

2
s̈(s(t))

∥∥∥∥∥
s̄L(t+∆t)

+ r̂3(s̄(t), s(t)) + r̂1(∆t, s̄) + r̂2(∆t, s, s̄),

31



where

r̂3 =

∥∥∥∥∥
(∆t)2

2
s̈(s(t)) + r′1(∆t, s̄) + r′2(∆t, s, s̄) + r′3(s̄(t), s(t))

∥∥∥∥∥
s̄L(t+∆t)

−
∥∥∥∥∥
(∆t)2

2
s̈(s(t)) + r′1(∆t, s̄) + r′2(∆t, s, s̄)

∥∥∥∥∥
s̄L(t+∆t)

r̂2 =

∥∥∥∥∥
(∆t)2

2
s̈(s(t)) + r′1(∆t, s̄) + r′2(∆t, s, s̄)

∥∥∥∥∥
s̄L(t+∆t)

−
∥∥∥∥∥
(∆t)2

2
s̈(s(t)) + r′1(∆t, s̄)

∥∥∥∥∥
s̄L(t+∆t)

r̂1 =

∥∥∥∥∥
(∆t)2

2
s̈(s(t)) + r′1(∆t, s̄)

∥∥∥∥∥
s̄L(t+∆t)

−
∥∥∥∥∥
(∆t)2

2
s̈(s(t))

∥∥∥∥∥
s̄L(t+∆t)

and r̂1 ≤ M ′
1∆t3, r̂2 = M ′

2δ, r̂3 ≤ M ′
3∆t2δ, and hence,

‖Ns̄L(t+∆t)‖s̄L(t+∆t) = ‖s(t + ∆t)− s̄L(t + ∆t)‖s̄L(t+∆t) + r′4

=

∥∥∥∥∥
(∆t)2

2
s̈(s(t))

∥∥∥∥∥
s̄L(t+∆t)

+ r̂3(s̄(t), s(t)) + r̂1(∆t, s̄) + r̂2(∆t, s, s̄) + r′4.

Finally, due to Theorem 3.1 and the claims 2 and 3, we have

1
2
(1− 2δ)‖s̈(s(t))‖s ≤ (1−R∆t)(1− 2δ)‖s̈(s(t))‖s

≤ ‖s̈(s(t))‖s̄L(t+∆t)

≤ 1
1−R∆t

1
1− 2δ

‖s̈(s(t))‖s ≤ 2
1− 2δ

‖s̈(s(t))‖s.

This implies that

‖Ns̄L(t+∆t)‖s̄L(t+∆t) =

∥∥∥∥∥
(∆t)2

2
s̈(s(t))

∥∥∥∥∥
s̄L(t+∆t)

+ r̂3(s̄(t), s(t)) + r̂1(∆t, s̄) + r̂2(∆t, s, s̄) + r′4 + r′5,

where |r′5| ≤ M5∆t2(∆t + δ). This completes the proof.

Lemma 5.3 Let K(s1, t2, β) be the number of iterations of the predictor-corrector algorithm in Sec-

tion 4.2 from a point s1 ∈ N (β) such that s ∈ t1D and ‖NT∗
s1

(d)‖s1 ≤ 16β2

9 . Then we have the

following estimate on the number of iterations of the predictor-corrector algorithm:

1√
β

1√
2

∫ t2

t1
‖s̈(t)‖1/2

s(t)dt +
o(1)√

β
≤ K(x1, t2, β) ≤ 1√

(1− η)β
1√
2

∫ t2

t1
‖s̈(t)‖1/2

s(t)dt +
o(1)√

β
.

Proof. Let {sk} be the generated sequence, and assume that sk ∈ tkD. Then, due to Lemma 5.2,

we have

βk+1 = ‖NT∗
sk
L(tk+∆tk+1)(d)‖sk

L(tk+∆tk+1)

=
∆(tk)2

2
‖s̈(tk)‖s(tk) + ‖NT∗

sk (d)‖sk + r1(∆tk, ‖NT∗
sk (d)‖sk)

+r2(∆tk, ‖NT∗
sk (d)‖sk) + r3(∆tk, ‖NT∗

sk (d)‖sk),
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where |rk
1 | ≤ M1(∆tk)3 and |rk

2 | ≤ M2δ
k and |r3| ≤ M3((∆tk)2 + δk)2 and M1,M2,M3 are the con-

stants appear in Lemma 5.2 and do not depend on k. We use abbreviation that rk
1 = r1(∆tk, ‖NT∗

sk (d)‖sk)

and rk
2 = r2(∆tk, ‖NT∗

sk (d)‖sk), etc. Let

wk = βk+1 − rk
2 − ‖NT∗

sk (d)‖sk .

Observe that wk is strictly positive if β is sufficiently small, since βk+1 ≥ (1 − η)β while rk
2 and

‖NT∗
sk (d)‖sk is O(β2). Then, we have, when β is sufficiently small, for each k = 1, . . . , K(s1, t2, β),

√
‖s̈(tk)‖s(tk)

2
(∆tk)2 + rk

1 + rk
3 =

√
wk.

This implies that

∆t√
2
‖s̈(tk)‖1/2

s(tk)
−

√
|rk

1 | −
√
|rk

3 | ≤
√

wk ≤ ∆t√
2
‖s̈(tk)‖1/2

s(tk)
+

√
|rk

1 |+
√
|rk

3 |.

Since |rk
3 | ≤ M3((∆tk)2 + ‖NT∗

sk (d)‖sk)2, we have

∆t√
2
‖s̈(tk)‖1/2

s(tk)
−

√
|rk

1 | −
√

M3(∆tk)2 ≤
√

wk +
√

M3‖NT∗
sk (d)‖sk

and √
wk −

√
M3‖NT∗

sk (d)‖sk ≤ ∆tk√
2
‖s̈(tk)‖1/2

s(tk)
+

√
|rk

1 |+
√

M3(∆tk)2.

Now, we take the summation for all k = 1, . . . ,K(s1, t2, β). Let ∆tmax(β) be maxk ∆tk.

Since rk
1 = O((∆tk)3), we have

∫ t2

t1

1√
2
‖s̈(tk)‖1/2

s(tk)
dt−M ′

√
∆tmax(β) ≤

∑

k

(
∆tk√

2
‖s̈(tk)‖1/2

s(tk)
−

√
|rk

1 | −
√

M3(∆tk)2
)

and

∑

k

(
∆t√

2
‖s̈(tk)‖1/2

s(tk)
+

√
|rk

1 |+
√

M3(∆tk)2
)
≤

∫ t2

t1

1√
2
‖s̈(tk)‖1/2

s(tk)
dt + M ′

√
∆tmax(β)

where M ′ is a positive constant. Therefore, we have

∫ t2

t1

1√
2
‖s̈(t)‖1/2

s(tk)
dt−M ′

√
∆tmax(β) ≤

K(s1,t2,β)∑

i=1

(√
wk +

√
M3‖NT∗

sk (d)‖sk

)
(43)

and
K(s1,t2,β)∑

i=1

(√
wk −

√
M3‖NT∗

sk (d)‖sk

)
≤

∫ t2

t1

1√
2
‖s̈(t)‖1/2

s(t)dt + M ′
√

∆tmax(β) (44)

for sufficiently small β (and any s1), where M is a positive constant.
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Now, we further analyze
∑K(s1,t2,β)

i=1 (
√

wk ± √
M3‖NT∗

sk (d)‖sk). Recall that βk ∈ [(1 − η)β, β],

rk
2 = O(δk) and δk = ‖NT∗

sk (d)‖sk = O(β2). Then,
√

(1− η)β(1−O(
√

β)) ≤
√

wk ±
√

M3‖NT∗
sk (d)‖sk =

√
βk − rk

2 − ‖NT∗
sk (d)‖sk ±

√
M3‖NT∗

sk (d)‖sk

≤
√

β(1 + O(
√

β)). (45)

Taking summation from k = 1, . . . , K(s1, t2, β), we have

√
β(1− η)K(s1, t2, β)[1−O(

√
β)] ≤

K(s1,t2,β)∑

i=1

√
wk ≤

√
βK(s1, t2, β)[1 + O(

√
β)]. (46)

Combining (43), (44), (45) and (46), we obtain, finally,

√
β(1− η)

K(s1,t2,β)∑

k=1

[
1−O(

√
β)

]
−M ′

√
∆tmax(β) ≤

∫ t2

t1

1√
2
‖s̈(tk)‖1/2

s(tk)
dt

≤
√

β

K(s1,t2,β)∑

k=1

[
1 + O(

√
β)

]
+ M ′

√
∆tmax(β).

Since ∆tmax(β) → 0 when β → 0, we have

1√
β

∫ t2

t1

1√
2
‖s̈(tk)‖1/2

s(t)dt +
o(1)√

β
≤ K(s1, t2, β)

and

K(s1, t2, β) ≤ 1√
β(1− η)

∫ t2

t1

1√
2
‖s̈(tk)‖1/2

s(tk)
dt +

o(1)√
β

.

Lemma 5.4 We have

s̈ = ∇∗ṡ ṡ = H∗
P(γ̇P , γ̇P).

Proof. For simplicity, we let G := Gx. Then,

s̈ = − d

dt
(Gẋ) = −Ġẋ−Gẍ.

It follows from the definition (36) of ẋ that

Gẍ = −G
d

dt
(I −Π⊥)G−1c

= GΠ̇⊥G−1c + G(I −Π⊥)G−1ĠG−1c.

We derive expression for Π̇⊥ below. Since

G−1AT
(

d

dt
(AG−1AT)−1

)
A = −G−1AT(AG−1AT)−1

(
d

dt
(AG−1AT)

)
(AG−1AT)−1A = Π⊥G−1ĠΠ⊥,
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we obtain

Π̇⊥ =
d

dt

(
G−1AT(AG−1AT)−1A

)
= Π⊥G−1ĠΠ⊥ −G−1ĠΠ⊥ = (Π⊥ − I)G−1ĠΠ⊥.

Now we have

Gẍ = G(I −Π⊥)G−1Ġ(I −Π⊥)G−1c and Ġẋ = −Ġ(I −Π⊥)G−1c.

Then it immediately follows that

s̈ = −Gẍ− Ġẋ = GΠ⊥G−1Ġ(I −Π⊥)G−1c.

Now,

Ġ =
∂3ψ

∂x3
ẋ.

Let K = G−1 = ∂2ψ∗/∂s2. Then, we have Ġ = −GK̇G. Taking account that GΠ⊥G−1 is the

orthogonal projection onto Tx(P)⊥ in s-coordinate and that ṡ = G(I − Π⊥)G−1c (see (38)), we

obtain

∇∗ṡ ṡ = s̈ = −GΠ⊥K̇G(I −Π⊥)G−1c = −GΠ⊥
∂3ψ∗

∂s3
(ṡ, ṡ)

= −(GΠ⊥G−1)GΠ⊥
∂3ψ∗

∂s3
(ṡ, ṡ) = (GΠ⊥G−1)∇∗ṡ ṡ = H∗

P(γ̇P , γ̇P). (47)

This completes the proof.

In the end of this section, we prove the following result that the ‖H∗
P(γ̇P , γ̇P)‖1/2 is bounded by

√
p/t. The result implies the bound

∫ t2

t1

1√
2
‖HP(γ̇P , γ̇P)‖1/2dt ≤ √

p log
t2
t1

,

which is naturally expected from the standard complexity analysis of interior-point algorithms.

Proposition 5.5 We have

‖H∗
P(γ̇P , γ̇P)‖ ≤ 2p

t2
.

Proof. Since G(V,Π⊥V ) = G(Π⊥V, Π⊥V ) holds for V ∈ TxΩ, we have

‖H∗
P(γ̇P , γ̇P)‖2

s = ‖GxΠ⊥
∂3ψ∗

∂s3
(ṡ, ṡ)‖2

s = 〈GxΠ⊥
∂3ψ∗

∂s3
(ṡ, ṡ), Π⊥

∂3ψ∗

∂s3
(ṡ, ṡ)〉 = 〈GxΠ⊥

∂3ψ∗

∂s3
(ṡ, ṡ),

∂3ψ∗

∂s3
(ṡ, ṡ)〉.

By using the relation (9) (regarding ψ∗ as the self-concordant function), we have

‖H∗
P(γ̇P , γ̇P)‖2 = ‖GxΠ⊥

∂3ψ∗

∂s3
(ṡ, ṡ)‖2

s ≤ 2‖GxΠ⊥
∂3ψ∗

∂s3
(ṡ, ṡ)‖s‖ṡ‖s‖ṡ‖s.

Therefore,

‖H∗
P(γ̇P , γ̇P)‖ ≤ 2‖ṡ‖2

s.
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Now, since s = tc−ATy for some y and G−1
s (I −Π⊥)GsA

Ty = 0, we have

tṡ = G−1
s (I −Π⊥)Gss = −Gx(I −Π⊥)

∂ψ∗

∂s
.

The norm of this vector is bounded as follows:
∥∥∥∥Gx(I −Π⊥)

∂ψ∗

∂s

∥∥∥∥
s
≤

∥∥∥∥
∂ψ∗

∂s

∥∥∥∥
s

=
√

p,

where the last equation follows by letting S := s in (15) and by using (14). This completes the proof.

6 Linear Programming

In this section, we focus on classical linear programming [12]. Let us consider the dual pair of linear

programs:

min cTx s.t. Ax = b, x ≥ 0,

and

max bTy s.t. c−ATy = s, s ≥ 0,

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm. We assume that the rows of A is linearly independent. It is easy

to see that the problem fits into the general setting in (1) and (2), if we take Ω = Ω∗ = Rn
+ and take

d satisfying Ad = −b. We will consider the situation where we choose ψ(x) = −∑n
i=1 log xi which is

an n-normal barrier.

Let

χ̄A = max
B

‖A−1
B A‖,

where B is the set of indices such that AB is nonsingular. Furthermore, let

χ̄∗A = inf
D

χ̄AD,

where D is the positive definite diagonal matrix. The quantity χ̄A is the condition number of the

coefficient matrix A studied in, for example, [16, 24, 54, 62, 63]. This quantity plays an important

role in the layered-step interior-point algorithm by Vavasis and Ye [71], and the subsequent analysis

by Monteiro and Tsuchiya [39]. The quantity χ̄∗A is a scaling-invariant version of χ̄A introduced in

[39]. If A is integral, then, χ̄A is bounded by 2O(LA), where LA is the input size of A.

The main goal of this section is to establish a bound on “the total curvature of the central

trajectory.” Before going to prove the results, we introduce a few notations here. Given two vectors

u and v, we denote the elementwise product as u◦v. The unit element of this product is the vector of

all ones and denoted by e. The inverse and square root of u is denoted by u−1 and u1/2, respectively.

u−1 is the vector whose elements are reciprocal of the elements of u. This elementwise product is the
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Euclidean Jordan algebra associated with the cone Rn
+. As to the order of operations, we promise

that the product ◦ is weaker than the ordinary product of matrix and vectors, i.e., Ax ◦ y, say, is

interpreted as (Ax) ◦ y and not as A(x ◦ y). Let x, s ∈ Rn
++. We have x(s) = x−1, s(x) = s−1,

Gx = (diag(x))−2, Gs = (diag(s)−2). We define the projection matrix Q as follows:

Q(s) = G1/2
s AT(AGsA

T)−1AG1/2
s .

We also use the notation ‖ · ‖2 for the ordinary Euclidean norm defined by ‖u‖2 =
√

(u|u) =
√∑

i u
2
i

for a vector u, say. ‖ · ‖ means the norm in terms of the Riemannian metric.

In the analysis of the total curvature integral, we invoke the following theorem obtained by

Monteiro and Tsuchiya [39].

Theorem 6.1 Let x(ν), s(ν), y(ν) be the point of the central trajectory with parameter ν which is

defined as the unique solution to the following system of equations.

x ◦ s = νe,

Ax = b,

c−ATy = s,

x ≥ 0, s ≥ 0.

Then we have ∫ ∞

0

√
ν‖ẋ ◦ ṡ‖1/2

2

ν
dν ≤ O(n3.5 log(χ̄∗A + n)), (48)

where differentiation is with respect to ν.

Proposition 6.2
∫ ∞

0

‖(I −Q)e ◦Qe‖1/2
2

t
dt = O(n3.5 log(χ̄∗A + n))

Proof. We observe that

νx−1 ◦ ẋ = (I −Q)e, νs−1 ◦ ṡ = Qe.

where differentiation is with respect to ν in (48). This implies that

νẋ ◦ ṡ = (I −Q)e ◦Qe

and hence ∫ ∞

0

√
ν‖ẋ ◦ ṡ‖1/2

2

ν
dν =

∫ ∞

0

‖(I −Q)e ◦Qe‖1/2
2

ν
dν.

We make change of variables t = ν−1 in the integral. Then the lemma immediately follows.

In the following, we let

hPD(t) =
‖(I −Q(t))e ◦Q(t)e‖2

t2
,

where Q(t) is Q defined with Q(γP(t)) = Q(γD(t)). Now we are ready to prove the main results in

this section.
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Theorem 6.3 (Total curvature of the central trajectory in the case of “classical linear program-

ming”)

If Ω = Rn
+ and ψ =

∑n
i=1 log xi, then the total curvature of the central trajectory is finite (exists

in the improper sense) and is bounded as follows:
∫ ∞

0

1√
2
‖H∗

P(γ̇γP , γ̇P)‖1/2dt ≤
∫ ∞

0
hPD(t)1/2dt = O(n3.5 log(χ̄∗A + n)).

Specifically, if A is integral, then
∫ ∞

0

1√
2
‖H∗

P(γ̇P , γ̇P)‖1/2dt = O(n3.5LA),

where LA is the input bit size of A, and in particular, if A is a 0-1 matrix, then
∫ ∞

0

1√
2
‖H∗

P(γ̇P , γ̇P)‖1/2dt = O(n4.5m).

Proof. We show that

‖H∗
P(γ̇P , γ̇P)‖ ≤ ‖(I −Q)e ◦Qe‖2t

2.

To this end, we use (47). First observe that

∂3ψ∗

∂si∂sj∂sk
= −2s−1

i s−1
j s−1

k δijk, (49)

where δijk = 1 iff i = j = k and otherwise zero, and

Π⊥ = G1/2
s QG−1/2

s . (50)

On the other hand, for any u ∈ Rm, we have

(I−Q)G1/2
s ATu = (I−Q)diag(x(t))ATu = (I−Q)(x(t)◦ (ATu)) = (I−Q)(x(t)◦ (ATu)) = 0. (51)

Therefore,

(s−1) ◦ ṡ = (I −Q)(x ◦ c) = (I −Q)(x(t) ◦ (t−1(tc−ATy(t)))) = t−1(I −Q)e. (52)

Taking account of (49), (50), (51) and (52) and (47), we obtain, in s-coordinate,

H∗
P(γ̇P , γ̇P) = −2t−2Π⊥G1/2

s [(I −Q)e ◦ (I −Q)e]. (53)

Now we show that

‖H∗
P(γ̇P , γ̇P)‖ = 2t−2‖Q((I −Q)e ◦ (I −Q)e)‖2 ≤ 2t−2‖Qe ◦ (I −Q)e‖2 = 2hPD. (54)

The theorem readily follows from Theorem 6.2 and (54). The first equality relation in (54) is just

by definition. We prove the second inequality. Since Q(I −Q)e = (I −Q)Qe = 0, we have

Q((I −Q)e ◦ (I −Q)e) = −Q((I −Q)e ◦Qe) and (I −Q)(Qe ◦Qe) = −(I −Q)((I −Q)e ◦Qe).
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This implies that

Q((I−Q)e◦(I−Q)e)+(I−Q)(Qe◦Qe) = −Q((I−Q)e◦Qe)−(I−Q)((I−Q)e◦Qe) = −Qe◦(I−Q)e.

We take ‖ · ‖2 norm of the both relations and by using Q(I −Q) = 0, we obtain (54) as we desire.

From the proof of Theorem 6.2, we have the following theorem which completely characterizes

the primal-dual curvature hPD(t) [39] in terms of information geometry.

Theorem 6.4 Let γP(t) and γD(t) be the points on the primal and the dual central trajectory with

parameter t. We have the following Pythagoras relation among the primal embedding curvature

H∗
P(γ̇P(t), γ̇P(t)) at γP(t) and the dual embedding curvatures HD(γ̇D(t), γ̇D(t)) at γD(t), and the

primal-dual curvature hPD(t).

‖1
2
H∗
P(γ̇P(t), γ̇P(t))‖2

γP (t) + ‖1
2
HD(γ̇D(t), γ̇D(t))‖2

γD(t) = hPD(t)2.

One of the important consequences of Theorems 6.3 and 6.4 is that the primal/dual path-following

algorithm is better than the primal-dual path-following algorithm in view of the integral, and primal-

or-dual algorithm is probably the best.

7 Concluding discussion

In this paper, we made an attempt to bridge the computational complexity and information geometry.

We developed a suitable geometrical machinery for studying complexity of the polynomial-time

interior-point algorithms. Upon this basis, there are several topics to be studied further. We discuss

some of them below.

First topic we address is development of information geometric approach to primal-dual interior-

point algorithms for symmetric cone programming. We expect that Euclidean Jordan algebra plays

fundamental role here. In this paper, we established information geometrical meaning of the “primal-

dual curvature” studied by Monteiro and Tsuchiya for classical linear programming. It would be

interesting to introduce an analogue of the primal-dual curvature in the context of symmetric cone

programming based on information geometry and develop the analogous iteration-complexity esti-

mate based on the extended primal-dual curvature integral.

Second is the issue of the role of divergence in our analysis. In many application domains of

information geometry, divergence plays important roles. In this paper, we did not touch on divergence

at all. It would be interesting to look into more detail what is the role of divergence behind. We

guess that the reason why we did not need divergence in our analysis is the part is implicitly taken

care of by Theorems 3.1 and 3.2 which was developed by Nesterov and Nemirovski.

Third issue concerns possible application of geometry to development of robust implementation.

Though semidefinite programming is efficiently solved with the interior point algorithms, some prob-

lem is solved yet difficult to solve, in particular those which arises in polynomial optimization. When
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the algorithm stacks, it is not clear whether the algorithm cannot make progress because of the

nonlinear nature of the problem or because of rounding errors or not. The geometrical approach

proposed here may shed new light on this problem.

Fourth issue is development of finer approximation or estimation of the number of iterations,

through expansion by polynomials of β. In this paper, we approximated the number of iterations to

trace the central path from γP(t1) to γP(t2) by the integral
∫ t2
t1

(‖H∗
P(γ̇P , γ̇P)‖1/2/

√
2)dt multiplied

by 1/
√

β. We may consider an expansion like

(the number of iterations) ∼ p(
√

β)√
β

,

where p(·) is a polynomial whose constant term is the integral and other coefficient probably has the

form of integrals over the interval [t1, t2]. Like in statistics, we are not sure such expansion makes

sense in practical applications, but may provide some deeper insight into the nature of interior-point

algorithms and underlying information geometric structure of the optimization problems.

Finally, we mention possible application of self-concordance to other domains in mathematics.

From the viewpoint of computational mathematics, self-concordance condition contains rich struc-

tures which enabled polynomial-time complexity analysis of the interior-point algorithms. Therefore,

studying information geometry and/or the Hessian geometry induced by self-concordant barrier func-

tions is interesting in its own right. Apart from the pure mathematical viewpoint, self-concordance

may play significant role in other application areas of information geometry such as statistics and

learning, signal processing, etc.

8 Appendix A: Proof of Proposition 3.4

In this appendix, we prove Propositions 3.4. To this end, we prove a weaker result that

‖ŷ − y‖y ≤ 16
9

η. (55)

We consider the Newton iteration initiated at y to compute a point ŷ such that g(ŷ) = ĝ (ĝ is given).

Due to Theorem 3.2, the generated sequence is ensured to converge to ŷ. Let {yk} be the generated

sequence (y0 = y), and let δk be the Newton decrement at yk. By using ‖yk+1−yk‖yk = ‖Nyk(ĝ)‖yk ,

it is not difficult to see by induction and Theorem 3.2 that

δk ≤
(

16
9

)2k−1

(η)2
k

=
(

16η

9

)2k−1

η ≤
(

1
9

)2k−1

η ≤
(

1
9

)k

η, k = 0, 1, . . .

Therefore, we have

δ0 = ‖y1 − y0‖y0 ≤ η, ‖y2 − y1‖y1 ≤
1
9
η, . . . , ‖yk+1 − yk‖yk

≤
(

1
9

)k

η

(Note that y0 = y.)
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Now we consider an auxiliary sequence {αk} defined by the following recursion:

α0 = 0, α1 = η

(
≤ 1

16

)
, αk+1 := αk +

1
1− αk

1
9k

η, k = 1, . . .

We claim that

‖yk − y0‖y0 ≤ αk.

The proof is by induction. The claim holds obviously for k = 0 and 1. Suppose that the claim holds

for k ≥ 1. Then,

‖yk+1 − y0‖y0 ≤ ‖yk+1 − yk‖y0 + ‖yk − y0‖y0 ≤ αk +
1

1− αk

η

9k
= αk+1.

Now, we introduce the sequence {βk} defined as follows:

β0 = 0, β1 = η, βk+1 = βk +
2η

9k
k = 1, . . .

Then it is easy to see by induction that, if βk ≤ 1/2, then αk ≤ βk. Further more, we have

β∞ = η + 2η
1

1− (1/9)
1
9

= η(1 +
1
4
) =

5
4
η.

Since η ≤ 1/16, we have βk ≤ 1
16 · 5

4 < 1
2 . This completes the proof of (55).

Now we prove (19). Let y1 the point which we obtain after one Newton iteration. Since

‖y2 − y1‖y1 ≤ 16
9

η2,

we have, by using Theorem 3.1, Theorem 3.2 and (55),

‖y∞ − y0‖y0 ≤ ‖y∞ − y1‖y0 + ‖y1 − y0‖y0 ≤ 1
1− η

‖y∞ − y1‖y1 + η

≤ 1
1− η

16
9
‖y2 − y1‖y1 + η ≤ 1

1− η

(
16
9

)2

η2 + η ≤ 4η2

1− η
+ η.

In the similar manner, we have

η − 4η2

1− η
≤ ‖y1 − y0‖y0 − ‖y∞ − y1‖y0 ≤ ‖y∞ − y0‖y0

The bound (19) readily follows from this.

Now we prove the second claim.

If η ≤ 1/16, then we can apply the first statement, and then
η

2
≤ ζ ≤ 3η

2
,

and hence η ≤ 2ζ. We also have
1

1 + 8η
≤ η

ζ
≤ 1

1− 8η
.

Therefore, we have
1

1 + 16ζ
≤ η

ζ
≤ 1

1− 16ζ
.

From this bound, we have, if ζ ≤ 1/64, then,

1− 22ζ ≤ η

ζ
≤ 1 + 22ζ.

This completes the proof.
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9 Appendix B: Proof of Theorem 4.3

In this appendix, we prove Theorem 4.3. As was mentioned before, to this end, we analyze {sk/tk}
rather than {sk} itself. We identify {sk/tk}, which the sequence on the dual feasible region D, with

a sequence generated by a polynomial-time path-following algorithm for the dual problem (2).

9.1 A predictor-corrector algorithm for the dual problem (26) and its polyno-
miality

First, we focus on (26) (or (2))

min 〈d, s〉, s.t. s ∈ cl(D).

We rewrite this problem as an optimization problem with respect to y.

min−〈b, y〉 s.t. y ∈ T ≡ {y | c−ATy ∈ Ω∗}.

Let

φ(y) = ψ∗(c−ATy).

Then, φ(y) becomes a self-concordant barrier with parameter p. The Legendre transformation is

g = −∂φ(y)/∂y. The central trajectory is written as the set of solutions to

−tb− g(y) = 0, (56)

when t is changed from 0 to ∞. Let us denote by y(t) the solution to (56). y(t) is essentially the

central trajectory for the original dual problem (26).

We define the neighborhood y(t) of the central trajectory y(t) as

ND
t (β) = {y ∈ T | ‖Ny(−tb)‖y ≤ β}.

We will develop a predictor-corrector path-following scheme employing −V cen
y = −Ny(0) as

predictor. We define

yL(y, t,∆t) = y − ∆t

t + ∆t
V cen

y = y − ∆t

t + ∆t
Ny(0).

We will consider an updating scheme
(

t
y

)
⇒

(
t + ∆t
yL(y, t, ∆t)

)

at the predictor step. Nonlinearity of the stepsize function is to make match with the predictor-

corrector algorithm in Section 4.2 which we will analyze in the next subsection.

Now we present a predictor-corrector algorithm for (26) based on this idea.

[Predictor-corrector algorithm for (26)]

42



1. Let β ≤ 1/4, and let 1/2 ≤ η.

2. Let y ∈ D such that y ∈ ND
t (16

9 β2).

3. (Predictor step)

Let ∆t > 0 be such that

‖NyL(y,t,∆t)(−(t + ∆t)b)‖yL(y,t,∆t) ∈ [β(1− η), β].

Let yP := yL(y, t,∆t).

4. (Corrector step) At yP, compute the Newton direction for the corrector-step NyP(−(t + ∆t)b),

and let y+ = yP + NyP(−(t + ∆t)b).

5. t := t + ∆t, y := y+ and return to step 1.

Now we have the following lemma on the admissible stepsize.

Lemma 9.1 Let 0 < β1 < β2 < 1, and let y ∈ ND
t (β1). Let λ(β1, β2) be the positive solution of the

following equation: (
1 + λ√

p

)
β1

1− λ
+

2λ2

(1− λ)2
= β2.

Then it is possible to take a step at least

∆t ≥ t
λ√
p

without violating the condition that y − (∆t/(t + ∆t))Vcen ∈ ND
t+∆t(β2)

Proof. Fig. 10 illustrates the situation in g-coordinate. Let y0 be the current point y. By

C

B

E

A

D

Figure 10: The predictor-corrector algorithm (in g-coordinate) .
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assumption, we have ‖Ny0(−tb)‖y0 ≤ β1.

We introduce the step-size λ =
√

p∆t
t . Then, we have

∆t

t + ∆t
=

λ

λ +
√

p
.

Let

y(λ) = y0 − λ

λ +
√

p
Ny0(0) = y + Ny0

((
1 +

λ

λ +
√

p

)
g(y0)

)
,

and let g(λ) = g(y(λ)) (the second equality follows from (18)). g(y(λ)) is a curve in g-coordinate

though it is straight in y-coordinate.

In the following, we use the notation

‖u‖−y =
√

uTG−1
y u.

For any ĝ ∈ g(C), we have

‖Ny(ĝ)‖ = ‖ĝ − g(y)‖−y .

We evaluate the Newton decrement for the point C at the point E in Fig. 10, i.e.,
∥∥∥∥∥Ny(λ)

((
1 +

λ√
p

)
b

)∥∥∥∥∥
y(λ)

=

∥∥∥∥∥

(
1 +

λ√
p

)
b− g(y(λ))

∥∥∥∥∥
−

y(λ)

.

For the purpose, we consider an intermediate point D, and we divide the norm into two parts, i.e.,
∥∥∥∥∥

(
1 +

λ√
p

)
b− g(y(λ))

∥∥∥∥∥
−

y(λ)

≤
∥∥∥∥∥

(
1 +

λ√
p

)
b−

(
1 +

λ√
p

)
g(0)

∥∥∥∥∥
−

y(λ)

+

∥∥∥∥∥

(
1 +

λ√
p

)
g(0)− g(λ)

∥∥∥∥∥
−

y(λ)

.(57)

For later use, first we observe that the Newton decrement for the point E at the point B is

bounded by λ. Due to (18) and Proposition 3.4, we have
∥∥∥∥∥

(
1 +

λ

λ +
√

p

)
g(0)− g(0)

∥∥∥∥∥
−

y0

=

∥∥∥∥∥Ny

((
1 +

λ

λ +
√

p

)
g(0)

)∥∥∥∥∥
y0

=
λ

λ +
√

p
‖Ny(0)(0)‖y(0) ≤ λ < 1.

(58)

This means that y(λ) ∈ D(y0, λ).

Next we find a bound on the first term of (57), the norm of the displacement vector between C

and D in Fig. 10, measured with the metric at E. We have the following bound
∥∥∥∥∥

(
1 +

λ√
p

)
tb−

(
1 +

λ√
p

)
g(0)

∥∥∥∥∥
−

y(λ)

=

(
1 +

λ√
p

)
‖tb− g(0)‖−y(λ) ≤

(1 + λ√
p)β1

1− λ
, (59)

since ‖tb− g(0)‖−y0
≤ β1 and y(λ) ∈ D(y0, λ).

Now we find a bound on the second term of (57). By add and subtract, we have
∥∥∥∥∥

(
1 +

λ√
p

)
g(0)− g(λ)

∥∥∥∥∥
−

y(λ)

≤
∥∥∥∥∥

(
1 +

λ√
p

)
g(0)−

(
1 +

λ

λ +
√

p

)
g(0))

∥∥∥∥∥
−

y(λ)

+

∥∥∥∥∥

(
1 +

λ

λ +
√

p

)
g(0)− g(y(λ))

∥∥∥∥∥
−

y(λ)

(60)
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We have ‖g(0)‖−y0
= ‖Ny0(0)‖y0 ≤

√
p (Proposition 3.3) and ‖y(λ) − y0‖y0 ≤ λ (y(λ) ∈ D(y0, λ)).

Then, the first term of (60) is bounded as follows:
∥∥∥∥∥

(
1 +

λ√
p

)
g(0)−

(
1 +

λ

λ +
√

p

)
g(0)

∥∥∥∥∥
−

y(λ)

=
λ2

√
p(λ +

√
p)
‖g(0)‖−y(λ)

≤ λ2

√
p(λ +

√
p)(1− λ)

‖g(0)‖−y0
≤ λ2

1− λ
. (61)

On the other hand, it follows from (58) and Theorem 3.2 that
∥∥∥∥∥

(
1 +

λ

λ +
√

p

)
g(y0)− g(y(λ))

∥∥∥∥∥
−

y(λ)

=

∥∥∥∥∥Ny

((
1 +

λ

λ +
√

p

)
g(0)

)∥∥∥∥∥
y(λ)

≤ λ2

(1− λ)2
. (62)

(We apply one iteration of the Newton method from y0).

Compiling (57), (59), (60), (61) and (62), we obtain
∥∥∥∥∥Ny(λ)

((
1 +

λ√
p

)
b

)∥∥∥∥∥
y(λ)

≤
(
1 + λ√

p

)
β

1− λ
+

2λ2

(1− λ)2
.

From this bound, the lemma immediately follows.

Theorem 9.2 We have

∆t ≥ λ(16
9 β2, β(1− η))√

p
t

at each iteration of the predictor-corrector algorithm, so that the algorithm generates the sequence yk

such that

yk ∈ Ntk(β), tk ≥
(

1 +
λ(16

9 β2, β(1− η))√
p

)k

.

Proof. The step ∆t is chosen in such a way that

β(1− η) ≤ ‖(t + ∆t)b− g(yL(y, t,∆t))‖ ≤ β,

where y ∈ ND
t (16

9 β2). Letting β1 = 16
9 β2 and β2 = (1 − η)β. Then, taking account of β ≤ 1/4, we

see that

∆t ≥ λ(16
9 β2, (1− η)β)√

p
t

yet satisfies the step-size condition above.

9.2 Polynomiality of the predictor-corrector algorithm

In the following, we will show that performing the predictor-step in [Implementable Algorithm] in

Section 4.2 corresponds to moving in the negative centering direction in D when conic projection is

performed. For s ∈ tD, there exists unique y such that s = tc−ATy. We denote this y as y(s), and

let

u(s) ≡ y(s)
t

.
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Proposition 9.3 Let s̄ ∈ tD, s̄ ∈ N (16
9 β2) and perform the predictor step taking the step ∆t. Then,

we have

u(s̄ + ∆t ˙̄s)− u(s̄) = − ∆t

t + ∆t
Nu(s̄)(0).

Proof. Since s ∈ tD and ṡ ∈ D, we have

s + ∆tṡ

t + ∆t
− s

t
=

∆t

t(t + ∆t)
(tṡ− s)

=
∆t

t(t + ∆t)
(−G−1

s Π⊥Gss) (use (36))

= − ∆t

t(t + ∆t)
AT(AGsA

T)−1AGss

= − ∆t

t(t + ∆t)
AT(AGsA

T)−1Ax (use (15) and Gs = G−1
x ))

= − ∆t

(t + ∆t)
AT(AGs/tA

T)−1Ax(s/t) (use (12) and (13))

=
∆t

(t + ∆t)
AT(AGs/tA

T)−1A∇ψ∗(s/t)

=
∆t

t + ∆t
ATG−1

u g(u) = − ∆t

t + ∆t
ATNu(s)(0).

This result implies that taking the step ∆t in the predictor-corrector algorithm in Section 4.2 at

a point s ∈ tD corresponds to taking ∆t/(t + ∆t) along the negative centering direction.

One more proposition is needed to prove polynomiality.

Proposition 9.4 Let s ∈ tD. The following holds:

1. ‖Nu(s)(−tb)‖u(s) = ‖NT∗
s (d)‖s.

2. u(s) ∈ ND
t (β) iff s ∈ N (β).

Proof. It follows from the discussion in the end of Section 3 that

Nu(s)(−tb) = (AGs/tA
T)−1(tb−Ax(s/t)).

This implies that, by using (12), (13) and (24),

‖Nu(s)(−tb)‖u(s) =
√

(tb−Ax(s/t))T(AGs/tAT)−1(tb−Ax(s/t))

=
√

(b−Ax(s))T(AGsAT)−1(b−Ax(s))

= ‖Ny(s)(−b)‖y(s) = ‖NT∗
s (d)‖s.
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Now we are ready to prove Theorem 4.3. Since

u(s̄) ∈ ND
t′ (β) ⇔ s̄ ∈ N (β) ∩ t′D,

we see that the sequence u(s̄k) is precisely regarded as a sequence generated by the predictor-corrector

method for (26) analyzed in the previous section. Since we have

∆tk

tk
≥ λ√

p
,

it is easy to see that the predictor-corrector algorithm generate a sequence satisfying

s̄k ∈ tkD ∩N (β), tk ≥
(

1 +
λ√
p

)k

.

From this, Theorem 4.3 immediately follows.
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