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Abstract

In this work, we consider a classification problem where the objects to
be classified are bags of instances which are vectors measuring d different
attributes. The classification rule is defined in terms of a ball, whose center
and radius are the parameters to be computed. Given a bag, it is assigned
to the positive class if at least one element is strictly included inside the ball,
and it is labelled as negative otherwise. We model this question as a margin
optimization problem. Several necessary optimality conditions are derived
leading to a polynomial algorithm in fixed dimension. A VNS type heuristic
is proposed and experimentally tested.
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1 Introduction

Consider a classification problem where each of the objects which compose the dataset
may be represented by several feature vectors, and only some of them (even only one
in some cases) are responsible for the class that the object belongs to. For approaching
this task, a set of tools grouped under the name of Multiple Instance Learning have been
developed during the last decade.
A Multiple Instance Problem is a supervised classification problem where the objects to
be classified are bags of instances which are vectors measuring d different attributes (see
e.g. [11, 39, 42] for a description). According to these measurements, a label (+1 or −1
in the two-class case) must be assigned to each bag.
Although there are several ways to assign a label to the complete set of vectors (see
[39]), in our problem, the class label of a bag will be chosen according to the so-called
MI assumption (see [39]), which states that a bag is considered as positive (label +1) if
at least one of its instances satisfies a determined condition and as negative (label -1)
otherwise.

1.1 Origin and contributions to the problem

Multi-Instance Learning was first applied to drug activity prediction by Dietterich et al.
in ([11]). In that problem, the objects are molecules, whereas the instances are different
low-energy conformations, that is, shapes that the molecule can adopt by rotating its
bonds. Only some of these conformations can bind to a target binding site (which is a
part of a larger molecule) and then, the molecule becomes active, producing a determined
drug. But the only information biochemists know is if a molecule is qualified or not to
make a drug, not having any information about the correct conformations. The aim is
thus, given a new molecule, to be able to predict if it will be active or inactive by taking
into account the whole set of its conformations.
In [11], an axis-parallel hyper-rectangle is built such that it must contain at least one
instance of each positive bag and it cannot contain any instance of the negative bags.
Three algorithms are derived for this. The first algorithm constructs the smallest rectan-
gle covering all the instances of the positive bags, and then it excludes all the negative
instances, by eliminating, in turns, the negative instance which requires eliminating the
smallest number of positive instances. The second algorithm is a modification of the first
one, which assigns a cost for eliminating each positive instance (this is useful, for example,
to avoid excluding from the rectangle a positive instance which is the last survivor from
its bag). The third algorithm builds the smallest rectangle covering at least one instance
of each positive bag, by using a backfitting procedure to choose the positive instances and
by selecting the most relevant features in each step.
Since the appearance of this paper, several authors have developed new algorithms to try
to improve the results obtained by Dietterich et al., following different strategies.

• Diverse Density: In [25], the concept of Diverse Density is introduced to deal
with multi-instance problems. A point with high Diverse Density is near to many
instances of different positive bags, and far from the instances of the negative bags.
The problem is thus to find the point with the maximum Diverse Density and, when
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having a new bag, it is classified as positive if the smallest distance from the bag to
that point is smaller than a certain threshold, and as negative otherwise. In [41], an
Expectation-Maximization algorithm is proposed to maximize the Diverse Density,
by transforming the multi-instance problem into a single instance and by using the
EM algorithm to maximize the responsability for the label of each bag. This same
strategy is also used in [32].

• k-Nearest Neighbour: Two variants of the k-NN algorithm are proposed in [37]
to solve multi-instance problems. The minimal and maximal Hausdorff distances
are defined to measure the proximity between bags. A Bayesian framework is used
for the so-called Bayesian k-NN algorithm. For the Citation k-NN algorithm, the
concepts of references and citers are applied to the k-NN methodology, by studying
for each bag not only its neighbours, but also the bags for which the concerned bag
is a neighbour. These concepts are also used in [43].

• Support Vector Machines: In [1], two formulations as a mixed integer quadratic
program are proposed. The mi-SVM approach introduces integer variables for mod-
eling the individual labels of the instances of the positive bags, while the MI-SVM
formulation selects one representative from each positive bag as that one which
determines the sign of the label of its bag. Both algorithms compute optimal hyper-
planes, given an initial assignment for the integer variables, and they update those
integer values by assigning a positive label to the instance with the highest value
for the classification rule.

A separating hyperplane via SVMs is also proposed in [24], by using that a positive
bag is correctly classified if at least one element of the convex hull of the instances of
the bag is included in the positive halfspace. A set of bilinear constraints are derived
and, in turns, one set of variables is held constant and the underlying linear program
is solved. This successive linearization algorithm converges in a few iterations to a
local optimum.

In [10], an image categorization problem is solved by using SMVs and the k-means
algorithm. Given an image, this is represented as a set of image patches, and, via the
k-means clustering algorithm, the patch descriptors are assigned to a predetermined
number of clusters. Every image is described via a feature vector, counting the
number of its patches in each cluster. The one-versus-rest SVM algorithm is used
to solve the problem of assigning each image to a cluster.

Transductive SVMs, a modification of SVM which forces to unlabeled data (coming
from positive bags) to be as far as possible from the separating hyperplane, are
used in [2], obtaining good results when the positive bags are sparse (few positive
instances).

• Kernels: A general kernel on multi-instance data is defined in [16], which sepa-
rates positive and negative bags under natural assumptions. The kernel procedure
described in [23] consists in mapping the database to a Hilbert space via a first
kernel, fitting a Gaussian model to each bag in that feature space and defining a
second kernel as the Bhattacharyya’s affinity between such Gaussian models.
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In [6], a similarity measurement is defined between a bag and an instance, and
a mapping is defined in terms of that measure, transforming the multi-instance
problem into a single-instance, solved via SVMs. A similar strategy is followed in
[7], but using, to define the mapping, the maximum distance between a bag and a
set of instances prototypes obtained via Diverse Density. Other kernels on sets of
vectors can be found in [13].

• Other techniques: DC Optimization [8], Propositional Learning [14], Generalized
Multi-Instance Learning [38], and so on.

1.2 Some application fields

Apart from drug activity prediction, Multi-Instance Learning has been successfully applied
to other different fields. In image classification or retrieval (see [1, 6, 7, 13, 25, 26, 32, 40]),
one has a series of images, and the goal is to train a classifier to detect a given object. The
pictures are the bags of the multi-instance problem, which are segmented in sets of pixels
(blobs), the instances of the problem. An image is classified as positive if it contains at
least a determined blob, which is characteristic from the object to detect, and as negative
otherwise.
In [43], a problem in web mining is described, where the aim is to provide recommendation
on web index pages to an user, based on the browsing history of that web user. The index
pages (which are web pages with links to other pages, containing only the titles of brief
information about the content of those linked pages) are the bags of the multi-instance
problem, while each linked page is an instance. Each page is represented by its d more
frequent terms. A user is interested in an index page if he or she is interested in at least
one of the links (satisfying thus the MI assumption).
Other different applications have been studied in handwriting recognition (see [23]), text
categorization (see [1]) or disease prediction (see [39]).

1.3 Our approach

In this paper, we model the multi-instance classification problem by using two concentric
balls as classifiers and by following the strategy of maximizing the margin, as done in
Support Vector Machines with hyperplanes (see e.g. [9]). We obtain a formulation as
a nonlinear mixed-integer program, which must be solved through heuristic techniques.
Necessary conditions of optimality are derived for this problem, which are used to build a
Variable Neighbourhood Search algorithm (see [27]) to obtain a solution.
This work is structured as follows. In Section 2, the problem is formulated as one of
maximizing a margin, in a similar way to the strategy used in Support Vector Machines
methods. In Section 3, the existence of optimal solution in our problem is studied, and
in Section 4, several necessary conditions of optimality are derived, leading to a finite
dominating set which can be determined in polynomial time, as seen in Section 5. In
Section 6, a VNS algorithm is proposed, by using the optimality conditions, to solve the
problem. Two extensions of this VNS algorithm, when we introduce p separating balls in
the classification rule and when there are more than two possible labels in the database,
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Figure 1: Construction of the classifier

are studied in 7. The algorithm is tested on several real and artificial databases and the
results are shown in Section 8. Finally, Section 9 includes some discussion and conclusions.

2 Modeling the problem

Consider a database Ω formed by objects i = (Xi, Yi) ∈ Ω, where each Xi is a finite set of
feature vectors, Xi = {x1, x2, . . . , xKi}, with xk ∈ Rd, k = 1, . . . ,Ki, and where Yi is the
corresponding class defined by means of a label +1 or -1.
In this work, the classification rule is defined in terms of a ball with center x0 and radius
r. Thus, our problem will be to compute the parameters x0 ∈ Rd and r ∈ R+ which define
the corresponding ball, such that the classification rule, expressed according to the MI
assumption, is the following:
Given a bag X ⊂ Rd,

• classify in G+1, if ∃x ∈ X such that ‖x− x0‖2 < r2,
• classify in G−1, otherwise, i.e., if ∀x ∈ X, ‖x− x0‖2 ≥ r2.

(1)

In other words, once x0, r are obtained, a bag X will be labelled as member of G−1 only
if X is fully contained in the complementary set of the open ball B(x0, r) centered at x0

with radius r (and as member of G+1 otherwise).
In Figure 1, an example in dimension 2 is drawn. The circles of the same colour represent
the instances of each bag of G+1, whereas the squares of a determined colour represent
the instances of a bag of G−1. Our problem is to build a ball such that it contains at least
one circle of each colour and it does not contain any squares.
Different balls may exist separating the instances in G+1 and G−1. For instance, for the
example depicted in Figure 1, an alternative separating ball is given in Figure 2. In order
to choose one ball, we follow the strategy successfully used in Support Vector Machines,
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Figure 2: An alternative separating ball

[3, 9, 28], and maximize a margin, which will be defined in a similar way to that used in
Support Vector Machines (see e.g. [9]).
Then, given a database, a training sample I ⊂ Ω, extracted from it, will be used to build
the optimization problem which must be solved in order to obtain optimal parameters
(optimal in the sense that the margin is maximized), center and radius of B(x0, r), for
constructing the classification rule.

2.1 Defining the optimization problem

According to the classification rule defined in (1), given an object i and its set of feature
vectors Xi, it is assigned to the group

G+1 : if ∃x ∈ Xi : ‖x− x0‖2 < r2 ↔ min
x∈Xi

‖x− x0‖2 < r2

↔ max
x∈Xi

(r2 − ‖x− x0‖2) > 0,

G−1 : if ∀x ∈ Xi, ‖x− x0‖2 ≥ r2 ↔ min
x∈Xi

‖x− x0‖2 ≥ r2

↔ min
x∈Xi

(‖x− x0‖2 − r2) ≥ 0.

(2)

Given a training set I = {(X1, Y1), (X2, Y2), . . . , (XN , YN )}, we define

G+1 = {i ∈ I : Yi = +1},
G−1 = {i ∈ I : Yi = −1}.

The optimization problem we want to solve is

max
x0,r

min
{

min
i∈G+1

max
x∈Xi

(r2 − ‖x− x0‖2), min
i∈G−1

min
x∈Xi

(‖x− x0‖2 − r2)
}

(3)
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which can also be written as

max
(xj)j∈

Q

j∈G+1

Xj

max
x0,r

min
{

min
j∈G+1

(r2 − ‖xj − x0‖2), min
i∈G−1

min
x∈Xi

(‖x− x0‖2 − r2)
}

. (4)

Denote by ∆ the margin, that is, the minimum between the two distances considered in
the formulation of Problem (4),

∆ = min
{

min
j∈G+1

(r2 − ‖xj − x0‖2), min
i∈G−1

min
x∈Xi

(‖x− x0‖2 − r2)
}

. (5)

Then, the problem remains as follows,

max
(xj)j∈

Q
j∈G+1

Xj

max
x0,r,∆

∆

s.t. ∆ ≤ min
j∈G+1

(r2 − ‖xj − x0‖2)

∆ ≤ min
i∈G−1

min
x∈Xi

(‖x− x0‖2 − r2)

(6)

or equivalently,

max
(xj)j∈

Q
j∈G+1

Xj

max
x0,r,∆

∆

s.t. ‖xj − x0‖2 ≤ r2 −∆, ∀j ∈ G+1

‖x− x0‖2 ≥ r2 + ∆, ∀x ∈
⋃

i∈G−1

Xi.

(7)

If we denote by r2
+1 = r2 −∆, r2

−1 = r2 + ∆, one has that ∆ =
r2
−1 − r2

+1

2
, and Problem

(7) can be rewritten as

max
(xj)j∈

Q
j∈G+1

Xj

max
x0,r+1,r−1

r2
−1 − r2

+1

s.t. ‖xj − x0‖2 ≤ r2
+1, ∀j ∈ G+1

‖x− x0‖2 ≥ r2
−1, ∀x ∈

⋃
i∈G−1

Xi.

(8)

Hence, our problem can be seen as that of obtaining two concentric balls B(x0, r+1),
B(x0, r−1), where B(x0, r+1) contains every instance xj (of those previously selected)
from the bags of the group G+1, B(x0, r−1) does not contain strictly any instance from
the bags of the group G−1 and the difference between the squares of the radii is as large
as possible (see Figure 3 for the example in dimension 2). Thus, we use (x0, r+1, r−1) to
denote a finite solution of Problem (8).
Our aim will be to characterize the existence of optimal solutions and to obtain some
necessary conditions to describe an optimal solution of Problem (8), in order to obtain
an optimal solution of our original problem. The reasonings used for obtaining these
conditions look like others which appear in some problems in Location Theory (see e.g.
[5, 33]).
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Figure 3: Construction of the two concentric balls

3 Existence of finite optimal solution

The following result explains the assumptions under which a finite optimal solution of
Problem (8) can be obtained. For the proof of this result, some notions on Voronoi
diagrams (see [30, 36]) are needed.
Given the sets of points {y1, . . . , ym}, the nearest-point Voronoi polytope associated with
the point yk is defined as

Vk =
⋂

i=1,...,m

{x : ‖x− yk‖ ≤ ‖x− yi‖}. (9)

Analogously, the farthest-point Voronoi polytope associated with the point yk is defined as

Wk =
⋂

i=1,...,m

{x : ‖x− yk‖ ≥ ‖x− yi‖}. (10)

The sets V = {Vk : k = 1, . . . ,m} and W = {Wk : k = 1, . . . ,m} are called the
nearest-point and the farthest-point Voronoi diagrams, respectively (see [30, 36]).

Theorem 3.1. There exists a finite optimal solution (x0, r+1, r−1) of Problem (8) iff for
every choice of representatives from bags of G+1, S = (xj)j ∈

∏
j∈G+1

Xj, the intersection

of the convex hull of this set of instances S and the convex hull of all the instances of bags
of G−1 is non-empty, that is, if CH(S) ∩ CH(

⋃
i∈G−1

Xi) 6= ∅, ∀S ∈
∏

j∈G+1

Xj.

Proof.
Denote by S = (xj)j ∈

∏
j∈G+1

Xj , a choice of representatives of bags in G+1, define P (S)

8



as

max
x0,r+1,r−1

r2
−1 − r2

+1

s.t. ‖xj − x0‖2 ≤ r2
+1, ∀xj ∈ S

‖x− x0‖2 ≥ r2
−1, ∀x ∈

⋃
i∈G−1

Xi

(11)

and denote by z(S) its optimal value, possibly +∞.
With this notation, Problem (8) can be written as

max
(xj)j∈

Q

j∈G+1

Xj

z({xj : j ∈ G+1}). (12)

Firstly, we will see that if there exists a selection of representatives S for which the inter-
section CH(S)∩CH(

⋃
i∈G−1

Xi) is empty, then the solution of Problem (8) is unbounded.
Indeed, if this intersection is empty for this selection of representatives, one can find a
hyperplane H : {p>x = c}, with p ∈ Rd, ‖p‖ = 1 and c ∈ R, separating strictly the two
convex hulls, satisfying that the halfspace {p>x > c} contains CH(S).
Construct the nearest-point Voronoi diagram V for the complete set of instances of bags
in G−1 and the farthest-point Voronoi diagram W associated to the set S, as defined
in expressions (9)-(10). Consider the intersection of the two diagrams in the space of
dimension d. The obtained tessellation has a finite number of cells.
Let C an unbounded cell of that tessellation such that, for each x in the cell, one has that
x + λp also belongs to the cell, for any λ ≥ 0, with p the vector defined previously for the
hyperplane H. For this cell, there exists a point a ∈

⋃
i∈G−1

Xi which is the nearest one
of this set to all the points in the cell and a point b ∈ S which is the farthest one of S to
every point in the cell.
Consider x0 any point belonging to C∩{p>x > c} and define the straight line r = x0 +λp,
for λ ∈ R. The radii r+1 and r−1 can be expressed as the distances from x0 to b and a,
that is, r+1 = ‖x0 − b‖ and r−1 = ‖x0 − a‖ (see [29, 31, 36] for a detailed description on
the topic).
Consider a0 and b0 the orthogonal projections of a and b on r. Observe that a0 6= b0, since
r is orthogonal to the separating hyperplane H and then, a0 and b0 are also separated
by H. The objective function for the feasible solution (x0, r+1, r−1) can be expressed as
follows,

r2
−1 − r2

+1 = ‖x0 − a0‖2 + ‖a− a0‖2 − ‖x0 − b0‖2 − ‖b− b0‖2

= ‖x0 − a0‖2 − ‖x0 − b0‖2 + C.
(13)

Since p = (b0−a0)
‖b0−a0‖ , if we move x0 along the straight line r = x0 + λp, for λ > 0 increasing,

the closest point in
⋃

i∈G−1
Xi and the farthest point in S to the new center x0+λp continue

being the same points a and b, since the new center is also included in C ∩ {p>x > c},
and the objective function increases linearly in λ,

r′2−1 − r′2+1 = ‖x0 + λp− a0‖2 − ‖x0 + λp− b0‖2 + C
= ‖x0 − a0‖2 + 2λ(x0 − a0)>p− ‖x0 − b0‖2 − 2λ(x0 − b0)>p + C

= ‖x0 − a0‖2 − ‖x0 − b0‖2 + C + 2λ(b0 − a0)>
(b0−a0)
‖b0−a0‖

= r2
−1 − r2

+1 + 2λ‖b0 − a0‖ > r2
−1 − r2

+1.

(14)
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In fact, the larger the value of λ, the better the solution. The solution is thus unbounded.

Now, we will see that if for every choice S of representatives from bags of G+1, the inter-
section CH(S) ∩ CH(

⋃
i∈G−1

Xi) is non-empty, then a finite optimal solution of Problem
(8) can be found.
For every possible set of representatives S, consider Problem (11) and build the nearest-
point Voronoi diagram V for

⋃
i∈G−1

Xi, the farthest-point Voronoi diagram W for S, and
the tessellation obtained by intersecting the two diagrams, whose number of cells is finite.
For each cell, consider a ∈

⋃
i∈G−1

Xi, the nearest point of this set to all the points in the
cell, and b ∈ S, the farthest point of S to every point in the cell.
Thus, for any possible center x0 in this cell, the radii r+1 and r−1 can be computed as the
distances to those two points, r−1 = ‖x0−a‖ and r+1 = ‖x0− b‖. Problem (11) restricted
to the cell can be expressed as follows,

max
x0

‖x0 − a‖2 − ‖x0 − b‖2

s.t. ‖xj − x0‖2 ≤ ‖x0 − b‖2, ∀xj ∈ S
‖xk − x0‖2 ≥ ‖x0 − a‖2, ∀xk ∈

⋃
i∈G−1

Xi.
(15)

In fact, Problem (15) can be rewritten as the following linear program in x0,

min
x0

2x>0 (a− b) + ‖b‖2 − ‖a‖2

s.t. 2x>0 (b− xj) + ‖xj‖2 − ‖b‖2 ≤ 0, ∀xj ∈ S
2x>0 (xk − a) + ‖a‖2 − ‖xk‖2 ≤ 0, ∀xk ∈

⋃
i∈G−1

Xi.
(16)

The dual problem corresponding to the minimization problem (16) is the following,

max
λj ,µk

‖b‖2 − ‖a‖2 +
∑
j

λj (‖xj‖2 − ‖b‖2)−
∑
k

µk (‖xk‖2 − ‖a‖2)

s.t. (1−
∑
k

µk) a +
∑
k

µkxk = (1−
∑
j

λj) b +
∑
j

λjxj

λj , µk ≥ 0, ∀j, ∀k.

(17)

If we denote µa and λb the lagrangian multipliers corresponding to the constraints in
Problem (16) defined by a and b, the constraint in Problem (17) can also be expressed as

(1−
∑
k 6=a

µk) a +
∑
k 6=a

µkxk = (1−
∑
j 6=b

λj) b +
∑
j 6=b

λjxj . (18)

Let x ∈ CH(S) ∩ CH(
⋃

i∈G−1
Xi) (this point can be defined because this intersection

in non-empty by assumption). This means, there exist µ′k ≥ 0 (∀k : xk ∈
⋃

i∈G−1
Xi),∑

k µ′k = 1 and λ′j ≥ 0 (∀j : xj ∈ S),
∑

j λ′j = 1, such that x =
∑

k µ′kxk =
∑

j λ′jxj .
Defining µk = µ′k, for k 6= a, and λj = λ′j , for j 6= b, we obtain (18).
Hence, the dual problem is feasible and consequently its corresponding primal problem
(11) will have a finite optimal solution. If we repeat the process for every cell (the number
of cells is finite) and for every possible S, we conclude that there is a finite optimal solution
for Problem (8).
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Remark 3.1. If the solution of Problem (8) is unbounded, according to the proof of The-
orem 3.1, we can move the center x0 of any original feasible solution along the direction
p and the objective function continues improving. Then, the separating concentric balls
are transformed in two hyperplanes {p>x = d} and {p>x = e}, with d > c > e, and
such that the closed halfspace {p>x ≥ d} contains CH((xj)j) whereas {p>x ≤ e} contains
CH(

⋃
i∈G−1

Xi).

Theorem 3.1 characterizes the existence of a finite optimal solution in Problem (8). The
following results will be used to describe a procedure to check the existence of solution of
Problem (8) (or equivalently, to check that the two groups are not linearly separable) by
solving a mixed-integer linear problem.

Theorem 3.2. Problem (8) does not have a finite optimal solution iff there exists a se-
lection of representatives from bags in G+1, S ∈

∏
j∈G+1

Xj and there exist p ∈ Rd, β ∈ R

such that

p>x + β ≥ 1, ∀x ∈ S, (19)
p>x + β ≥ 0, ∀x ∈

⋃
j∈G+1

Xj , (20)

p>x + β < 1, ∀x ∈
⋃

i∈G−1
Xi. (21)

Proof.
By Theorem 3.1, there does not exist a finite optimal solution of Problem (8) iff there
exists a selection S ∈

∏
j∈G+1

Xj such that a hyperplane H : {q>x = α} separates strictly

the convex hulls of the sets of points S and
⋃

i∈G−1
Xi. In that case, one has that

q>x ≥ αS , ∀x ∈ S, with αS = min
x∈S

q>x, (22)

q>x ≥ α+, ∀x ∈
⋃

j∈G+1
Xj , with α+ = min

x∈
S

j∈G+1
Xj

q>x, (23)

q>x ≤ α−, ∀x ∈
⋃

i∈G−1
Xi, with α− = max

x∈
S

i∈G−1
Xi

q>x, (24)

satisfying αS ≥ α+ and αS > α−.
In case αS > α+, by subtracting α+ in both sides of inequalities (22) and (23) and by
dividing by αS − α+, we obtain

q>x− α+

αS − α+
≥ αS − α+

αS − α+
↔ q>x− α+

αS − α+
≥ 1, ∀x ∈ S, (25)

q>x− α+

αS − α+
≥ α+ − α+

αS − α+
↔ q>x− α+

αS − α+
≥ 0, ∀x ∈

⋃
j∈G+1

Xj . (26)

Likewise, by performing the same operations in expression (24) and by taking into account
that αS > α−, one has that

q>x− α+

αS − α+
≤ α− − α+

αS − α+
< 1, ∀x ∈

⋃
i∈G−1

Xi. (27)
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Calling p = 1
αS−α+

q and β = − α+

αS−α+
in expressions (25)-(27), we obtain expressions

(19)-(21).
In case αS = α+, we sum 1− αS in both sides of constraints (22)-(24), and we obtain

q>x− αS + 1 ≥ αS − αS + 1 ↔ q>x + 1− αS ≥ 1, ∀x ∈ S,
q>x− αS + 1 ≥ α+ − αS + 1 ↔ q>x + 1− αS ≥ 1 ≥ 0, ∀x ∈

⋃
j∈G+1

Xj ,

q>x− αS + 1 ≤ α− − αS + 1 < 1, ∀x ∈
⋃

i∈G−1
Xi,

by taking into account that α− − αS < 0. Calling p = q and β = 1 − αS , expressions
(19)-(21) are obtained.

Theorem 3.3. Problem (8) does not have a finite optimal solution iff the solution of the
problem

min
p∈Rd,β,z∈R,yj

l ∈{0,1}
z

s.t. yj
l ∈ {0, 1}, ∀xl ∈ Xj ,∀j ∈ G+1 (28)∑

l y
j
l = 1, ∀j ∈ G+1 (29)

p>xl + β ≥ yj
l , ∀xl ∈ Xj ,∀j ∈ G+1 (30)

p>x + β ≤ z, ∀x ∈
⋃

i∈G−1
Xi, (31)

is strictly smaller than 1.

Proof.
By Theorem 3.2, Problem (8) does not have a finite optimal solution iff constraints (19)-
(21) are satisfied for a determined set of representatives S ∈

∏
j∈G+1

Xj , and for parame-
ters p ∈ Rd, β ∈ R.
In the mixed-integer linear program with constraints (28)-(31), the binary variables defined
in constraints (28) express that an instance xl is chosen as the representative from its bag
Xj when the corresponding variable yj

l is equal to 1. Likewise, constraints (29) impose
that exactly one representative is chosen from each bag Xj . Then, for any feasible solution
of this problem, a selection of representatives from bags in G+1 is selected in constraints
(28)-(29).
Constraints (30) represent that the expressions (19)-(20) are reached, while constraints
(31) are related to expression (21). Then, expressions (19)-(21) are fully satisfied iff a
solution of the mixed-integer linear problem is found with z < 1.

From now on, we will assume that the existence of optimal solution of Problem (8) has
been already checked and that the two groups are not linearly separable, and hence, the
classifier cannot be a hyperplane, but a ball.
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4 Necessary conditions for optimality

Below, we derive some conditions that a finite feasible solution (x0, r+1, r−1) must satisfy
to be eligible for optimality.
For describing these optimal solutions, the concept of active point will also be necessary.
An instance x from a bag of the group G+1 is an active point for the ball B(x0, r+1) iff the
distance from x to x0 is exactly r+1, that is, ‖x−x0‖ = r+1. Thus, the set of active points
of G+1, which is denoted by A+1, is formed by the instances which lie on the boundary of
the ball B(x0, r+1) (respectively, the set A−1 of the active points of G−1 is formed by the
instances lying on the boundary of B(x0, r−1)).
During the proofs, we will see that a determined solution is not optimal by finding another
solution which gives a better value of the objective function.

Theorem 4.1. If (x0, r+1, r−1) is an optimal solution, then there exists at least one active
point in each group G+1 and G−1, that is, the sets A+1 and A−1 of active points are non-
empty.

Proof.
Suppose that A+1 is empty. Since (x0, r+1, r−1) is a feasible solution of Problem (8), at
least one instance xj from each bag Xj of the group G+1 is strictly (due to the emptiness
of A+1) contained inside the ball B(x0, r+1), that is, ‖xj − x0‖2 < r2

+1.
Then, it is sufficient to define r′+1 as the distance from x0 to the farthest instance (of a bag
of G+1) contained in the ball B(x0, r+1), that is, r′+1 = max

x∈(
S

j∈G+1
Xj)∩B(x0,r+1)

‖x − x0‖,

which is strictly smaller than r+1 and (x0, r
′
+1, r−1) is a feasible solution which improves

the value of the objective function.
On the other hand, suppose that A−1 is an empty set. Then, for any x belonging to any bag
of G−1, one has that ‖x−x0‖2 > r2

−1, and it is sufficient to take r′−1 = min
x∈
S

i∈G−1
Xi

‖x−x0‖,

which is strictly bigger than r−1. Hence, (x0, r+1, r
′
−1) improves the objective function.

In both cases, we conclude that the initial solution (x0, r+1, r−1) cannot be optimal.

Theorem 4.2. If (x0, r+1, r−1) is an optimal solution, one has that:

1. If r+1 < r−1, then there must exist at least two active points in G−1.

2. If r+1 > r−1, then there must exist at least two active points in G+1.

3. If r+1 = r−1 and
(⋃

j∈G+1
Xj

)
∩

(⋃
i∈G−1

Xi

)
= ∅ (i.e., there is not any instance

common to a bag in G+1 and to a bag in G−1), then there must exist at least two
active points in G+1 and two in G−1.

Proof.
By Theorem 4.1, if (x0, r+1, r−1) is optimal, there must exist at least an active point a in
G−1 and an active point b in G+1. Below, we will see there are more active points in each
case.

13



a

b

x0

x0'

r+1

r+1'

Figure 4: Illustration for the proof of Theorem 4.2, case r+1 < r−1

1. When r+1 < r−1, suppose there is only one active point a in the set A−1 (see Figure
4). Consider the direction p = x0 − a and it will be proved to be a direction of
improvement for the objective function. Indeed, if we move x0 an amount ε > 0,
small enough (for not touching new active points) in the direction u = p

‖p‖ , one has
that r′−1 = r−1 + ε.

And the other radius must be measured as the maximum distance from x′0 = x0 +εu
to the points belonging to A+1.

If the new center x′0 is nearer to all the active points in A+1, the radius r′+1 ≤ r+1

and the difference between the squares of the radii increases.

Otherwise, the new radius r′+1 will be, at most, the distance from x′0 to the point
b which belonged to A+1 and which is now the furthest. Anyway, one has that
r′+1 ≤ r+1 + ε, by triangular inequality on b, x0 and x′0, and the value of the
objective function improves strictly since

r′2−1 − r′2+1 ≥ (r−1 + ε)2 − (r+1 + ε)2

= r2
−1 − r2

+1 + 2ε(r−1 − r+1) > r2
−1 − r2

+1.

Hence, we have found a new feasible solution (x′0, r
′
+1, r

′
−1) with a better value of

the objective function of Problem (8), contradicting the optimality of (x0, r+1, r−1).

2. When r+1 > r−1, suppose now there is only one active point b in the set A+1 and
consider the direction q = b− x0. If we move x0 an amount ε > 0, small enough, in
direction v = q

‖q‖ , one has that r′+1 = r+1 − ε, whereas the other radius, r′−1 must
be taken as the minimum distance from x′0 = x0 + εv to the points belonging to
A−1. And now, with a symmetric reasoning to that used in the case r+1 < r−1, we
obtain that (x′0, r

′
+1, r

′
−1) improves the objective function.

3. When r+1 = r−1, suppose there is only one active point a in the set A−1 and
consider the direction p = x0 − a. If we move x0 along the direction u = p

‖p‖ and

14



with an analogous reasoning to that used in case r+1 < r−1, we obtain a new feasible
solution (x′0, r

′
+1, r

′
−1), with x′0 = x0 + εu, r′−1 = r−1 + ε and r′+1 the distance from

x′0 to a point b in A+1 (the farthest one to x′0).

If b is nearer to x′0 than to x0, r′+1 has decreased and then, the objective function has
improved. Otherwise, two situations may arise: either x′0, a and b are not collinear
or a = b, but this latter situation cannot occur under the assumption that there
are not any common instances in the bags of G+1 and G−1. Therefore, by strict
triangular inequality r′+1 < r+1 + ε, the objective function improves since

r′2−1 − r′2+1 > (r−1 + ε)2 − (r+1 + ε)2 = r2
−1 − r2

+1.

If we suppose there is only one active point b in A+1, the reasoning to follow is
analogous (by symmetry).

Remark 4.1. For the following results, we need to add the assumption that the instances
of the database Ω are in general position, in the sense that any set of n instances of the
database, with 1 ≤ n ≤ d + 1, are always affinely independent, that is, its rank is equal to
n− 1.

Remark 4.2. Note that assumption stated in part 3 of Theorem 4.2 is less restrictive and
is included in the assumption stated in Remark 4.1.

Theorem 4.3. Under the assumption that the data are in general position, any optimal
solution has at least d + 2 active points associated.

Proof.
Let A+1 = {xj1 , . . . , xjs} and A−1 = {xk1 , . . . , xkt} be the active points of the groups G+1

and G−1, respectively (where s, t ≥ 1, according to Theorem 4.1).
Consider the mediatrices of these two sets of active points,

med(A+1) = {x ∈ Rd : ‖x− xj1‖2 = ‖x− xj2‖2, . . . , ‖x− xj1‖2 = ‖x− xjs‖2} (32)
med(A−1) = {x ∈ Rd : ‖x− xk1‖2 = ‖x− xk2‖2, . . . , ‖x− xk1‖2 = ‖x− xkt‖2} (33)

and the intersection of these two mediatrices, med(A+1) ∩med(A−1), is formed by these
points in Rd satisfying simultaneously the two sets of equations, that is,

‖x− xj1‖2 = ‖x− xj2‖2

...
‖x− xj1‖2 = ‖x− xjs‖2

‖x− xk1‖2 = ‖x− xk2‖2

...
‖x− xk1‖2 = ‖x− xkt‖2.

(34)
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Observe that (34) is equivalent to the linear system

2(xj2 − xj1)
>x = ‖xj2‖2 − ‖xj1‖2

...
2(xjs − xj1)

>x = ‖xjs‖2 − ‖xj1‖2

2(xk2 − xk1)
>x = ‖xk2‖2 − ‖xk1‖2

...
2(xkt − xk1)

>x = ‖xkt‖2 − ‖xk1‖2.

(35)

which contains at most s + t− 2 linearly independent equations.
Hence, dim(med(A+1) ∩med(A−1)), the dimension of the affine space obtained by inter-
secting the mediatrices med(A+1) and med(A−1), satisfies

dim(med(A+1) ∩med(A−1)) ≥ d− (s + t− 2).

Suppose that the number of active points is strictly smaller than d+2, that is, s+t ≤ d+1.
Then,

dim(med(A+1) ∩med(A−1)) ≥ 1.

In that case, the intersection of the mediatrices would contain at least a straight line. We
will build one straight line where we will find a better solution.
Since the center x0 must be at the same distance of every active point in G+1 (and at the
same distance of every active point in G−1, respectively), it must be in the intersection of
the mediatrices of A+1 and A−1, that is, x0 satisfies the linear system (35).
Consider a ∈ A−1 and b ∈ A+1, two active points (see Figure 5). The objective function
of Problem (8) is linear in x0,

r2
−1 − r2

+1 = ‖x0 − a‖2 − ‖x0 − b‖2 = 2(b− a)>x0 + ‖a‖2 − ‖b‖2

Consider y ∈ med(A+1)∩med(A−1), with y 6= x0, and the straight line r = x0 +λ(y−x0),
with λ ∈ R. This straight line is included in the intersection of the mediatrices, in fact
these two manifolds coincide when dim(med(A+1) ∩med(A−1)) = 1.
Consider a0 and b0 the orthogonal projections of the points a and b on r. Then, the
objective function can be written as

r2
−1 − r2

+1 = ‖x0 − a‖2 − ‖x0 − b‖2

= ‖x0 − a0‖2 + ‖a0 − a‖2 − ‖x0 − b0‖2 − ‖b0 − b‖2

= 2(b0 − a0)>x0 + ‖a0‖2 − ‖b0‖2 + ‖a0 − a‖2 − ‖b0 − b‖2

= 2(b0 − a0)>x0 + C,

(36)

where C is a constant depending on a, b, a0 and b0.
And if we take p = b0 − a0, for a0 6= b0, we obtain a direction of improvement along the
line in a neighborhood of the point x0. Indeed, if we move x0 an amount ε > 0 (small
enough for not finding new active points associated to the solution) in the direction p, the
new value of the objective function is

r′2−1 − r′2+1 = 2(b0 − a0)>(x0 + ε(b0 − a0)) + C = r2
−1 − r2

+1 + 2ε‖b0 − a0‖2

> r2
−1 − r2

+1.
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Figure 5: Illustration for the proof of Theorem 4.3

Thus, we have obtained a new solution (x0+εp, r′+1, r
′
−1), with the same sets of active points

and a better value of the objective function, therefore, the original solution (x0, r+1, r−1)
cannot be optimal.
In case a0 = b0, it is sufficient to take other two active points whose orthogonal projec-
tions on r do not coincide. This is always possible if dim(med(A+1) ∩ med(A−1)) > 1,
because, in that case, we only have to choose a different straight line r. If dim(med(A+1)∩
med(A−1)) = 1, we can always find at least two active points, a′ ∈ A−1 and b′ ∈ A+1,
with different orthogonal projections, otherwise, the d + 1 active points would lie on the
same hyperplane and this is not possible under the assumption of the data being in general
position.

Remark 4.3. Without the general position assumption, one still obtains existence of an
optimal solution with at least d+2 active points (although the uniqueness is not guaranteed,
since other solutions with the same value of the objective function and only d + 1 active
points can be found).
Indeed, if dim(med(A+1)∩med(A−1)) = 1 and the d + 1 active points are cohyperplanar,
their orthogonal projections on r will coincide. In that case, since a0 = b0, expression (36)
remains as follows

r2
−1 − r2

+1 = ‖a0 − a‖2 − ‖b0 − b‖2

which does not depend on x0, therefore, we can move x0 along the straight line until a
new point becomes active and the value of the objective function remains constant. Then,
a solution (x′0, r

′
+1, r

′
−1) with d + 2 active points can be reached, although the solution is

not unique, because any solution with x∗0 belonging to the interval [x0, x
′
0] would have the

same value of the objective function (and only d + 1 active points).
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Definition 4.1. Given two sets of points A+ ⊂
⋃

j∈G+1
Xj and A− ⊂

⋃
i∈G−1

Xi, consider
the intersection med(A+)∩med(A−). If card(A+ ∪A−) = d + 2, med(A+)∩med(A−) =
{x0} and all points of A+ and A− are active at x0, we say that x0 is generated by A+ and
A−.

Theorem 4.3 asserts that any optimal solution is generated by its active points.

Definition 4.2. Given a problem called P of type (8), any new problem obtained by adding
instances to bags in G−1 and/or removing instances from bags in G+1 is called an extension
of P .

Lemma 4.1. If P ′ is an extension of P , then the optimal value of P ′ is smaller than or
equal to the optimal value of P .

Proof.
Given P a problem of type (8), if we add instances to bags in G−1, the resulting problem
has more constraints. Likewise, if we remove instances from the bags in G+1, the number
of possible choices of representatives of these bags is smaller (in the combinatorial part of
the problem). In both cases, the optimal value of the resulting problem P ′ will be smaller
than or equal to the optimal value of P .

Theorem 4.4. Under the assumption of the data being in general position, if (x0, r+1, r−1)
is an optimal solution generated by the sets A+ and A−, all points of A+ come from
different bags.

Proof.
Suppose we have d + 2 active points associated to the solution (x0, r+1, r−1) of Problem
(8), P , and a set B of those instances, with cardinality at least equal to two, coming from
the same bag Xj in G+1.
Drop that set B of active points, except for one of them, b, and consider the problem
P ′ which is an extension of P where we have removed the set B\{b} in the bag Xj in
G+1. Then, (x0, r+1, r−1) continues being a feasible solution with the same value of the
objective function, but the number of active points is now strictly smaller than d+2, then
the solution cannot be optimal and a solution with a better value of the objective function
can be found. By Lemma 4.1, the optimal value of problem P ′ is a lower bound of the
optimal value of problem P . Then, the solution (x0, r+1, r−1) cannot be optimal for P .

Theorem 4.5. If (x0, r+1, r−1) is an optimal solution, then the intersection of the convex
hulls of the two groups of active points A+1 and A−1 is a non-empty set.

Proof.
Suppose CH(A+1) ∩ CH(A−1), the intersection of the convex hulls of the sets of active
points A+1 and A−1, is empty. Then, one can find a hyperplane H : {p>x = c} which
strictly separates these two convex hulls, with p ∈ Rd, ‖p‖ = 1 and c ∈ R, such that the
halfspace which contains CH(A+1) is defined by {p>x > c}. Consider the straight line
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r = x0 + λp, with λ ∈ R. If we move x0 along this straight line a certain amount ε > 0,
small enough, the objective function will be improved.
To prove this latter, it is sufficient to consider as a the active point from A−1 closest to the
new center x0+εp, and as b the point from A+1 which maximizes the distance from the new
center to A+1, and their corresponding orthogonal projections a0 and b0 to the straight
line r. We obtain a new feasible solution (x0 + εp, r′+1, r

′
−1), where r′−1 = ‖x0 + εp − a‖

and r′+1 = ‖x0 + εp− b‖. Observe that a0 6= b0, because the straight line is orthogonal to
the separating hyperplane and hence, a0 and b0 are also separated by the hyperplane H.
The objective function for the initial solution (x0, r+1, r−1) is

r2
−1 − r2

+1 = ‖x0 − a0‖2 + ‖a− a0‖2 − ‖x0 − b0‖2 − ‖b− b0‖2

= ‖x0 − a0‖2 − ‖x0 − b0‖2 + C

On the other hand, since p = (b0−a0)
‖b0−a0‖ , the value of the objective function for (x0 +

εp, r′+1, r
′
−1) is better,

r′2−1 − r′2+1 = ‖x0 + εp− a0‖2 − ‖x0 + εp− b0‖2 + C

= ‖x0 − a0‖2 + 2ε(x0 − a0)>p− ‖x0 − b0‖2 − 2ε(x0 − b0)>p + C

= ‖x0 − a0‖2 − ‖x0 − b0‖2 + C + 2ε(b0 − a0)>
(b0 − a0)
‖b0 − a0‖

= r2
−1 − r2

+1 + 2ε‖b0 − a0‖ > r2
−1 − r2

+1.

Then, we conclude that (x0, r+1, r−1) with CH(A+1)∩CH(A−1) = ∅ cannot be an optimal
solution.

5 A polynomial algorithm in fixed dimension

The results obtained in the previous section show that a finite dominating set of solutions
can be built in polynomial time, when the dimension d is fixed.
Hence, an algorithm to find an optimal solution can be constructed as follows.

Algorithm 5.1.

1. Choose d + 2 active points, by taking into account the conditions obtained in Theo-
rems 4.1-4.5.

2. Compute the center and the radii associated.

3. Check the feasibility of the solution

4. Once given the finite dominating set of solutions (for every possible choice of d + 2
active points), choose the optimal one.
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For every possible choice of d + 2 active points, satisfying the necessary conditions of
optimality, one has to compute the center and the radii of the associated solution.
The center x0 is built as the intersection of the mediatrices of the two sets of active points,
A+1 and A−1.
In other words, if xi1 , . . . , xis are the points in A+1, with 1 ≤ s ≤ d + 1 (by Theorem 4.1),
and xis+1 , . . . , xid+2

in A−1, x0 is obtained as solution to

‖x0 − xi1‖2 = ‖x0 − xi2‖2

...
‖x0 − xi1‖2 = ‖x0 − xis‖2

‖x0 − xis+1‖2 = ‖x0 − xis+2‖2

...
‖x0 − xis+1‖2 = ‖x0 − xid+2

‖2.

(37)

Observe that (37) is equivalent to the linear system

2(xi2 − xi1)
>x0 = ‖xi2‖2 − ‖xi1‖2

...
2(xis − xi1)

>x0 = ‖xis‖2 − ‖xi1‖2

2(xis+2 − xis+1)
>x0 = ‖xis+2‖2 − ‖xis+1‖2

...
2(xid+2

− xis+1)
>x0 = ‖xid+2

‖2 − ‖xis+1‖2.

(38)

and should have a unique solution (Theorem 4.3).
And the radii are computed as the distances from the center x0 to any of the active points
in each group, that is,

r−1 = ‖x0 − a‖, a ∈ A−1, (39)
r+1 = ‖x0 − b‖, b ∈ A+1. (40)

To check the feasibility of this solution (x0, r+1, r−1), one has to study the distances from
the center x0 to each bag of G+1 and to each instance of a bag of G−1 and the following
conditions must be satisfied,

d(x0, Xj)2 = min
x∈Xj

‖x− x0‖2 ≤ r2
+1,∀j ∈ G+1 (41)

d(x0, x)2 = ‖x− x0‖2 ≥ r2
−1,∀x ∈ Xi,∀i ∈ G−1. (42)

And finally, an optimal solution will be that with the best value of the objective function.
Since the solution of the linear system defined in (38) can be obtained via Gauss elimi-
nation with complexity O(d3), where d is the dimension of the space of our problem, an
optimal solution by using Algorithm 5.1 can be found with complexity O(d3nd+2), where
n represents the total number of instances in the two groups. For high dimensions, this
algorithm cannot be applied in an efficient way, and a heuristic methodology, described in
the following section, will be used to find the solution.
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6 A VNS strategy to solve the problem

For solving Problem (8), which is a mixed-integer nonlinear problem, a heuristic method,
called Variable Neighborhood Search (see e.g. [17, 27] for a description), will be used to
take advantage of the combinatorial structure of the problem. This method is a recent
metaheuristic based on systematic change of neighborhood within a local search, for solving
combinatorial and global optimization problems, which has been successfully applied in
different fields, such as in location theory (see e.g. [4, 17]).
The basic VNS algorithm works as follows.

Algorithm 6.1 (Mladenovic and Hansen).

• Initialization step.
Select the set of neighborhood structures Nk, k = 1, . . . , kmax to be used in the search.
Find an initial solution x.
Choose a stopping condition.

• Main step.

1. Set k := 1.

2. Until k = kmax, repeat the following steps:

– Generate a feasible solution x′ at random from the kth neighborhood of x
(that is, x′ ∈ Nk(x)).

– Apply some local search method with x′ as initial solution (the new local
optimum will be denoted by x′′).

– If the solution obtained x′′ is better than x, move there (x := x′′) and
continue the search with N1; otherwise, set k := k + 1.

Below, we describe the search space, the neighborhood structure and the local search used
for performing the algorithm.

6.1 Search space

By Theorems 4.1 and 4.3, an optimal solution must have at least d + 2 active points, one
at least in each group. These conditions are used in order to define the search space of
the algorithm.
The different solutions will be determined in terms of a selection of active points of each
group. Each possible selection will contain s points from the bags of group G+1, with
1 ≤ s ≤ d + 1, and where all these points must come from different bags, that is, no more
than one instance from each bag can be chosen (by Theorem 4.4).
Then, we take d−s+2 points from the bags of the group G−1 (belonging or not to different
bags).
These points will represent, respectively, the sets of active points A+1 and A−1.
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6.2 Initial solution

Two different strategies have been attempted to construct an initial solution for the VNS
algorithm.
In the first strategy, the initial solution for the algorithm is built by choosing at random
a set of d + 2 active points belonging to the search space.
In the second strategy, we perform the following steps:

• Computing the centroid Ci of each bag i in G+1 (that is, the arithmetical mean of
the coordinates of the instances). Computing the centroid C of this set of centroids
Ci.

• Choosing, for each bag in G+1, the closest instance to the centroid C as the repre-
sentative of that bag.

• Selecting d + 2 active points:

– s = min(card(G+1), d) instances from G+1, the s representatives of bags that
are farthest from the centroid C,

– d− s + 2 instances from G−1, the closest ones to C.

Observe that this set of d + 2 active points belongs to the search space by construction.

6.3 Neighborhood structure

The neighborhood structure is defined by taking into account the possible choices of active
points. Thus, the k-th neighborhood Nk(x) will be formed by all the possible sets of
active points obtained by modifying k elements in the configuration of active points which
generate x.
The only restrictions to be imposed will be that there must be at least one instance from
each group and no more than one representative from each bag of the group G+1 in each
configuration (by Theorems 4.1 and 4.4).

6.4 Calculating the center and the radii

Given the d+2 active points, the center x0 is computed as the solution of the linear system
(38). If the solution is not unique, a new active point is added (and consequently, a new
equation is added to the linear system).
Once the center x0 has been found, the radii are built in order to guarantee the feasibility
of the solution. The radius r+1 is thus obtained as

r+1(x0) = max
i∈G+1

min
x∈Xi

‖x0 − x‖ (43)

and the new set of active points of the group G+1, will be formed by the points of the
bags of G+1 (one or several points) with distance to the center equal to r+1(x0).
Analogously, the radius r−1 is obtained as

r−1(x0) = min
i∈G−1

min
x∈Xi

‖x0 − x‖ (44)
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and the new set of active points of G−1 is formed by the set of points (at least one) with
distance to the center equal to r−1(x0).

6.5 Local search

Given a set of d + 2 active points, the corresponding solution (x0, r+1(x0), r−1(x0)) is
computed as explained before. But expressions (43)-(44) only guarantee two active points
associated to that solution. Then, we try to recover d + 2 active points.
For choosing the d + 2 active points, the following steps must be performed:

• Computing the distance matrices between:

– the instances of G+1 and x0,

– the instances of G−1 and x0.

• For each bag in G+1, selecting the closest instance to x0 as its representative.

• Selecting d + 2 active points:

– s = min(card(G+1), d) instances from G+1, the s representatives of bags the
furthest ones to x0,

– d− s + 2 instances from G−1, the closest ones to x0.

• Computing the new center and radii.

We repeat the process until we obtain d + 2 active points. Although the convergence
is guaranteed (since the set of instances is finite), in practice, a maximum number of
iterations is fixed (this is especially advisable for high values d).

6.6 Main step of the algorithm

Given a set of d + 2 active points (an element of the search space) defining a solution
x0, we choose at random another feasible solution x′0 from the first neighbourhood of x0,
x′0 ∈ N1(x0). We compute the radii r+1(x′0) and r−1(x′0). We apply the local search
procedure to compute the new solution x′′0.
Now, we evaluate the objective function for the new solution x′′0. If the objective value has
improved, we move to x′′0, that is, we set x0 := x′′0 and we continue the process in N1(x0).
If the objective function has not been improved, we choose another random x′0 from the
same neighbourhood and we repeat the process until having selected a maximum number
of h solutions in each neighbourhood.
After h iterations in a neighbourhood, if the solution has not improved, we set k := k + 1
and we continue the search in Nk(x0), until k = kmax, where kmax is fixed to d + 2 in our
problem (this way, we can obtain a configuration of d+2 active points completely different
to the original one).
Finally, the stopping condition is given by a fixed number of iterations.
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7 Extensions of the VNS algorithm

7.1 The p-balls VNS algorithm

In most real databases, the value of the objective function for the solution of Problem (8)
is negative, because one cannot construct the two separating concentric balls satisfying
the constraints in Problem (8) and satisfying simultaneously that r+1 ≤ r−1. In that case,
one obtains a high misclassification rate for the training sample, when trying to separate
the two groups, and consequently, bad results for classification in the test sample.
A strategy to improve these results is to modify the initial classification rule (1) to allow
the introduction of p separating balls. Thus, the new classification rule is defined now
in terms of p balls, each ball l with center x0,l ∈ Rd and radius rl ∈ R+, l = 1, . . . , p.
According to the MI assumption, the classification rule remains as follows:
Given a bag X ⊂ Rd,

• classify in G+1, if ∃x ∈ X, ∃l ∈ {1, . . . , p} such that ‖x− x0,l‖2 < r2
l

• classify in G−1, otherwise, i.e., if ∀x ∈ X, ∀l = 1, . . . , p, ‖x− x0,l‖2 ≥ r2
l .

(45)

In the algorithm, before the training of the classifier, we apply the k-means clustering
algorithm (see e.g. [18]), with k = p, to build clusters with the bags in G+1. Given the
bags of G+1, the following steps are performed:

1. Computing the centroid Ci of each bag i in G+1.

2. Initial assignment: the set of bags is partitioned at random in p clusters (with the
same size).

3. Computing the centroid C̃l of each cluster l, l = 1, . . . , p (the mean of the centroids
Ci of the bags assigned to that cluster).

4. Computing the distance matrix between the centroid Ci of the i-th bag, i ∈ G+1,
and the centroid C̃l of the l-th cluster, l = 1, . . . , p.

5. Assigning the bag i to the cluster whose centroid C̃l is the closest one to Ci.

6. Repeating steps 3-5 while there are some changes in the assignment or while a fixed
number of iterations is not reached.

Once the clusters have been constructed, we apply the VNS algorithm described in Section
6 for G+1,l being the bags of the cluster l and G−1,l = G−1, l = 1, . . . , p, we compute the
p balls (for the p clusters) and we classify the testing sample with the rule (45).

7.2 Multi-class case

So far, we have only dealt with the classification problem for two groups. However, in
many real situations, more than two groups appear in a classification problem. Different
strategies can be found in the literature, most of them proposing to transform a multi-class
problem in a series of two-class problems to be solved (see e.g., [19, 21, 35]).
We will use the one-versus-one (see [15]) algorithm (1-v-1) for our experiments. In this
algorithm, one has to construct a classifier for every possible pair of groups i and j. Since
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the classification rule is not symmetric, we will need to build the ball where the group i
is G+1 and the group j is G−1 (we denote it by B(xi,j

0 , ri,j)) and the opposite (the ball
B(xj,i

0 , rj,i)). Then, we need to construct N(N − 1) classifiers in total.
Given a bag X to be classified, for every pair of groups i and j, we compute:

intensity(i, j) =
min
x∈X

d(x, xi,j
0 )2

(ri,j)2
, (46)

and we give one vote to group i, if intensity(i, j) < intensity(j, i), or one vote to group j,
otherwise. X is finally assigned to the group with the highest number of votes (following
the Max Wins algorithm, [15]).
In case of tie between two groups i and j, we go back to compare the intensities for these
two groups and we assign the bag to group i if intensity(i, j) < intensity(j, i) (else, to
group j).

8 Computational experiment

The classification problem and the VNS algorithm proposed for building the classifier have
been implemented by using Matlab 6.5 on a computer with Pentium IV CPU 3.06 GHz.
Several numerical experiments have been performed, with artificial and real databases.
In the experiments with artificial databases, we have solved the classification problem
through 10-fold cross validation, that is, the bags of the database are grouped in 10 sets
(these sets form a partition) and, in turns, 9 of these sets are used for training the model
and the last one is used to test the problem, that is, the process is repeated ten times (see
[20, 22] for a description of the method). With the real databases in Subsection 8.5, we
have performed 5-fold cross validation.
With the training sample, we have applied the VNS algorithm to build the center x0 and
the radius r which define the classifier, and we have measured the classification accuracy,
i.e., the percentage of well-classified bags, for the training sample and, later, for the test
sample. The parameter kmax in the VNS algorithm has been fixed to d + 2 (hence, it
depends on the dimension of the problem), while the parameter h (the number of different
solutions taken in each neighbourhood) and the maximum number of iterations in the
local search step (see Subsection 6.5) have been both set equal to 5.

8.1 Full enumeration vs VNS algorithm

In this first experiment, we compare the results obtained via the VNS algorithm with
those obtained via a full enumeration of the finite dominating set of solutions (obtained
by Algorithm 5.1) in the optimization problem (8).
Since full enumeration is not an efficient way of obtaining solutions in high dimension,
two sets G+1 and G−1 have been built in dimension d = 2 with 50 instances in each
one. Polar coordinates have been used for generating the instances. Thus, for an instance
(ρ cos θ, ρ sin θ) of G−1, θ comes from a uniform distribution U(−π, π), and ρ is chosen
from a uniform distribution U(r1, r2), where 0 < r1 < r2 (r1 was fixed to 1 and r2 to
2 for the experiment). The instances in G+1 were generated in the same way, excepting
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Number of bags 1 2 5 10 50

Complete enumeration 1.9315 3.8101 0.3592 0.3036 0.0464
VNS (random initial solution) 1053.4 1664.6 0.3592 0.3036 0.0464
VNS (heuristic initial solution) 1053.4 1664.6 0.3592 0.3036 0.0464

Table 1: Value of the objective function for complete enumeration and for VNS

one instance in each bag which must be included in B(0, r1) (that is, ρ was chosen from
a uniform distribution U(0, r1)). That way, the spherical separability of the bags (in
the sense that there exists a feasible solution (x0, r+1, r−1) of Problem (8) satisfying that
r+1 < r−1) is guaranteed.
The experiment was repeated with 50 instances in each group and changing the number
of bags in the group G+1 (the numbers of bags were 1, 2, 5, 10 and 50), each bag with the
same number of instances. Observe that the problem remains the same by changing the
number of bags in G−1.
In Table 1, we show the values of the objective function obtained for Problem (8) by using
a complete enumeration and the VNS algorithm, for 1000 iterations, with the two possible
initial solutions described in Subsection 6.2 (random and heuristic centroid-based initial
solutions).
One can observe that the VNS algorithm obtains quite similar results to those obtained
via a full enumeration, excepting the case of only one and two bags in G+1. However,
in that case, the real solution is +∞ for the two cases, since the procedure to check the
existence of finite optimal solution (described in Section 4) indicates that the sets are
linearly separable.
A comparison of the behaviour of the objective function, for the two types of initial solution
(random and heuristic) with respect to the number of iterations is depicted in Figure 6.
We can observe that, in the three datasets, the two versions of the algorithm reach the
optimal solution (or a very close value) with only a few iterations. However, the algorithm
with the heuristic initial solution reaches, in general, the optimal solution before, since a
better value to initialize the process is given.
Anyway, in this work, we are not really interested in obtaining the best solution of Problem
(8) but rather in obtaining competitive results for the classification problem.

8.2 Artificial database with spherically separable sets of in-
stances

From now on, the experiments described herein illustrate the classification problem.
In this experiment, we have built one artificial database, where the instances of G+1 and
G−1 are spherically separable , in the following way. For each group, 2000 instances have
been generated coming from uniform distributions: the instances of G+1 via a uniform
distribution with parameters -10 and 10, U(−10, 10), and the instances of G−1 via a
uniform distribution with parameters -20 and 20, U(−20, 20), and by taking into account
that at least one coordinate does not belong to the interval (−10, 10).
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Figure 6: Behaviour of the objective function with the VNS algorithm (sets with 5, 10
and 50 bags)

The instances of each class have been grouped in 100 bags (20 instances per bag) and we
have repeated the process for different dimensions (d = 2, 3, 10, 20, 30, 50, 100).
In all the cases, an accuracy of 100% was found in each group for the training and the
test sample in every dimension.

8.3 Artificial database with spherically separable sets of bags

Another separable artificial database for the classification problem has been constructed
as follows. For each class (G+1 and G−1), we have generated a total of 2000 instances
and 100 bags (20 instances per bag). The instances of G−1 are generated as in the latter
database, that is, via a uniform distribution U(−20, 20), with at least one coordinate not
belonging to the interval (−10, 10). On the other hand, one instance of each bag of G+1

is generated via U(−10, 10), while the rest of instances come from U(−20, 20).
The average accuracy for the 10 runs for different dimensions and for the test and training
samples are given in Table 2. The number of iterations for the VNS algorithm was fixed
to 2000 (without local search).
One can remark that the accuracies are quite satisfactory. Moreover, for the highest
dimension (d = 100), the accuracy is 100% in both cases (test and training sample). This
is probably due to the fact that the higher the dimension, the more solutions are considered
in the VNS algorithm, since the kmax, that is, the maximum neighborhood radius taken
into account, is fixed in our implementation to d + 2. Hence, the number of solutions
studied depends on the dimension of the problem.
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Dim d=2 d=3 d=10 d=20 d=30 d=50 d=100

G+1 100 92 93 97 97 97 100
Test G−1 100 90 87.69 93 97 99 100

Total 100 91 90.35 95 97 98 100

G+1 100 92.22 96.44 99.78 99.89 100 100
Train G−1 100 95.57 78.86 98.56 100 100 100

Total 100 93.9 87.65 99.17 99.95 100 100

Table 2: Accuracy for uniform artificial database

Dim d=2 d=3 d=5 d=10 d=20 d=30 d=50 d=100

G+1 96 88 97 100 100 100 100 100
Test G−1 87 89 96 100 99 100 100 100

Total 91.5 88.5 96.5 100 99.5 100 100 100

G+1 100 99.89 99.67 100 100 100 100 100
Train G−1 87.56 89.33 97.45 100 100 100 100 100

Total 93.78 94.61 98.56 100 100 100 100 100

Table 3: Accuracy for gaussian artificial database

8.4 Artificial dataset based on a gaussian distribution

For this database, 100 bags, each one with 20 instances, have been generated for each
group, G+1 and G−1, by using a gaussian distribution.
Each coordinate of the mean vector of each bag in G+1 comes from a uniform distribution
U(−1, 1), while the coordinates of the mean vector of the bags in G−1 come from U(−5, 5).
The instances of each bag are generated from a multivariate normal distribution with the
corresponding mean vector and the identity as the covariance matrix.
Table 3 shows the average accuracy for the 10 runs of the cross-validation process in
the test and training samples, for different dimensions (with 5000 iterations in the VNS
algorithm which builds the classifier and without local search).
One can observe that the accuracy for the highest dimensions is better, in both samples
(training and test), because for a high dimension, the databases built herein become more
easily separable.

8.5 Real database for image categorization

Finally, we have applied our algorithm to a real database for image categorization. Image
categorization consists in labeling images into a set of predefined categories.
The image database is a set of 2000 images in JPEG format taken from 20 CD-ROMs
published by the COREL Corporation, each CD-ROM containing 100 images representing
a different concept. This dataset was previously used for Multi-instance Learning in [6, 7],
and it is available at the webpage http://www.cs.olemiss.edu/∼ychen/ddsvm.html.
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Class Class name Instances per bag (average)

0 African people and villages 4.84
1 Beach 3.54
2 Historical building 3.1
3 Buses 7.59
4 Dinosaurs 2.00
5 Elephants 3.02
6 Flowers 4.46
7 Horses 3.89
8 Mountain and glaciers 3.38
9 Food 7.24
10 Dogs 3.80
11 Lizards 2.80
12 Fashion models 5.19
13 Sunset scenes 3.52
14 Cars 4.93
15 Waterfalls 2.56
16 Antique furniture 2.30
17 Battle ships 4.32
18 Skiing 3.34
19 Desserts 3.65

Table 4: Description of the image database

A segmentation process was applied to these images to extract some properties about
luminance, color and texture of the pictures and they were encoded into feature vectors.
These feature vectors were grouped into clusters, representing the regions of the segmented
image. Then, each image has several regions, where each region is characterized by a
feature vector in dimension d = 9, representing the color, texture and shape properties of
that region (see [6, 7] for a more detailed description).
From the Multiple Instance Learning framework, the different concepts (CD-ROMs) are
the groups which the images will be assigned to, the images are the bags of the database,
and the regions are the instances of each bag. In this dataset, there are 20 groups, 100
bags in each group and the average number of instances per bag for the different groups is
displayed in Table 4 (along with the name of the groups). The dimension of the problem is
d = 9. We have performed several experiments with only the first 10 groups (1000-Image
database) and with the complete database (2000-Image database).

Since the database has more than two classes, the 1-v-1 algorithm, explained in Subsection
7.2, is the selected tool to solve the multi-class problem, and for every pair of groups i and
j, the p-balls VNS algorithm, described in Subsection 7.1, is used to build the classifier.
First, we have considered the problem with only the first ten classes. For selecting the
training and test samples, we have used 5-fold cross validation on the database. Different
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Assigned class
0 1 2 3 4 5 6 7 8 9

0 67 3 4 0 2 11 1 3 3 6
1 2 58 7 3 1 8 1 0 17 3
2 4 3 75 2 1 7 1 0 5 2
3 1 3 10 67 9 2 0 1 1 6

Real 4 0 0 0 0 100 0 0 0 0 0
class 5 10 4 2 0 0 71 0 5 8 0

6 2 0 0 0 0 1 94 2 0 1
7 3 1 0 0 0 14 0 81 1 0
8 0 18 3 0 0 10 0 0 69 0
9 5 4 1 2 5 4 0 3 5 71

Table 5: Confusion matrix for the 1000-Image database

values for p (in the optimization algorithm to construct the separating balls) have been
considered (from p = 1 to p = 20), although we only show the best results, which were
obtained for p = 15. The number of iterations to obtain each ball is set equal to 50, and
the solution based on the centroid (see Subsection 6.2) was taken as the initial solution.

Table 5 displays the confusion matrix for the test samples in the database with the first 10
classes. Each element (i, j) of this matrix represents the percentage of elements of the class
i which has been assigned to the class j. The elements of the diagonal (in bold) represent
the percentage of elements correctly labeled for each class. Then, one can observe that
the class 4 (dinosaurs) is easily separable from the rest of classes, since all its elements
have been correctly classified. However, some problems appear to distinguish between
classes 0 and 6 (African people or villages and elephants), or especially between two kind
of landscapes: images of beaches and images of mountains or glaciers (classes 1 and 8),
where we obtain 17% of beaches misclassified as mountains or glaciers, and 18% in the
other direction. Likewise, 14% of horses (class 7) is labeled as elephants (class 5).
Table 6 shows the accuracy for every class, that is, the percentage of elements of every
class which has been correctly labeled into its class, in the training and the test samples.
One can observe that the performance of the algorithm is quite good in most of the classes
in the training sample, and, in general, a class which is easily separable from the rest in the
training sample, continues being easily discriminated in the test sample. This is the case
of class 4, with 100% of accuracy in both the training and the test samples. However, we
can also find some classes, like class 3 (buses) with a much better accuracy in the training
(96.5%) than in the test sample (only 67%).
Table 7 presents the classification accuracy for every class in the complete dataset (2000-
Image database). The performance of our algorithm is good in the training sample in
most of the classes (except for class 8), showing the power of our methodology to separate
the bags of the different concepts. In the test sample, the accuracy is lower than for the
1000-Image database, although good results are obtained for separating classes such as
number 4 and 6 (dinosaurs and flowers).
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Class 0 1 2 3 4 5 6 7 8 9

Test 67 58 75 67 100 71 94 81 69 71
Train 83.75 78.5 90.5 96.5 100 86.25 99.5 96.25 75.5 97.75

Table 6: Accuracy for the 1000-Image database

Class 0 1 2 3 4 5 6 7 8 9

Test 52 58 69 67 97 55 88 78 42 67
Train 84.25 83.5 91 93.25 100 83.25 98.75 92 68.75 95.25

Class 10 11 12 13 14 15 16 17 18 19

Test 44 63 64 57 57 76 81 60 49 28
Train 86 82.5 96 92.25 92 92.5 99.25 95.5 84 74.75

Table 7: Accuracy for the 2000-Image database

In Table 8, the accuracy for the test and training samples in the two databases are shown.
One can observe that we obtain very good results for the training sample (even with the
complete dataset), around 90%, and the results for the test sample are quite competitive.
Finally, we compare the results we have obtained, with the results obtained via other
methods which have been used in this database: MILES algorithm [6], DD-SVM [7], MI-
SVM [1] and k-means-SVM [10]. These other algorithms have also been tested over five
test sets extracted at random from the database, but the technique is not cross validation
(see [6]). Although our algorithm does not get to improve the best results obtained so
far, our results are comparable with the solutions obtained for this database, and in fact,
we get to improve the performance of other algorithms based on SVMs (like MI-SVM and
k-means-SVM) in this multi-class problem in both datasets.

9 Conclusions and extensions

In this work, a new tool for solving classification problems in Multiple Instance Learning
has been described. The problem, which has an easy geometric interpretation, has been
formulated as a nonlinear mixed integer optimization problem. The existence of finite
optimal solution has been studied and necessary conditions for optimal solutions have
been deduced.

1000-Image database 2000-Image database

Test 75.3 62.6
Train 90.45 89.24

Table 8: Accuracy for the two databases
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Algorithms 1000-Image database 2000-Image database

MILES 82.6 68.7
DD-SVM 81.5 67.5
MI-SVM 74.7 54.6
k-means-SVM 69.8 52.3
p-balls VNS algorithm 75.3 62.6

Table 9: Accuracy for different algorithms for the image database

These optimality conditions have been considered to develop the heuristic algorithm (a
Variable Neighbourhood Search algorithm) to solve the model. The computational results
for the classifier show that our tool is competitive, especially with separable databases.
The introduction of p balls in the classification rule for the benchmark datasets has im-
proved remarkably the performance of the algorithm. The selection of the optimal value
for p is a topic to be considered. In fact, a method to choose automatically the most
suited value of p in each training sample during the cross-validation process seems to be
an interesting problem for further works.
The problem can be extended by considering different assumptions for building the clas-
sification rule, by changing the objective function of the problem, even by proposing a
biobjective problem since some constraints may be relaxed.
The introduction of kernel structures in the problem and the extension to the Multi-
Instance Regression problem, as described in [12, 34], are other topics which deserve
further studies. Likewise, another interesting extension could be the application of this
model in location theory (for example, in location of semi-obnoxious facilities).
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