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Abstract. Nonlinearly constrained optimization problems can be solved by minimizing a se-
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approach is that the quality of the dual variables is monitored explicitly during the solution of the
subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the
dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-
dual bound constrained Lagrangian (pdBCL) method and a primal-dual ℓ1 linearly constrained
Lagrangian (pdℓ1-LCL) method.
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1. Introduction. This paper considers a primal-dual augmented Lagrangian
function that may be used to find a local solution of the constrained minimization
problem

(NP) minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0,

where c : R
n 7→ R

m and f : R
n 7→ R are twice-continuously differentiable. This

problem format assumes that all general inequality constraints have been converted
to equalities by the use of slack variables. Our analysis for this problem format easily
carries over to the more general setting with l ≤ x ≤ u. Much of the discussion will
focus on the simplified problem

(NEP) minimize
x∈Rn

f(x) subject to c(x) = 0.

This equality constrained problem has all the properties necessary for a description
of the new function, while avoiding the complications of dealing with the bound
constraints.

Since the early 1960s, the idea of replacing a constrained optimization problem
by a sequence of unconstrained problems parameterized by a scalar parameter ρ has
played a fundamental role in the formulation of algorithms (for a seminal reference,
see Fiacco and McCormick [12, 13]). One of the best-known methods for solving
the equality-constrained problem (NEP) uses an unconstrained function based on the
quadratic penalty function, which combines f with a term of order ρ that “penalizes”
the sum of the squares of the constraint violations. Under certain conditions (see,
e.g. [13, 18, 34, 36]), the minimizers of the penalty function define a differentiable
trajectory or central path of solutions that passes through the solution as ρ → ∞.
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Penalty methods approximate this path by minimizing the penalty function for a
finite sequence of increasing values of ρ. In this form, the methods have a two-level
structure of inner and outer iterations: the inner iterations are those of the method
used to minimize the penalty function, and the outer iterations test for convergence
and adjust the value of ρ. As ρ→∞, the Newton equations for minimizing the penalty
function are increasingly ill-conditioned, and this ill-conditioning was perceived to be
the reason for the poor numerical performance on some problems. In separate papers,
Hestenes [25] and Powell [28] proposed the augmented Lagrangian function for (NEP),
which is an unconstrained function based on augmenting the Lagrangian function with
a quadratic penalty term that does not require ρ to go to infinity for convergence.
The price that must be paid for keeping ρ finite is the need to update an estimate of
the Lagrange multiplier vector in each outer iteration.

Since the first appearance of the Hestenes-Powell function, many algorithms have
been proposed based on using the augmented Lagrangian as an objective for sequen-
tial unconstrained minimization. Augmented Lagrangian functions have also been
proposed that treat the multiplier vector as a continuous function of x; some of
these ensure global convergence and permit local superlinear convergence (see, e.g.,
Fletcher [14]; DiPillo and Grippo [11]; Bertsekas [1, 2]; Boggs and Tolle [5]).

As methods for treating linear inequality constraints and bounds became more so-
phisticated, the emphasis of algorithms shifted from sequential unconstrained methods
to sequential linearly constrained methods. In this context, the augmented Lagrangian
has been used successfully within a number of different algorithmic frameworks for
the solution of problem (NP). The method used in the package LANCELOT [8] finds
the approximate solution of a sequence of bound constrained problems with an aug-
mented Lagrangian objective function. Similarly, the software package MINOS of
Murtagh and Saunders [27] employs a variant of Robinson’s linearly constrained La-
grangian (LCL) method [30] in which an augmented Lagrangian is minimized subject
to the linearized nonlinear constraints. Friedlander and Saunders [19] define a glob-
ally convergent version of the LCL method that can treat infeasible constraints or
infeasible subproblems. Augmented Lagrangian functions have also been used exten-
sively as a merit function for sequential quadratic programming (SQP) methods (see,
e.g., [4, 6, 7, 16, 21, 22, 33]).

The development of path-following interior methods for linear programming in
the mid-1980s led to a renewed interest in the treatment of constraints by sequential
unconstrained optimization. This new attention not only lead to a new understanding
of the computational complexity of existing methods but also gave new insight into
how sequential unconstrained methods could be extended and improved. A notable
development was the derivation of efficient path-following methods for linear program-
ming based on minimization and zero-finding simultaneously with respect to both the
primal and dual variables. These developments lead to a new focus on two com-
putational aspects of penalty- and barrier-function methods. First, the primal-dual
formulation made it evident that the inherent ill-conditioning of penalty and barrier
methods is not necessarily the reason for poor numerical performance. Second, the
crucial role of penalty and barrier functions in problem regularization was recognized
and better understood.

In this paper we consider some of these developments in the context of a gener-
alization of the Hestenes-Powell augmented Lagrangian that is minimized simultane-
ously with respect to both the primal variables and the dual variables. A benefit of
this approach is that the quality of the dual variables is monitored explicitly during
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the solution of the subproblem. Moreover, each subproblem can be regularized by
imposing explicit bounds on the dual variables. Two primal-dual variants of classical
primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL)
method and a primal-dual ℓ1 linearly constrained Lagrangian (pdℓ1-LCL) method.

The paper is organized as follows. In Section 2 we review some basic properties
of the Hestenes-Powell augmented Lagrangian function. It is shown that the Newton
direction for the unconstrained minimization of the augmented Lagrangian satisfies a
certain primal-dual system in which the change in the dual variables is arbitrary. In
Section 3 we introduce a generalized primal-dual augmented Lagrangian function that
may be used to define a continuum of methods that include several well-known meth-
ods as specific cases. Similarities with the Hestenes-Powell augmented Lagrangian
are also discussed. In Section 4 it is shown how artificial bounds on the dual vari-
ables may be used to regularize the associated subproblem. Finally, in Section 5 we
illustrate the use of the primal-dual augmented function in three methods: a primal-
dual bound constrained Lagrangian method; a primal-dual ℓ1 linearly-constrained
Lagrangian method; and a primal-dual sequential quadratic programming method.

1.1. Notation and Terminology. Unless explicitly indicated otherwise, ‖ · ‖
denotes the vector two-norm or its subordinate matrix norm. The inertia of a real
symmetric matrix A, denoted by In(A), is the integer triple (a+, a−, a0) giving the
number of positive, negative and zero eigenvalues of A. Given vectors a and b with
the same dimension, the quantity a · b denotes the vector with ith component aibi.
Finally, e denotes the vector of all ones whose dimension is determined by the context.

Much of our notation is standard. A local solution of (NP) and (NEP) is denoted
by x∗; g(x) is the gradient of f(x), and H(x) its (symmetric) Hessian; the matrix
Hj(x) is the Hessian of cj(x); J(x) is the m× n Jacobian matrix of the constraints,
with ith row ∇ci(x)T . The Lagrangian function associated with (NEP) is L(x, y) =
f(x) − yTc(x). The Hessian of the Lagrangian with respect to x is ∇2L(x, y) =
H(x)−

∑m

j=1
yjHj(x).

2. The Hestenes-Powell Augmented Lagrangian. In its most commonly-
used form, the Hestenes-Powell augmented Lagrangian function for problem (NEP)
is given by

LA(x, y, ρ) = f(x)− c(x)Ty +
ρ

2
‖c(x)‖22,

where ρ is the penalty parameter, and x and y are primal and dual variables respec-
tively. If y is fixed at the optimal multiplier vector y∗, then a solution x∗ of (NEP)
is a stationary point of LA regarded as a function of x. Moreover, if the second-order
sufficient conditions for optimality hold, then there exists a finite ρ̄ such that x∗ is an
isolated unconstrained minimizer of LA for all ρ > ρ̄. Based on this result, Hestenes
and Powell proposed that x∗ be found by minimizing a sequence of augmented La-
grangians LA(x, yk, ρk) in which the choice of multiplier estimate yk is based on the
minimizer of LA(x, yk−1, ρk−1).

In order to emphasize the role of the penalty parameter ρ in problem regulariza-
tion, we will focus on the Hestenes-Powell augmented Lagrangian in the form

LA(x)
△

= LA(x ; ye, µ) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2

where µ is a positive scalar and ye is an estimate of the Lagrange multipliers y∗. Here
we use the notation LA(x ; y, µ) to indicate that LA is a function of x parameterized
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by y and µ. Throughout the discussion we use the quantity ρ to denote the inverse of
the parameter µ. In order to emphasize this dependency in expressions that use both
µ and 1/µ, we use ρµ to denote 1/µ.

The augmented Lagrangian may be minimized by solving a sequence of subprob-
lems of the form

minimize
p∈Rn

∇LA(x)Tp + 1

2
pT∇2LA(x)p.

If ∇2LA(x) is positive definite, then p is the unique solution of the Newton equations
∇2LA(x)p = −∇LA(x). The gradient and Hessian of LA(x) may be written in terms
of the m-vector π(x) such that

π(x) = ye −
1

µ
c(x) = ye − ρµc(x), (2.1)

where, as discussed above, ρµ denotes the inverse parameter ρµ = 1/µ. With this
notation, we have

∇LA(x) = g(x)− J(x)T π(x) and ∇2LA(x) = H
(
x, π(x)

)
+ ρµJ(x)T J(x),

and the Newton equations are simply

(
H
(
x, π(x)

)
+ ρµJ(x)TJ(x)

)
p = −

(
g(x)− J(x)Tπ(x)

)
. (2.2)

The elements of π(x) may be viewed as approximate Lagrange multipliers, and are
sometimes referred to as first-order primal multiplier estimates.

The next result shows that the Newton direction for the augmented Lagrangian
function satisfies a “primal-dual” system. This system will be used later.

Lemma 2.1. If y is an arbitrary m-vector, then the augmented Lagrangian direc-
tion p satisfies the equations

(
H
(
x, π(x)

)
J(x)T

J(x) −µI

)(
p
−q

)
= −

(
g(x)− J(x)Ty

c(x) + µ(y − ye)

)
, (2.3)

where q depends on the value of y.
Proof. Define J = J(x), g = g(x), c = c(x), H = H(x, π), and π = π(x). Then

the Newton equations (2.2) may be written as

(
H + ρµJTJ

)
p = −

(
g − JTπ

)
. (2.4)

Let q denote the m-vector

q = −ρµ

(
Jp + (c + µ(y − ye)

))
. (2.5)

Using the definition π = ye − ρµc, equations (2.4) and (2.5) may be combined to give

(
H + ρµJTJ JT

J −µI

)(
p
−q

)
= −

(
g − JT(ye − ρµc)

c + µ(y − ye)

)
.

Applying the nonsingular matrix

(
In −ρµJT

0 Im

)
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to both sides of this equation yields

(
H JT

J −µI

)(
p
−q

)
= −

(
g − JTy

c + µ(y − ye)

)
.

In particular, if we choose y = ye in (2.3), then the Newton direction p satisfies the
equations

(
H(x, π(x)) JT

J −µI

)(
p
−q

)
= −

(
g − JTye

c

)
,

which may be considered as a primal-dual variant of primal Newton equations (2.2)
analogous to the primal-dual formulation of the quadratic penalty method considered
by Gould [23] (for related methods, see Murray [26] and Biggs [3]).

Note that the nonzero (2, 2) block in the primal-dual matrix above regularizes
the system; i.e., it is not necessary for J(x) to have full row rank for the Newton
equations to be nonsingular. A full-rank assumption is required if the (2, 2) block is
zero.

In conventional implementations of the augmented Lagrangian method, the vector
q is not used. The motivation for the generalized primal-dual augmented Lagrangian
considered in the next section is the possibility of exploiting changes in both the
primal and the dual variables during the unconstrained minimization.

3. The Generalized Primal-Dual Augmented Lagrangian. In Powell’s
derivation of the conventional augmented Lagrangian method, the solution of prob-
lem (NEP) is found by repeatedly minimizing the quadratic penalty function for the
“shifted” problem

minimize
x∈Rn

f(x) subject to c(x) − µye = 0, (3.1)

where ye is an estimate of the Lagrange multipliers y∗. This method is based on the
observation that for sufficiently small µ, x∗ is a minimizer of the quadratic penalty
function associated with problem (3.1) for the choice ye = y∗.

In this section we consider an augmented Lagrangian that can be minimized with
respect to both the primal and the dual variables. Given an approximate Lagrange
multiplier vector ye, the proposed function is given by

M(x, y ; ye, µ, ν) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

ν

2µ
‖c(x) + µ(y − ye)‖

2, (3.2)

where ν and µ are constant scalars with µ > 0. This function may be derived as
the Forsgren-Gill primal-dual penalty function associated with the shifted constraints
c(x)−µye = 0 (see [17]). Using the m-vector π(x) = ye−ρµc(x) of (2.1), the gradient
and Hessian for M(x, y ; ye, µ, ν) may be written as

∇M(x, y ; ye, µ, ν) =

(
g − JT

(
π + ν(π − y)

)

ν
(
c + µ(y − ye)

)
)

=

(
g − JT

(
π + ν(π − y)

)

νµ(y − π)

)
, (3.3a)

and

∇2M(x, y ; ye, µ, ν) =

(
H
(
x, π + ν(π − y)

)
+ ρµ(1 + ν)JTJ νJT

νJ νµI

)
, (3.3b)
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where J , g, c, and π denote J(x), g(x), c(x), and π(x), respectively. Observe that the
first-order multipliers π(x) = ye − ρµc(x) minimize M(x, y ; ye, µ, ν) with respect to
y for fixed values of x.

The next result indicates the potential role of M as the objective function in a
sequential unconstrained minimization method for solving constrained problems. It
states that a solution (x∗, y∗) of problem (NEP) is a minimizer of M(x, y ; y∗, µ, ν)
for µ sufficiently small and ν > 0.

Theorem 3.1. Assume that (x∗, y∗) satisfies the following conditions associated
with the problem (NEP):

(i) c(x∗) = 0,
(ii) g(x∗)− J(x∗)T y∗ = 0, and
(iii) there exists a positive scalar ω such that pTH(x∗, y∗)p ≥ ω‖p‖2 for all p

satisfying J(x∗)p = 0.
Then (x∗, y∗) is a stationary point of the primal-dual function

M(x, y ; y∗, µ, ν) = f(x) − c(x)Ty∗ +
1

2µ
‖c(x)‖2 +

ν

2µ
‖c(x) + µ(y − y∗)‖2.

Moreover, if ν > 0, then there exists a positive scalar µ̄ such that (x∗, y∗) is an isolated
unconstrained minimizer of M(x, y ; y∗, µ, ν) for all 0 < µ < µ̄.

Proof. We must show that ∇M is zero and ∇2M is positive definite at the primal-
dual point (x, y) = (x∗, y∗). Assumption (i) and the definition π(x) = y∗ − c(x)/µ
implies that π(x∗) = y∗. Substituting for π, x and y in the gradient (3.3a) and using
assumption (ii), gives ∇M(x∗, y∗ ; y∗, µ, ν) = 0 directly.

Similarly, the Hessian (3.3b) is given by

∇2M =

(
H + ρ(1 + ν)JTJ νJT

νJ νµIm

)
.

where, for simplicity, we have used ρ = ρµ, ∇2M = ∇2M(x∗, y∗ ; y∗, µ, ν), J = J(x∗),
and H = H(x∗, y∗).

It may be verified by direct multiplication that the matrix L such that

L =

(
In 0
−ρJ Im

)
gives LT∇2ML =

(
H + ρJTJ 0

0 νµIm

)
.

As L is nonsingular, we may apply Sylvester’s Law of Inertia to infer that

In
(
LT∇2ML

)
= In

(
∇2M

)
= (m, 0, 0) + In(H + ρJTJ),

for all ν > 0.
Let r denote the rank of J , so that r ≤ min{m, n}. The singular-value decompo-

sition of J can be written as

J = USV T = U

(
Sr 0
0 0

)
V T ,

where U and V are orthogonal, and Sr is an r × r diagonal matrix with positive
diagonal entries. If the columns of U and V are partitioned to conform with the
zero and nonzero columns of S, then U = (Ur Um−r ) and V = (Vr Vn−r ), which
gives J = UrSrV

T
r . The n × n matrix Q defined such that Q = (Vn−r VrS

−1
r )

is nonsingular, with JQ = ( 0 Ur ). If we define Z = Vn−r and Y = VrS
−1
r , then
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Q = (Z Y ), with the n − r columns of Z forming a basis for the null-space of J .
Since Q is nonsingular, H + ρJTJ must have the same inertia as QT (H + ρJTJ)Q
from Sylvester’s Law of Inertia. Pre- and post-multiplying H + ρJTJ by QT and Q
gives

QT(H + ρJTJ)Q = QTHQ + ρQTJTJQ =

(
ZTHZ ZTHY
Y THZ Y THY + ρIr

)
.

This matrix has the form
(

H11 HT
21

H21 H22 + ρIr

)
,

where H11 = ZTHZ, H21 = Y THZ and H22 = Y THY . Since ZTHZ is positive
definite by assumption, H11 is positive definite and we can write the block 2 × 2
matrix as the product

(
In−r 0

H21H
−1
11 Ir

)(
H11 0
0 H22 −H21H

−1
11 HT

21 + ρIr

)(
In−r H−1

11 HT
21

0 Ir

)
.

Repeated use of Sylvester’s Law of Inertia then gives the inertia of H + ρJTJ as the
inertia of diag(H11, H22−H21H

−1
11 HT

21 + ρIr). Clearly, this matrix is positive definite
for all µ < µ̄, where µ̄ = 1/ρ̄ with ρ̄ = max{−λmin, 0} and λmin is the smallest
eigenvalue of H22 −H21H

−1
11 HT

21. Hence

In
(
∇2M

)
=
(
m, 0, 0

)
+
(
n, 0, 0

)
=
(
m + n, 0, 0

)
,

which implies that the Hessian ∇2M(x∗, y∗ ; y∗, µ, ν) is positive definite for all ν > 0
and all 0 < µ < µ̄. It follows that (x∗, y∗) is an isolated unconstrained minimizer of
M(x, y ; y∗, µ, ν).

Theorem 3.1 indicates that if an estimate of y∗ is known for problem (NEP), then
an approximate minimization ofM with respect to both x and y is likely to provide
an even better estimate. Since our goal is to develop second-order methods, it is of
interest to consider the Newton system for the primal-dual augmented Lagrangian.
Using the derivatives (3.3a) and (3.3b) for M, the Newton direction for the primal-
dual augmented Lagrangian satisfies
(

H
(
x, π + ν(π − y)

)
+ ρµ(1 + ν)JTJ νJT

νJ νµI

)(
p
q

)
= −

(
g − JT

(
π + ν(π − y)

)

ν
(
c + µ(y − ye)

)
)

,

(3.4)
where p and q are the Newton directions in the primal and dual variables.

3.1. Relationships between methods for problem (NEP). The next result
shows that the Newton equations above may be transformed into a system similar to
the primal-dual equations (2.3) associated with the classical augmented Lagrangian
function.

Lemma 3.2. Let H denote an arbitrary symmetric matrix. The equations
(

H + ρµ(1 + ν)JTJ νJT

νJ νµI

)(
p
q

)
= −

(
g − JT

(
π + ν(π − y)

)

ν
(
c + µ(y − ye)

)
)

, (3.5)

and
(

H JT

J −µI

)(
p
−q

)
= −

(
g − JTy

c + µ(y − ye)

)
. (3.6)
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are equivalent for all ν 6= 0, i.e., (p, q) is a solution of (3.5) if and only if it is a
solution of (3.6).

Proof. Multiplying both sides of (3.5) by the nonsingular matrix

N =




I −
(1 + ν)

νµ
JT

0
1

ν
I


 ,

and scaling the last m columns by −1 gives the result.
Several well-known functions may be recovered from the primal-dual merit func-

tion with appropriate choices for the parameters ye and ν.
The quadratic penalty function (ν ≡ 0, ye ≡ 0).. In this case, the function is

given by

P(x ; µ) = f(x) +
1

2µ
‖c(x)‖2,

which is a function in the primal variables only. The primal-dual form of the Newton
equations analogous to (2.3) are given by:

(
H(x, π) JT

J −µI

)(
p
−q

)
= −

(
g − JTy
c + µy

)
, (3.7)

which have been studied by Biggs [3] and Gould [23]. Few competitive modern meth-
ods are based on the direct minimization of the quadratic penalty function, but sev-
eral reliable and efficient methods are designed to behave like the quadratic penalty
method when the set of optimal multipliers is unbounded (see, e.g., [9], [19], [27],
and [29]).

The proximal-point penalty function (ν ≡ −1, ye ≡ 0).. This function has the
form

PP (x, y) = f(x)− c(x)Ty −
µ

2
‖y‖2.

The proximal-point penalty function has been used in the formulation of stabilized
SQP methods (see, e.g., Hager [24] and Wright [35]). In this case, the Newton equa-
tions are given by:

(
H(x, y) JT

J −µI

)(
p
−q

)
= −

(
g − JTy
c + µy

)
.

Note the similarities with the primal-dual equations (3.7) for the quadratic penalty
function. However, the direction p is different because the Lagrangian Hessian is
evaluated with different values of the multipliers.

The Hestenes-Powell augmented Lagrangian (ν ≡ 0).. This is the conventional
augmented Lagrangian

LA(x ; ye, µ) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2.

Lemma 2.1 implies that if π is substituted for y in the Hessian associated with the
primal-dual augmented Lagrangian system (3.6), then the vector p associated with
the solution of the resulting modified Newton system

(
H(x, π) JT

J −µI

)(
p
−q

)
= −

(
g − JTy

c + µ(y − ye)

)
,

is the Hestenes-Powell augmented Lagrangian direction given by (2.3).
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The proximal-point Lagrangian (ν ≡ −1).. In this case we have

LP (x, y) = f(x)− c(x)Ty −
µ

2
‖y − ye‖

2.

The proximal-point Lagrangian function has been studied, for example, by Rockafellar
in [31, 32].

The primal-dual quadratic penalty function (ν ≡ 1, ye ≡ 0)..

P(x, y ; µ) = f(x) +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µy‖2.

Methods based on the use of the primal-dual penalty function and its barrier function
counterpart are discussed by Forsgren and Gill [17] and Gertz and Gill [20].

The primal-dual augmented Lagrangian (ν ≡ 1)..

M(x, y ; ye, µ) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − ye)‖

2

This function is the basis of the primal-dual BCL and sLCL algorithms proposed in
Section 5.

Table 1 summarizes the six functions discussed above.

Table 1

Functions associated with M(x, y ; ye, µ, ν).

ν ye

The quadratic penalty function 0 0

The proximal-point penalty function −1 0

The Hestenes-Powell augmented Lagrangian 0 ye

The proximal-point Lagrangian −1 ye

The primal-dual quadratic penalty function 1 0

The primal-dual augmented Lagrangian 1 ye

4. Regularization by Bounding the Multipliers. Typically, augmented La-
grangian methods are based on the assumption that the multipliers of the subproblem
remain bounded, or do not grow too rapidly relative to the penalty parameter. In the
primal setting these assumptions are enforced by making appropriate modifications
to µ and ye after the completion of each subproblem. An attractive feature of the
primal-dual augmented Lagrangian function is that bounds on the multipliers may
be enforced explicitly during the solution of the subproblem. To develop this idea
further, consider an algorithm that minimizes a sequence of problems of the form

minimize
x∈Rn,y∈Rm

M(x, y ; ye, µ).

As this is an unconstrained problem in both the primal and dual variables, we can
impose explicit artificial bounds on the dual variables, i.e., we can solve the subprob-
lem:

minimize
x∈Rn,y∈Rm

M(x, y ; ye, µ) subject to − γe ≤ y ≤ γe,
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for some positive constant γ. A sequence of these subproblems may be solved for
appropriate values of µ and ye. If all the bounds on y are inactive at the solution of a
subproblem, then the minimizer lies on the path of minimizers. However, if γ restricts
the subproblem solutions, then a different problem is being solved. This may occur
for two reasons. First, the magnitudes of the optimal multipliers y∗ may be bounded
but larger than the current value of γ. In this case, a poor choice of γ will inhibit
the convergence of the subproblem to the point on the path of subproblem solutions.
Second, the subproblem multipliers may not exist or may be unbounded—for example,
the Mangasarian-Fromovitz constraint qualification may not hold. In this situation,
an explicit bound on the dual variables will prevent the multipliers from diverging to
infinity.

The previous discussion makes it clear that if some components of y are active at
a subproblem solution, then µ must be decreased in order to obtain convergence. As
µ approaches zero, the subproblems become similar to those of the quadratic penalty
function. The idea is to choose µ and γ so that the artificial bounds will stabilize the
method when far from a solution without effecting the subproblems near (x∗, y∗). In
Section 5 we propose two algorithms that are formulated with these goals in mind.

If the artificial bounds are inactive, then the solution of the subproblem lies on
the conventional path of minimizers. However, when components of y become active
it becomes unclear which problem is being solved. The next theorem shows that the
solutions are related to those obtained by minimizing an exact penalty function.

Theorem 4.1. Let γ > 0. If (x̄, ȳ, w̄) is a solution of

minimize
x∈Rn,y∈Rm

M(x, y ; ye, µ) subject to − γe ≤ y ≤ γe, (4.1)

where w̄ are the multipliers for the constraints −γe ≤ y ≤ γe. Then there exists a
positive diagonal scaling matrix P such that x̄ is a solution to

minimize
x∈Rn

f(x) + ‖P
(
c(x) + µ(ȳ − ye)

)
‖1. (4.2)

Proof. Define π̄ = ȳ − 2ρµw̄. The diagonal scaling matrix P
△

= diag(ρ1, . . . , ρm)
is then defined as

ρi =






π̄i if w̄i < 0,

−π̄i if w̄i > 0,

|π̄i|+ ǫ if w̄i = 0,

(4.3)

where ǫ is any positive real number. It will be shown that the diagonals of P are
strictly positive. The non-smooth problem (4.2) is equivalent to the following smooth
problem

minimize
x∈Rn,u∈Rm,v∈Rm

f(x) +

m∑

i=1

ρi(ui + vi)

subject to c(x) + µ(ȳ − ye)− u + v = 0, u ≥ 0, v ≥ 0.

(4.4)

Define the following:

ūi =

{
0 if w̄i ≤ 0,

w̄i if w̄i > 0,
(4.5a)
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v̄i =

{
0 if w̄i ≥ 0,

−w̄i if w̄i < 0,
(4.5b)

z̄u = Pe + π̄, (4.5c)

z̄v = Pe− π̄. (4.5d)

It will be shown that (x̄, ū, v̄, π̄, z̄u, z̄v) is a solution to (4.4), where π̄ is the Lagrange
multiplier vector for the general equality constraint, z̄u is the Lagrange multiplier
vector for u ≥ 0, and z̄v is the Lagrange multiplier vector for v ≥ 0.

The solution (x̄, ȳ, w̄) satisfies the following optimality condition:

J(x̄)T
(
2π(x̄)− ȳ

)
= g(x̄), (4.6a)

c(x̄) + µ(ȳ − ye) = w̄, (4.6b)

−γe ≤ ȳ ≤ γe, (4.6c)

min(γe− ȳ, ȳ + γe, |w̄|) = 0, (4.6d)

w̄ · (γe + ȳ) ≤ 0, (4.6e)

w̄ · (−γe + ȳ) ≤ 0, (4.6f)

where π(x) = ye − ρµc(x). The conditions that must be verified for the point
(x̄, ū, v̄, π̄, z̄u, z̄v) are:

C1. ū ≥ 0, v̄ ≥ 0, z̄u ≥ 0, z̄v ≥ 0, ū · z̄u = 0, v̄ · z̄v = 0;
C2. c(x̄) + µ(ȳ − ye)− ū + v̄ = 0;
C3. g(x̄) = J(x̄)Tπ̄;
C4. Pe = z̄u − π̄;
C5. Pe = z̄v + π̄.(

proof of C2
)
: Note that w̄ = ū− v̄. Thus C2 follows directly from (4.6b).(

proof of C3
)
: By definition of π̄ and π(x) and use of (4.6b), the following equality

holds:

π̄ = ȳ − 2ρµw̄ = 2ye − 2ρµc(x̄)− ȳ = 2π(x̄)− ȳ. (4.7)

C3 follows from this equality and (4.6a).(
proof of C4

)
: Follows by definition (4.5c).(

proof of C5
)
: Follows by definition (4.5d).(

proof of C1
)
: ū ≥ 0 and v̄ ≥ 0 by definition.

Next it is shown that ū · z̄u = 0. The result is trivial if ūi = 0. So suppose that

ūi 6= 0. This implies that w̄i > 0 and thus ρi = −π̄i. It follows that [z̄u]i
△

= ρi+π̄i = 0.
Now it is shown that v̄ · z̄v = 0. The result is trivial if v̄i = 0. So suppose that

v̄i > 0. This implies that w̄i < 0 and thus ρi = π̄i. It follows that [z̄v]i
△

= ρi − π̄i = 0.
Next consider the following three cases:
1. Suppose w̄i = 0. Then ρi = |π̄i| + ǫ > 0 and [z̄v]i = |π̄i| + ǫ − π̄i > 0.

Similarly, [z̄u]i = |π̄i|+ ǫ + π̄i > 0.
2. Suppose w̄i > 0. Then ȳi = −γ and π̄i = ȳi−2ρµw̄i = −γ−2ρµw̄i < 0. This

implies that ρi = −π̄i > 0 and that [z̄v]i = ρi − π̄i = −2π̄i > 0. Likewise,
[z̄u]i = ρi + π̄i = 0.

3. Suppose w̄i < 0. Then ȳi = γ and π̄i = ȳi − 2ρµw̄i = γ − 2ρµw̄i > 0.
This implies that ρi = π̄i > 0 and that [z̄v]i = ρi − π̄i = 0. Likewise,
[z̄u]i = ρi + π̄i = 2π̄i > 0.

The proof is complete since in all cases z̄u ≥ 0, z̄v ≥ 0, and ρi > 0.
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4.1. Interpretation of the artificial bounds. Algorithms 5.1 and 5.3 given
in Section 5 explicitly bound the dual variables by adding artificial bound constraints.
This section gives a brief description of one way in which these additional constraints
may be interpreted.

Let (x̄, ȳ, w̄) denote a solution of the bound-constrained problem (4.1), where w̄
is the multiplier vector for the simple bounds. Also, let (xµ, yµ) =

(
x(µ), y(µ)

)
denote

the solution to the unconstrained problem

minimize
x,y

M(x, y; ye, µ). (4.8)

If we apply an ℓ1 penalty to the bound constraints in problem (4.1), we obtain the
equivalent problem

minimize
x,y

M(x, y) + σ‖yv‖1, (4.9)

where σ is a positive penalty parameter and yv = min(0, γ − |y|) (the definition of
yv should be interpreted component-wise and is a measure of how much y violates
its bounds). If σ > ‖w̄‖∞, it is well known that solutions of problem (4.9) are
solutions of (4.1) (see, e.g., [15]). We consider the quantity ‖w̄‖∞ as the “required
penalization”. It follows from the optimality conditions for problems (4.1) and (4.8)
that w̄ = c(x̄)−c(xµ)+µ(ȳ−yµ), which implies that the required penalization satisfies

‖w̄‖∞ ≤ ‖c(x̄)− c(xµ)‖∞ + µ‖ȳ − yµ‖∞. (4.10)

This shows that the required penalization is intimately associated with the magnitudes
of the quantities ‖c(x̄)−c(xµ)‖∞ and µ‖ȳ−yµ‖∞, which are zero if the artificial bounds
are inactive.

The discussion above implies that the artificial bounds in problem (4.1) may be
interpreted as a second form of regularization—the first being the presence of µI in
the (2, 2) block of the Newton equations. In this second regularization, |y| is bounded
explicitly by problem (4.1) and implicitly by the penalty term in problem (4.9). Specif-
ically, the µ‖ȳ − yµ‖∞ term in (4.10) implies that if the artificial bounds prevent the
“natural” solution from being found, then the required penalization is likely to be
large. However, the presence of the µ-term makes this implicit penalization diminish
as µ is decreased to zero. Similarly, ‖c(x̄) − c(xµ)‖∞ term in (4.10) shows that the
required penalization is likely to be large if the constraint values differ substantially.
We note that for small µ, the minimizers of the merit function will be close to mini-
mizers of the quadratic penalty function. It follows that ‖c(x̄)‖∞ and ‖c(xµ)‖∞ can
be expected to be small (and hence the term ‖c(x̄)− c(xµ)‖∞ will be small).

The previous discussion generalizes to the case where each dual variable is given
a separate bound in problem 4.1. We have the following component-wise result.

Theorem 4.2. If the point (x̄, ȳ, w̄) is a solution to

minimize
x,y

M(x, y; ye, µ) subject to yℓ ≤ y ≤ yu, (4.11)

then (x̄, ȳ) minimizes M(x, y) + ‖D(w̄)yv‖1, where D(w̄) = diag(d1, . . . , dm) and
di ≥ w̄i for all i = 1, . . . , m.

Proof. The result follows from the standard results associated with ℓ1 penalty
functions (see, e.g., [9] and [15]).
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5. Algorithms. The augmented Lagrangian has been used very successfully
within different algorithmic frameworks. In the context of problem (NP), the op-
timization code LANCELOT [8] approximately minimizes a sequence of bound con-
strained Lagrangian (BCL) problems. These problems take the form

minimize
x∈Rn

LA(x ; ye, µ) subject to x ≥ 0. (5.1)

After each approximate minimization, the Lagrange multiplier estimate ye may be
updated, while parameters and tolerances are adjusted. Conn, Gould, and Toint [9]
show that this BCL method is globally convergent, exhibits R-linear convergence, and
has a penalty parameter µ that is uniformly bounded away from zero.

Linearly constrained Lagrangian (LCL) methods also make use of the augmented
Lagrangian. LCL methods are based on the properties of Robinson’s method [30],
which sequentially minimizes the Lagrangian L(x ; ye) = f(x) − c(x)Tye, subject to
the linearized constraints. Under reasonable assumptions, Robinson proved that his
algorithm exhibits R-quadratic convergence when started sufficiently close to a solu-
tion satisfying the second-order sufficient conditions. A positive penalty parameter
was introduced in the method used by the software package MINOS [27] in order to
improve convergence from poor starting points. In other words, MINOS uses the aug-
mented Lagrangian function instead of the Lagrangian function. This modification
improves the robustness of Robinson’s method, but the question of convergence from
arbitrary starting points is open. Further improvement was made by Friedlander and
Saunders in [19]. Their stabilized LCL (sLCL) method remedies three drawbacks as-
sociated with MINOS. First, the sLCL subproblems are always feasible. Second, if the
distance from the linearization point to the subproblem solution becomes large, it may
be counteracted by decreasing the penalty parameter associated with the linearized
constraints. Third, the sLCL method was proved to be globally convergent. These
improvements to MINOS resulted from the definition of an elastic subproblem, which
is known to be equivalent to an ℓ1 penalization of the linearized constraint violation.
Friedlander and Saunders show that the sLCL algorithm constitutes a range of al-
gorithms, with the BCL method at one extreme and Robinson’s LCL method at the
other. The sLCL algorithm inherits global convergence from the BCL method and
R-quadratic convergence from Robinson’s method.

The augmented Lagrangian function may also be used as a merit function in
sequential quadratic programming (SQP) methods. A merit function is a single func-
tion that is used to assess the quality of “trial points”. In line-search methods, a
pre-determined search direction is typically given as the solution of a quadratic pro-
gram that models the merit function. The most obvious choice for computing a search
direction for the augmented Lagrangian, is to minimize the second-order Taylor ap-
proximation of LA(x ; ye, µ). It can be shown that minimizing the second-order Taylor
approximation of LA(x ; ye, µ) is equivalent to minimizing a certain quadratic objective
function subject to linear constraints. For more details see Section 15.3.1 of [10].

The SQP algorithm SNOPT [21] uses the augmented Lagrangian function as a
merit function in a different way. Given a current approximation (x, y) to a solu-
tion of problem (NEP), SNOPT generates a search direction by solving the quadratic
programming subproblem:

minimize
p∈Rn

g(x)Tp + 1

2
pTBp subject to c(x) + J(x)p = 0, (5.2)

where B is a symmetric positive-definite approximation of the Hessian of the La-
grangian. A search direction in both the x- and y-variables is then defined by using
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the minimizer p and the multipliers from the QP subproblem (5.2). In this way,
the augmented Lagrangian is a continuous function of both the primal and the dual
variables.

Now we consider algorithms for problem (NP) that incorporate the primal-dual
augmented Lagrangian. In particular, primal-dual variants of the methods discussed
in Section 2 will be given: a primal-dual bound constrained Lagrangian method, and
a stabilized primal-dual linearly constrained augmented Lagrangian method. The
purpose of this section is to illustrate how the primal-dual augmented Lagrangian may
be used in different frameworks. This section is not intended to give the theoretical
developments of those algorithms; this development will be given in a separate paper.

5.1. Primal-dual bound-constrained Lagrangian methods. Problem (NP)
may be solved by solving a sequence of bound constrained problems of the form

minimize
x∈Rn,y∈Rm

M(x, y ; ye
k, µk) subject to x ≥ 0, −γke ≤ y ≤ γke, (5.3)

where M(x, y ; ye
k, µk) is the primal-dual augmented Lagrangian of Section 3.1, {γk}

is a sequence of constants, {ye
k} is a sequence of estimates of the Lagrange multiplier

vector satisfying ye
k ∈ [−γke, γke], and {µk} is a sequence of positive penalty parame-

ters. An approximate solution of the subproblem (5.3) is denoted by (x∗

k, y∗

k, z∗k, w∗

k),
where z∗k and w∗

k are the Lagrange multiplier vectors for the inequality constraints
x ≥ 0 and −γke ≤ y ≤ γke.

Classical bound-constrained Lagrangian (BCL) methods are known to be locally
convergent if the penalty parameter is sufficiently small and if the sequence of sub-
problems are solved exactly. Bertsekas [1] extends this result by showing that only an
approximate solution of each BCL subproblems need be found. In both cases it may
be necessary to drive the penalty parameter to zero to guarantee global convergence.
In this case, solutions of the BCL subproblems are similar to those of the quadratic
penalty method. Algorithm 5.1 below is similar to the algorithm proposed by Conn,
Gould, and Toint [9], which is the basis for the LANCELOT code (see [8]).

Based on the degree of primal infeasibility, each iterate is regarded as either
“successful” or “unsuccessful”. In the successful case, if y∗

k is “close” to the boundary
then µk is decreased. This defines a larger artificial bound γk, which encourages
the dual variables to be inactive during the next iteration. In the unsuccessful case,
the parameter µk is decreased and the artificial bound γk is increased. Again, large
artificial bounds encourage the dual variables in the subproblem to be inactive; when
approaching a solution it is highly desirable for the dual variables to be inactive.

As described in [1], convergence of the multiplier method depends critically on the
size of µk and ‖ye

k − y∗‖. The strategy of decreasing µk in order to force convergence
is based on the assumption that if µk is decreased enough, then the iterates will
eventually enter a “cone of convergence”. Once this cone of convergence has been
entered, the penalty parameter will no longer need to be decreased and the algorithm
will converge.

In Algorithm 5.1, the vector ỹk is the first-order primal-dual multiplier estimate
ỹk = 2π(x∗

k) − y∗

k, where π(x∗

k) = ye
k − c(x∗

k)/µk. The fixed parameters associated
with the algorithm are listed below.

• η∗ (0 < η∗ ≪ 1) is the primal convergence tolerance.
• ω∗ (0 < ω∗ ≪ 1) is the dual convergence tolerance for the x-variables.
• τ∗ (0 < τ∗ ≪ 1) is the dual convergence tolerance for the y-variables.
• µ0 (0 < µ0 < 1) is the initial penalty parameter.
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• η0 (η∗ ≤ η0 < 1

2
) is the initial primal feasibility tolerance.

• ω0 (ω∗ ≤ ω0 < 1

2
) is the initial dual infeasibility tolerance for the x-variables.

• µc (0 < µc < 1) is the contraction factor for µk.
• τf (0 < τf ≤ 1) is the feasibility tolerance for the y-variables.
• kτ (kτ > 0) is a constant used to update τk.
• ν is a positive constant used in the definition of γk. Given µ0 and ye

0, ν is
set to ν = (‖ye

0‖∞ + 1)µ
αγ

0 , which implies that γ0 = ‖ye
0‖∞ + 1. This update

guarantees that ye
0 ∈ [−γ0e, γ0e]. Moreover, if (x0, y0) is optimal, then the

algorithm will exit on the first iteration.
• αω is a positive constant used in the update to ωk in the “unsuccessful” case.

This parameter ensures that {ωk} converges to zero and that ωk < ω0 for all
k > 0.
• αη (0 < αη < min(1, αω)) is used to update ηk in the unsuccessful case. The

condition αη > 0 guarantees that ηk < η0 for all k > 0.
• βω (βω > 0) is used to update ωk so that ωk+1 < ωk in the successful case.
• βη (0 < βη < min(1, βω)) is used to update ηk in the successful case. The

condition βη > 0 ensures that ηk+1 < ηk.
• αγ (0 < αγ < 1) and ατ (ατ > 1) are used to update γk and τk.

During each iteration, (x∗

k, y∗

k, z∗k, w∗

k) is accepted as a solution of problem (5.3) if
it satisfies the following conditions:

x∗

k ≥ 0, (5.4a)

‖min(x∗

k, z∗k)‖∞ ≤ ωk, (5.4b)

−γke ≤ y∗

k ≤ γke, (5.4c)

‖min(γke− y∗

k, y∗

k + γke, |w∗

k|)‖∞ ≤ τk, (5.4d)

If [γke− y∗

k]j ≤ τk, then [w∗

k]j ≤ τk, (5.4e)

If [y∗

k + γke]j ≤ τk, then [w∗

k]j ≥ −τk, (5.4f)

∇M(x∗

k, y∗

k ; ye
k, µk) =

(
z∗k
w∗

k

)
. (5.4g)

Condition (5.4b) is equivalent to [x∗

k]i ≥ −ωk and [z∗k]i ≥ −ωk holding in addition to
either [x∗

k]i ≤ ωk or [z∗k]i ≤ ωk holding for i = 1 :n. A similar statement holds for
condition (5.4d).

Algorithm 5.1. Primal-Dual BCL Algorithm
INPUT: (x0, y0)
Set constants µ0, η0, ω0, η∗, ω∗, τ∗, µc, τf , kτ , ν, αη, αω, βη, βω, αγ , and ατ ;

Set ye
0 = y0; ν = (‖ye

0‖∞ + 1)µ
αγ

0 ; γ0 = νµ
−αγ

0 ; τ0 = min(µ0ω0, kτµατ

0 );

converged ← false;
while not converged do

Find (x∗

k, y∗

k, z∗k, w∗

k), a solution to (5.3) as determined by conditions (5.4).

if (x∗

k, ỹk, z∗k) satisfies stopping criteria then converged ← true end if

Compute (xs
k+1, y

s
k+1) to increase the convergence rate.

if ‖c(x∗

k)‖ ≤ max(η∗, ηk) then [successful]

if ‖y∗

k‖∞ > γk − τf then [approaching boundary]

µk+1 ← µcµk; γk+1 ← νµ
−αγ

k+1
;
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end if
ηk+1 ← ηkµ

βη

k+1
; ωk+1 ← ωkµβω

k+1
; [decrease ηk and ωk]

τk+1 ← min(µk+1ωk+1, kτµατ

k+1
);

else [unsuccessful]

µk+1 ← µcµk; γk+1 ← νµ
−αγ

k+1
;

ηk+1 ← η0µ
αη

k+1
; ωk+1 ← ω0µ

αω

k+1
; [increase or decrease ηk and ωk]

τk+1 ← min(µk+1ωk+1, kτµατ

k+1
);

end if
if ‖ys

k+1‖∞ ≤ γk+1 then

ye
k+1 = ys

k+1; [high-order estimate]

else if ‖ỹk‖∞ ≤ γk+1 then
ye

k+1 = ỹk; [first-order estimate]

else
ye

k+1 = ye
k;

end if

k← k + 1;
end while
OUTPUT: (x∗, y∗, z∗)← (x∗

k, ỹk, z∗k)

5.2. Stabilized primal-dual LCL methods. Problem (NP) may be solved as
a sequence of linearly constrained subproblems. In the primal-dual setting, given an
estimate (xk, yk) of a solution to problem (NP), the subproblems take the form

minimize
x∈Rn,y∈Rm

M(x, y ; ye
k, ρk)

subject to c̄k(x) = 0,
x ≥ 0, −γke ≤ y ≤ γke,

(5.5)

where γk is a positive constant, ye
k is an estimate of the Lagrange multiplier vector,

c̄k(x)
△

= c(xk) + J(xk)(x − xk) is a linearization of the constraints, and ρk is the kth
penalty parameter. Notice that we have now switched our definition of penalty pa-
rameter from µk to ρk. This notational switch is used to keep consistent with notation
used previously in LCL algorithms. In these algorithms the penalty parameter ρk may
need to converge to infinity and therefore we may consider the penalty parameters to
satisfy the relationship ρk = 1/µk.

Subproblem (5.5) may suffer from two major deficiencies. First, the constraints
c̄k(x) = 0 and x ≥ 0 may be infeasible, in which case the subproblem has no solution.
Second, the distance from the point of linearization to the subproblem solution may be
arbitrarily large, i.e., the quantity ‖x∗

k−xk‖ may be arbitrarily large. These problems
are addressed by Friedlander and Saunders [19], who regularize the standard LCL
subproblem by including an ℓ1 penalty term of the linearized constraint violations.
The analogous approach for the primal-dual augmented Lagrangian gives the so-called
elastic subproblem:

minimize
x,y,u,v

M(x, y ; ye
k, ρk) + σkeT(u + v)

subject to c̄k(x) + u− v = 0,
x, u, v ≥ 0, −γke ≤ y ≤ γke.

(5.6)
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The point (x∗

k, y∗

k, u∗

k, v∗k, ∆y∗

k, z∗k, w∗

k) is regarded as an approximate solution of
subproblem (5.6) if it satisfies

x∗

k ≥ 0, (5.7a)

‖min(x∗

k, z∗k)‖∞ ≤ ωk, (5.7b)

−γke ≤ y∗

k ≤ γke, (5.7c)

‖min(γke− y∗

k, y∗

k + γke, |w∗

k|)‖∞ ≤ τk, (5.7d)

If [γke− y∗

k]j ≤ τk, then [w∗

k]j ≤ τk, (5.7e)

If [y∗

k + γke]j ≤ τk, then [w∗

k]j ≥ −τk, (5.7f)
(
∇xM(x∗

k, y∗

k ; ye
k, ρk)− J(xk)T∆y∗

k

∇yM(x∗

k, y∗

k ; ye
k, ρk)

)
=

(
z∗k
w∗

k

)
, (5.7g)

c̄k(x∗

k) + u∗

k − v∗k = 0, (5.7h)

‖min(u∗

k, σke−∆y∗

k)‖∞ ≤ ωk, (5.7i)

‖min(v∗k, σke + ∆y∗

k)‖∞ ≤ ωk, (5.7j)

where z∗k and w∗

k are the multiplier vectors for x ≥ 0 and −γke ≤ y ≤ γke, and ∆y∗

k

denotes the Lagrange multiplier vector for the elastic linearized constraint c̄k(x)+u−
v = 0. Note that inequalities (5.7i) and (5.7j) imply that

‖∆y∗

k‖∞ ≤ σk + ωk. (5.8)

Algorithm 5.3 given below is very similar to the stabilized LCL algorithm proposed
by Friedlander and Saunders [19]. The principal differences are: (i) Algorithm 5.3 uses
the primal-dual augmented Lagrangian instead of the classical augmented Lagrangian;
(ii) explicit artificial bounds are imposed on the dual variables of the subproblem;
and (iii) an alternative update for σk may be used in the situation where an iterate
is labeled as “successful”. An explanation for this alternative update is given below.

Based on the current degree of infeasibility, each pdℓ1-LCL iterate is regarded as
either “successful” or “unsuccessful”. In the successful case, the solution estimates
are updated by using information from the current subproblem solution. Next an
optimality check is performed, followed by a decrease in the primal infeasibility pa-
rameter ηk. The penalty parameter σk may also be decreased if ∆y∗

k is “too large”.
Finally, the index j, which represents the number of consecutive successful iterations,
is incremented by one. In the case of an unsuccessful iteration, the subproblem so-
lutions are discarded and then the penalty parameter ρk is increased in an attempt
to decrease the primal infeasibility at the next iteration. Next, the artificial bound
γk on the dual variables is increased, ηk is reset, and σk is decreased. Decreasing
σk is appropriate because small values of σk encourage deviation from the linearized
constraints, which may be necessary in order to decrease primal infeasibility.

In Algorithm 5.3, the vector ỹk is a first-order primal-dual multiplier estimate,
which is given by ỹk = 2π(x∗

k)− y∗

k + ∆y∗

k, where π(x∗

k) = ye
k − c(x∗

k)/µk. In addition
to the parameters η∗, ω∗ and τ∗ defined for pdBCL, the following parameters are
associated with Algorithm 5.3:

• ρ0 (ρ0 ≥ 0) is the initial penalty parameter;
• σ0 (σ0 ≥ 0) is the initial ℓ1 penalty parameter for the linearized constraints;
• η0 (η∗ ≤ η0) is the initial primal infeasibility tolerance;
• ω0 (ω∗ ≤ ω0 < 1) is the initial dual infeasibility tolerance for the x-variables;
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• αη (0 < αη < 1) is the constant used in the update to ηk in the unsuccessful
case.
• βη is the positive constant used in the update to ηk in the successful case;
• τρ (τρ > 1) is the expansion factor for ρk;
• τσ (τσ > 1) is the scale-factor for σk;
• αγ (0 < αγ < 1) is the constant used in the definition of γk.
• ατ (ατ < −1) is the constant used in the definition of τk;
• kτ (kτ > 0) is used in the definition of τk;
• δ (δ > 0) is another positive constant;
• ν (ν > 0) is used in definition of γk. Given ρ0 and ye

0, the parameter ν is

set to ν = (‖ye
0‖∞ + 1)ρ

−αγ

0 . As γ0 = να
αγ

0 , it follows that γ0 = ‖ye
0‖∞ + 1.

Therefore, ye
0 will be in the interior of [−γ0e, γ0e], which is unfortunate if

‖y0‖ ≫ ‖y
∗‖. In practice, an a priori limit on the norm of γ0 should be

enforced.

In the successful case, Friedlander and Saunders use the following update for σk

to deal with multiple limit points:

Algorithm 5.2. Update to σk in the successful case (multiple limit points).

if ‖∆y∗

k‖∞ ≤ δ(1

2
)j then

σk+1 ← min(1 + ‖∆y∗

k‖∞, σ̄)/(1 + ρk); [reset σk]

else

σk+1 = σk/τσ; [decrease σk]

end if

The integer j represents the number of consecutive successful major iterations and
δ is a positive parameter. With this update, the authors claim global convergence
without the single limit point assumption. They also note that any forcing sequence
converging to zero may be used in the “if” part, but that requiring only a mild decrease
in ‖∆y∗

k‖∞ at each iteration should interfere less with the fast local convergence of the
method since ‖∆y∗

k‖ may be expected to decrease at a linear rate. The proof involves
four cases. However, Case 2 does not appear to treat all the possible situations that
may arise. In Case 2, {ρk} is uniformly bounded and every iterate is successful for
k sufficiently large, which implies that j → ∞. The authors argue that if ∆y∗

k does
not satisfy the “if” part of Algorithm 5.2 infinitely often, then {σk} → 0. However,
this does not appear to be guaranteed since it is possible that both the “if” and
“else” statements occur infinitely often—implying that σk alternates between being
decreased and being reset.

However, it is true that if {x∗

k} contains finitely many limit points, then there
exists some subsequence K̄ (say), such that limk∈K̄(x∗

k, ỹk, z∗k, ∆y∗

k) = (x∗, y∗, z∗, 0)
and that (x∗, y∗, z∗) is a KKT point. This can be seen as follows. Let K1, K2, . . . ,
Kl be disjoint subsequences of the integers such that limk∈Ki

x∗

k = xi
∗, a limit point

of {x∗

k}, for i = 1, 2, . . . , l. Therefore, {xi
∗} for i = 1, 2, . . . , l, is the finite set of l

limit points of {x∗

k}. Since {ρk} is assumed uniformly bounded, then all iterates are
successful for k sufficiently large. If the “if” part happens finitely often, then {σk} → 0
and Part 2 of Lemma 5.2 by Friedlander and Saunders holds. If the “if” part occurs
infinitely often, then it must be true that the “if” part occurs infinitely often on Km

for some 1 ≤ m ≤ l. It could occur infinitely often on more than one subsequence, but
one will suffice. This implies that there exists a sub-subsequence Km̄ ⊆ Km such that
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{∆y∗

k}Km̄
→ 0 since j → ∞. Since {x∗

k}Km̄
→ xm
∗ , {∆y∗

k}Km̄
→ 0, and c(xm

∗ ) = 0,
Lemma 5.2 by Friedlander and Saunders implies that (xm

∗ , ym
∗ , zm
∗ ) is a KKT point

where

lim
k∈Km̄

ỹk = ym

∗ and zm

∗ = g(xm

∗ )− J(xm

∗ )Tym

∗ . (5.9)

Note that this convergence occurs on the sub-subsequence Km̄, and not on Km, as
stated in the Friedlander-Saunders Lemma 5.2.

So it appears that the update used by the sLCL algorithm to handle multiple
limit points may not work as predicted in certain situations. However, most practical
problems have a unique limit point, and even when multiple limit points exist, it
seems unlikely that the case described above will occur. It seems more likely that
σk will be driven to zero, which will cause the algorithm to behave like the (globally
convergent) BCL method. The possible ramifications of this observation on the sLCL
algorithm is unclear at this point. The update used in the stabilized primal-dual LCL
algorithm below does not suffer from this potential problem. However, it is unclear at
this point if this alternative updating scheme will give σ-values that are unnecessarily
smaller than those of the Friedlander-Saunders algorithm.

Algorithm 5.3. Primal-Dual ℓ1-LCL Algorithm
INPUT: (x0, y0)
Set ρ0, σ0, η∗, η0, ω∗, τ∗, αη, βη, τρ, τσ, αγ , ατ , kτ , and δ;

Set ye
0 = y0; z0 = g(x0)− J(x0)

Ty0; w0 = 0;

Set ν = (‖ye
0‖∞ + 1)ρ

−αγ

0 ; γ0 = νρ
αγ

0 ;

Set converged ← false; k ← 0; j ← 0;
while not converged do

Choose τk, ωk > 0 so that limk→∞ τk ≤ τ∗, τk ≤ kτρατ

k , and limk→∞ ωk ≤ ω∗;

Find (x∗

k, y∗

k, u∗

k, v∗k, ∆y∗

k, z∗k, w∗

k), a solution to (5.6), satisfying (5.7);

Choose (x∗

k, y∗

k, ∆y∗

k, z∗k, w∗

k) closest to (xk, yk, zk, wk);

if ‖c(x∗

k)‖ ≤ max(η∗, ηk) then [successful]

xk+1 ← x∗

k; yk+1 ← y∗

k; zk+1 ← z∗k; ye
k+1 ← ỹk;

if (xk+1, y
e
k+1, zk+1) satisfies stopping criteria then converged ← true;

ρk+1 ← ρk; γk+1 ← γk

ηk+1 ← ηk/(1 + ρ
βη

k+1
); [decrease ηk]

if ‖∆y∗

k‖∞ ≥ δ(1

2
)j then σk+1 ← σk/τσ; [decrease σk]

j ← j + 1;
else [unsuccessful]

xk+1 ← xk; yk+1 ← yk; zk+1 ← zk; ye
k+1 ← ye

k;

ρk+1 ← τρρk; γk+1 ← νρ
αγ

k+1
; [increase ρk and γk]

ηk+1 ← η0/(1 + ρ
αη

k+1
); [increase or decrease ηk]

σk+1 ← σk/τσ; [decrease σk]
j ← 0;

end if
k← k + 1;

end while
OUTPUT: (x∗, y∗, z∗)← (xk, ye

k, zk);



20 P. E. Gill and D. P. Robinson

5.3. Primal-dual SQP methods. Some of the most efficient algorithms for
nonlinear optimization are sequential quadratic programming (SQP) methods. This
class of methods provides an important application of the primal-dual function con-
sidered here. In particular, the primal-dual augmented Lagrangian is an appropriate
merit function that has the potential of forcing convergence to points satisfying the
second-order necessary conditions for optimality. This is a consequence of Theo-
rem 3.1, which shows implies that minimizers of problem (NEP) are also minimizers
of the primal-dual augmented Lagrangian function. The formulation and analysis of
an SQP method in this context will be the topic of a future paper.

6. Conclusion. Merit functions have played an important role in the formula-
tion and analysis of methods for solving constrained optimization problems. In this
paper we have introduced a generalized primal-dual augmented Lagrangian that may
be minimized simultaneously with respect to both the primal and the dual variables.
In its most general form, the function may be considered as one of a continuum
of functions that have certain well-known functions as specific cases. One variant
of this generalized function—the primal-dual augmented Lagrangian—is proposed as
the basis of two primal-dual methods. The first is a primal-dual bound-constrained
Lagrangian method (pdBCL) based on a primal method given by Conn, Gould, and
Toint [9]. The second method is a primal-dual linearly constrained Lagrangian method
(pdℓ1LCL) based on the method of Friedlander and Saunders [19].
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