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Abstract:   

We develop sharp bounds on turnpike theorems for the unbounded knapsack problem. Turnpike 

theorems specify when it is optimal to load at least one unit of the best item (i.e., the one with the 

highest “bang-for-buck” ratio) and, thus can be used for problem preprocessing. The successive 

application of the turnpike theorems can drastically reduce the size of the knapsack problems to 

be solved. Two of our theorems subsume known results as special cases. The third one is an 

entirely different result. We show that all three theorems specify sharp bounds in the sense that 

no smaller bounds can be found under the assumed conditions. We also prove that two of the 

bounds can be obtained in constant time. Computational results on randomly generated problems 

demonstrate the effectiveness of the turnpike theorems both in terms of how often they can be 

applied and the resulting reduction in the size of the knapsack problems. 
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1. Introduction 

     The knapsack problem is one of the most celebrated problems in operations research. The 

unbounded knapsack problem can be stated as follows. Given a knapsack (or backpack) with 

known weight capacity and an unlimited supply of items, each of which has known unit value 

and unit weight, how can one pack the knapsack with integral amounts of the items so as to 

maximize the value of the load carried? 

 It is well known that this problem is NP-hard (Garey and Johnson, 1990). There are a host 

of algorithms for the knapsack problem and its various variants (Kellerer et al., 2004; Martello 

and Toth, 1990; Morin and Marsten, 1976; Zukerman et al., 2001). However, it is oftentimes 

possible to drastically reduce the size of the knapsack problem to be solved even before applying 

one of these algorithms. This can be viewed as a form of problem pre-processing (Nemhauser, 

2007). Specifically, one such way of cutting down the computational requirements of solving 

knapsack problems with large, but bounded weight capacities is to employ turnpike theorems 

(Garfinkel and Nemhauser, 1972; Gilmore and Gomory, 1966; Hu, 1969; Shapiro, 1970). If the 

items are indexed according to the non-increasing order of the “bang-for-buck” ratios of their 

unit values to unit weights, then for “large enough” weight capacities (i.e., “long enough” trips) 

it can be shown that it is optimal to load at least one unit of “best” item (to take the trip on the 

turnpike, as it were), which has the highest value-to-weight ratio. Turnpike theorems specify 

lower bounds on what constitutes a “large enough” weight capacity (right-hand-side) and their 

successive application can drastically reduce the right-hand-sides and the resulting computational 

requirements. For instance, a knapsack problem with several hundred items and a carrying 

capacity of 100,000 can be reduced to a problem with a carrying capacity of only 40 (see 

Example 4.4). The primary goal of the present paper is to provide sharper bounds and, thus, more 

effective turnpike theorems for the unbounded knapsack problem.  

     The plan of our paper is as follows. In section 2, we introduce notations and then develop 

the first turnpike theorem, which is shown to subsume a known result attributed to Hu (1969) by 

Garfinkel and Nemhauser (1972). Moreover, we prove that our bound can be obtained in 

constant time. We also prove that it is a sharp bound in the sense that in general, no smaller 

lower bound can be found under the assumed conditions. In section 3, we develop the second 

turnpike theorem and prove it also subsumes another known result from Garfinkel and 

Nemhauser (1972) as a corollary. The third turnpike theorem, which is an entirely different 



 

 3   

result, is given in section 4. Number theoretic results are used to prove our new turnpike 

theorems, and examples are given to show that our theorems are stronger than the known results. 

We also show that all three of our turnpike theorems specify sharp bounds in the sense that no 

smaller bounds can be found under the assumed conditions and prove that two of the bounds can 

be obtained in constant time. Computational experiments on randomly generated problems 

clearly demonstrate the effectiveness of the turnpike theorems not only in terms of when they 

can be applied but also in the resulting reduction in the size of the knapsack problems. Indeed, 

the three turnpike theorems yielded average reductions of the right-hand-sides of 99.97%, 

98.10% and 99.93%, respectively. The paper concludes with a discussion in section 5. 

2. Preliminaries and the First Turnpike Theorem 

 The unbounded knapsack problem can be stated as follows: given an unlimited number of 

n items, each of which has unit weight ja  and unit value jc , how can one fill a knapsack with 

weight capacity b in order to maximize the value of the load carried? More formally, one wants 

to find non-negative integers { 1x , 2x , …, nx } in order to 

          maximize  
1

n

j j
j

c x
=
∑  

          subject to  
1

n

j j
j

a x b
=

≤∑ , and 

                    0jx ≥ , integer , 

where, as usual, we assume that all data are integral. As noted in the introduction, one way of 

reducing the computational requirements of solving knapsack problems with large, but bounded, 

right-hand-side weight capacities is to employ turnpike theorems. Other distinctly different ways 

include dominance results and periodicity properties (Kellerer et al., 2004). If we index the items 

according to the non-increasing order of their “bang-for-buck” ratios, j j jv c a= , so that 

1 2 3v v v≥ ≥ ≥" , then for “large enough” b we can prove that it is optimal to load at least one 

unit of “best” item 1 which has the highest value-to-weight ratio 1v , into the knapsack. Turnpike 

theorems specify a lower bound on what constitutes a “large enough” b. As noted in the 
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Introduction, successive application of such turnpike theorems can oftentimes drastically reduce 

the right-hand-side b, and the resulting computational requirements. 

     In constructing an optimal solution of a given knapsack problem, we (inductively) want to 

decide if at least one unit of item 1 (recall that by assumption, item 1 has the highest value-to-

weight ratio 1v ) should be packed into the knapsack. Certainly if it is optimal to pack one unit of 

item 1, then there is a reduction of the (remaining) capacity, and thus, the problem is easier to 

solve. Before stating and proving our first theorem, we will state and prove a simple Lemma. 

Lemma 2.1  Let q be a positive integer and s be a real number where s q≥ , then we have 

                     
1

q s s
q

< ⎢ ⎥⎣ ⎦+
 ,  

        where s⎢ ⎥⎣ ⎦ = largest integer s≤ . 

Proof.  Let s⎢ ⎥⎣ ⎦ = y, it follows from the assumption s q≥  that y q≥ . Let s – y = t with 

0 1t≤ < . Thus, we have 

     
1

q s
q +

 =   
1

q y
q +

 + 
1

q t
q +

 = 1(1 )
1

y
q

−
+

 + 
1

q t
q +

 

            = ( )
1

yy
q

−
+

 + 
1

qt
q +

 and since y q≥ , we have 

            ( )
1

qy
q

≤ −
+

 + 
1

qt
q +

 = (1 )
1

q ty
q
−

−
+

 and by definition 1t < , we have 

            < y s= ⎢ ⎥⎣ ⎦  , 

 or  
1

q s s
q

< ⎢ ⎥⎣ ⎦+
, which completes the proof of the Lemma 2.1.  ■ 

 Note that the interval [0, 1) can be written as the disjoint union of intervals of the form 

1, 
1

q q
q q

⎡ ⎞−
⎟⎢ +⎣ ⎠

, i.e.,  

             [0, 1) = 
1

1, 
1q

q q
q q

∞

=

⎡ ⎞−
⎟⎢ +⎣ ⎠

∪  
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and any real number r with 0 1r≤ <  falls precisely into one of the subintervals above. We have 

the following theorem,  

Theorem 2.2  Assume that 1 2

1 2

c c
a a
>  (i.e., 1 2v v> ), and let the positive integer q be uniquely 

determined by the following relation  

                     2

1

1
1

vq q
q v q
−

≤ <
+

 . 

Then there is a weight 1Ih qa=  such that if Ib h≥ , it is optimal to pack at least one unit of item 

1 into the knapsack. 

Proof.  We have 31 2

1 2 3

cc c
a a a
> ≥ ≥"(i.e., 1 2 3v v v> ≥ ≥"). Clearly, if no units of item 1 are 

loaded, then the total value of the objective function is 2z bv≤  which leads to 11
qz b v

q
⎛ ⎞

< ⎜ ⎟+⎝ ⎠
, 

due to the assumption that 2

1 1
v q
v q
<

+
. Therefore, we have  

                 11
qz b v

q
<

+
 .         (2.1) 

     We want to show that any solution without item 1 loaded can not be optimal. 

     We claim that  

                 1 1
11

q bb v c
q a

⎢ ⎥
< ⎢ ⎥+ ⎣ ⎦

 .     (2.2) 

     Note that the right-hand-side of inequality (2.2) is the value of filling the knapsack with as 

many units of item 1 as possible (which is certainly allowed). The above claim will establish our 

theorem. 

     Now let us prove the claim. By definition, j j jv c a= , thus 

                 1

1 1

1v
c a
=  . 
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     Therefore, inequality (2.2) is equivalent to the following 

                 
1 11

q b b
q a a

⎢ ⎥⎛ ⎞
<⎜ ⎟ ⎢ ⎥+⎝ ⎠ ⎣ ⎦

 , 

and the above inequality follows at once from Lemma 2.1 by taking 
1

bs
a

=  (Note that 1b qa≥  

in the assumption, so we have 
1

b q
a
≥ . Thus, Lemma 2.1 can be employed). Therefore, 

inequality (2.2) holds. 

     Combining (1) and (2), we have  

                  1
1

bz c
a
⎢ ⎥

< ⎢ ⎥
⎣ ⎦

 

The right-hand-side is equal to the objective function value of a way of loading item 1. So the 

original solution can not be optimal. Therefore, an  optimal solution includes at least one unit of 

item 1.  ■  

     Notice that Theorem 2.2 subsumes a known result, attributed to Hu (1969) by Garfinkel 

and Nemhauser (1972) as a special case that is stated in the following corollary.     

Corollary 2.3  Let us assume that 1 2

1 2

c c
a a
>  (i.e., 1 2v v> ), then there is a weight 'Ih = 1

1 2

c
v v−

 

such that if 'Ib h≥ , it is optimal to pack at least one unit of item 1 into the knapsack. 

Proof.  Let us use the notation of the preceding theorem. Note that there is a unique positive 

integer q that is the maximal possible and satisfies the following inequality, 

     2

1

1 vq
q v
−

≤   1 1 2
1   v v v
q

⇔ − ≤   1 2 1
1  v v v
q

⇔ − ≤   1 1
1

1 2 1

  c qc qa
v v v

⇔ ≥ =
−

 

Therefore, 1

1 2

cb
v v

≥
−

 implies that 1b qa≥ . Thus, the corollary follows from Theorem 2.2.  ■ 

Remark 2.4: It follows from the proof of the corollary that 'Ih = 1
1

1 2

c qa
v v

≥
−

= Ih .  ■ 
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     Here is an interesting issue, as pointed out by one of the anonymous referees, of finding 

the number q in the statement of the preceding theorem. If we consider the sequence 

1 2 30
2 3 4

< < < <" and try to fit 2

1

1v
v
<  into the segment 1, 

1
q q

q q
⎡ ⎞−

⎟⎢ +⎣ ⎠
, i.e., we compare 2

1

v
v

 

with 
1

n
n +

 one by one for 2 11 n a c≤ <  (since 2 2 2 1 2 2 1

1 1 1 2 1 2 1

1v c a a c a c
v c a a c a c

−
= = ≤ ), then the process 

would require a linear time in the size of 2 1a c , and we would end up in a situation with a tighter 

bound but a longer time (to find the bound). However, the appropriate q can be calculated in at 

most two steps if we use the following lemma and, thus, our bound can be found in constant time 

instead of linear time. 

Lemma 2.5  Let 0 1r< <  be any real number. There exists a unique expression such that 

1 1

1r
n r

=
+

 with 1 1n ≥  being an integer and 10 1r≤ < . We have 1, 
1

q qr
q q

⎡ ⎞−
∈ ⎟⎢ +⎣ ⎠

, where the 

positive integer q is determined by 

 (i) if 1 1n = : we must have 10 1r< < . Thus, there exists a unique expression such that 

   1
2 2

1r
n r

=
+

 with 2 1n ≥  being an integer and 20 1r≤ < , then 2 1q n= + ; 

 (ii) if 1 2n =  and 1 0r = , then 2q = ; 

 (iii) all other cases, 1q = . 

Proof.  Clearly, 1 1
r
>  can be uniquely expressed as 1 1

1 n r
r
= +  with 1 1n ≥  (integer) and 

10 1r≤ < . Now consider case (i) 1 1n = . If 1 0r = , then 
1 1

1 1r
n r

= =
+

 contradicting to our 

assumption. Therefore, we have 10 1r< < . Again, 
1

1 1
r
>  can be uniquely expressed as 

2 2
1

1 n r
r
= +  with 2 1n ≥  (integer) and 20 1r≤ < . This implies 2 2

1

1 1 n n
r

≤ < + , so we 
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have 1
2 2

1 1   
1

r
n n

< ≤
+

. Going back to r with 1 1n = , we have 2

1 2

2

1 1
11 11

nr
r n

n

= ≥ =
+ ++

 and 

2

1 2

2

11 1
11 21

1

nr
r n

n

+
= < =

+ ++
+

.  Thus, we obtain 2 2

2 2

1
1 2

n nr
n n

+
≤ <

+ +
.  Therefore, 2 1q n= + .   

Consider case (ii) 1 2n =  and 1 0r = . We have 
1 1

1 1 1,   , ,  thus  2
2 1

q qr r q
n r q q

⎡ ⎞−
= = ∈ =⎟⎢+ +⎣ ⎠

. 

Now consider case (iii), if 1 1
1 1

1 12 and  0,  then  ,  thus  1
2

n r r q
n r

= > = < =
+

; 

         if 1
1 1

1 12,   then  ,  we also obtain  1
2

n r q
n r

> = < =
+

.  ■   

Remark 2.6: In Theorem 2.2, 2

1

0 1v
v

< < . Thus, Lemma 2.5 can be applied to find q. Since 

2 2 2 1 2

1 1 1 2 1

v c a a c
v c a a c
= = , we can simply use long division (or continuous fraction) to calculate 1n  and 

2n  (if 1 0r ≠ ). The exact solutions for 1n  and 2n  satisfy  2 1 1 1 2 1 1 2 1 1( ) ( )a c n a c w a c n r= + = +  

and 1 2 2 1 2 1 2 2( )a c n w w w n r= + = + , where 1 1 20 w a c≤ <  and 2 10 w w≤ < .  ■ 

Example 2.7:  Our theorem is stronger than the corollary. For consider an example with 

               1 200v =  and 2 99.v =   

     Hence   1 1
' 1 1 1

1 2 1 2

200 ( 2 )
101I

c vh a a a
v v v v

= = = ≈
− −

,   

     while  2

1

99 10
200 2

v
v

≤ = < ,  we have 1,q =  thus 1 1.Ih qa a= =  

     To achieve an optimal solution, Corollary 2.3 states that if 1
200
101

b a≥ , then we may pack 

at least one unit of item 1 whereas Theorem 2.2 states that we may do so with just 1b a≥ . 

Therefore, for arbitrary b, we may fill the knapsack by a suitable number of units of item 1 until 
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the remaining capacity is less than 1a  (by our theorem) or less than 1
200
101

a  (by the corollary). 

Certainly it is more advantageous to use our theorem.  ■  

     In fact, 1Ih qa=  is a sharp bound in the sense that no smaller bound can be found under 

the conditions specified in Theorem 2.2 as the following proposition shows. 

Proposition 2.8  Given the assumptions of Theorems 2.2, there are examples such that if 

1Ib h= − , then it is not optimal to pack item 1 into the knapsack. 

Proof.  Consider three types of items with 1 2 1v q= + , 2 2 1v q= −  and 3
1
2

v = , where q is any 

positive integer. Their corresponding unit weights are 1 4a q> , 2 1 1a qa= −  and 3 1a = . It is 

easy to verify that 1 2v v>  and 2

1

1
1

vq q
q v q
−

≤ <
+

. Hence, we have 1Ih qa=  as shown in 

Theorem 2.2. Now let 1 1b qa= − . Apparently we can load one unit of item 2 into the knapsack, 

and the objective function value is  

         * 2
2 2 1 1 1( 1)(2 1) 2 2 1z a v qa q a q a q q= = − − = − − + .  

We claim that for any other loading, the resulting value is strictly less than *z . Suppose we load 

one unit of item 1, then the remaining capacity is 1 1 1 1 2( 1) 1b a qa a qa a− = − − < − = . Thus, no 

item 2 can be loaded (i.e., only item 1 and item 3 may be considered). We assume that altogether 

there are k units of item 1 loaded (it must have k q<  since 1 1b qa= − ), and the rest is filled up 

by a suitable number of units of item 3. The resulting value is 1 1 1 3( )z ka v b ka v= + −  

1 1 1 1 1 1
1 1 1 1(2 1) ( 1 ) 2
2 2 2 2

ka q qa ka ka q ka qa= + + − − = + + − , and it reaches the maximum when 

1k q= − . Therefore, we have  

         

2
1 1 1 1 1 1

2 2 *
1 1 1 1

1 1 1 12( 1) ( 1) 2 ( 1)
2 2 2 2
1  2 (4 1) 2 2 1
2

z q a q q a qa a q a q a

a q a q q a q a q q z

≤ − + − + − = − − +

< − − + < − − + =
 

Hence, it is not optimal to pack item 1 into the knapsack. Thus, one can not improve on Ih .  ■   
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       Computational experiments were conducted as suggested by one of the referees, in order 

to ascertain just how effective our turnpike theorems are. Specifically, how often could they be 

applied and what was the average percentage reduction in the size of the resulting knapsack 

problem. Toward that end we used MATLAB 7.0 (The MathWorks Inc.) to randomly generate 

both  and    for  1, ,500i ic a i = "  from a uniform distribution of integers from 1 to 1,000. 

Following Gabrel and Minoux (2002) the knapsack capacity, b, was randomly generated from a 

uniform distribution of integers where the range was 
500 500

1 1

1 2,  
3 3i i

i i

a a
= =

⎡ ⎤
⎢ ⎥⎣ ⎦
∑ ∑ . After running dozens 

10,000 randomly generated instances, the typical results are as follows: we ran into 4 out of 

10,000 cases where 1 2v v= , i.e., the sufficient conditions of Theorem 2.2 were not met and 

among all cases, Ib h≥ . Therefore, our turnpike theorem could be applied in 99.96% of the 

cases. The average reduction in the right-hand-side, , 99.97%Ib h
b
−

= . 

   3.  The Second Turnpike Theorem 

     Let S be a feasible solution to the knapsack problem. Assume 1 2{ , ,..., }mS j j j=  consists 

of m units of various items, each is denoted by tj . The values of tj s don’t have to be unique, 

i.e., the same type of item may have more than one occurrence in S. For instance, {1,2,1,1,3}S =  

indicates{item 1, item 2, item 1, item1, item 3} . Now let 1 2{ , ,..., }i iS j j j= consists of first i units 

of S, where i m≤ . Thus, iS  denotes a partial solution with total weight 
1

t

i

i j
t

A a
=

= ∑ . Finally, let 

ir  be the residue of 1(mod  )iA a , where 10  and  ir a i m≤ < ≤ ( Hardy and Wright, 1938). 

 First we have the obvious result. 

Proposition 3.1  If 10(mod  )b a≡ , i.e., b is divisible by 1a , then it is optimal to pack 

1b a units of item 1 and no units of item 2,…, item n.  ■ 

Remark 3.2: If 'S is any partial solution of an optimal solution, and the weight of 
'

10(mod  )S a≡ , then 'S consists entirely of units of item 1.  ■ 
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     Next for the following two lemmas, assume the contrary that S is an optimal solution with 

no item 1 included. Also, recall that 1(mod  )i ir A a≡ . 

Lemma 3.3  Let 31 2

1 2 3

cc c
a a a
> ≥ ≥" (i.e., 1 2 3v v v> ≥ ≥"). If S is an optimal solution with no 

item 1 included, then 0,   1, , .ir for i m≠ = "  

Proof.  If 0ir = , i.e., 10(mod  )iA a≡ , then it implies that the total weight of iS  is divisible by 

1a . Thus iS  can be replaced entirely by units of item 1, and the total value of S will increase 

strictly (as iS  was a partial solution of S). This violates the optimality of the original solution 

and completes the proof.  ■ 

Lemma 3.4  Let 31 2

1 2 3

cc c
a a a
> ≥ ≥" (i.e., 1 2 3v v v> ≥ ≥"). If S is an optimal solution with no 

item 1 included, then i kr r≠  for i k≠ . 

Proof.  WLOG assume that k i> . If i kr r= , then 10(mod  )k iA A a− ≡ . This implies that the 

weight difference between partial solutions kS  and iS  is divisible by 1a . Thus, the resulting 

partial solution kS \ iS  can be replaced by a suitable number of units of item 1 (see Remark 3.2), 

and the total value of S will increase strictly. This violates the optimality of the original solution 

and completes the proof.  ■ 

Theorem 3.5  Let { }2max j jL a≥= . Then there is a weight 1( 1)IIh a L= −  such that if 1 2v v> , 

IIb h> , then it is optimal to pack at least one unit of item 1 into the knapsack. 

Proof.  We have 1v > 2 3v v≥ ≥" . Assume the contrary that there is an optimal solution S 

without item 1 included. There are two cases and several sub-cases. 

Case 1:  Suppose that 1 1a m− > , where m is the number of units in S. We have .mA mL≤  

Thus, the remaining weight capacity 1( 1)mb b A a L mL L′ = − > − − ≥ . Therefore, we may pack at 

least one more unit from item 2,…, item n into the knapsack. Thus, the original solution can not 

be optimal. 

Case 2:  Now consider 1 1a m− ≤ , there are two sub-cases: 1 1a m− <  and 1 1a m− = . 
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   Sub-case 1: 1 1 .a m− <  Recall that 1(mod  ),  1, , .i ir A a i m≡ = " There are m many ir s. 

Furthermore, it follows from two preceding lemmas that these ir s can not be zero and should all 

be distinct. Thus, we conclude that there exist m distinct non-zero residues, where 1 1m a> − . 

Since there are at most 1 1a −  non-zero possibilities in a complete residue system 1(mod  )a  

(Serre, 1973), this is, therefore, an absurd conclusion. 

   Sub-case 2: 1 1 . a m− = The remaining weight capacity 1( 1) 0.mb b A a L mL′ = − > − − =  

We thus have 1b′ ≥  (since 0b′ >  and b′  is an integer). Furthermore we have two 

possibilities: 1b a′ ≥  and 11 b a′≤ < .   

       Sub-sub-case 1: 1b a′ ≥ . Then we would be able to add at least one unit of item 1 

and thus, the original solution can not be optimal. 

       Sub-sub-case 2: 11 b a′≤ < . Then 1 10 1a b a′< − ≤ − , this is the same as  

1 11 a b a′≤ − < . Thus, 1a b′−  is a residue of a complete residue system 1(mod  ).a  On the other 

hand, we have shown that there exist m distinct non-zero residues, here 1 1m a= −  which is the 

maximal non-zero possibilities in the complete residue system 1(mod  ).a  Therefore, 1a b′−  

must be one of these ir s. Thus, there exists a k such that 1kr a b′= − , which means 

10 (mod  )kr b a′+ ≡ . This says that the sum of kS ’s weight and the remaining weight is divisible 

by 1a . So if we combine the partial solution kS  and the remaining capacity b′  together, we 

could replace it entirely with units of item 1. Hence the total value of S will increase strictly and 

thus, the original solution can not be optimal.  ■ 

     The next corollary follows from Theorem 3.5. 

Corollary 3.6  Let { }1' max j jL a≥= . Then there is a weight 'IIh  = 1( 1) 'a L−  such that if 

1 2v v> , 'IIb h> , then it is optimal to pack at least one unit of item 1 into the knapsack. 

Proof.  Follows at once from Theorem 3.5 since 'L L≥ .  ■ 

     The following corollary is a known result. The reader is referred to problem 25 on p.247 of 

Garfinkel and Nemhauser (1972).     
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Corollary 3.7  Let { }1' max j jL a≥= . Then there is a weight ''IIh  = 1( ' 1)a L +  such that if 

1 2v v> , ''IIb h> , then it is optimal to pack at least one unit of item 1 into the knapsack. 

Proof.  Follows at once from Theorem 3.5 since 1 1 1a a> −  and ' 1 'L L L+ > ≥ .  ■ 

Example 3.8:  Our theorem is stronger than the corollaries. Consider an example with 

                1 2 310,  2  and  1.a a a= = =  Also, 1 2 3v v v> ≥ . 

     Then { }2max 2j jL a≥= = , and { }1' max 10j jL a≥= = . Corollary 3.7 states that if 110b >  

then it is optimal for us to pack at least one unit of item 1 into the knapsack. Corollary 3.6 states 

that we may do so if 90b > . However, Theorem 3.5 states that we should include item 1 to 

achieve optimal with just 18b > . Certainly it is advantageous to use our theorem. 

     Also notice that neither corollary is applicable when 89b = . Using Theorem 3.5, one 

immediately gets an obvious optimal solution by loading 8 units of item 1, 4 units of item 2 and 

1 unit of item 3.  ■ 

     We may further show that 1( 1)IIh a L= −  is a sharp bound in the sense that no smaller 

bound can be found under the conditions specified in Theorem 3.5.  

Proposition 3.9  Given assumptions as in Theorems 3.5. There are examples such that if 

IIb h= , then it is not optimal to pack item 1 into the knapsack. 

Proof.  Consider items with 2 3 1a a= = =" , then { }2max 1j jL a≥= = . If IIb h= , then we 

have 1 1b a= − . Clearly item 1 can not be included in any optimal solution, and this completes 

our proof.  ■ 

     Again, we performed computational experiments in order to determine just how effective 

our second turnpike theorem was. MATLAB 7.0 was used to randomly generate integral values 

for  and  ,  1, ,500i ic a i = "  from a uniform distribution of integers from 1 to 1,000 and, 

following Gabrel and Minoux (2002), the knapsack capacity, b, was chosen to be an integer  

randomly generated in the range 
500 500

1 1

1 2,  
3 3i i

i i

a a
= =

⎡ ⎤
⎢ ⎥⎣ ⎦
∑ ∑ . After computing dozens 10,000 randomly 

generated instances, we ran into 5 out of 10,000 cases where 1 2v v= , i.e., the sufficient 
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conditions of Theorem 3.5 were not met and among all cases, IIb h> . Therefore, our theorem 

could be applied in 99.95% of the cases, and the average reduction 98.10%IIb h
b
−

= . 

   4.  The Third Turnpike Theorem 

 In Theorem 2.2, we examined the ratio of “bang-for-buck” ratios 2

1

v
v

. Exploring further 

along the path, it may also be advantageous to examine the ratio of weights 2

1

a
a

. When 2

1

1a
a

< , 

we have the following new theorem. 

Theorem 4.1  Assume that 1 2v v>  and 1 2a a> . Let the positive integer q be uniquely 

determined by the following relation  

                    2

1

1
1

vq q
q v q
−

≤ <
+

 . 

Let 2

1

1ak q
a

⎢ ⎥
= +⎢ ⎥
⎣ ⎦

. Then there is a weight IIIh  = 1ka  such that if IIIb h≥ , it is optimal to pack 

at least one unit of item 1 into the knapsack. 

Proof.  We have 1 2 3 ...v v v> ≥ ≥ . Assume the contrary that there is an optimal solution with no 

item 1 included and with objective function value z. Then, clearly 2z bv≤ . 

     It follows from our condition that 1 0b ka− ≥ . Now let y be the residue of 

1 2( )(mod  )b ka a−  Then 1 2b ka pa y= + +  for some non-negative integer p. Thus, we have  

              2 1 2 2( )z bv ka pa y v≤ = + +                

     We claim that  

              2 1 2 2 1 1 2 2 1 2( ) ( )bv ka pa y v ka v pa v kc pc= + + < + = +        (4.1) 

In other words, another packing with k units of item 1 and p units of item 2 produces a higher 

objective function value than z. This would violate the optimality of the original solution and 

complete the proof. 
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      Now let us prove our claim. Notice that inequality (4.1) can be simplified to 

                1 2 1 1( )ka y v ka v+ <         (4.2) 

     Since y is a residue 2(mod  )a , we know that 2y a< , so we may replace inequality (4.2) 

by the following stronger inequality 

                1 2 2 1 1( )ka a v ka v+ <        (4.3) 

     We shall prove the above inequality (4.3). 

     It follows from our assumption that 

              2 1

1 2

1 1    1
1

v vq q
v q v q q

+
< ⇒ > = +

+
     

              2 2 2

1 1 1

11        a a ak q q k
a a q ka

⎢ ⎥
= + ⇒ < ⇒ >⎢ ⎥
⎣ ⎦

 

     The above two relations imply 

              1 2
1 1 1 2 2

2 1

1   ( )v a ka v ka a v
v ka

> + ⇒ > +  

     This establishes inequality (4.3). Hence we may deduce inequalities (4.2) and (4.1), and 

our proof is completed.  ■ 

Remark 4.2:  Recall that q can be determined in constant time by Lemma 2.5 and Remark 2.6. 

Now that 2

1

1ak q
a

⎢ ⎥
= +⎢ ⎥
⎣ ⎦

, so k can also be obtained in constant time.  ■ 

Remark 4.3:  Since 2 1a a< , it is clear that k q≤ .   ■ 

Example 4.4:  Theorem 4.1 is stronger than Theorem 2.2. whenever 1 2a a>  and k q< . 

Consider an example with 

                     1 2 1100,  91,    for  2, ,199,i iv v v v i+= = ≥ = "  and      

                     1 2120,   10,  : positive integers, for 3, , 200.ia a a i= = = "  
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     Using Lemma 2.5, 2

1

91 1
9100 1
91

vr
v

= = =
+

, thus 1 1n =  and 1
9
91

r = . 

     Since 1 1n = , we go one more step with 1
9 1

191 10
9

r = =
+

, thus 2 10n =  and 2
1
9

r = . 

     Therefore, 2 1 11q n= + = , we have Ih = 1 1320qa = . 

     Let 2

1

101 11 1 1
120

ak q
a

⎢ ⎥ ⎢ ⎥= + = ∗ + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
, then IIIh = 1 120.ka =  

     Theorem 2.2 states that if 1320b ≥ , then it is optimal to pack at least one unit of item 1 

whereas Theorem 4.1 states that we may do so with just 120b ≥ . Certainly it is advantageous to 

use Theorem 4.1 whenever 1 2a a>  and k q< . Specifically, consider a knapsack problem with 

several hundred items and a carrying capacity of 100,000. Since 100,000 = 833 x 120 + 40, using 

Theorem 4.1 we may go ahead with 833 units of item 1. The remaining capacity is thus reduced 

to a merely 40! Now it is obvious that an optimal solution is loading 833 units of item 1 and 4 

units of item 2. Here we get an optimal solution without invoking any algorithm.  ■ 

     The following proposition illustrates that 1IIIh ka=  is a sharp bound under conditions 

given in Theorem 4.1.  

Proposition 4.5  Given assumptions as in Theorems 4.1. There are examples such that if 

1IIIb h= − , then it is not optimal to pack item 1 into the knapsack. 

Proof.  Consider items with 1 2 1v q= + , 2 2 1v q= − , where q is any positive integer. We also 

assume that 1 2a a q> . Clearly, 1 2v v>  and 1 2a a> . It is easy to verify that 2

1

1
1

vq q
q v q
−

≤ <
+

. 

Hence, we have 1 1IIIh ka a= =  (here, 2

1

1 1ak q
a

⎢ ⎥
= + =⎢ ⎥
⎣ ⎦

 since 2

1

1a q
a

< ). If 11 1IIIb h a= − = − , 

then item 1 can not be included in any optimal solution, and this completes our proof.  ■ 

     We also performed computational experiments on our third turnpike theorem. MATLAB 

7.0 was used to randomly generate integral values of and   for  1, ,500i ic a i = "  from a uniform 
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distribution of integers from 1 to 1,000 and, following Gabrel and Minoux (2002), the knapsack 

capacity, b, was chosen to be an integer randomly generated in the range 
500 500

1 1

1 2,  
3 3i i

i i

a a
= =

⎡ ⎤
⎢ ⎥⎣ ⎦
∑ ∑ . 

After computing dozens 10,000 randomly generated instances, we ran into 8,667 out of 10,000 

cases where either 1 2v v=  or 1 2a a≤ , i.e., the sufficient conditions of Theorem 4.1 were not 

met but among all cases, IIIb h> . Therefore, although our theorem could only be applied in 

13.33% of the cases, we observed that 65.89%III

I

h
h

=  in average. This implies that if the 

sufficient conditions of Theorem 4.1 are met, then using Theorem 4.1 may achieve further 

reduction than using Theorem 2.2. Out of those cases where the third turnpike theorem could be 

applied, the average reduction by Theorem 4.1 was 99.93%IIIb h
b
−

=  while the average 

reduction by Theorem 2.2 was 99.88%Ib h
b
−

= .   

   5.  Discussion 

     This paper developed sharp bounds under various conditions on turnpike theorems for the 

unbounded knapsack problem. Turnpike theorems specify when it is optimal to load at least one 

unit of the best item (i.e., the one with the highest “bang-for-buck” ratio) and their successive 

application can drastically reduce the size of the knapsack problems. We also show that all three 

of our turnpike theorems specify sharp bounds in the sense that no smaller bounds can be found 

under the assumed conditions and prove that two of our bounds can be obtained in constant time. 

Finally, computational results on randomly generated problems clearly demonstrated the 

effectiveness of our turnpike theorems. Indeed, the three turnpike theorems yielded average 

reductions in the knapsack capacities b h
b
− of 99.97%, 98.10% and 99.93%, respectively. 

     There are at least three extensions that we intend to pursue. The first involves considering 

both the first as well as the second best items. The resulting turnpike theorems could then be 

based upon results from the famous Frobenius problem (Ramírez-Alfonsín, 2005). The second 

extension was suggested by one of the referees and involves conducting a comprehensive 

computational study to see if the turnpike theorems actually reduce the total computing time 
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when compared with solving the knapsack problems without them. The third topic involves 

extending the turnpike theorems to the multidimensional knapsack problem. 

   Acknowledgments: It is indeed a pleasure to thank Kwei Tang and the two anonymous 

referees for their numerous insightful comments, corrections and suggestions that significantly 

improved the paper. 

References 

-Gabrel V, Minoux M. A Scheme for Exact Separation of Extended Cover Inequalities and 

Application to Multidimensional Knapsack Problems. Operations Research Letters 2002; 30; 

252-264. 

-Garey M, Johnson D. Computers and Intractability: A Guide to the Theory of NP Completeness. 

W. H. Freeman and Co.: New York; 1990. 

-Garfinkel R, Nemhauser G. Integer Programming. John Wiley & Sons: New York; 1972. 

-Gilmore P, Gomory R. The Theory and Computation of Knapsack Functions. Operations 

Research 1966; 14; 1045-1074. 

-Kellerer H, Pferschy U, Pisinger D. Knapsack Problems. Springer: Berlin; 2004. 

-Hardy G, Wright E. An Introduction to the Theory of Numbers. Oxford University Press, New 

York; 1938. 

-Hu T. Integer Programming and Network Flows. Addison-Wesley: Reading, MA; 1969. 

-Martello S, Toth P. Knapsack Problems: Algorithms and Computer Implementation. John Wiley 

& Sons: New York; 1990. 

-Morin T, Marsten R. An Algorithm for Nonlinear Knapsack Problems. Management Science 

1976; 22; 1147-1158. 

-Nemhauser G. Need and Potential for Real-Time Mixed-Integer Programming. Operations 

Research Management Science Today 2007; 34; 21-22. 

-Ramírez-Alfonsín J. The Diophantine Frobenius Problem. Oxford University Press; 2005. 

-Serre J-P. A Course in Arithmetic. Springer: Berlin; 1973. 



 

 19   

-Shapiro J. Turnpike Theorem for Integer Programming Problem. Operations Research 1970; 18; 

432-440. 

-Zukerman M, Jia L, Neame T, Woeginger G. A Polynomial Solvable Special Case of the 

Unbounded Knapsack Problem. Operations Research Letters 2001; 29; 13-16. 


