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Abstract

In 1988, Barzilai and Borwein presented a new choice of step size for the gradient
method for solving unconstrained minimization problems. Their method aimed to
accelerate the convergence of the steepest descent method. The Barzilai-Borwein
method requires few storage locations and inexpensive computations. Therefore,
several authors have paid attention to the Barzilai-Borwein method and have pro-
posed some variants to solve large-scale unconstrained minimization problems. In
this paper, we extend the Barzilai-Borwein method and establish global and Q-
superlinear convergence properties of the proposed method for minimizing a strictly
convex quadratic function. Furthermore, we discuss an application of our method
to general objective functions. Finally, some numerical experiments are given.

1 Introduction

Recently, we need often to solve large-scale unconstrained minimization problems:

min f(x), (1.1)

where f : Rn → R is sufficiently smooth and its gradient g ≡ ∇f is available. Although

the Newton method and quasi-Newton methods are effective for solving unconstrained

minimization problems, these methods cannot apply directly to large-scale unconstrained

minimization problems. Therefore, numerical methods which are based on the steepest

descent direction are paid attention to, because they avoid the storage of matrices. We

consider the gradient method defined by

xk+1 = xk −
1

αk

gk, (1.2)
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where xk is the k-th approximation to the optimal solution x∗ of (1.1), gk is the gradient

vector of f at xk and 1/αk is a step size.

The steepest descent method is the simplest gradient method for unconstrained mini-

mization problems. In the steepest descent method, which can be traced back to Cauchy (1847),

the following exact step size

1

αk

= argmin
α>0

f(xk −
1

α
gk) (1.3)

is used. Unfortunately, it has been widely known that it converges rather slowly in most

cases. This poor behavior is due to the optimal choice of the step size and not to the

choice of the steepest descent direction −gk. Therefore, several authors dealt with various

step sizes to overcome this defect. Barzilai and Borwein [1] incorporated the quasi-Newton

property to the gradient method in order to obtain the second order information of the

objective function f(x). Specifically, they approximated the Hessian ∇2f(xk) by αkI and

based on the secant condition, they considered the following minimization problem:

αk = arg min
α∈R

||αIsk−1 − yk−1||

where sk−1 = xk − xk−1, yk−1 = gk − gk−1 and ‖ · ‖ denotes the Euclidean norm. This

minimum value is defined by

αk =
sT

k−1yk−1

sT
k−1sk−1

. (1.4)

The gradient method with (1.4) is called the Barzilai-Borwein method.

Moreover, Dai, Hager, Schittkowski and Zhang [4] presented numerical results by using

αk =
sT

ν(k)yν(k)

sT
ν(k)sν(k)

(1.5)

and

ν(k) = Mc

⌊
k − 1

Mc

⌋
,

where for r ∈ R, brc denotes the largest integer j such that j ≤ r and Mc is a positive

integer. The gradient method with (1.5) is called the cyclic Barzilai-Borwein method.

Numerical results in [4] suggested that their method performed better than the Barzilai-

Borwein method did. On the other hand, Raydan [17] proposed the globally convergent

Barzilai-Borwein method by using nonmonotone line search by Grippo et al. [10].

Many researchers study the gradient method for minimizing a strictly convex quadratic

function, namely,

min f(x) =
1

2
xT Ax − bT x, (1.6)
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where A ∈ Rn×n is a symmetric positive definite matrix and b ∈ Rn is a given vector. For

an application of the Barzilai-Borwein method to problem (1.6), Raydan [16] established

global convergence and Dai and Liao [5] proved R-linear rate of convergence. Friedlander,

Martinez, Molina and Raydan [9] proposed a new gradient method with retards, in which

αk is defined by

αk =
gT

ν(k)A
ρ(k)+1gν(k)

gT
ν(k)A

ρ(k)gν(k)

, (1.7)

ν(k) ∈ {k, k − 1, ..., max{0, k − m}}

and

ρ(k) ∈ {q1, ..., qm},

where m is a positive integer, and q1, ..., qm (≥ −2) are integers. They established its

global convergence for problem (1.6) and proved the Q-superlinear rate of convergence in

the special case.

The Barzilai-Borwein method and its related methods are reviewed by Dai and Yuan

[6] and Fletcher [8].

In this paper, we propose a new step size by extending (1.7). This paper is organized

as follows. In Section 2, we propose a new step size and present the algorithm of our

method. In Section 3, we show the global convergence property of our method. Moreover

using the Dennis-Moré condition, we discuss Q-superlinear convergence in the special case.

In Section 4, we consider the extension of the proposed method to general functions by

using nonmonotone line search. We establish its global and Q-superlinear convergence

properties. Finally, some numerical results are given in Section 5.

2 Algorithm of extended Barzilai-Borwein method

for quadratic functions

In this section, we consider an extension of the Barzilai-Borwein method for minimizing

strictly convex quadratic function (1.6). Following Friedlander et al.[9], we propose a new

step size for (1.2) as follows:

αk =
∑̀
i=1

φi

gT
νi(k)A

ρi(k)+1gνi(k)

gT
νi(k)A

ρi(k)gνi(k)

, (2.1)

φi ≥ 0,
∑̀
i=1

φi = 1,

νi(k) ∈ {k, k − 1, ..., max{0, k − m}}

and

ρi(k) ∈ {q1, ..., qm},
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where ` and m are positive integers, and q1, ..., qm are integers. We call this gradient

method the extended Barzilai-Borwein method.

Now we describe the algorithm of our method as follows.

Algorithm 1 (Algorithm EBB)

Step 0 . Given x0 ∈ Rn, set k=0. If g0 = 0, then stop. Otherwise go to Step 1.

Step 1 . Compute αk by (2.1).

Step 2 . Let xk+1 = xk −
1

αk

gk. If gk+1 = 0, then stop.

Step 3 . Let k := k + 1 and go to Step 1.

Since αk is the Rayleigh quotient of the symmetric positive definite matrix A, the

following relation holds

0 < λmin ≤ αk ≤ λmax for all k, (2.2)

where λmin and λmax are respectively the smallest and largest eigenvalues of A. Using

(1.2) and the fact that gk = Axk − b, we have

sk = − 1

αk

gk (2.3)

and

yk = Ask. (2.4)

If νi(k) 6= k for all k, expressions (2.3) and (2.4) give

αk =
∑̀
i=1

φi

sT
νi(k)A

ρi(k)+1sνi(k)

sT
νi(k)A

ρi(k)sνi(k)

(2.5)

=
∑̀
i=1

φi

yT
νi(k)A

ρi(k)−1yνi(k)

yT
νi(k)A

ρi(k)−2yνi(k)

.

We note that if ` = 1, ν1(k) = k and ρ1(k) = 0 for all k, (2.1) becomes

αk =
gT

k Agk

gT
k gk

, (2.6)

which implies the steepest descent method. On the other hand, if ` = 1, ν1(k) =

max{0, k − 1} and ρ1(k) = 0 for all k, using (2.4) and (2.5) yields

αk =
sT

k−1Ask−1

sT
k−1sk−1

=
sT

k−1yk−1

sT
k−1sk−1

,
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which is the Barzilai-Borwein method (1.4). Moreover, if ` = 1 and qj ≥ −2, then by

(2.1), we see that

αk =
gT

ν1(k)A
ρ1(k)+1gν1(k)

gT
ν1(k)A

ρ1(k)gν1(k)

,

which is the gradient method with retards (1.7). Therefore, (2.1) is the extension of (1.4)

and (1.7).

3 Convergence analysis for quadratic functions

In this section, we consider convergence properties of Algorithm EBB.

3.1 Global convergence property

In this subsection, we establish global convergence of the extended Barzilai-Borwein

method for problem (1.6). Let {xk} be the sequence generated by Algorithm EBB and

let ek = x∗ − xk. Using the fact that gk = Axk − b and b = Ax∗, we get

gk = Axk − b

= Axk − Ax∗

= −Aek. (3.1)

By (2.1) and (3.1), αk can be written by

αk =
∑̀
i=1

φi

gT
νi(k)A

ρi(k)+1gνi(k)

gT
νi(k)A

ρi(k)gνi(k)

=
∑̀
i=1

φi

eT
νi(k)A

ρi(k)+3eνi(k)

eT
νi(k)A

ρi(k)+2eνi(k)

. (3.2)

Let {λ1, λ2, ..., λn} (λ1 ≤ λ2 ≤ ... ≤ λn) be eigenvalues of A and let {v1, v2, ..., vn} be

orthonormal eigenvectors of A associated with the eigenvalues {λ1, λ2, ..., λn}. For the

initial error e0, there exist constants d0
1, d0

2, ..., d0
n such that

e0 =
n∑

j=1

d0
jvj. (3.3)

It follows from (3.1) that

ek+1 = x∗ − xk+1

= ek +
1

αk

gk

=
1

αk

(αkI − A)ek. (3.4)
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Thus, using (3.3) and (3.4) yields

ek+1 =
k∏

i=0

1

αi

(αiI − A)e0

=

{
k∏

i=0

1

αi

(αiI − A)

}(
n∑

j=1

d0
jvj

)

=
n∑

j=1

d0
j

{
k∏

i=0

1

αi

(αiI − A)

}
vj

=
n∑

j=1

d0
j

{
k∏

i=0

1

αi

(αi − λj)

}
vj.

Therefore, defining

dk+1
j =

k∏
i=0

(
αi − λj

αi

)
d0

j for j = 1, ..., n, (3.5)

we have

ek+1 =
n∑

j=1

dk+1
j vj for all k, (3.6)

which implies the relation

dk+1
j =

(
αk − λj

αk

)
dk

j for j = 1, ..., n. (3.7)

Moreover, by (2.2), the following relations hold for any k∣∣∣∣1 − λi

αk

∣∣∣∣ ≤ λn − λ1

λ1

(i = 1, ..., n). (3.8)

In order to establish global convergence of Algorithm EBB, we give some lemmas. The

following lemma corresponds to Lemma 2.1 in Friedlander et al. [9] and the proof is exactly

the same as that of Lemma 2.1 in [9], so we omit it.

Lemma 1 The sequence {dk
1} converges to zero Q-linearly with convergence factor ĉ1 =

1 − (λ1/λn).

The following lemma corresponds to Lemma 2.2 in Friedlander et al. [9].

Lemma 2 If the sequences {dk
1}, {dk

2}, ..., {dk
p−1} converge to zero for a fixed integer p (2 ≤

p ≤ n), then

lim inf
k→∞

|dk
p| = 0

holds.
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Proof. In order to prove this lemma by contradiction, we suppose that there exists a

positive constant ε such that

(dk
p)

2 min
1≤u≤m

λqu+2
p ≥ ε for all k. (3.9)

Then, by (3.2), (3.6) and the orthonormality of the eigenvectors {v1, v2, ..., vn}, we obtain

αk =
∑̀
i=1

φi

(
∑n

j=1 d
νi(k)
j vj)

T Aρi(k)+3(
∑n

j=1 d
νi(k)
j vj)

(
∑n

j=1 d
νi(k)
j vj)T Aρi(k)+2(

∑n
j=1 d

νi(k)
j vj)

=
∑̀
i=1

φi

∑n
j=1(d

νi(k)
j )2λ

ρi(k)+3
j∑n

j=1(d
νi(k)
j )2λ

ρi(k)+2
j

. (3.10)

Since the sequences {dk
1}, {dk

2}, ..., {dk
p−1} converge to zero, there exists a sufficiently large

k̂ such that

p−1∑
j=1

(dk
j )

2 max
1≤u≤m

λqu+2
j ≤ 1

2
ε for all k ≥ k̂. (3.11)

By (3.10) and (3.11), we have for all k ≥ k̂ + m

αk =
∑̀
i=1

φi

∑n
j=1(d

νi(k)
j )2λ

ρi(k)+3
j∑n

j=1(d
νi(k)
j )2λ

ρi(k)+2
j

≥
∑̀
i=1

φi

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j λj∑p−1

j=1(d
νi(k)
j )2λ

ρi(k)+2
j +

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

≥
∑̀
i=1

φi

λp

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

1
2
ε +

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

. (3.12)

Since from (3.9) we get

n∑
j=p

(d
νi(k)
j )2λ

ρi(k)+2
j ≥ (dνi(k)

p )2λρi(k)+2
p ≥ (dνi(k)

p )2 min
1≤u≤m

λqu+2
p ≥ ε for all k ≥ k̂ + m,

(2.2) and (3.12) yield for all k ≥ k̂ + m

λn ≥ αk ≥
∑̀
i=1

φi

λp

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

1
2
ε +

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

=
∑̀
i=1

φi
λp

1
2
ε
(
1/

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

)
+ 1

≥ 2

3
λp,

which implies∣∣∣∣1 − λp

αk

∣∣∣∣ ≤ max

(
1

2
, 1 − λp

λn

)
≤ max

(
1

2
, 1 − λ1

λn

)
for all k ≥ k̂ + m. (3.13)
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Using (3.7) and (3.13) yields

|dk+1
p | =

∣∣∣∣1 − λp

αk

∣∣∣∣ |dk
p| ≤ ĉ2|dk

p| for all k ≥ k̂ + m

with

ĉ2 = max

(
1

2
, 1 − λ1

λn

)
< 1.

Because this conclusion contradicts the hypothesis (3.9), we find that the lemma is true.

¤
By using Lemmas 1 and 2, we can prove the next theorem,

Theorem 1 Let {xk} be the sequence generated by Algorithm EBB for problem (1.6) and

let x∗ be the unique minimizer of f . Then, either xj = x∗ for some finite j, or the sequence

{xk} converges to x∗.

P roof. If there exists a finite integer j such that xj = x∗, then this theorem is true.

Hence we consider the case xk 6= x∗ for all k to prove this theorem and it suffices to prove

that the sequence {ek} converges to the zero. It follows from (3.6) and the orthonormality

of the eigenvectors that

‖ek‖2 =
n∑

i=1

(dk
i )

2 (3.14)

holds. We note that the sequence of the errors {ek} converges to zero if and only if each

one of the sequences {dk
i } for i = 1, ..., n converges to zero. Since Lemma 1 shows that

{dk
1} converges to zero, we prove that {dk

p} converges to zero for 2 ≤ p ≤ n by induction

on p. For this purpose, we let p be any integer from this interval and we assume that

{dk
1}, ..., {dk

p−1} all tend to zero. Then for any given ε > 0, there exists a sufficiently large

k̂ such that

p−1∑
j=1

(dk
j )

2 max
1≤u≤m

λqu+2
j ≤ 1

2
ε for all k ≥ k̂. (3.15)

As shown in (3.12), we have

αk ≥
∑̀
i=1

φi

λp

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

1
2
ε +

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

for all k ≥ k̂ + m. (3.16)

By Lemma 2, there exists a k′(≥ k̂ + m) such that

min
0≤t≤m

(dk′−t
p )2 min

1≤u≤m
λqu+2

p < ε. (3.17)

Let {k̄r}(≥ k′) be a sequence such that the following inequalities hold

min
0≤t≤m

(dk̄r−1−t
p )2 min

1≤u≤m
λqu+2

p < ε
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and

min
0≤t≤m

(dk̄r−t
p )2 min

1≤u≤m
λqu+2

p ≥ ε,

and let ϕ(k̄r) be the first integer greater than k̄r for which the following inequality holds

min
0≤t≤m

(dϕ(k̄r)−t
p )2 min

1≤u≤m
λqu+2

p < ε.

By taking Lemma 2 into account, it suffices to consider the following two cases (i) and

(ii).

Case (i). If the sequence {k̄r} is a finite sequence, then there exists a sufficiently

large k′′(≥ k′) such that

min
0≤t≤m

(dk−t
p )2 min

1≤u≤m
λqu+2

p = (dk−t′

p )2 min
1≤u≤m

λqu+2
p < ε for any k ≥ k′′, (3.18)

where t′ is an integer which depends on k. By (3.7), (3.8) and (3.18), we have

(dk
p)

2 =

(
k−1∏

i=k−t′

αi − λp

αi

)2

(dk−t′

p )2

≤

(
k−1∏

i=k−t′

λn − λ1

λ1

)2

(dk−t′

p )2

≤ max

((
λn − λ1

λ1

)2m

, 1

)
(dk−t′

p )2

≤ max

((
λn − λ1

λ1

)2m

, 1

)
ε

min
1≤u≤m

λqu+2
p

, (3.19)

which implies that for all k ≥ k′′, the following holds

(dk
p)

2 ≤ ĉ3ε (3.20)

with

ĉ3 = max

((
λn − λ1

λ1

)2m

, 1

)
1

min
1≤u≤m

λqu+2
p

.

Case (ii). If the sequence {k̄r} is an infinite sequence, by the definitions of {k̄r} and

{ϕ(k̄r)}, we get

min
0≤t≤m

(dk−t
p )2 min

1≤u≤m
λqu+2

p ≥ ε for k (k̄r ≤ k ≤ ϕ(k̄r) − 1) (3.21)

and

min
0≤t≤m

(dk−t
p )2 min

1≤u≤m
λqu+2

p < ε for k (ϕ(k̄r) ≤ k ≤ k̄r+1 − 1). (3.22)
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As shown in (3.18), (3.19) and (3.20), inequality (3.22) yields

(dk
p)

2 ≤ ĉ3ε for k (ϕ(k̄r) ≤ k ≤ k̄r+1 − 1). (3.23)

By (3.16) and (3.21), we have for all k (k̄r ≤ k ≤ ϕ(k̄r) − 1)

λn ≥ αk ≥
∑̀
i=1

φi

λp

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

1
2
ε +

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

=
∑̀
i=1

φi
λp

1
2
ε
(
1/

∑n
j=p(d

νi(k)
j )2λ

ρi(k)+2
j

)
+ 1

≥
∑̀
i=1

φi
λp

1
2
ε
(
1/(d

νi(k)
p )2λ

ρi(k)+2
p

)
+ 1

≥ 2

3
λp. (3.24)

As shown in (3.13), inequality (3.24) implies∣∣∣∣1 − λp

αk

∣∣∣∣ ≤ max

(
1

2
, 1 − λp

λn

)
≤ max

(
1

2
, 1 − λ1

λn

)
< 1,

so using (3.7) yields

|dk+1
p | =

∣∣∣∣1 − λp

αk

∣∣∣∣ |dk
p| ≤ |dk

p| for k (k̄r ≤ k ≤ ϕ(k̄r) − 1). (3.25)

Thus, by (3.25), (3.7) and (3.8), we have

(dk
p)

2 ≤ (dk̄r
p )2 ≤

(
λn − λ1

λ1

)2

(dk̄r−1
p )2 ≤

(
λn − λ1

λ1

)2

ĉ3ε = ĉ4ε

for k (k̄r ≤ k ≤ ϕ(k̄r))

with

ĉ4 =

(
λn − λ1

λ1

)2

ĉ3.

The last inequality can be obtained by using (3.23).

By summarizing the cases (i) and (ii), we obtain for all k(≥ k′′)

(dk
p)

2 ≤ ĉ5ε

with

ĉ5 = max(ĉ3, ĉ4).

Since ε > 0 can be chosen arbitrarily small, we deduce lim
k→∞

|dk
p| = 0 as required. Therefore,

by induction on p and (3.14), lim
k→∞

|dk
i | = 0 for i = 1, ..., n and lim

k→∞
||ek|| = 0 hold. This

completes the proof. ¤
Note that Theorem 1 is the extension of Theorem 2.1 in Friedlander et al. [9].
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3.2 Q-superlinear convergence

In this subsection, we analyze the local behavior of Algorithm EBB. To this end, we deal

with the case where νi(k) 6= k and ρi(k) does not depend on k in (2.1). For simplicity, we

denote ρi(k) by ri. From (2.5), we have

αk =
∑̀
i=1

φi

sT
νi(k)A

ri+1sνi(k)

sT
νi(k)A

risνi(k)

, (3.26)

where ` and m are positive integers, rj (j = 1, ..., `) are integers,
∑̀
i=1

φi = 1 and

φi ≥ 0, νi(k) ∈ {k − 1, ..., max{0, k − m}} for i = 1, . . . , `.

In order to establish the Q-superlinear convergence property of our method, we introduce

the following well-known lemma for general unconstrained minimization problems, which

was proved by Dennis and Moré [7].

Lemma 3 (Dennis-Moré condition) Let F : Rn → R be a twice continuously differen-

tiable function in an open convex set D ⊂ Rn. Consider the minimization problem of

F (x). Assume that for some x̂ in D, ∇2F (x̂) is nonsingular. Let {Bk} be a sequence of

nonsingular n × n matrices. Suppose that for some x0 in D the sequence {xk} generated

by

xk+1 = xk − B−1
k ∇F (xk), k = 0, 1, 2, · · ·

remains in D and converges to x̂. Then {xk} converges Q-superlinearly to x̂ and ∇F (x̂) =

0 if and only if

lim
k→∞

||[Bk −∇2F (x̂)](xk+1 − xk)||
||xk+1 − xk||

= 0.

By using Lemma 3, we can prove the next theorem.

Theorem 2 Let {xk} be the sequence generated by Algorithm EBB with (3.26) for problem

(1.6). Assume that the sequence {sk/||sk||} is convergent, that is, there exists s ∈ Rn such

that

lim
k→∞

sk

||sk||
= s and ||s|| = 1. (3.27)

Then s becomes an eigenvector of A with the eigenvalue sT As and

lim
k→∞

αk = sT As. (3.28)

Moreover, the sequence {xk} converges Q-superlinearly to x∗.
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Proof. It follows immediately from Theorem 1 that {xk} converges to x∗. Thus, we

need only show that {xk} converges Q-superlinearly to x∗.

Using λi and vi(i = 1, .., n) given in Subsection 3.1, we define

Ar/2 =
n∑

i=1

λ
r/2
i viv

T
i ,

where r is any integer. This implies that

(Ari/2)2 = Ari for i = 1, ..., `.

Then, equation (3.26) can be written by

αk =
∑̀
i=1

φi

(
Ari/2sνi(k)

||Ari/2sνi(k)||

)T

A

(
Ari/2sνi(k)

||Ari/2sνi(k)||

)
. (3.29)

For simplicity, we define

ŝ(i) =
Ari/2s

||Ari/2s||
for i = 1, ..., `

and

α =
∑̀
i=1

φiŝ
(i)T Aŝ(i).

From the fact that νi(k) ≥ k − m (i = 1, ..., `), we get

lim
k→∞

Ari/2sνi(k)

||Ari/2sνi(k)||
= ŝ(i) for i = 1, ..., `. (3.30)

Therefore, by (3.29) and (3.30), we have

lim
k→∞

αk = lim
k→∞

∑̀
i=1

φi

(
Ari/2sνi(k)

||Ari/2sνi(k)||

)T

A

(
Ari/2sνi(k)

||Ari/2sνi(k)||

)

=
∑̀
i=1

φiŝ
(i)T Aŝ(i)

= α.

It follows from (2.3), (3.1) and (3.4) that

sk+1 = − 1

αk+1

(A − αkI)sk.

Premultiplying this equation by Ari/2, we have

Ari/2sk+1 = − 1

αk+1

(A − αkI)Ari/2sk for i = 1, ..., `.

12



We normalize the above equation, and we get

Ari/2sk+1

||Ari/2sk+1||
= − (A − αkI)Ari/2sk/||Ari/2sk||

||(A − αkI)Ari/2sk/||Ari/2sk||||
for i = 1, ..., `,

which implies∥∥∥∥(A − αkI)
Ari/2sk

||Ari/2sk||

∥∥∥∥ Ari/2sk+1

||Ari/2sk+1||
= −(A − αkI)

Ari/2sk

||Ari/2sk||
for i = 1, ..., `.

Taking limits on both sides of this equation, we have

||(A − αI)ŝ(i)||ŝ(i) = −(A − αI)ŝ(i) for i = 1, ..., `.

Furthermore, premultiplying this equation by ŝ(i)T yields

||(A − αI)ŝ(i)|| = −ŝ(i)T Aŝ(i) + α for i = 1, ..., `. (3.31)

Thus, by (3.31) and the fact that
∑̀
i=1

φi = 1, we have

∑̀
i=1

φi||(A − αI)ŝ(i)|| = −
∑̀
i=1

φiŝ
(i)T Aŝ(i) +

∑̀
i=1

φiα

= −
∑̀
i=1

φiŝ
(i)T Aŝ(i) + α

= 0.

Since there exists some j such that φj > 0, we have

||(A − αI)ŝ(j)|| = 0. (3.32)

On the other hand, we get

||(A − αkI)sk||
||sk||

=
||(A − αkI)A−rj/2Arj/2sk||

||sk||

≤ ||A−rj/2||||(A − αkI)Arj/2sk||
||Arj/2sk||

||Arj/2sk||
||sk||

≤ ||A−rj/2||||(A − αkI)Arj/2sk||
||Arj/2sk||

||Arj/2||||sk||
||sk||

= ||Arj/2||||A−rj/2|| ||(A − αkI)Arj/2sk||
||Arj/2sk||

. (3.33)

Therefore, using (3.33) and (3.32), we obtain

lim
k→∞

||(A − αkI)sk||
||sk||

= 0. (3.34)

13



Because we can regard αkI as Bk in Lemma 3, the sequence {xk} converges Q-superlinearly

to x∗. In addition, (3.34) yields

(A − αI)s = 0.

This means that s is an eigenvector of A with the eigenvalue α = sT As. Therefore, the

proof is complete. ¤

Note that Theorem 2 is the extension of Theorem 3.1 in Friedlander et al. [9].

4 Extended Barzilai-Borwein method for general func-

tions

In this section, we consider an application of Algorithm EBB to general unconstrained

minimization problems (1.1). In (2.1), we use the positive definite matrix A which is

the Hessian of the objective function. On the other hand, calculations of the Hessian

of the objective function are very expensive if the objective function is not quadratic.

Accordingly, we would like to express (3.26) without using the Hessian A. To this end,

we fix ri = 0 or 1 in (3.26) and give

αk =
`′∑

i=1

φi

sT
νi(k)A

ri+1sνi(k)

sT
νi(k)A

risνi(k)

=
`′∑

i=1
ri=0

φi

sT
νi(k)Asνi(k)

sT
νi(k)sνi(k)

+
`′∑

i=1
ri=1

φi

sT
νi(k)A

2sνi(k)

sT
νi(k)Asνi(k)

=
`′∑

i=1
ri=0

φi

sT
νi(k)yνi(k)

sT
νi(k)sνi(k)

+
`′∑

i=1
ri=1

φi

yT
νi(k)yνi(k)

sT
νi(k)yνi(k)

.

Hence we rewrite the above αk and define

αk =
∑̀
i=1

(
φ

(1)
i

sT
νi(k)yνi(k)

sT
νi(k)sνi(k)

+ φ
(2)
i

yT
νi(k)yνi(k)

sT
νi(k)yνi(k)

)
(4.1)

φ
(1)
i ≥ 0, φ

(2)
i ≥ 0,

∑̀
i=1

(φ
(1)
i + φ

(2)
i ) = 1, (4.2)

νi(k) ∈ {k − 1, ..., max{0, k − m}},

where ` and m are positive integers, and q1, ..., qm are integers. Since (4.1) does not

explicitly use the matrix A, it can be applied to general objective functions.

For general unconstrained minimization problems, we should use globalization tech-

nique. Recently, several researchers pay attention to an application of the nonmonotone

14



line search, which was originally developed by Grippo et al. [10, 11] for Newton type

methods, to gradient-based methods. For example, Dai [2] showed the global conver-

gence of the nonmonotone conjugate gradient method, and Raydan [17] proved the global

convergence of the nonmonotone Barzilai-Borwein method. Moreover, Grippo and Scian-

drone [12] proposed another type of the nonmonotone Barzilai-Borwein method. Dai [3]

gives the basic analysis of the nonmonotone line search strategy.

In this section, following Raydan [17], we combine the nonmonotone line search and

Algorithm EBB. The proposed algorithm is given by the following:

Algorithm 2 (Algorithm NEBB)

Step 0 . Given x0 ∈ Rn. Set k = 0, 0 < ᾱ ¿ 1, δ > 0, 0 < η1 ≤ η2, 0 < η3 ≤ η4 < 1

and ξ ∈ (0, 1), and let M̄ be a positive integer. Go to Step 1.

Step 1 . Compute αk by (4.1). If ᾱ ≤ αk ≤ 1

ᾱ
, set pk = − 1

αk

gk, and otherwise set

pk = −δgk.

Step 2 . Given t
(0)
k ∈ [η1, η2] and M(k) such that M(0) = 0 and 0 ≤ M(k) ≤ min{M(k−

1) + 1, M̄} if k ≥ 1. Set i = 0 and go to Step 2.1.

Step 2.1 . If

f(xk + t
(i)
k pk) ≤ max

0≤j≤M(k)
{fk−j} + ξt

(i)
k gT

k pk (4.3)

holds, set tk ≡ t
(i)
k and go to Step 3.

Step 2.2 . Choose σ
(i)
k ∈ [η3, η4] and compute t

(i+1)
k such that

t
(i+1)
k = t

(i)
k σ

(i)
k . (4.4)

Step 2.3 . Set i := i + 1 and go to Step 2.1.

Step 3 . Let xk+1 = xk + tkpk. If the stopping criterion is satisfied, then stop.

Step 4 . Let k := k + 1 and go to Step 1.

In Step 2, usually we choose t
(0)
k = 1. Since we choose a small value as ᾱ, pk = − 1

αk

gk

would be chosen in almost all iterations as far as αk > 0. We note that the search direction

pk satisfies

gT
k pk ≤ −c1‖gk‖2 and ‖pk‖ ≤ c2‖gk‖ for all k (4.5)

for some positive constants c1 and c2. These relations lead to the following theorem.

Theorem 3 Assume that the objective function f is bounded below on Rn and is contin-

uously differentiable in a neighborhood N of the level set L = {x ∈ Rn : f(x) ≤ f(x0)}.
We also assume that the gradient g is Lipschitz continuous in N . Let the sequence {xk}
be generated by Algorithm NEBB. Then our method converges in the sense that

lim
k→∞

‖gk‖ = 0.
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Proof. From (4.5) and Theorem 2.1 of Dai [3], we have the results immediately. ¤

In the rest of this section, we denote ∇2f by H, and ∇2f(x∗) by H∗.

Next we consider the local behavior of the extended Barzilai-Borwein method for

general functions. For the end, we make the following assumptions.

Assumption 1

1. The objective function f is twice continuously differentiable in an open convex neigh-

borhood N of the local solution x∗. In addition, there exist positive constants m1

and m2 such that

m1‖v‖2 ≤ vT H(x)v ≤ m2‖v‖2 for all x ∈ N and v ∈ Rn. (4.6)

2. In Step 2 of Algorithm NEBB, tk = 1 is chosen for k sufficiently large. The param-

eter ᾱ satisfies ᾱ ≤ m1 and m2 ≤
1

ᾱ
.

3. The sequence {xk} generated by Algorithm NEBB converges to the solution x∗.

Under Assumption 1, we obtain the following theorem.

Theorem 4 Let {xk} be the sequence generated by Algorithm NEBB. Suppose that As-

sumption 1 holds, and that the sequence {sk/‖sk‖} is convergent, that is, there exists

s ∈ Rn such that

lim
k→∞

sk

||sk||
= s and ||s|| = 1. (4.7)

Then s becomes an eigenvector of H∗ with the eigenvalue sT H∗s and

lim
k→∞

αk = sT H∗s. (4.8)

Moreover, the sequence {xk} converges Q-superlinearly to x∗.

Proof. We assume that k is sufficiently large. From Assumption 1, xk ∈ N for all k.

By the mean value theorem, we have

yk =

∫ 1

0

H(xk + tsk)sk dt.

Since from (4.6) H(x) is symmetric positive definite in N , H(x)1/2 is well-defined in N .

We define H̃k ≡
∫ 1

0

H(xk + tsk) dt and s̃k ≡ H̃
1/2
k sk. Then

αk =
∑̀
i=1

{
φ

(1)
i

sT
νi(k)H̃νi(k)sνi(k)

sT
νi(k)sνi(k)

+ φ
(2)
i

s̃T
νi(k)H̃νi(k)s̃νi(k)

s̃T
νi(k)s̃νi(k)

}

=
∑̀
i=1

{
φ

(1)
i

(
sνi(k)

‖sνi(k)‖

)T

H̃νi(k)

(
sνi(k)

‖sνi(k)‖

)
+ φ

(2)
i

(
s̃νi(k)

‖s̃νi(k)‖

)T

H̃νi(k)

(
s̃νi(k)

‖s̃νi(k)‖

)}
.(4.9)
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It follows from the definition of s̃νi(k) that

lim
k→∞

s̃νi(k)

‖s̃νi(k)‖
= lim

k→∞

H̃
1/2
νi(k)sνi(k)/‖sνi(k)‖

‖H̃1/2
νi(k)sνi(k)‖/‖sνi(k)‖

=
H

1/2
∗ s

‖H1/2
∗ s‖

.

Therefore, by taking limit, we obtain

α ≡ lim
k→∞

αk =
∑̀
i=1

(
φ

(1)
i sT H∗s + φ

(2)
i s̃T H∗s̃

)
, (4.10)

where s̃ ≡ H
1/2
∗ s/‖H1/2

∗ s‖. On the other hand, (4.6) and (4.9) yield m1 ≤ αk ≤ m2.

Thus, it follows from the assumptions ᾱ ≤ m1, m2 ≤
1

ᾱ
and (4.1) that

pk = − 1

αk

gk, xk+1 = xk −
1

αk

gk and sk = − 1

αk

gk (4.11)

hold. By using the mean value theorem, we have

gk = g(x∗) +

∫ 1

0

H(x∗ + t(xk − x∗))(xk − x∗) dt = −
∫ 1

0

H(x∗ − tek) dt ek, (4.12)

where ek = x∗ − xk. Set Ĥk ≡
∫ 1

0

H(x∗ − tek) dt. Since (4.11) and (4.12) yield

sk = − 1

αk

gk =
1

αk

Ĥkek (4.13)

and

ek+1 = ek − sk = ek −
1

αk

Ĥkek =

(
I − 1

αk

Ĥk

)
ek. (4.14)

Since ek = αkĤ
−1
k sk, we have from (4.13) and (4.14)

sk+1 =
1

αk+1

Ĥk+1ek+1

=
1

αk+1

Ĥk+1

(
I − 1

αk

Ĥk

)
ek

=
1

αk+1

Ĥk+1

(
I − 1

αk

Ĥk

)
αkĤ

−1
k sk

= − 1

αk+1

Ĥk+1Ĥ
−1
k (Ĥk − αkI)sk. (4.15)

We normalize the above equation, and we get

sk+1

‖sk+1‖
= − Ĥk+1Ĥ

−1
k (Ĥk − αkI)sk

‖Ĥk+1Ĥ
−1
k (Ĥk − αkI)sk‖

,
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which implies∥∥∥∥Ĥk+1Ĥ
−1
k (Ĥk − αkI)

sk

‖sk‖

∥∥∥∥ sk+1

‖sk+1‖
= −Ĥk+1Ĥ

−1
k (Ĥk − αkI)

sk

‖sk‖
.

Taking limits on both sides of this equation, we have

‖(H∗ − αI)s‖s = −(H∗ − αI)s,

and hence, premultiplying this equation by sT , we have from ‖s‖ = 1

‖(H∗ − αI)s‖ = −sT H∗s + α. (4.16)

Moreover, since (4.15) yields H
1/2
∗ sk+1 = − 1

αk+1
H

1/2
∗ Ĥk+1Ĥ

−1
k (Ĥk − αkI)sk, we also have,

in a similar way,

‖(H∗ − αI)s̃‖ = −s̃T H∗s̃ + α. (4.17)

Therefore, from (4.10), (4.16) and (4.17), we get

∑̀
i=1

(φ
(1)
i ‖(H∗ − αI)s‖ + φ

(2)
i ‖(H∗ − αI)s̃‖) = −

∑̀
i=1

(φ
(1)
i sT H∗s + φ

(2)
i s̃T H∗s̃) + α

= 0,

which implies that either ‖(H∗ − αI)s‖ = 0 or ‖(H∗ − αI)s̃‖ = 0 holds. Since conditions

‖(H∗ − αI)s‖ = 0 and ‖(H∗ − αI)s̃‖ = 0 are equivalent, we consider only the case

‖(H∗ − αI)s‖ = 0. Thus we have

lim
k→∞

‖(H∗ − αkI)sk‖
‖sk‖

= ‖(H∗ − αI)s‖ = 0. (4.18)

Because we can regard αkI as Bk in Lemma 3, the sequence {xk} converges Q-superlinearly

to x∗. In addition, (4.18) yields

(H∗ − αI)s = 0.

This means that s is an eigenvector of H∗ with the eigenvalue α = sT H∗s. Therefore, the

proof is complete. ¤

5 Numerical experiments

In this section, we present some numerical results of Algorithm EBB and NEBB to com-

pare with other methods. Since the steepest descent method converged very slowly, we

omit its numerical result. Moreover, we investigate how a choice of the parameters in-

cluded in our methods affects numerical performance.
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In our numerical experiments, we set ` = 2 and r1 = r2(= r). Moreover, we fix r = 0

or 1. Thus αk in (3.26) is rewritten by the forms

• r = 0

αk = φ1

sT
ν1(k)yν1(k)

sT
ν1(k)sν1(k)

+ φ2

sT
ν2(k)yν2(k)

sT
ν2(k)sν2(k)

, φ1 + φ2 = 1, φ1 ≥ 0, φ2 ≥ 0

• r = 1

αk = φ1

yT
ν1(k)yν1(k)

sT
ν1(k)yν1(k)

+ φ2

yT
ν2(k)yν2(k)

sT
ν2(k)yν2(k)

, φ1 + φ2 = 1, φ1 ≥ 0, φ2 ≥ 0.

As mentioned in Section 2, if we choose φ1 = 1, φ2 = 0, r = 0, and ν1(k) = k − 1, then

it becomes the Barzilai-Borwein method, and if we choose φ1 = 1 and φ2 = 0, then it

becomes the gradient method with retards.

Following Dai et al. [4], we used the following choice of νi(k):

νi(k) = Mc

⌊
k − mi

Mc

⌋
, (5.1)

where mi(i = 1, 2) are positive integers. In this section, we call Algorithms EBB and

NEBB with (5.1) cyclic EBB and cyclic NEBB, respectively. If φ1 = 1, φ2 = 0, m1 = 1

and r = 0, we see that

αk =
sT

ν1(k)yν1(k)

sT
ν1(k)sν1(k)

and ν1(k) = Mc

⌊
k − 1

Mc

⌋
,

which is the cyclic Barzilai-Borwein method. In each experiment, we set α0 = 1. The

parameters used in our experiments are described in each table. Note that the values of

parameters νi(k),Mc and mi (i = 1, 2) indicate how old information we use. For example,

if we choose ν1(k) = k − 5 and ν2(k) = k − 6, we use gk−5 and gk−6 at the k-th iteration,

and if we choose Mc = 5, m1 = 3 and m2 = 4, we use gk−9 according to circumstances.

We used the following stopping condition:

‖gk‖ ≤ 10−5.

5.1 Numerical results of Algorithm EBB for (1.6)

In this subsection, we give some numerical results of Algorithm EBB. The objective

function we used is

f(x) =
1

2
xT Ax, x ∈ Rn.

The following matrices are chosen as the matrix A:

• Diag: the diagonal matrix defined by

diag

{
1,

λn

n
2, ...,

λn

n
i, ..., λn

}
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• Hilbert: the Hilbert matrix.

• bcsstm: symmetric positive definite matrices in Matrix Market [13].

We set x0 = (1, ..., 1)T as a starting point.

The numerical results of Algorithm EBB are reported in Tables 2–4. We give the

number of iterations in each table, and “ Sum ” in each column denotes the sum of the

number of iterations. In addition, “ Failed ” means that the number of iterations exceeds

10000. In each column, if there are “ Failed ”, then we wrote “ ∗ ” in “ Sum ”.

From Table 2, we see the following observations.

• By comparing each “Sum”, the method with (r, φ1, φ2, ν1(k), ν2(k)) = (1, 1, 0, k −
3,−) performed well. In addition, the methods with (r, φ1, φ2, ν1(k), ν2(k)) = (0, 1, 0, k−
3,−), (1, 0.25, 0.75, k − 3, k − 4), (1, 0.75, 0.25, k − 3, k − 4) also performed well.

• For the cases ν1(k) = k − 1 and ν2(k) = k − 2, our methods did not converge to the

solution occasionally.

• Choices of ν1(k), ν2(k) and r affected the numerical results more than choices of φ1

and φ2 did.

From Tables 3 and 4, we see the following observations.

• The cyclic EBB with Mc = 3 is supreior to the cyclic EBB with Mc = 5.

• In Table 3, the cyclic EBB with (Mc,m1,m2) = (3, 3, 4) and (3, 3,−) (which means

φ1, φ2 and r are any parameters) performed better than other methods.

• For the cases (Mc, m1,m2) = (3, 1, 2), our methods did not converge to the solution

occasionally.

Summarizing our numerical results, we conclude that the numerical performance of our

method was greatly affected by the choice of νi(k) (or Mc and mi). Taking into account

that the steepest descent method is involved in the case ν1(k) = k (it means current

information), we see that our method with old information performed better than that

with current or near current information. However, if we use too old information, then

our method becomes unstable. It is important to find proper choices of νi(k) (or Mc

and mi). In our numerical results, EBB with (ν1(k), ν2(k)) = (3, 4), and the cyclic EBB

with (Mc,m1,m2) = (3, 3, 4) performed well. On the other hand, the choices of the other

parameters also affected the numerical performance of our method, but we cannot observe

any remarkable tendency.
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5.2 Numerical results of Algorithm NEBB for (1.1)

In this subsection, we give some numerical results of Algorithm NEBB. The test problems

we used are described in Grippo et al. [11] and Moré et al. [14]. In Table 1, the first column,

the second column, the third column and the fourth column denote the problem number

used in this paper, the problem name, the dimension of the problem and the references,

respectively.

Table 1. Test problems
P Name Dimension References
1 Extended Rosenbrock Function n= 10000 Moré et al. [14]
2 Extended Powell Singular Function n= 10000 Moré et al. [14]
3 Trigonometric Function n= 10000 Moré et al. [14]
4 Broyden Tridiagonal Function n= 10000 Moré et al. [14]
5 Oren Function n=100 Grippo et al. [11]
6 Cube Function n=2 Grippo et al. [11]
7 Wood Function n=4 Moré et al. [14]
8 Beale Function n=2 Moré et al. [14]
9 Helical Valley Function n=3 Moré et al. [14]
10 Jennrich and Sampson Function n=2 Moré et al. [14]
11 Freudenstein and Roth Function n=2 Moré et al. [14]

In Algorithm NEBB, we set parameters ᾱ = 10−16, δ = 1, ξ = 0.0001, t
(0)
k = 1,

M̄ = 10, σ
(i)
k = 0.5.

The numerical results of Algorithm NEBB are reported in Tables 5–7. The numerical

results are given in the form of “the number of iterations / the number of function eval-

uations”, and “ Sum I ” and “ Sum F ” denote the sum of the number of iterations and

the sum of the number of function evaluations, respectively. We note that the number

of gradient evaluations is the same as the number of iterations. In addition, “ Failed ”

means that the number of iterations exceeds 1000.

In order to compare our method with conjugate gradient (CG) methods, we examined

typical CG methods (Fletcher-Reeves (FR) method, Hestenes-Stiefel (HS) method, Polak-

Ribière Plus (PR+) method, and Dai-Yuan (DY) method, see [15] for example). In the

line search procedure, we used the Armijo condition and the bisection method, which

means Step 2 of Algorithm NEBB with ξ = 0.1, M(k) = 0, t
(0)
k = 1 and σ

(i)
k = 0.5.

In each iteration, if CG methods did not generate a descent direction, then we used the

steepest descent direction. However such a case rarely occurred. The CG methods, for

Problems 4 and 5, did not converge to the solution. So we omit these numerical results.

The numerical results of CG methods are given in Table 8.

For Algorithm NEBB, we investigate the frequency of taking tk = 1, namely xk+1 =

xk − 1

αk

gk. The frequency of taking tk = 1 depended on problems and the choice of

parameters. The ratio (the frequency of taking tk = 1/the number of iterations) are 65%

– 100%. In Tables 5–7, the averages of the ratio are 85%, 82% and 79%, respectively. It
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seems that the older information becomes, the lower the ratio becomes.

From Tables 5–7, we see the following observations.

• NEBB with (r, φ1, φ2, ν1(k), ν2(k)) = (1, 0.5, 0.5, k − 1, k − 2) and (1, 0.25, 0.75, k −
1, k − 2) performed better than the other variants.

• NEBB with (ν1(k), ν2(k)) = (k−1, k−2) needed the number of function evaluations

less than NEBB with (ν1(k), ν2(k)) = (k − 3, k − 4).

• The cyclic NEBB with (r,Mc,m1,m2) = (0, 3, 1, 2), (0, 5, 3,−) and (0, 5, 3, 4) did

not converge to the solution for P2.

Summarizing our numerical results, we conclude that the numerical performance of our

method was greatly affected by not only the choice of νi(k) (or Mc and mi) but also r. Es-

pecially, we find that the choice r = 1 is more appropriate than the choice r = 0 for general

objective functions. It seems that the older information becomes, the more the number

of function evaluations we need. We recommend NEBB with (r,Mc, φ1, φ2,m1,m2) =

(1, 0.5, 0.5, k − 1, k − 2) and (1, 0.25, 0.75, k − 1, k − 2). By comparing NEBB (with

(r,Mc, φ1, φ2,m1,m2) = (1, 0.5, 0.5, k − 1, k − 2) and (1, 0.25, 0.75, k − 1, k − 2)) with

conjugate gradient methods, NEBB needed the number of iterations more than conjugate

gradient methods, while NEBB is superior to conjugate gradient methods from the view-

point of the number of function evaluations. When the number of variables is very large,

the computational effort is sometimes dominated by the cost of evaluating the function

and the cost of evaluating the gradient. Therefore we can regard our methods as efficient

methods for large scale problems.
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Table 2: Numerical results of EBB
r 0 1 0 1 0 1 0 1
φ1 1 1 1 1 0.5 0.5 0.5 0.5
φ2 0 0 0 0 0.5 0.5 0.5 0.5

ν1(k) k − 1 k − 1 k − 3 k − 3 k − 1 k − 1 k − 3 k − 3
ν2(k) – – – – k − 2 k − 2 k − 4 k − 4

P n
Diag (λn = 1000) 1000 242 271 223 299 220 314 251 241
Diag (λn = 10000) 1000 331 351 353 367 315 298 314 315

Hilbert 100 104 95 124 162 276 183 132 85
Hilbert 1000 213 209 223 247 332 368 293 211

bcsstm19 817 9559 7528 6938 6089 Failed 9876 7167 6479
bcsstm20 485 6310 6494 3515 3613 8970 7297 5782 5641
bcsstm21 3600 10 10 12 6 9 10 12 6
bcsstm22 138 64 79 129 71 72 67 95 70
bcsstm26 1922 1509 1594 1743 1344 2228 1502 1259 1163

Sum 18342 16631 13260 12198 ∗ 19915 15305 14211

r 0 0 1 1 0 0 1 1
φ1 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
φ2 0.75 0.25 0.75 0.25 0.75 0.25 0.75 0.25

ν1(k) k − 1 k − 1 k − 1 k − 1 k − 3 k − 3 k − 3 k − 3
ν2(k) k − 2 k − 2 k − 2 k − 2 k − 4 k − 4 k − 4 k − 4

P n
Diag (λn = 1000) 1000 297 259 280 240 265 292 242 262
Diag (λn = 10000) 1000 382 320 301 305 350 315 323 359

Hilbert 100 201 167 217 136 123 125 162 108
Hilbert 1000 394 264 341 311 232 243 249 224

bcsstm19 817 Failed Failed Failed 7937 8131 6840 6577 5693
bcsstm20 485 Failed 7919 Failed 8978 5406 5519 5007 5703
bcsstm21 3600 9 10 6 10 12 12 6 6
bcsstm22 138 75 81 63 59 68 104 67 79
bcsstm26 1922 1831 1502 2367 1748 1224 1754 1133 1367

Sum ∗ ∗ ∗ 19724 15811 15204 13766 13801
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Table 3: Numerical results of EBB with (5.1) and Mc = 3
r 0 1 0 1 0 1 0 1
φ1 1 1 1 1 0.5 0.5 0.5 0.5
φ2 0 0 0 0 0.5 0.5 0.5 0.5
Mc 3 3 3 3 3 3 3 3
m1 1 1 3 3 1 1 3 3
m2 – – – – 2 2 4 4

P n
Diag (λn = 1000) 1000 254 359 287 311 263 323 329 265
Diag (λn = 10000) 1000 320 308 351 362 332 350 297 376

Hilbert 100 209 143 116 141 128 194 134 122
Hilbert 1000 380 260 221 275 386 240 236 300

bcsstm19 817 8008 7760 5483 5156 Failed Failed 5197 6065
bcsstm20 485 6575 5842 3776 3341 6542 7805 3692 3575
bcsstm21 3600 11 11 13 6 11 11 12 6
bcsstm22 138 87 68 142 68 80 72 98 62
bcsstm26 1922 1593 1559 2289 1760 2036 2038 1553 2147

Sum 17437 16310 12678 11420 ∗ ∗ 11548 12918

r 0 0 1 1 0 0 1 1
φ1 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
φ2 0.75 0.25 0.75 0.25 0.75 0.25 0.75 0.25
Mc 3 3 3 3 3 3 3 3
m1 1 1 1 1 3 3 3 3
m2 2 2 2 2 4 4 4 4

P n
Diag (λn = 1000) 1000 255 305 262 236 324 302 272 299
Diag (λn = 10000) 1000 426 363 359 356 344 314 369 357

Hilbert 100 228 144 158 203 116 116 122 125
Hilbert 1000 401 263 404 311 374 317 227 278

bcsstm19 817 Failed 8946 Failed 7073 6200 4983 6344 5723
bcsstm20 485 8132 7993 7976 6893 3807 3809 3647 3539
bcsstm21 3600 11 11 11 11 12 13 6 6
bcsstm22 138 81 71 62 65 140 92 62 65
bcsstm26 1922 1857 1692 1742 1369 1396 1775 1340 1398

Sum ∗ 19788 ∗ 16517 12713 11721 12389 11790
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Table 4: Numerical results of EBB with (5.1) and Mc = 5
r 0 1 0 1 0 1 0 1
φ1 1 1 1 1 0.5 0.5 0.5 0.5
φ2 0 0 0 0 0.5 0.5 0.5 0.5
Mc 5 5 5 5 5 5 5 5
m1 1 1 3 3 1 1 3 3
m2 – – – – 2 2 4 4

P n
Diag (λn = 1000) 1000 294 322 303 307 302 277 302 282
Diag (λn = 10000) 1000 412 353 353 354 353 352 334 362

Hilbert 100 162 137 Failed 182 112 117 237 112
Hilbert 1000 302 282 467 Failed 397 232 302 282

bcsstm19 817 6657 6312 6515 6717 7182 7212 7042 7007
bcsstm20 485 3963 3737 4277 4452 5012 4335 5087 4624
bcsstm21 3600 12 12 13 6 12 12 13 6
bcsstm22 138 102 83 72 107 75 87 72 62
bcsstm26 1922 1587 1797 1442 1857 1697 1422 1727 1897

Sum 13491 13035 ∗ ∗ 15142 14046 15116 14634

r 0 0 1 1 0 0 1 1
φ1 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
φ2 0.75 0.25 0.75 0.25 0.75 0.25 0.75 0.25
Mc 5 5 5 5 5 5 5 5
m1 1 1 1 1 3 3 3 3
m2 2 2 2 2 4 4 4 4

P n
Diag (λn = 1000) 1000 298 312 292 306 306 290 287 290
Diag (λn = 10000) 1000 352 405 328 357 377 353 433 338

Hilbert 100 137 102 127 182 147 172 237 142
Hilbert 1000 212 307 227 227 323 Failed 317 347

bcsstm19 817 6442 6332 5622 5882 6608 6382 6577 6221
bcsstm20 485 4987 4862 5202 5612 6208 5591 4687 4487
bcsstm21 3600 12 12 12 12 13 13 6 6
bcsstm22 138 103 102 74 82 127 88 62 67
bcsstm26 1922 1658 1552 1742 1527 1678 2048 1912 1447

Sum 14201 13986 13626 14187 15787 ∗ 14518 13345
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Table 5: Numerical results of NEBB
r 0 1 0 1 0 1 0 1
φ1 1 1 1 1 0.5 0.5 0.5 0.5
φ2 0 0 0 0 0.5 0.5 0.5 0.5

ν1(k) k − 1 k − 1 k − 3 k − 3 k − 1 k − 1 k − 3 k − 3
ν2(k) – – – – k − 2 k − 2 k − 4 k − 4

P n
1 10000 108/243 119/190 147/503 120/310 81/129 78/104 85/226 119/281
2 10000 338/819 253/486 490/1782 429/1312 477/799 226/303 466/1432 368/937
3 10000 67/83 67/73 60/96 92/108 68/74 77/78 64/102 78/92
4 10000 219/274 361/475 Failed 116/184 78/89 84/90 120/176 379/654
5 100 114/182 101/143 121/214 116/176 112/148 97/118 122/203 117/174
6 2 70/162 71/130 80/328 93/343 105/148 67/84 88/269 69/201
7 4 286/585 161/242 402/1142 185/444 751/1214 214/248 262/611 173/331
8 2 8/13 8/13 9/14 9/14 7/12 7/12 9/14 9/14
9 3 14/21 17/24 19/27 20/27 15/22 14/21 18/26 14/21
10 2 27/41 21/30 33/71 32/65 18/25 29/36 31/60 32/55
11 2 69/145 53/99 66/200 72/217 70/109 36/51 63/166 60/147

Sum I 1320 1232 ∗ 1284 1782 929 1328 1418
Sum F 2568 1905 ∗ 3200 2769 1145 3285 2907

r 0 0 1 1 0 0 1 1
φ1 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
φ2 0.75 0.25 0.75 0.25 0.75 0.25 0.75 0.25

ν1(k) k − 1 k − 1 k − 1 k − 1 k − 3 k − 3 k − 3 k − 3
ν2(k) k − 2 k − 2 k − 2 k − 2 k − 4 k − 4 k − 4 k − 4

P n
1 10000 81/131 58/99 79/97 106/151 107/309 62/151 112/254 111/252
2 10000 Failed 338/559 274/337 253/347 504/1353 445/1225 349/821 424/959
3 10000 52/59 66/74 74/75 76/77 64/92 75/120 76/92 84/99
4 10000 71/78 91/100 106/111 234/259 110/160 217/406 299/490 563/922
5 100 116/157 121/168 83/104 96/121 124/221 137/235 110/162 114/172
6 2 93/140 89/134 48/59 61/77 89/303 84/269 68/187 103/305
7 4 377/621 234/341 151/177 224/286 373/923 460/1183 215/436 178/361
8 2 8/13 8/13 8/13 8/13 9/14 9/14 9/14 9/14
9 3 20/27 16/23 13/20 17/24 17/25 19/27 19/26 15/22
10 2 28/35 22/31 22/29 24/31 29/59 32/62 31/50 32/57
11 2 65/103 77/138 42/57 46/65 57/155 75/212 69/167 59/153

Sum I ∗ 1120 900 1145 1483 1615 1357 1692
Sum F ∗ 1680 1079 1451 3614 3904 2699 3316
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Table 6: Numerical results of NEBB with (5.1) and Mc = 3
r 0 1 0 1 0 1 0 1
φ1 1 1 1 1 0.5 0.5 0.5 0.5
φ2 0 0 0 0 0.5 0.5 0.5 0.5
Mc 3 3 3 3 3 3 3 3
m1 1 1 3 3 1 1 3 3
m2 – – – – 2 2 4 4
P n
1 10000 119/248 110/243 110/431 123/423 95/213 89/207 126/484 189/526
2 10000 Failed Failed 578/2294 440/1585 Failed 473/824 494/1922 425/1248
3 10000 70/99 86/98 78/171 85/112 74/100 77/78 68/128 90/119
4 10000 167/230 313/444 86/130 116/189 94/110 101/118 94/140 134/220
5 100 129/220 107/161 137/230 116/188 105/161 107/149 134/244 119/177
6 2 71/194 79/178 87/385 168/806 65/172 73/180 108/482 132/374
7 4 374/813 200/386 284/881 170/431 300/561 215/323 422/1325 197/468
8 2 9/14 9/14 7/12 7/12 8/13 8/13 7/12 7/12
9 3 17/24 18/25 23/31 23/30 17/24 17/24 20/28 20/27
10 2 26/42 23/38 29/59 35/82 34/54 26/40 29/55 45/96
11 2 62/155 41/84 90/310 57/185 62/133 50/103 64/213 51/164

Sum I ∗ ∗ 1509 1340 ∗ 1186 1502 1358
Sum F ∗ ∗ 4934 4043 ∗ 1956 4820 3267

r 0 0 1 1 0 0 1 1
φ1 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
φ2 0.75 0.25 0.75 0.25 0.75 0.25 0.75 0.25
Mc 3 3 3 3 3 3 3 3
m1 1 1 1 1 3 3 3 3
m2 2 2 2 2 4 4 4 4
P n
1 10000 118/255 116/241 125/264 92/215 125/434 80/288 179/454 161/447
2 10000 Failed 629/1423 533/849 531/915 392/1495 548/2114 512/1430 362/1098
3 10000 71/93 78/95 83/84 78/80 69/126 83/157 83/116 85/112
4 10000 95/107 Failed 110/131 132/168 147/259 95/138 105/171 143/262
5 100 116/151 126/187 93/119 109/158 122/217 128/215 119/180 128/185
6 2 128/313 80/204 59/147 72/186 134/585 74/276 138/414 80/259
7 4 438/811 425/791 305/443 212/349 293/838 389/1068 151/338 166/401
8 2 9/14 8/13 9/14 8/13 7/12 7/12 7/12 7/12
9 3 24/31 20/27 17/24 18/25 20/28 21/29 20/27 21/28
10 2 30/45 38/53 26/41 23/38 35/90 33/81 35/77 35/77
11 2 92/207 74/141 48/98 53/98 68/229 77/270 51/166 53/159

Sum I ∗ ∗ 1408 1328 1412 1535 1400 1241
Sum F ∗ ∗ 2214 2245 4313 4648 3385 3040
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Table 7: Numerical results of NEBB with (5.1) and Mc = 5
r 0 1 0 1 0 1 0 1
φ1 1 1 1 1 0.5 0.5 0.5 0.5
φ2 0 0 0 0 0.5 0.5 0.5 0.5
Mc 5 5 5 5 5 5 5 5
m1 1 1 3 3 1 1 3 3
m2 – – – – 2 2 4 4
P n
1 10000 182/663 132/426 217/675 87/270 167/592 132/402 132/397 87/251
2 10000 402/1402 342/1159 Failed 617/2053 427/1295 462/1371 Failed 452/1239
3 10000 68/131 87/107 72/150 112/157 68/154 87/108 87/193 97/116
4 10000 203/371 118/170 267/687 142/255 188/322 103/141 162/320 147/222
5 100 117/204 107/166 138/248 129/209 132/225 93/121 143/236 124/200
6 2 87/321 119/432 107/429 112/391 82/286 87/337 222/820 107/381
7 4 272/688 217/470 532/1793 177/385 272/661 327/651 327/1005 172/391
8 2 8/13 8/13 11/16 11/16 7/12 7/12 12/17 12/17
9 3 22/29 17/24 24/32 22/29 17/24 18/25 22/30 27/34
10 2 37/65 27/54 32/74 32/73 42/76 32/74 32/74 27/54
11 2 53/171 48/149 57/158 63/193 77/239 52/154 48/147 47/116

Sum I 1451 1222 ∗ 1504 1479 1400 ∗ 1299
Sum F 4058 3170 ∗ 4031 3886 3396 ∗ 3021

r 0 0 1 1 0 0 1 1
φ1 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
φ2 0.75 0.25 0.75 0.25 0.75 0.25 0.75 0.25
Mc 5 5 5 5 5 5 5 5
m1 1 1 1 1 3 3 3 3
m2 2 2 2 2 4 4 4 4
P n
1 10000 192/695 127/439 122/384 133/425 163/507 148/481 82/211 87/255
2 10000 627/1768 402/1183 462/1281 372/1054 Failed Failed 577/1430 552/1532
3 10000 67/139 62/113 83/105 77/103 86/141 72/150 101/122 100/129
4 10000 192/302 212/381 112/142 107/141 109/183 95/154 120/177 382/743
5 100 127/215 127/181 97/135 110/160 147/256 113/178 132/194 123/189
6 2 79/342 87/302 147/465 92/401 182/725 202/740 98/365 152/498
7 4 277/703 447/1189 232/491 183/380 832/2409 448/1294 157/331 192/423
8 2 8/13 8/13 8/13 8/13 12/17 12/17 12/17 12/17
9 3 17/24 17/24 22/29 17/24 22/30 22/30 20/27 23/30
10 2 42/70 37/64 37/73 27/54 32/74 32/74 27/54 27/54
11 2 119/294 83/232 72/201 68/185 48/147 42/116 77/217 83/228

Sum I 1747 1609 1394 1194 ∗ ∗ 1403 1733
Sum F 4565 4121 3319 2940 ∗ ∗ 3145 4098
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Table 8: Numerical results of typical CG methods
P n FR HS PR+ DY
1 10000 170 / 2001 43 / 350 69 / 622 43 / 372
2 10000 595 / 4627 173 / 1082 307 / 2207 634 / 4467
3 10000 403 / 1912 70 / 73 70 / 75 125 / 431
6 2 127 / 1501 29 / 238 95 / 939 46 / 454
7 4 301 / 3475 208 / 1969 197 / 1915 Failed
8 2 9 / 24 7 / 43 6 / 23 11 / 28
9 3 26 / 274 45 / 371 33 / 271 85 / 1360
10 2 41 / 305 15 / 95 31 / 229 31 / 213
11 2 48 / 470 81 / 699 140 / 1380 57 / 511

6 Concluding remarks

In this paper, we have proposed the extended Barzilai-Borwein method which includes

the steepest descent method, the Barzilai-Borwein method and the gradient method with

retards. We have established the global and Q-superlinear convergence properties of the

proposed method. Moreover, numerical performance of our method has been investigated

by some numerical experiments. Our further interests are to find a suitable choice of

parameters included in our method.
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