
AN ELEMENTARY PROOF OF OPTIMALITY
CONDITIONS FOR LINEAR PROGRAMMING

Anders FORSGREN∗

Technical Report TRITA-MAT-2008-OS6
Department of Mathematics
Royal Institute of Technology

June 2008

Abstract

We give an elementary proof of optimality conditions for linear program-
ming. The proof is direct, built on a straightforward classical perturbation of
the constraints, and does not require either the use of Farkas’ lemma or the use
of the simplex method.

1. Introduction

In this note, optimality conditions are derived for the linear programming problem
(LP ) defined in standard form as

(LP )
minimize

x∈IRn
cTx

subject to Ax = b,
x ≥ 0,

where A is an m×n matrix, b is an m-dimensional vector and c is an n-dimensional
vector. For convenience, it is assumed throughout that A has full row rank. A
linear program may be posed on many different forms. The particular form is not
important, since different forms may be transformed into each other. To make the
exposition simple in this note, standard form is used throughout.

Traditionally, textbooks on linear programming often give optimality conditions
for a linear program derived via Farkas’ lemma, e.g., Shriver [10] and Gill, Murray
and Wright [5], or via the simplex method, taking into account anti-cycling, e.g.,
Chvátal [2], Luenberger [8] and Nash and Sofer [9]. Linear programming and the
simplex method have been very close together since the introduction of the simplex
method in the 1940’s by Dantzig, which is also reflected in his classical textbook on
linear programming [3]. In particular, linear programming and the simplex method
were almost interchangeable terms prior to the ellipsoid method of Khachian [7] in
1979. The method proposed by Karmarkar [6] in 1984, and subsequent development
of interior methods for linear programming, has given a new situation where the
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simplex method has competitors. The purpose of this note is to give an elementary
proof of optimality conditions for linear programming, that does not need either
Farkas’ lemma or the simplex method. It has been inspired by the paper of Dax [4]
and the manuscript of Svanberg [11], which give elementary proofs of Farkas’ lemma.

A feature of linear programming is that if there is an optimal solution, there
is an optimal extreme point of the polytope that defines the feasible region. An
extreme point is a feasible point to (LP ) which is uniquely defined by the active
constraints. This means that at least n constraints have to be active. An extreme
point is said to be nondegenerate if exactly n constraints are active. The problem is
referred to as nondegenerate if every extreme point is nondegenerate. For a linear
program on standard form, an extreme point is often referred to as a basic feasible
solution.

Under a nondegeneracy assumption, the derivation of optimality conditions is
straightforward. Covering the degenerate case as well requires some additional
mathematics, which often gives a detour. One may derive some additional result
like Farkas’ lemma or introduce a method for linear programming, like the simplex
method, and then introduce anticycling schemes in the simplex method to handle
nondegeneracy. Although these approaches certainly have their merit, our intention
is to derive optimality conditions directly with basic tools only, and then leave out
more advanced features. The results which we derive are by no means original, but
we are not aware of a direct treatment along the lines presented here. For the de-
generate case, we rely on a perturbed problem introduced by Charnes [1], but we do
not need to introduce the simplex method or the anti-cycling procedure. It suffices
to study the perturbed problem.

1.1. Notation and terminology

A feasible point x to (LP ) will be partitioned as x = (xT
+ xT

0 )T , where x+ >
0 and x0 = 0. The ordering of the indices in x+ and x0 is not important, the
positive components are collected in x+ and the zero components are collected in
x0. In addition, the columns of A and the vector c will be partitioned conformally,
i.e., A = (A+ A0) and c = (cT

+ cT
0 )T . Following standard terminology for linear

programming, we will refer to a point x that satisfies Ax = b at which A+ has full
column rank as a basic solution. If, in addition, x is nonnegative, it will be referred
to as a basic feasible solution. We will also refer to the basic feasible solutions as the
extreme points of the feasible region. The terms basic feasible solution and extreme
point will be used interchangeably.

Associated with a basic feasible solution, we may partition A = (B N), where
the basis matrix B is m × m and nonsingular such that A+ is a submatrix of B.
Again, the ordering of the columns is not important, B is assumed to be formed
by the m first columns for convenience in notation. For a column index j, we will
denote by Aj the jth column of A. We will also use the notation j ∈ B and j ∈ A+

to denote that Aj is a column of B and A+ respectively.
If the basic feasible solution is nondegenerate, then B is unique with A+ = B.

Otherwise, any nonsingular m×m submatrix B of A such that A+ is a submatrix of
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B gives a basis matrix. The reason why optimality conditions are more complicated
for the degenerate case is that not every basis matrix may be used to form the
optimality conditions then.

2. Sufficient optimality conditions for a linear program

It is straightforward to derive sufficient optimality conditions for (LP ). These are
stated in the following proposition.

Proposition 2.1. Assume that there are y ∈ IRm, s ∈ IRn such that

ATy + s = c, (2.1a)
s ≥ 0. (2.1b)

Then, if x is feasible to (LP ) it holds that

cTx− bTy = sTx ≥ 0. (2.2)

In particular, if sTx = 0, then x is optimal to (LP ) and the optimal value is given
by bTy.

Proof. Assume that y and s satisfy (2.1a) and (2.1b). Then, for any x that is
feasible to (LP ), it holds that

cTx = (s + ATy)Tx = sTx + bTy ≥ bTy, (2.3)

where the last inequality follows since x and s both are nonnegative. Hence, (2.2)
holds and bTy is a lower bound on the optimal value of (LP ). If in addition sTx = 0,
then the lower bound bTy given by (2.3) is attained, and x is thus optimal to (LP )
with optimal value given by bTy.

3. Existence of an optimal basic feasible solution

We first show that unless the optimal value of (LP ) is unbounded from below, (LP )
has at least one optimal solution which is a basic feasible solution.

Lemma 3.1. Assume that (LP ) is feasible. Then, either (LP ) has at least one
optimal basic feasible solution or there is a p ∈ IRn such that p ≥ 0, Ap = 0,
cTp < 0.

Proof. Let x be a feasible point. If the associated A+ has full column rank, then
x is a basic feasible solution, and hence there is a basic feasible solution xe such
that cTxe ≤ cTx. If A+ does not have full column rank, there is a nonzero vector p+

such that A+p+ = 0. The sign of p+ may be chosen such that cT
+p+ ≤ 0. There are

now two cases, (i) cT
+p+ < 0 or (ii) cT

+p+ = 0. Case (i) cT
+p+ < 0 can be split in two

subcases, (ia) cT
+p+ < 0 and p+ ≥ 0 or (ib) cT

+p+ < 0 and p+ 6≥ 0. The three cases
(ia), (ib) and (ii) will now be considered in turn.
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Case (ia): cT
+p+ < 0 and p+ ≥ 0. In this situation, let p0 = 0. Then, the resulting

p satisfies p ≥ 0, Ap = 0 and cTp < 0.
Case (ib): cT

+p+ < 0 and p+ 6≥ 0. Let

α = min
i:(p+)i<0

(x+)i

−(p+)i
. (3.1)

Since p+ 6≥ 0, α is well defined. Let p0 = 0. Then, the resulting p gives a point
x + αp such that A(x + αp) = b, x + αp ≥ 0 and cT(x + αp) < cTx. In addition,
x + αp has at least one more component which is zero compared to x.

Case (ii): cT
+p+ = 0. Since p+ 6= 0 the sign of p+ may be chosen such that

p+ 6≥ 0. It will still hold that cT
+p+ = 0. As in case (ib), we may now define α

from (3.1) and let p0 = 0. Then, the resulting p gives a point x + αp such that
A(x + αp) = b, x + αp ≥ 0 and cT(x + αp) = cTx. In addition, x + αp has at least
one more component which is zero compared to x.

Hence, if case (ia) does not occur, a new feasible point is obtained at which the
objective function is no greater than cTx and which has at least one more component
which is zero compared to x. This procedure may now be repeated for the new points
generated. After at most n steps, either case (ia) has been reached at some step, or
it has been concluded that A+ for the generated point has full column rank. In the
former case, a vector p ∈ IRn such that p ≥ 0, Ap = 0, cTp < 0, has been found. In
the latter case, we have found a basic feasible solution xe such that cTxe ≤ cTx.

Consequently, we conclude that for every feasible x, either a p such that p ≥ 0,
Ap = 0, cTp < 0 is found, or it holds that cTx ≥ minxe∈Xe cTxe, where Xe denotes
the (finite) set of basic feasible solutions. Hence, in the latter case, at least one basic
feasible solution is optimal.

4. Existence of an optimal basis

The existence of an optimal basic feasible solution may now be used to derive neces-
sary optimality conditions. First, optimality conditions for a nondegenerate optimal
basic feasible solution are derived. The nonegeneracy implies that the basis matrix
may be used to characterize the feasible neighborhood of the solution.

Lemma 4.1. Assume that (LP ) has a nondegenerate optimal basic feasible solution,
i.e., there is an optimal basic feasible solution x for which there exists a basis matrix
B such that

BxB = b, xN = 0,

xB > 0.

Then there exist vectors y ∈ IRm and s ∈ IRn, which may be partitioned conformally
with x such that

BTy = cB, sB = 0, NTy + sN = cN , (4.1a)
sN ≥ 0. (4.1b)
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Proof. Let P = {p ∈ IRn : BpB + NpN = 0, pN ≥ 0}. Then, since xB > 0, it
follows that p ∈ P is a feasible direction, i.e., there is a positive ᾱ such that x + αp
is feasible to (LP ) for α ∈ [0, ᾱ]. Consequently, since x is optimal, it must hold that
cTp ≥ 0 for p ∈ P. Hence,

0 ≤ cTp = cT
BpB + cT

NpN = (cN −NTB−TcB)TpN . (4.2)

For the given B, we may define y and s from (4.1a). It remains to show that (4.1b)
holds. Insertion of (4.1a) into (4.2) gives

0 ≤ cTp = sT
NpN . (4.3)

Since pN is an arbitrary nonnegative vector, (4.3) implies that sN ≥ 0, so that (4.1b)
holds.

For the degenerate case, the above analysis characterizing the feasible neighbor-
hood in terms of a basis matrix is not straightforward. This is exactly the reason
why giving optimality conditions for linear programming is not entirely straightfor-
ward. We now extend the result above to show the existence of an optimal basic
feasible solution to (LP ) for which the sufficient optimality conditions of Proposi-
tion 2.1 hold also to the degenerate case. This is done by a classical perturbation of
the feasible region, originally suggested by Charnes [1] in the more complex context
of handling degeneracy in the simplex method. The essence is that the constraints
are perturbed by different amounts, thereby removing the degeneracy.

Proposition 4.1. Assume that (LP ) is feasible, and that there is no p ∈ IRn such
that p ≥ 0, Ap = 0, cTp < 0. Then, there exists an optimal basic feasible solution
x ∈ IRn for which there is an associated basis matrix B and vectors y ∈ IRm and
s ∈ IRn, such that

BxB = b, xN = 0, (4.4a)
xB ≥ 0, (4.4b)

BTy = cB, sB = 0, NTy + sN = cN , (4.4c)
sN ≥ 0. (4.4d)

Proof. Since there is no p ∈ IRn such that p ≥ 0, Ap = 0, cTp < 0, Lemma 3.1
ensures the existence of at least one optimal basic feasible solution to (LP ). If there
exists a nondegenerate optimal basic feasible solution, Lemma 4.1 directly gives the
desired result.

If (LP ) does not have a nondegenerate optimal basic feasible solution, the sit-
uation is a bit more complicated. This degeneracy may be resolved by creating a
perturbed problem as

minimize
x∈IRn

cTx

subject to Ax = b,
xj ≥ −εj , j = 1, . . . , n.

(4.5)
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for ε sufficiently small and positive. Let

γ = min
B∈B

 min
i=1,...,m

min
j∈N

eT
i

B−1Aj 6=0

|eT
i B

−1Aj |, min
i=1,...,m

eT
i

B−1b6=0

|eT
i B

−1b|, 1

 ,

Γ = max
B∈B

 max
i=1,...,m

max
j∈N

eT
i

B−1Aj 6=0

|eT
i B

−1Aj |, max
i=1,...,m

eT
i

B−1b6=0

|eT
i B

−1b|, 1

 ,

where B is the set of nonsingular m×m submatrices of A, and let 0 < ε < γ/(γ+Γ).
Since (LP ) is feasible and ε > 0, it follows that (4.5) is feasible. By a change of

variables, x̃j = xj + εj , j = 1, . . . , n, (4.5) may be rewritten in standard form as

(LPε)

minimize
x̃∈IRn

cTx̃

subject to Ax̃ = b +
∑n

j=1 Ajε
j ,

x̃ ≥ 0.

The objective functions in (4.5) and (LPε) differ by a constant, which does not have
any impact on the solution. In addition, since there is no p such that p ≥ 0, Ap = 0,
cTp < 0, Lemma 3.1 shows that (LPε) has at least one optimal basic feasible solution.
Let x̃ be such an optimal basic feasible solution, and let B be a corresponding basis
matrix, i.e., a nonsingular m×m submatrix of A such that the A+ associated with
x̃ is a submatrix of B. We will now show that x̃ is a nondegenerate basic feasible
solution, so that in fact B = A+. Since Ax̃ = b +

∑n
j=1 Ajε

j , and x̃j = 0, j ∈ N , it
holds that

0 ≤ eT
i x̃B = eT

i B
−1b + εB(i) +

∑
j∈N

eT
i B

−1Ajε
j , i = 1, . . . ,m, (4.6)

where B(i) denotes the index of the ith basic variable. From our choice of ε,
Lemma A.1 in conjunction with (4.6) shows that eT

i x̃B > 0, i = 1, . . . ,m, so that
x̃ is a nondegenerate optimal basic feasible solution. Lemma 4.1 shows that there
are y and s such that y = B−TcB, sB = 0, sN = cN −NTy and sN ≥ 0, i.e., (4.4c)
and (4.4d) hold. In addition, Lemma A.1 shows that if eT

i B
−1b < 0 for some i, then

(4.6) cannot hold. Hence, B−1b ≥ 0. We may thus define x by xB = B−1b, xN = 0,
so that (4.4a) and (4.4b) hold. Since x, y and s satisfy (4.4), Proposition 2.1 shows
that x is optimal to (LP ).

Proposition 4.1 ensures the existence of an optimal basic feasible solution for
which we may associate a basis matrix such that (4.4) holds. As shown in the
following corollary, we may find at least one such basis matrix for each optimal
basic feasible solution.

Corollary 4.1. Assume that (LP ) is feasible, and that there is no p ∈ IRn such
that p ≥ 0, Ap = 0, cTp < 0. Then, for an optimal basic feasible solution x ∈ IRn,
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there is an associated basis matrix B and vectors y ∈ IRm and s ∈ IRn such that

BxB = b, xN = 0, (4.7a)
xB ≥ 0, (4.7b)

BTy = cB, sB = 0, NTy + sN = cN , (4.7c)
sN ≥ 0. (4.7d)

Proof. Let x be an optimal basic feasible solution. It follows from Proposition 4.1
that there exists an optimal basic feasible solution x̃ and associated basis matrix B̃
in addition to vectors y and s such that∑

j∈B̃ Aj x̃j = b, x̃j ≥ 0, j ∈ B̃, (4.8a)

AT
jy = cj , j ∈ B̃, (4.8b)

AT
jy + sj = cj , sj ≥ 0, j ∈ Ñ , (4.8c)

Since sTx̃ = 0, and x is optimal, Proposition 2.1 implies that sTx = 0 must hold.
Consequently, it follows that sj = 0, j ∈ A+, and we conclude that

AT
jy = cj , j ∈ B̃ ∪A+. (4.9)

As B̃ is nonsingular and A+ has full column rank, we may create a nonsingular
matrix B by adding columns of B̃ to A+. For this B, (4.7a) and (4.7b) will hold,
since A+ is a submatrix of B and x is feasible to (LP ). By (4.8c) and (4.9), it
follows that (4.7c) and (4.7d) hold.

5. Necessary and sufficient optimality conditions

Given the existence of y and s, which was shown for an optimal basic feasible
solution, we may derive necessary optimality conditions for an arbitrary point, which
is not necessarily a basic feasible solution.

Corollary 5.1. Assume that (LP ) is feasible, and that there is no p ∈ IRn such
that p ≥ 0, Ap = 0, cTp < 0. Then, (LP ) has at least one optimal solution. A
vector x ∈ IRn is optimal to (LP ) if and only if there are y ∈ IRm, s ∈ IRn such that

Ax = b, (5.1a)
x ≥ 0, (5.1b)

ATy + s = c, (5.1c)
s ≥ 0, (5.1d)

sTx = 0. (5.1e)

The optimal value is given by bTy.
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Proof. As for sufficiency, Proposition 2.1 shows that if x, y and s satisfy (5.1), then
x is optimal to (LP ).

As for necessity, Proposition 4.1 ensures that if there is no p ∈ IRn such that
p ≥ 0, Ap = 0, cTp < 0, there is at least one optimal x for which there exist y and s
such that (5.1) holds. Let x̃ be any optimal solution to (LP ). Then x̃ must satisfy
(5.1a) and (5.1b) to be feasible to (LP ). In addition, Proposition 2.1 shows that
the optimal value of (LP ) is bTy and in addition that x̃ is optimal only if sTx̃ = 0.
Hence, (5.1e) holds too.

6. A proof of Farkas’ lemma

Although the purpose of this note is not to present a proof of Farkas’ lemma, we
observe that Farkas’ lemma may be derived directly from the optimality conditions.

Proposition 6.1. (Farkas’ lemma) Let M be an m × n matrix, and let g be an
m-dimensional vector. Then exactly one of the following systems has a solution:

1. Mu = g, u ≥ 0, 2. MTy ≤ 0, gTy > 0.

Proof. We first show that 1 and 2 cannot have a solution simultaneously. This is
done by contradiction. Assume that u satisfies 1 and y satisfies 2. Then, premulti-
plication of both sides of Mu = g by yT gives yTMu = yTg. By 2, yTg > 0. On the
other hand, u ≥ 0 and MTy ≤ 0 gives yTMu ≤ 0. Hence, we have a contradiction,
showing that 1 and 2 cannot have a solution simultaneously.

It now suffices to show that one of 1 and 2 always has a solution. For this
purpose, consider the linear program

minimize
u∈IRn,w∈IRm

eTw

subject to Mu + Dw = g,
u ≥ 0, w ≥ 0,

(6.1)

where e is a vector of ones and D is a diagonal matrix with diagonal elements dii = 1
if gi ≥ 0 and dii = −1 if gi < 0, for i = 1, . . . ,m. Note that the linear program
(6.1) is feasible, since u = 0, w = |g| gives a feasible solution. The constraint
matrix has full row rank, since D is nonsingular. In addition, the optimal value
is bounded below by zero, since the nonnegativity of w implies that the objective
function is the 1-norm of w. Hence, Lemma 3.1 implies that there exists at least
one optimal solution. There are two cases, either the optimal value is zero, or it is
strictly positive.

If the optimal value of (6.1) is zero, let u and w denote an optimal solution. It
must hold that eTw = 0, w ≥ 0, i.e., w = 0. Hence, u satisfies Mu = g, u ≥ 0,
which means that u fulfills 1.

If the optimal value of (6.1) is strictly positive, Corollary 5.1 implies that there
are y, s1 and s2 such that

MTy + s1 = 0, s1 ≥ 0, (6.2a)
Dy + s2 = e, s2 ≥ 0. (6.2b)
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with gTy > 0. In particular, (6.2a) gives MTy ≤ 0. Hence, y fulfills 2.

7. Conclusion

We have given an elementary proof of optimality conditions for linear programming.
The advantage compared to using the simplex method for giving these conditions
is that we have not needed to introduce the simplex method. The advantage com-
pared to using Farkas’ lemma is that we have only introduced a perturbation of the
constraints, which can be interpreted directly in the original problem. An additional
advantage to using Farkas’ lemma is that our approach naturally gives the existence
of an associated basis matrix for each optimal basic feasible solution which may be
used to give the optimality conditions. To keep the exposition simple, we have not
introduced the concept of duality. However, for linear programming the optimality
conditions are essentially equivalent to strong duality. Hence, the results given also
prove strong duality.

A. A perturbation lemma

For completeness, we give the following perturbation result which shows that the
sign of a polynomial

∑n
j=0 ajε

j , for ε positive and sufficiently small, is determined
by the sign of the first nonzero coefficient aj , with the ordering j = 0, 1, . . . , n. See,
e.g., Dantzig [3, Lemma 1, Chapter 10] for a similar result.

Lemma A.1. Let a ∈ IRn, a 6= 0, and let γ and Γ be positive numbers such that
0 < γ ≤ minj:aj 6=0 |aj | and Γ ≥ maxj:aj 6=0 |aj |. Since a 6= 0, there is an index k such
that aj = 0, j = 0, . . . , k − 1, ak 6= 0. If 0 < ε < γ/(γ + Γ) then

n∑
j=0

ajε
j > 0 if ak > 0,

n∑
j=0

ajε
j < 0 if ak < 0.

Proof. Assume that ak > 0, aj = 0, j = 0, . . . , k − 1, 0 < γ ≤ minj:aj 6=0 |aj | and
Γ ≥ maxj:aj 6=0 |aj |, with γ < Γ . If 0 < ε < γ/(γ + Γ), then

n∑
j=0

ajε
j = akε

k +
n∑

j=k+1

ajε
j = εk

ak +
n∑

j=k+1

ajε
j−k


≥ εk

γ − Γ
n−k∑
j=1

εj

 ≥ εk

γ − Γ
∞∑

j=1

εj

 = εk
(

γ − Γ
ε

1− ε

)

= εk
(

γ − (Γ + γ)ε
1− ε

)
> 0,

where the last inequality follows from the choice of ε. The proof for the case when
ak < 0 is analogous.
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