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Abstract

In this paper, we extend the Ai-Zhang direction to the class of semidefinite
optimization problems. We define a new wide neighborhood N (τ1, τ2, η) and, as
usual, we utilize symmetric directions by scaling the Newton equation with special
matrices. After defining the “positive part” and the “negative part” of a symmetric
matrix, we solve the Newton equation with its right hand side replaced first by its
positive part and then by its negative part, respectively. In this way, we obtain a
decomposition of the usual Newton direction and use different step lengths for each
of them.

Starting with a feasible point (X0, y0, S0) in N (τ1, τ2, η), the algorithm ter-
minates in at most O(η

√
κ∞n log Tr(X0S0)

ε ) iterations, where κ∞ is a parameter
associated with the scaling matrix P and ε is the required precision. To our best
knowledge, when the parameter η is a constant, this is the first large neighbor-
hood path-following Interior Point Method (IPM) with the same complexity as
small neighborhood path-following IPMs for semidefinite optimization that use the
Nesterov-Todd direction. In the case when η is chosen to be in the order of

√
n,

our result coincides with the results for the classical large neighborhood IPMs.

Keywords: interior point methods, large neighborhood, path-following algorithm, semidef-
inite optimization.

∗School of Computational Engineering and Science, McMaster University, Hamilton, ON, L8S 4K1,
Canada (liy99@mcmaster.ca).

†Department of Computing and Software, McMaster University, Hamilton, ON, L8S 4K1, Canada
(terlaky@mcmaster.ca; http://www.cas.mcmaster.ca/∼terlaky).

1



1 Introduction

Semidefinite optimization (SDO) problems yield a generalization of linear optimization
(LO) problems. Since Alizadeh [3] explored various applications of SDO in combinatorial
optimization, SDO is applied in various areas, including control theory, probability and
signal processing [27].

Due to the success of Interior Point Methods (IPMs) in solving LO, most IPM variants
were extended to SDO. The first IPMs for SDO were independently developed by Alizadeh
[3] and Nesterov and Nemirovskii [20]. Alizadeh [3] applied Ye’s potential reduction idea
to SDO and showed how variants of dual IPMs could be extended to SDO. Almost at
the same time, in their milestone book [20], Nesterov and Nemirovskii proved that IPMs
are able to solve general conic optimization problems, in particular SDO problems, in
polynomial time.

The difficulty to extend primal-dual path-following IPMs from LO to SDO lies in
acquiring a symmetric search direction. The Newton method applied to the central path
equation XS = τµI leads to the linear system

X∆S + ∆XS = τµI −XS, (1.1)

which generally results in non-symmetric search directions. Over the years, people sug-
gested many strategies to deal with this problem. Alizadeh, Haeberly and Overton (AHO)
[5] suggested to symmetrize both sides of (1.1). Another possible alternative is to employ
a similarity transformation P (·)P−1 on both sides of (1.1). This strategy was first inves-
tigated by Monteiro [16] for P = X−1/2 and P = S1/2. It turned out that the resulting
directions by this approach could be seen as two special cases of the class of directions
introduced earlier by Kojima, Shindoh and Hara [14]. At the same time, another mo-
tivation led Helmberg, Rendl, Vanderbei and Wolkowicz [10] to the direction given by
P = S1/2. The search directions given by P = X−1/2 and P = S1/2 are usually referred to
as the H..K..M directions, respectively. Another very popular direction was introduced
by Nesterov and Todd [21, 22] in their attempt to generalize primal-dual IPMs beyond
SDO. In [31], based on Monteiro’s idea, Zhang generalized all the approaches to a unified
scheme parameterized by a nonsingular scaling matrix P . This family of search directions
is referred to as the Monterio-Zhang (MZ) family of search directions.

As in the case of LO, there is an intriguing fact about IPMs for SDO. Although their
theoretical complexity is worse, large neighborhood algorithms perform better in practice
than small neighborhood algorithms. Many efforts were spent to bridge this gap. In [23],
Peng, Roos and Terlaky established a new paradigm based on the class of the so-called
self-regular functions. Under their new paradigm, large neighborhood IPMs can come
arbitrarily close to the best known iteration bounds of small neighborhood IPMs. Later,
based on Ai’s original idea [1], an important result was given by Ai and Zhang [2] for
linear complementarity problems (LCP). Their algorithm uses a wide neighborhood and
decomposes the classical Newton direction into two orthogonal directions using different
step-length for each of them. They proved that the algorithm stops after at most O(

√
nL)

iterations, where n is the number of variables and L is the input data length. This result
yields the first large neighborhood path-following algorithm having the same theoretical
complexity as a small neighborhood path-following algorithm for monotone LCPs.

In this paper, we extend the Ai-Zhang technique to SDO. We first define a new neigh-
borhood N (τ1, τ2, η), where 0 < τ2 < τ1 < 1 and η ≥ 1 are given parameters. This
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new neighborhood is proved to be a wide neighborhood itself. Not surprisingly, the
neighborhood defined by Ai and Zhang [2] is a special case of our wide neighborhood.
Another important ingredient of our algorithm is the decomposition of the classical New-
ton method into two individual directions: one of them reduces the duality gap and the
other one keeps the iterates away from the boundary of the positive semidefinite cone.
We use different step lengths for each of the directions. Further, we derive a symmetric
direction by using scaling matrices P such that PXSP−1 is symmetric for any iterate
(X, y, S). Such directions are referred to in the literature as the Monteiro-Zhang (MZ)
family. We prove that, given a feasible starting point (X0, y0, S0) in N (τ1, τ2, η), our al-

gorithm terminates in at most O(η
√

κ∞n log Tr(X0S0)
ε

) iterations. Here n is the dimension
of the problem, κ∞ is a parameter associated with the scaling matrix P , and ε is the
required precision. In other words, when the parameter is a fixed constant, our large
neighborhood path following algorithm has the same theoretical complexity as a small
neighborhood algorithm that uses NT scaling, and when η is chosen to be in the order of√

n, this complexity coincides with the known results for the classical large neighborhood
algorithms.

We organize our paper as follows. In Section 2, we introduce the primal-dual pair of
SDO problems and briefly explain how path-following interior point methods work. In
Section 3, we define the positive and negative part of a symmetric matrix, and prove
some of their intriguing properties. By using these new definitions, we introduce a new
neighborhood which is proved to be a large neighborhood. In Section 4, we explain
the way to decompose the classical Newton direction and present the framework of our
algorithm. In Section 5, the convergency analysis and the theoretical complexity bound
are presented. Finally, Section 6 consists of some conclusions and considerations about
future work.

1.1 Notations

Throughout the paper, we use the following notations:
Rn: the n-dimensional Euclidean space.

Rm×n: the set of all m× n matrices.
Sn: the set of all n× n symmetric matrices.
Sn

+: the set of all n× n symmetric positive semidefinite matrices.
Sn

++: the set of all n× n symmetric positive definite matrices.
Q º 0: Q is positive semidefinite, where Q ∈ Sn.
Q Â 0: Q is positive definite, where Q ∈ Sn.

Tr(Q): the trace of a matrix Q ∈ Rn×n, i.e., Tr(Q) :=
n∑

i=1

Qii.

λi(Q): the eigenvalues of Q ∈ Sn, i = 1, 2, . . . , n.
λmin(Q): the smallest eigenvalue of Q ∈ Sn.
λmax(Q): the largest eigenvalue of Q ∈ Sn.

Λ(Q): the diagonal matrix with all the eigenvalues of Q as diagonal elements.
cond(Q): the condition number of Q, defined as cond(Q) = λmax(Q)/λmin(Q).

‖Q‖: the Euclidean norm for Q ∈ Rn×n, i.e., ‖Q‖ = max
‖µ‖=1

‖Qu‖.
‖Q‖F : the Frobenius norm of Q ∈ Rn×n, i.e., ‖Q‖F =

√
Tr(QT Q).

vec(Q): the vector obtained by stacking Q’s columns one by one. See Appendix A.
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2 Semidefinite Optimization Problem

We consider the following semidefinite optimization (SDO) problem

min Tr(CX)
(P) s.t. Tr(AiX) = bi, i = 1, . . . , m,

X º 0,

where C, X ∈ Sn, Ai ∈ Sn, i = 1, . . . , m are linearly independent and b = (b1, . . . , bm)T ∈
Rm. We call problem (P) in the given form the primal problem, and X is the primal
matrix variable.

Corresponding to every primal problem (P), there exists a dual problem (D)

max bT y

(D) s.t.
m∑

i=1

yiAi + S = C,

S º 0,

where y ∈ Rn, S ∈ Sn and (y, S) is the dual variable.
The primal-dual feasible set is defined as

F =



(X, y, S) ∈ Sn

+ ×Rm × Sn
+

∣∣∣∣∣∣
Tr(AiX) = bi, X º 0, i = 1, . . . , m

m∑
i=1

yiAi + S = C, S º 0



 ,

and the relative interior of the primal-dual feasible set is

F0 =



(X, y, S) ∈ Sn

++ ×Rm × Sn
++

∣∣∣∣∣∣
Tr(AiX) = bi, X Â 0, i = 1, . . . , m

m∑
i=1

yiAi + S = C, S Â 0



 .

Under the assumptions that F0 is nonempty and the matrices Ai, i = 1, 2, . . . , m, are
linearly independent, then X∗ and (y∗, S∗) are optimal if and only if they satisfy the
optimality conditions [7],

Tr(AiX) = bi, X º 0, i = 1, . . . , m
m∑

i=1

yiAi + S = C, S º 0, (2.1)

XS = 0.

In path-following Interior Point Methods (IPMs) one follows the central path that is
given as the set of solutions of the perturbed optimality conditions

Tr(AiX) = bi, X Â 0, i = 1, . . . , m
m∑

i=1

yiAi + S = C, S Â 0, (2.2)

XS = µI.

It is proved in [14, 18, 20] that there is a unique solution (X(µ), y(µ), S(µ)) to the central
path equations (2.2) for any barrier parameter µ > 0, assuming that the F0 is nonempty,
and the coefficient matrices Ai, i = 1, . . . , m are linearly independent. Moreover, the limit
point (X∗, y∗, S∗) as µ goes to 0 is a primal-dual optimal solution for the SDO problem.
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3 Neighborhood

Although path-following interior point algorithms follow the central path while the bar-
rier parameter µ is decreasing to 0, they do not stay on the central path exactly. All
the iterates are required to reside in a neighborhood of the central path, while steadily
approaching the optimal set.

One of the popular neighborhoods is the so-called small neighborhood, defined as

NF (θ) :=



(X, y, S) ∈ F0

∣∣∣∣∣∣
∥∥X1/2SX1/2 − µgI

∥∥
F

=

[
n∑

i=1

(λi(XS)− µg)
2

]1/2

≤ θµg



 ,

where θ ∈ (0, 1) and µg := Tr(XS)/n is associated with the actual duality gap. Another
one is the so-called negative infinity neighborhood that is a large neighborhood, defined as

N−
∞(1− γ) :=

{
(X, y, S) ∈ F0 | λmin(XS) ≥ γµg

}
,

where γ ∈ (0, 1).
In theory, IPMs based on the small neighborhood NF (β), e.g., short step algorithms,

have a better iteration complexity bound than algorithms based on large neighborhoods,
e.g., large update algorithms. However, computational experiences shows that large up-
date IPMs perform much better in practice than short step algorithms.

In this paper we explore a variant of large neighborhood path-following IPMs and

prove that its iteration complexity is O(η
√

κ∞n log Tr(X0S0)
ε

), where n is the dimension of
the problem, κ∞ is a parameter associated with the scaling matrix P and ε is the required
precision. The new parameter η is used to defined our new neighborhood N (τ1, τ2, η).
In particular, when η is chosen to be a constant, our new algorithm will have the best

complexity result O(
√

n log Tr(X0S0)
ε

), which coincides with the complexity of short step
IPMs, when we use the Nesterov-Todd (NT) scaling.

In order to introduce the algorithm, we need to investigate a new neighborhood which
combines the classical small and large neighborhoods. Before doing so, we need to intro-
duce some notations.

Let M be a symmetric real matrix, i.e., M ∈ Sn, with the Eigenvalue Decomposition

M = QΛQT =
n∑

i=1

λiqiq
T
i , where Λ is a diagonal matrix with all the eigenvalues of M in

its diagonal, and Q is an orthonormal matrix, i.e., QQT = I, and each column qi of Q
is an eigenvector of M corresponding to the eigenvalue λi. Then, we define the positive
part M+ and the negative part M− of M as

M+ :=
∑

λi≥0

λiqiq
T
i , M− :=

∑

λi≤0

λiqiq
T
i . (3.1)

In particular, for a real number M ∈ S1, M+ denotes its nonnegative part, i.e., M+ =
max{M, 0}, and M− denotes its nonpositive part, i.e., M− = min{M, 0}. Furthermore,
if M ∈ Sn is a diagonal matrix, M+ and M− could be easily constructed by taking the
positive and negative elements separately along the diagonal and leaving the zeros where
they are. Apparently, M = M+ + M−.

In the next, we investigate some algebraic properties of M+ and M−. These properties
paly a crucial role throughout the paper.

First, we show that the triangle inequality holds for the positive part.
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Proposition 3.1 Assume U, V ∈ Sn, then we have

∥∥(U + V )+
∥∥

F
≤

∥∥U+
∥∥

F
+

∥∥V +
∥∥

F
.

Proof. As we see,

U = U+ + U− = U+ +
∑

λi(U)≤0

λi(U)qi(U)qi(U)T

and
V = V + + V − = V + +

∑

λi(V )≤0

λi(V )qi(V )qi(V )T .

According to Lemma B.2, we obtain

λi(U + V ) ≤ λi(U
+ + V +)

for i = 1, . . . , n.
Let I denote the index set satisfying

I := { i | λi(U + V ) ≥ 0} .

Then,

‖(U + V )+‖F =

[∑
i∈I

λ2
i (U + V )

]1/2

≤
[∑

i∈I
λ2

i (U
+ + V +)

]1/2

≤ ‖U+ + V +‖F

≤ ‖U+‖F + ‖V +‖F ,

which completes the proof. ¥

The next lemma reveals that a unitary transformation preserves the Frobenius norm
over the positive part of a symmetric matrix.

Lemma 3.2 Let M ∈ Sn and Q be a unitary matrix. Then we have

∥∥M+
∥∥

F
=

∥∥(QMQT )+
∥∥

F
.

Proof. Because M is similar to QMQT , they have the same eigenvalues. Specially, they
have the same nonnegative eigenvalues. Then the result follows easily. ¥

The next paramount lemma reveals that the positive part of a symmetric matrix
doesn’t exceed, in the sense of Frobenius norm, its positive part after a similar transfor-
mation.

Lemma 3.3 Suppose that W ∈ Rn is a nonsingular matrix. Then, for any M ∈ Sn, we
have ∥∥M+

∥∥
F
≤ 1

2

∥∥∥
[
WMW−1 + (WMW−1)T

]+
∥∥∥

F
.
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To prove this result, first we need to verify an interesting fact about symmetric ma-
trices.

Lemma 3.4 Let M ∈ Sn and λi and mii denote the ith eigenvalue and the ith diagonal
element of M , respectively. Then we have

∑

λi≥0

λ2
i ≥

∑
mii≥0

m2
ii.

Proof. If M is positive semidefinite, then for any eigenvalue of M , we have λi ≥ 0 and
mii ≥ 0. In this case,

∑

λi(M)≥0

λ2
i =

n∑
i=1

λ2
i = ‖M‖2

F ≥
n∑

i=1

m2
ii =

∑
mii≥0

m2
ii.

Let us consider the general case. For any symmetric matrix, there exists a spectral

decomposition such that M = QΛQT =
n∑

i=1

λiqiq
T
i , where Λ is the diagonal matrix with

all of the eigenvalues of M and Q is a unitary matrix, i.e., QQT = I, where qi is the
eigenvector of M corresponding to the eigenvalue λi.

Recall the definitions of M+ and M− as in (3.1), and let m+
ij and m−

ij denote the (i, j)
element for M+ and M−, respectively. By definition,

M = M+ + M− =
∑

λi≥0

λiqiq
T
i +

∑

λi≤0

λiqiq
T
i ,

and M+ and M− are positive and negative semidefinite, respectively. Note the fact that
for any i, m+

ii ≥ 0 and m−
ii ≤ 0, then we can define the set I as

I = {i | m+
ii + m−

ii ≥ 0}.
For any i ∈ I, we have m+

ii ≥ m+
ii + m−

ii ≥ 0, since m−
ii < 0. Further, we obtain

(m+
ii)

2 ≥ (m+
ii + m−

ii)
2, for all i ∈ I.

The proof of the lemma follows by
∑

λi≥0

λ2
i = ‖M+‖2

F ≥
n∑

i=1

(m+
ii)

2 ≥ ∑
i∈I

(m+
ii)

2 ≥ ∑
i∈I

(m+
ii + m−

ii)
2 =

∑
mii≥0

m2
ii. ¥

Now, we are ready to prove Lemma 3.3.

Proof of Lemma 3.3. It is easy to see that ‖M+‖2
F =

∥∥[Λ(M)]+
∥∥2

F
=

∑
λi(M)≥0

λ2
i (M).

Let us consider the right hand side. According to Theorem B.1, there exists a unitary
matrix U such that U(WMW−1)UT = Λ(WMW−1) + N = Λ(M) + N , where N is a
strictly upper triangular matrix. The last equality is due to the similarity of WMW−1

and M . From Lemma 3.2, we know that

1
2

∥∥∥
[
WMW−1 + (WMW−1)T

]+
∥∥∥

F
= 1

2

∥∥∥
[
U(WMW−1 + (WMW−1)T )UT

]+
∥∥∥

F

= 1
2

∥∥∥
[
Λ(M) + N + Λ(M) + NT

]+
∥∥∥

F

=

∥∥∥∥
[
Λ(M) + N+NT

2

]+
∥∥∥∥

F

.
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From Lemma 3.4, we claim

∥∥[Λ(M)]+
∥∥2

F
≤

∥∥∥∥∥
[
Λ(M) +

N + NT

2

]+
∥∥∥∥∥

F

,

which implies ‖M+‖F ≤ 1
2

∥∥∥
[
WMW−1 + (WMW−1)T

]+
∥∥∥

F
. ¥

Proposition 3.1 and Lemmas 3.2 and 3.3 will play a crucial role in proving convergence
and complexity of our new large neighborhood IPM. Analogous to the neighborhood
introduced by Ai and Zhang [2], we define our neighborhood, using the positive part in
(3.1), as

N (τ1, τ2, η) := N−
∞(1−τ2)∩

{
(X, y, S) ∈ F0 :

∥∥[τ1µgI −X1/2SX1/2]+
∥∥

F
≤ η(τ1 − τ2)µg

}
,

(3.2)
where η ≥ 1 and 0 < τ2 < τ1 < 1.

The next proposition indicates that the neighborhood N (τ1, τ2, η) is indeed a large
neighborhood.

Proposition 3.5 If η ≥ 1 and 0 < τ2 < τ1 < 1, then we have

N−
∞(1− τ1) ⊆ N (τ1, τ2, η) ⊆ N−

∞(1− τ2).

Proof. From the definition of N (τ1, τ2, η) it is obvious that N (τ1, τ2, η) ⊆ N−
∞(1 − τ2).

For the first inclusion, we need to prove that

N−
∞(1− τ1) ⊆

{
(X, y, S) ∈ F0 :

∥∥[τ1µgI −X1/2SX1/2]+
∥∥

F
≤ η(τ1 − τ2)µg

}
.

Given that for (X, y, S) ∈ N−
∞(1− τ1), one has

τ1µgI −X1/2SX1/2 ¹ 0, (3.3)

which implies [τ1µgI −X1/2SX1/2]+ = 0, leading to the claimed relationship. ¥

Moreover, if the parameter η ≥ √
n, then the neighborhood N (τ1, τ2, η) is exactly the

negative infinity neighborhood N−
∞(1− τ2).

Proposition 3.6 If η ≥ √
n and 0 < τ2 < τ1 < 1, then we have

N (τ1, τ2, η) = N−
∞(1− τ2).

Proof. To complete the proof, it is sufficient to show that for any (X, y, S) ∈ N−
∞(1−τ2),

we have

N−
∞(1− τ2) ⊆

{
(X, y, S) ∈ F0 :

∥∥[τ1µgI −X1/2SX1/2]+
∥∥

F
≤ η(τ1 − τ2)µg

}
. (3.4)

Because (X, y, S) ∈ N−
∞(1− τ2), it follows that

λmin(X
1/2SX1/2) = λmin(XS) ≥ τ2µg.

Therefore,
λmax([τ1µgI −X1/2SX1/2]+) ≤ (τ1 − τ2)µg.

That implies ∥∥[τ1µgI −X1/2SX1/2]+
∥∥

F
≤ √

n(τ1 − τ2)µg,

which proves that (3.4) holds when η ≥ √
n. ¥
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4 Search Direction

Given an iterate (X, y, S), path-following IPMs generate the next iterate by taking a
Newton step to system (2.2). Let target the point on the central path corresponding to
µ = τµg, where τ ∈ [0, 1] is called centering parameter and µg = X • S/n corresponds to
the actual duality gap. To move from the current point (X, y, S) towards the target on
the central path, we wish we could compute a symmetric search direction by solving the
following linear system

Tr(Ai∆X) = 0,
m∑

i=1

∆yiAi + ∆S = 0, (4.1)

∆XS + X∆S = τµgI −XS.

Although from the second equality we have that ∆S is symmetric, system (4.1) do not
allow a symmetric solution matrix ∆X. Various remedies are proposed since the middle
of 1990’s. The interested readers are referred to the papers [5, 10, 14, 21, 22, 16, 17] for
comprehensive discussions. We use the approach proposed by Zhang [31], who suggested
to replace the last equation in system (2.2) by

HP (XS) = µI, (4.2)

where HP (·) is a symmetrization transformation defined as

HP (M) =
1

2

[
PMP−1 + (PMP−1)T

]
,

for a given matrix M and a given nonsingular matrix P . In particular, if P = I then for
any symmetric matrix M , HI(M) = M . In [31], Zhang observed that if P is nonsingular,
then

HP (M) = µI ⇔ M = µI.

Therefore, the search direction is well defined by the following system

Tr(Ai∆X) = 0, (4.3a)
m∑

i=1

∆yiAi + ∆S = 0, (4.3b)

HP (∆XS + X∆S) = τµgI −HP (XS). (4.3c)

For the choices of P , when P = I, the direction obtained from (4.3) coincides with
the AHO direction [5]. If P = X−1/2 or S1/2, then (4.3) gives the H..K..M directions

[10, 14, 16, 17], respectively. Further, we obtain the NT direction when P = W
−1/2
NT , where

WNT is the solution of the system W−1
NT XW−1

NT = S. Nesterov and Todd [21, 22] prove
the existence and uniqueness of such a solution as WNT = X1/2(X1/2SX1/2)−1/2X1/2. We
refer to the directions derived from (4.3) as the Monteiro-Zhang (MZ) family.

In terms of Kronecker product1, equation (4.3c) can be expressed as

Evec(∆X) + Fvec(∆S) = vec(τµgI −HP (XS)),

1For the definition and properties of Kronecker product, please refer to APPENDIX A.
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where

E =
1

2
(S ⊗ I + I ⊗ S), F =

1

2
(X ⊗ I + I ⊗X). (4.4)

In [26], Todd, Toh and Tütüncü proved that system (4.3) has a unique solution for
any (X, y, S) ∈ Sn

++ ×Rm ×Sn
++ and for the scaling matrix P for which PXSP−1 ∈ Sn.

Actually, this still holds under weaker conditions, as the authors show in their papers [18].
However, to investigate our new large neighborhood path-following algorithm, throughout
the paper, we restrict the scaling matrix P to the aforementioned specific class

P(X,S) := {P ∈ Sn
++ | PXSP−1 ∈ Sn}, (4.5)

where X,S ∈ Sn
++. Apparently, P = X−1/2, S1/2 and W

1/2
NT belong to this specific class.

However, P = I does not. We should mention that this restriction on P is common
for large neighborhood path-following algorithms proposed in [19]. Furthermore, this
restriction on P does not lose any generality, in terms of the solution set of system (4.3),
as Monteiro indicates in [17].

After obtaining the search direction, most classic large neighborhood path-following
algorithms do a linear search to decide how far they move along the search direction while
they reduce the duality gap as much as possible within the neighborhood N−

∞(1− τ2).
In our new algorithm, we decompose the Newton direction into two separate parts

according to the positive and negative parts of τµgI −HP (XS). Thus, we need to solve
the following two systems:

Tr(A∆X−) = 0, (4.6a)
m∑

i=1

(∆yi)−Ai + ∆S− = 0, (4.6b)

HP (∆X−S + X∆S−) = [τµgI −HP (XS)]−, (4.6c)

and

Tr(A∆X+) = 0, (4.7a)
m∑

i=1

(∆yi)+Ai + ∆S+ = 0, (4.7b)

HP (∆X+S + X∆S+) = [τµgI −HP (XS)]+, (4.7c)

where P ∈ P(X,S) and (∆yi)−, ∆X− ∆S− denote the negative part of the search di-
rection, while (∆yi)+, ∆X+, ∆S+ analogously denote the positive part of the search
direction. Again, equations (4.6c) and (4.7c) could be written, in Kronecker product
form, as

Evec(∆X−) + Fvec(∆S−) = vec([τµgI −HP (XS)]−) (4.8)

and
Evec(∆X+) + Fvec(∆S+) = vec([τµgI −HP (XS)]+), (4.9)

respectively.
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Obviously, systems (4.6) and (4.7) are also well-defined and have a unique solution
because P ∈ P(X,S). To get the best step lengths for both of the directions, we expect
to solve the following subproblem

min Tr(X(α)S(α))
s.t. (X(α), y(α), S(α)) ∈ N (τ1, τ2, η)

0 ≤ α− ≤ 1, 0 ≤ α+ ≤ 1,
(4.10)

where α = (α−, α+) denotes the step lengths along the direction (∆X−, ∆y−, ∆S−) and
(∆X+, ∆y+, ∆S+), respectively. Finally, the new iterate is given by

(X(α), y(α), S(α)) := (X, y, S) + (∆X(α), ∆y(α), ∆S(α)) (4.11)

:= (X, y, S) + α−(∆X−, ∆y−, ∆S−) + α+(∆X+, ∆y+, ∆S+).

So far, we have already introduced the most important ingredients of our new al-
gorithm: the newly-defined neighborhood N (τ1, τ2, η) given by (3.2) and the new search
directions based on systems (4.6) and (4.7). Now, we are ready to present a generic frame
for our algorithm.

Algorithm 1 Path-following IPM based on the N (τ1, τ2, η) neighborhood

Input:
required precision ε > 0;
neighborhood parameters η ≥ 1, 0 < τ2 < τ1 < 1;
reference parameter 0 ≤ τ ≤ 1;
an initial point (X0, y0, S0) ∈ N (τ1, τ2, η) with µ0

g = Tr(X0S0)/n;

while µk
g > ε do

(1) Compute the scaling matrix P k ∈ P(Xk, Sk).

(2) Compute the directions
(∆Xk

−, ∆yk
−, ∆Sk

−) by (4.6) and (∆Xk
+, ∆yk

+, ∆Sk
+) by (4.7).

(3) Find a step length vector αk = (αk
−, αk

+) > 0 giving a sufficient reduction of
the duality gap and assuring (X(αk), y(αk), S(αk)) ∈ N (τ1, τ2, η).

(4) Set (Xk+1, yk+1, Sk+1) = (X(αk), y(αk), S(αk)).

(5) Set µk+1
g := Tr(Xk+1Sk+1)/n and k := k + 1.

end while

We have to remark three important facts about the presented algorithm. First of
all, although we suggest to solve problem (4.10) to decide the best step lengths, to solve
this problem is very expensive in general, and thus a ”sufficient” duality gap decrease
obtained for low computational cost is preferred against the ”maximal possible” duality
gap decrease for high computational cost. Furthermore, solving problem (4.10) is also
unnecessary. Even if we do not use the optimal solution of problem (4.10) as the step
lengths, we are still able to achieve polynomial convergence, as it is discussed later.
Second, in spite of the fact that two linear systems (4.6) and (4.7) have to be solved,
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however, the additional cost is very marginal, since both of (4.6) and (4.7) have the same
coefficient matrix. At each iteration, the algorithm only needs to form and decompose
the Schur matrix once, both of which together usually take up 90% of the total running
time, then does the backsolve once for the two right-hand-sides simultaneously. Third, it
seems that it might be expensive to obtain the negative and positive parts in (4.6) and
(4.7). However, we can utilize the strategy, scaling X and S to the same diagonal matrix,
as proposed by Todd, Toh and Tütüncü in [26] to obtain the negative and positive parts
cheaply as a byproduct when computing the NT scaling matrix.

5 Complexity Analysis

In this part, we present the convergence and complexity proofs for Algorithm 1. Recall
that our algorithm is based on the MZ family, we scale problems (P) and (D) as Monteiro
and Todd proposed in [18] in order to analyze the algorithm in a unified way for the class
of matrices P ∈ P(X,S). Furthermore, this scaling procedure simplifies the proofs of the
main results. At the end of this section, after proving some technical lemmas, we present
the most important result w.r.t. polynomial convergence.

5.1 Scaling Procedure

Scale the primal and dual variables in the following way,

X̃ := PXP, (ỹ, S̃) := (y, P−1SP−1). (5.1)

To keep consistency, we have to apply the same scaling to the other data as well, i.e.,

C̃ := P−1CP−1, (Ãi, b̃i) := (P−1AiP
−1, bi), for i = 1, . . . , m.

As mentioned, to investigate the new algorithm, we restrict the scaling matrix to P ∈
P(X,S) as defined by (4.5). It is easy to see that for X,S ∈ Sn

++ one has

P(X,S) := {P ∈ Sn
++ | PXSP−1 ∈ Sn} = {P ∈ Sn

++ : X̃S̃ = S̃X̃}, (5.2)

i.e., we require P to make X̃ and S̃ to commute after scaling, implying that X̃S̃ is sym-
metric, as long as X̃ and S̃ are both symmetric. This requirement on P also guarantees
that X̃ and S̃ can be simultaneously diagonalised (i.e., they have eigenvalue decomposi-
tions with the same Q) according to Proposition B.6.

From now on, we use Λ to denote the diagonal matrix Λ = diag(λ1, λ2, . . . , λn), where

λi for i = 1, . . . , n are the eigenvalues of X̃S̃ with increasing order λ1 ≤ λ2 ≤ · · · ≤ λn. We
should emphasize that the matrices X̃S̃, S̃X̃, XS, SX, X1/2S1/2X1/2 and S1/2X1/2S1/2

have the same eigenvalues, since they are similar.
In the scaled space the primal and dual problems are equivalent to the following pair

of problems:

min Tr(C̃X̃)

(P̃) s.t. Tr(ÃiX̃) = b̃i, i = 1, . . . , m,

X̃ º 0,
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and
max b̃T ỹ

(D̃) s.t.
m∑

i=1

ỹiÃi + S̃ = C̃,

S̃ º 0.

The search direction (∆X, ∆y, ∆S) based on system (4.6) and (4.7) corresponds to the

scaled direction (∆̃X, ∆̃y, ∆̃S) defined as

∆̃X− = P∆X−P, ∆̃y− = ∆y−, ∆̃S− = P∆S−P, (5.3)

∆̃X+ = P∆X+P, ∆̃y+ = ∆y+, ∆̃S+ = P∆S+P. (5.4)

The directions (∆̃X−, ∆̃y−, ∆̃S−) and (∆̃X+, ∆̃y+, ∆̃S+) are readily verified to be solu-
tions of the scaled Newton systems

Tr(Ãi∆̃X−) = 0, (5.5a)
m∑

i=1

(∆̃yi)−Ãi + ∆̃S− = 0, (5.5b)

HI(∆̃X−S̃ + X̃∆̃S−) = [τ µ̃gI − X̃S̃]−, (5.5c)

and

Tr(Ãi∆̃X+) = 0, (5.6a)
m∑

i=1

(∆̃yi)+Ãi + ∆̃S+ = 0, (5.6b)

HI(∆̃X+S̃ + X̃∆̃S+) = [τ µ̃gI − X̃S̃]+, (5.6c)

respectively. To simplify the notation, we use X̃S̃ rather than HI(X̃S̃), since X̃S̃ =

HI(X̃S̃) when the scaling matrix P ∈ P(X,S). In terms of the Kronecker product,
equations (5.5c) and (5.6c) become

Ẽvec(∆̃X−) + F̃vec(∆̃S−) =vec([τµgI − X̃S̃]−), (5.7a)

Ẽvec(∆̃X+) + F̃vec(∆̃S+) =vec([τµgI − X̃S̃]+), (5.7b)

respectively, where

Ẽ =
1

2
(S̃ ⊗ I + I ⊗ S̃), F̃ =

1

2
(X̃ ⊗ I + I ⊗ X̃). (5.8)

Having the search directions, and after deciding about the step lengths, the iterates are
updated as follows:

(X̃(α), ỹ(α), S̃(α)) = (X̃, ỹ, S̃) + (∆̃X(α), ∆̃y(α), ∆̃S(α)) (5.9)

= (X̃, ỹ, S̃) + α−(∆̃X−, ∆y−, ∆̃S−) + α+(∆̃X+, ∆̃y+, ∆̃S+).

The next proposition formalizes the equivalence between the original and the scaled
problems.
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Proposition 5.1 If (X, y, S) and (X̃, ỹ, S̃) are related to each other as specified by (5.1),

(X(α), y(α), S(α)) and (X̃(α), ỹ(α), S̃(α)) are defined by (4.11) and (5.9), respectively,
then we have

1. (X, y, S) ∈ F if and only if (X̃, ỹ, S̃) is feasible for (P̃) and (D̃);

2. (X, y, S) ∈ N (τ1, τ2, η) if and only if (X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η), where Ñ (τ1, τ2, η) is

the neighborhood corresponding to (P̃) and (D̃);

3. X̃(α) = PX(α)P, ỹ(α) = y(α), S̃(α) = P−1S(α)P−1 and µ(α) = µ̃g(α), where

µ̃g(α) = Tr(X̃(α)S̃(α))
n

.

5.2 Technical Results

Before proving the complexity of our algorithm, we have to prove some technical lemmas.
Throughout this section we fix the reference parameter to τ = τ1 and let:

A.1 (∆̃X−, ∆̃y−, ∆̃S−) and (∆̃X+, ∆̃y+, ∆̃S+) be the solutions of (5.5) and (5.6), re-
spectively;

A.2 ∆̃X(α) := α−∆̃X− + α+∆̃X+ and ∆̃S(α) := α−∆̃S− + α+∆̃S+.

From the following lemma, we see that if current iterate is feasible, then the search
directions are orthogonal.

Lemma 5.2 Under A.1 and A.2, we have

Tr(∆̃X(α)∆̃S(α)) = 0.

Proof. The proof is straightforward by using (5.5a), (5.5b), (5.6a), and (5.6b). ¥

Lemma 5.3 If P ∈ P(X,S), then we have

Tr(X̃∆̃S−) + Tr(∆̃X−S̃) = Tr([τ1µ̃gI − X̃S̃]−), (5.10)

and

Tr(X̃∆̃S+) + Tr(∆̃X+S̃) = Tr([τ1µ̃gI − X̃S̃]+). (5.11)

Proof. Using the fact that Tr(M) = Tr(HI(M)) for any matrix M ∈ Rn×n, it is easy to
see that

Tr(X̃∆̃S−) + Tr(∆̃X−S̃) = Tr(X̃∆̃S− + ∆̃X−S̃)

= Tr(HI(X̃∆̃S− + ∆̃X−S̃))

= Tr([τ1µ̃gI − X̃S̃]−).

One can show (5.11) analogously. ¥

Intuitively, we wish to reduce the duality gap as much as possible in every iteration.
The next result, however, shows that Algorithm 1 holds a lower bound for duality gap
reduction. It will be seen in later discussions that this bound derives from feasibility
considerations.
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Lemma 5.4 Let (X̃, ỹ, S̃) ∈ F0, then for every α := (α−, α+) ∈ [0, 1], we have

Tr(X̃(α)S̃(α)) = Tr(X̃S̃) + α−Tr([τ1µ̃gI − X̃S̃]−) + α+Tr([τ µ̃gI − X̃S̃]+).

Furthermore,

µ̃g(α) = µ̃g + α−
Tr([τ1µ̃gI − X̃S̃]−)

n
+ α+

Tr([τ1µ̃gI − X̃S̃]+)
n

≥ (1− α−)µ̃g.

Proof. Using Lemma 5.2 and Lemma 5.3, we have

Tr(X̃(α)S̃(α)) = Tr((X̃ + α−∆̃X− + α+∆̃X+)(S̃ + α−∆̃S− + α+∆̃S+))

= Tr(X̃S̃) + α−(Tr(∆̃X−S̃) + Tr(X̃∆̃S−)) + α+(Tr(∆̃X+S̃) + Tr(X̃∆̃S+))

+Tr(∆̃X(α)∆̃S(α))
= Tr(X̃S̃) + α−Tr([τ1µ̃gI − X̃S̃]−) + α+Tr([τ1µ̃gI − X̃S̃]+).

Then, we have

µ̃g(α) = Tr(X̃(α)S̃(α))
n

= Tr(X̃S̃)
n

+ α−
Tr([τ1µ̃gI−X̃S̃]−)

n
+ α+

Tr([τ1µ̃gI−X̃S̃]+

n

≥ µ̃g − α−
Tr(X̃S̃)

n

= µ̃g − α−
Tr(X̃S̃)

n

= (1− α−)µ̃g,

where the inequality is due to the fact that X̃, S̃ ∈ Sn
+ implies

Tr([τ1µ̃gI − X̃S̃]−) ≥ Tr(−X̃S̃). ¥

The next lemma shows that the negative part of τ1µ̃gI− X̃S̃ is also bounded in terms
of the duality gap at this iteration.

Lemma 5.5 Let (X̃, ỹ, S̃) ∈ F0, then

Tr([τ1µ̃gI − X̃S̃]−) ≤ −(1− τ1)Tr(X̃S̃). (5.12)

Proof. It is easy to see that

[τ1µ̃gI − X̃S̃]− + [τ1µ̃gI − X̃S̃]+ = τ1µ̃gI − X̃S̃.

Taking the trace of both sides, we have

Tr([τ1µ̃gI − X̃S̃]−) = (τ1 − 1)Tr(X̃S̃)− Tr([τ1µ̃gI − X̃S̃]+)

≤ −(1− τ1)Tr(X̃S̃),

which completes the proof. ¥
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The next results, Proposition 5.6 and Corollary 5.7, imply that Algorithm 1 reduces
the duality gap steadily if the feasibility of the iterates can be preserved. From now on,
we introduce the notation β = (τ1 − τ2)/τ1, then we have β ∈ (0, 1) and τ2 = (1 − β)τ1.
Further let us denote

η̂ = max





∥∥∥∥
[
τ1µ̃gI − X̃S̃

]+
∥∥∥∥

F

βτ1µ̃g

, 1





.

It follows that if (X̃, S̃) ∈ Ñ (τ1, τ2, η), then 1 ≤ η̂ ≤ η.

Proposition 5.6 Let (X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η). Then we have

µ̃g(α) ≤ µ̃g − α−(1− τ1)µ̃g + α+
η̂βτ1µ̃g√

n
.

Proof. Using Lemmas 5.3, 5.4 and 5.5, we see that

µ̃g(α) = µ̃g + α−
Tr([τ1µ̃gI − X̃S̃]−)

n
+ α+

Tr([τ1µ̃gI − X̃S̃]+)

n

≤ µ̃g − α−(1− τ1)
Tr(X̃S̃)

n
+ α+

√
n

∥∥∥[τ1µ̃gI − X̃S̃]+
∥∥∥

F

n

≤ µ̃g − α−(1− τ1)µ̃g + α+
η̂βτ1µ̃g√

n
,

where the first inequality is due to the Cauchy-Schwarz inequality and the last inequality
derives from the assumption that (X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η) . ¥

When the parameters τ1 and β are chosen appropriately and all the iterates reside in
the neighborhood Ñ (τ1, τ2, η), we claim that the duality gap is decreasing in O(1−1/

√
n).

Corollary 5.7 Let τ1 ≤ 4
9
, β ≤ 1

4
and (X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η). If α− = α+η̂

√
βτ1
n

, then

we have

µ̃g(α) ≤
(

1− α+
2η̂
√

βτ1

9
√

n

)
µ̃g.

Proof. From Proposition 5.6, it follows that

µ̃g(α) ≤ µ̃g − α−(1− τ1)µ̃g + α+
η̂βτ1µ̃g√

n

≤ µ̃g − 5

9
α−µ̃g + α+

η̂βτ1µ̃g√
n

= µ̃g − α+(
5

9
−

√
βτ1)η̂µ̃g

√
βτ1√
n

≤
(

1− α+
2η̂
√

βτ1

9
√

n

)
µ̃g.
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Here the second inequality holds because τ1 ≤ 4
9

and the last inequality is due to the fact
that η ≤ 1

4
. ¥

Subsequently, we show how to ensure that all the iterates remain in the neighborhood
N (τ1, τ2, η). Although we wish to decrease the duality gap as much as possible, we still

need to control the smallest eigenvalue of X̃(α)S̃(α) in order to stay in the neighborhood

Ñ (τ1, τ2, η).

Lemma 5.8 Suppose P ∈ P(X,S) and χ(α) = X̃S̃+α−[τ1µ̃gI−X̃S̃]−+α+[τ1µ̃gI−X̃S̃]+.

If (X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η), then we have

λmin(χ(α)) ≥ τ2µ̃g + α+(τ1 − τ2)µ̃g. (5.13)

Proof. To prove this lemma, we first consider the situation when λmin(τ1µ̃g − X̃S̃) ≥ 0.

In this case, [τ1µ̃gI − X̃S̃]− = 0. Then,

λmin(χ(α)) = λmin(X̃S̃ + α+[τ1µ̃gI − X̃S̃]+)

= λmin(X̃S̃ + α+(τ1µ̃gI − X̃S̃))

= λmin((1− α−)X̃S̃ + α−τ1µ̃gI)

≥ (1− α−)λmin(X̃S̃) + α−τ1µ̃g

≥ (1− α−)τ2µ̃g + α−τ1µ̃g

= τ2µ̃g + α−(τ1 − τ2)µ̃g.

The second inequality holds due to (X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η).

When τ1µ̃gI − X̃S̃ is negative semidefinite, i.e., [τ1µ̃gI − X̃S̃]− = τ1µ̃gI − X̃S̃ and

[τ1µ̃gI − X̃S̃]+ = 0, we have

λmin(χ(α)) = λmin(X̃S̃ + α−[τ1µ̃gI − X̃S̃]−)
= λmin(Q(Λ + α−(τ1µ̃gI − Λ))QT )
= λmin(Λ + α−(τ1µ̃gI − Λ))
≥ λmin(Λ + (τ1µ̃gI − Λ))
= τ1µ̃g

= τ2µ̃g + (τ1 − τ2)µ̃g

≥ τ2µ̃g + α+(τ1 − τ2)µ̃g.

Now, let us consider the last case, when τ1µgI − X̃S̃ is indefinite. Recall that the

eigenvalues of X̃S̃ are ordered increasingly, i.e., λ1 ≤ . . . ,≤ λn. Assume λk is the first
eigenvalue of X̃S̃ such that τ1µ̃g − λk ≤ 0, e.g., τ1µ̃g − λ1 ≥ · · · ≥ τ1µ̃g − λk−1 > 0 ≥
τ1µ̃g − λk ≥ · · · ≥ τ1µ̃g − λn. It is easy to see that

λmin(χ(α)) = λmin(X̃S̃ + α−[τ1µ̃gI − X̃S̃]−) + α+[τ1µ̃gI − X̃S̃]+)
= λmin(Q(Λ + α−[τ1µ̃gI − Λ]− + α+[τ1µ̃gI − Λ]+)QT )
= min{λ1 + α+(τ1µ̃g − λ1), λk + α−(τ1µ̃g − λk)}
= min{τ2µ̃g + α+(τ1 − τ2)µ̃g, τ1µ̃g}
≥ τ2µ̃g + α+(τ1 − τ2)µ̃g.

Taking all of the possible cases into account, we conclude that (5.13) is true. ¥
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To follow the central path, we also need to make sure that the iterates remain in the
prescribed neighborhood of the central path.

Lemma 5.9 Suppose P ∈ P(X,S)and χ(α) = X̃S̃+α−[τ1µ̃gI−X̃S̃]−+α+[τ1µ̃gI−X̃S̃]+.

If (X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η), then we have
∥∥[τ1µ̃g(α)I − χ(α)]+

∥∥
F
≤ (1− α+)η̂βτ1µ̃g(α). (5.14)

Proof. Assume that the eigenvalues of X̃S̃ are ordered so that

τ1µ̃g − λ1 ≥ τ1µ̃g − λ2 ≥ · · · ≥ τ1µ̃g − λk−1 ≥ 0 ≥ τ1µ̃g − λk ≥ · · · ≥ τ1µ̃g − λn.

Now, let us consider the diagonal elements of Λ + α−[τ1µ̃gI −Λ]− + α+[τ1µ̃gI −Λ]+. For
i = 1, . . . , k − 1, λi + α+(τ1µ̃g − λi) = (1− α+)λi + α+τ1µ̃g, then

τ1µ̃g(α)− (λi + α+(τ1µ̃g − λi)) ≤ τ1µ̃g(α)− µ̃g(α)

µ̃g
(λi + α+(τ1µ̃g − λi))

= µ̃g(α)

µ̃g
(τ1µ̃g − (1− α+)λi − α+τ1µ̃g)

= µ̃g(α)

µ̃g
(1− α+)(τ1µ̃g − λi).

For i = k, . . . , n, λi + α−(τ1µ̃g − λi) ≥ λi + τ1µ̃g − λi = τ1µ̃g ≥ 0, then

τ1µ̃g(α)− (λi + α−(τ1µ̃g − λi)) ≤ τ1µ̃g − τ1µ̃g = 0.

For convenience, let ϕ(α) = [τ1µ̃g(α)I−(Λ+α−[τ1µ̃gI−Λ]−+α+[τ1µ̃gI−Λ]+)]+. Therefore,
together with Lemma 3.2, we have

‖ϕ(α)‖F ≤ µ̃g(α)

µ̃g

(1− α+)
∥∥[τ1µ̃gI − Λ]+

∥∥
F

=
µ̃g(α)

µ̃g

(1− α+)
∥∥Q[τ1µ̃gI − Λ]+QT

∥∥
F

(5.15)

=
µ̃g(α)

µ̃g

(1− α+)
∥∥∥[τ1µ̃gI − X̃S̃]+

∥∥∥
F

≤ (1− α+)η̂βτ1µ̃g(α).

On the other hand, let φ(α) = [τ1µ̃g(α)I − χ(α)]+, then we have

‖φ(α)‖F =
∥∥∥[τ1µ̃g(α)I − (X̃S̃ + α−[τ1µ̃gI − X̃S̃]− + α+[τ1µ̃gI − X̃S̃]+)]+

∥∥∥
F

=
∥∥[τ1µ̃g(α)I − (QΛQT + α−Q[τ1µ̃gI − Λ]−QT + α+Q[τ1µ̃gI − Λ]+QT )]+

∥∥
F

=
∥∥Q[τ1µ̃g(α)I − (Λ + α−[τ1µ̃gI − Λ]− + α+[τ1µ̃gI − Λ]+)]+QT

∥∥
F

=
∥∥[τ1µ̃g(α)I − (Λ + α−[τ1µ̃I − Λ]− − α+[τ1µ̃gI − Λ]+)]+

∥∥
F

≤ (1− α+)η̂βτ1µ̃g(α).

The proof is completed. ¥

The next two lemmas together bound the distance between the current iterate and
our reference point τ1µ̃gI on the central path.
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Lemma 5.10 Let X,S ∈ Sn
++, P ∈ P(X,S), X̃ and S̃ are defined by (5.1), and Ẽ and

F̃ are defined by (5.8). Then,
∥∥∥(F̃ Ẽ)−1/2vec([τ1µ̃gI − X̃S̃]−)

∥∥∥
2

≤ Tr(X̃S̃). (5.16)

Proof. Using Equation (5.8) and Proposition B.6, we find the spectral decompositions

of Ẽ and F̃ to be

Ẽ =
1

2
(S̃ ⊗ I + I ⊗ S̃) =

1

2
QK(Λ(S̃)⊗ I + I ⊗ Λ(S̃))QT

K ,

F̃ =
1

2
(X̃ ⊗ I + I ⊗ X̃) =

1

2
QK(Λ(X̃)⊗ I + I ⊗ Λ(X̃))QT

K ,

where QK = Q ⊗ Q is an n2 × n2 orthogonal matrix. Furthermore, because X̃ and S̃
commute, from Proposition B.5, we have F̃ Ẽ ∈ Sn2

++. Then, we have

(F̃ Ẽ)−1 = 4QK(Λ⊗ I + I ⊗ Λ + Λ(X̃)⊗ Λ(S̃) + Λ(S̃)⊗ Λ(X̃))−1QT
K ,

where the matrix in the middle is diagonal with the properties that the ((i − 1)n + i)th

component is 1/(4λi) and the largest component is 1/(4λ1). On the other hand,

vec(τ1µ̃gI − X̃S̃) = vec(τ1µ̃gI −QΛQT )
= (Q⊗Q)vec(τ1µ̃gI − Λ)
= QKvec(τ1µ̃gI − Λ),

where vec(τ1µI − Λ) is an n2-vector with at most n nonzeros at the ((i − 1)n + i)th

positions which are equal to τ1µ̃g − λi. Finally, we have
∥∥∥(F̃ Ẽ)−1/2vec([τ1µ̃gI − X̃S̃]−)

∥∥∥
2

= (vec([τ1µ̃gI − X̃S̃]−))T (ẼF̃ )−1vec([τ1µ̃gI − X̃S̃]−)

=
n∑

i=1

([τ1µ̃g − λi]
−)2/λi

=
n∑

i=1

(
[√

λi − τ1µ̃g/
√

λi

]+
)2

≤
n∑

i=1

λi

= Tr(X̃S̃),

which leads to inequality (5.16). ¥

Lemma 5.11 Let P ∈ P(X,S), X̃ and S̃ be defined by (5.1), and Ẽ and F̃ be defined

by (5.8). If (X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η) and β ≤ 1/4, then
∥∥∥(F̃ Ẽ)−1/2vec([τ1µ̃gI − X̃S̃]+)

∥∥∥
2

≤ η̂2βτ1µ̃g/3.

Proof. Noticing that λmin(F̃ Ẽ) = λ1 ≥ τ2µ̃g, it is easy to see that
∥∥∥(F̃ Ẽ)−1/2vec([τ1µ̃gI − X̃S̃]+)

∥∥∥
2

≤
∥∥∥(F̃ Ẽ)−1/2

∥∥∥
2 ∥∥∥vec([τ1µ̃gI − X̃S̃]+)

∥∥∥
2

=
∥∥∥(F̃ Ẽ)−1/2

∥∥∥
2 ∥∥∥[τ1µ̃gI − X̃S̃]+

∥∥∥
2

F≤ η̂2β2τ 2
1 µ̃2

g/(τ2µ̃g)
≤ η̂2βτ1µ̃g/3.
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The last inequality follows from the fact that β ≤ 1/4 implies βτ1/τ2 ≤ 1/3. ¥

Now, we apply Lemmas 5.10 and 5.11, together with Lemma B.4, to conclude the
following result.

Lemma 5.12 Let P ∈ P(X,S) and G = Ẽ−1F̃ . If (X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η) and β ≤ 1/4,
then
∥∥∥G−1/2vec(∆̃X(α))

∥∥∥
2

+
∥∥∥G1/2vec(∆̃S(α))

∥∥∥
2

+ 2∆̃X • ∆̃S ≤ α2
−Tr(X̃S̃) + α2

+η̂2βτ1µ̃g/3.

Proof. From (5.7), we have

Ẽvec(∆̃X(α)) + F̃vec(∆̃S(α)) = α−vec([τ1µ̃gI − X̃S̃]−) + α+vec([τ1µ̃gI − X̃S̃]+).

Applying Lemma B.4 to this equality, we obtain

∥∥∥(F̃ Ẽ)−1/2Ẽvec(∆̃X(α))
∥∥∥

2

+
∥∥∥(F̃ Ẽ)1/2F̃vec(∆̃S(α))

∥∥∥
2

+ 2∆̃X • ∆̃S

=
∥∥∥(F̃ Ẽ)−1/2[α−vec([τ1µ̃gI − X̃S̃]−) + α+vec([τ1µ̃gI − X̃S̃]+)]

∥∥∥
2

.

The commutativity of Ẽ and F̃ implies that

(F̃ Ẽ)−1/2Ẽ = (Ẽ−1F̃ )−1/2 = G−1/2, (F̃ Ẽ)1/2F̃ = Ẽ−1F̃ )1/2 = G1/2.

Hence, to complete the proof, it is sufficient to show that

∥∥∥(F̃ Ẽ)−1/2[α−vec([τ1µ̃gI − X̃S̃]−) + α+vec([τ1µ̃gI − X̃S̃]+)]
∥∥∥

2

≤ α2
−

∥∥∥(F̃ Ẽ)−1/2vec([τ1µ̃gI − X̃S̃]−)
∥∥∥

2

+ α2
+

∥∥∥(F̃ Ẽ)−1/2vec((τ1µ̃gI − X̃S̃]+)
∥∥∥

2

≤ α2
−Tr(X̃S̃) + α2

+η̂2βτ1µ̃g,

where the last inequality can be derived from Lemma 5.10 and 5.11. ¥

Using Lemma B.10, we can explore a bound for the second order term ∆̃X(α)∆̃S(α).

Lemma 5.13 Let P ∈ P(X,S) and G = Ẽ−1F̃ . If β ≤ 1/4, α− = α+η̂
√

βτ1
n

and

(X̃, ỹ, S̃) ∈ Ñ (τ1, τ2, η), then we have

∥∥∥HI(∆̃X(α)∆̃S(α))
∥∥∥

F
≤

∥∥∥vec(∆̃X(α))
∥∥∥

∥∥∥vec(∆̃S(α))
∥∥∥ ≤ 2

3

√
cond(G)α2

+η̂2βτ1µ̃g. (5.17)

Proof. Noticing the last inequality in Lemma B.9, we have

∥∥∥HI(∆̃X(α)∆̃S(α))
∥∥∥

F
≤

∥∥∥∆̃X(α)∆̃S(α)
∥∥∥

F

≤
∥∥∥∆̃X(α)

∥∥∥
F

∥∥∥∆̃S(α)
∥∥∥

F

≤
∥∥∥vec(∆̃X(α))

∥∥∥
∥∥∥vec(∆̃S(α))

∥∥∥ .
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From Lemmas 5.2 and B.10, it follows that

∥∥∥HI(∆̃X(α)∆̃S(α))
∥∥∥

F
≤

∥∥∥vec(∆̃X(α))
∥∥∥

∥∥∥vec(∆̃S(α))
∥∥∥

≤
√

cond(G)

2
(
∥∥∥G−1/2vec(∆̃X(α))

∥∥∥
2

+
∥∥∥G1/2vec(∆̃S(α))

∥∥∥
2

)

≤
√

cond(G)

2
(α2

−Tr(X̃S̃) + α2
+η̂2βτ1µ̃g/3).

Substitute α− with α+η̂
√

βτ1
n

and apply Lemma 5.12, then we finally obtain

∥∥∥HI(∆̃X(α)∆̃S(α))
∥∥∥

F
=

√
cond(G)

2
(α2

+η̂2βτ1nµ̃g/n + α2
+η̂2βτ1µ̃g/3)

≤ 2
3

√
cond(G)α2

+η̂2βτ1µ̃g,

observing that Tr(X̃S̃) = nµ̃g. ¥

By the next proposition, we get one of the most important results in this paper, a
sufficient condition to keep all the iterates in the neighborhood N (τ1, τ2, η).

Proposition 5.14 Let (X, y, S) ∈ N (τ1, τ2, η), τ1 < 4/9, β ≤ 1/4, P ∈ P(X,S) and

G = Ẽ−1F̃ . If α− = α+η̂
√

βτ1/n and α+ ≤ 1/(
√

cond(G)η̂2), then

(X(α), y(α), S(α)) ∈ N (τ1, τ2, η).

Proof. By Corollary 5.7 we have µ̃g(α) ≤ µ̃g. Further, using Lemmas 5.8, 5.13 and the
fact that λmin(·) is a homogeneous concave function on the space of symmetric matrices,
one has

λmin(HI(X̃(α)S̃(α))) ≥ λmin(HI(X̃S̃ + α−[τ1µ̃gI − X̃S̃]− + α+[τ1µ̃gI − X̃S̃]+))

+λmin(HI(∆̃X(α)∆̃S(α)))

≥ λmin(F (α))−
∥∥∥HI(∆̃X(α)∆̃S(α))

∥∥∥
≥ τ2µ̃g + α+(τ1 − τ2)µ̃g −

∥∥∥HI(∆̃X(α)∆̃S(α))
∥∥∥

F
.

One can derive from Lemma 5.13 that

λmin(HI(X̃(α)S̃(α))) ≥ τ2µ̃g + α+(τ1 − τ2)µ̃g − 2
3

√
cond(G)α2

+η̂2βτ1µ̃g

≥ τ2µ̃g + α+βτ1µ̃g − α+βτ1µ̃g

= τ2µ̃g

≥ τ2µ̃g(α)
> 0.

This implies that X̃(α)S̃(α) is nonsingular, implying that each of the factors X̃(α) and

S̃(α) are nonsingular as well. By using continuity, it follows that X̃(α) and S̃(α) are also

in Sn
++, since X̃ and S̃ are. Then, we may claim that

λmin(X̃(α)S̃(α)) ≥ λmin(HI(X̃(α)S̃(α))) ≥ τ2µ̃g(α). (5.18)
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Since β ≤ 1/4 and τ1 ≤ 4/9, from Lemma 5.4, we have

µ̃g(α) ≥ (1− α−)µ̃g ≥ (1− η̂
√

βτ1/
√

n)µ̃g ≥ (1−
√

βτ1)µ̃g ≥ 2

3
µ̃g. (5.19)

From Proposition 3.1, we have

ψ(α) :=
∥∥∥[τ1µ̃g(α)I − X̃1/2(α)S̃(α)X̃1/2(α)]+

∥∥∥
F

≤
∥∥∥[HX̃1/2(α)(τ1µ̃g(α)I − X̃1/2(α)S̃(α)X̃1/2(α))]+

∥∥∥
F

=
∥∥∥[HI(τ1µ̃g(α)I − X̃(α)S̃(α))]+

∥∥∥
F

.

Because X̃(α)S̃(α) = (X̃ + α−∆̃X− + α+∆̃X+)(X̃ + α−∆̃X− + α+∆̃X+), we have

ψ(α) ≤
∥∥∥[HI(τ1µ̃g(α)I − X̃S̃ − α−[τ µ̃gI − X̃S̃]− − α+[τ µ̃gI − X̃S̃]+ − ∆̃X(α)∆̃S(α))]+

∥∥∥
F

≤
∥∥∥[HI(τ1µ̃g(α)I − X̃S̃ − α−[τ µ̃gI − X̃S̃]− − α+[τ µ̃gI − X̃S̃]+)]+

∥∥∥
F

+
∥∥∥[−HI(∆̃X(α)∆̃S(α))]+

∥∥∥
F

=
∥∥∥[τ1µ̃g(α)I − X̃S̃ − α−[τ µ̃gI − X̃S̃]− − α+[τ µ̃gI − X̃S̃]+]+

∥∥∥
F

+
∥∥∥[HI(∆̃X(α)∆̃S(α))]−

∥∥∥
F

.

Using the fact that
∥∥∥[HI(∆̃X(α)∆̃S(α))]−

∥∥∥
F
≤

∥∥∥HI(∆̃X(α)∆̃S(α))
∥∥∥

F
and Lemma 5.9,

we can prove

ψ(α) ≤ (1− α+)η̂βτ1µ̃g(α) +
∥∥∥HI(∆̃X(α)∆̃S(α))

∥∥∥
F

.

Further, from Lemma 5.13 and inequality (5.19), one has

ψ(α) ≤ (1− α+)η̂βτ1µ̃g(α) + 2
3

√
cond(G)α2

+η̂βτ1µ̃g

≤ (1− α+)η̂βτ1µ̃g(α) +
√

cond(G)α2
+η̂βτ1µ̃g(α).

Since α+ ≤ 1/(
√

cond(G)η̂2) and η̃ ≥ 1, we have
√

cond(G)α2
+η̂βτ1µ̃g(α) ≤ α+η̂βτ1µ̃g(α).

Thus,
ψ(α) ≤ (1− α+)η̂βτ1µ̃g(α) + α+η̂βτ1µ̃g(α)

= η̂βτ1µ̃g(α)
≤ ηβτ1µ̃g(α)
= η(τ1 − τ2)µ̃g(α).

This, together with (5.18), implies that

(X̃(α), ỹ(α), S̃(α)) ∈ Ñ (τ1, τ2, η).

Consequently, according to Proposition (5.1), one has

(X(α), y(α), S(α)) ∈ N (τ1, τ2, η). ¥
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5.3 Polynomial Complexity

In this section we present our main complexity result. The next theorem gives an
iteration-complexity bound for Algorithm 1 in terms of a parameter κ∞ defined as

κ∞ = sup
{

cond((Ẽk)−1F̃ k) : k = 0, 1, . . .
}

. (5.20)

Obviously, κ∞ ≥ 1.

Theorem 5.15 Suppose that κ∞ ≤ ∞, η ≥ 1, 0 < τ2 < τ1 ≤ 4/9, and β ≤ 1/4 are fixed
parameters. At each iteration, let P k ∈ P(Xk, Sk). Then Algorithm 1 will terminate in

O(η
√

κ∞n log Tr(X0S0)
ε

) iterations with a solution Tr(XS) ≤ ε.

Proof. In every iteration, let α̂ = (
√

βτ1/(κ∞n)/η̂, 1/(
√

κ∞η̂2)). By Proposition 5.14,
we have

(X(α̂), y(α̂), S(α̂)) ∈ N (τ1, τ2, η).

Furthermore, from Lemma 5.7, we also conclude

µ̃g(α) ≤
(

1− 2
√

βτ1

9η̂
√

cond(G)n

)
µ̃g ≤

(
1− 2

√
βτ1

9η
√

cond(G)n

)
µ̃g ≤

(
1− 2

√
βτ1

9η
√

κ∞n

)
µ̃g,

from which the statement of the theorem follows. ¥

From Theorem 5.15, it is easy to present various iteration complexities of Algorithm
1 in terms of some specific aforementioned scaling matrices P .

Corollary 5.16 If the parameter η is a constant, then for Algorithm 1, when it is based

on the NT direction, the iteration-complexity bound is O(
√

n log Tr(X0S0)
ε

). When the

H..K..M scaling is used, then Algorithm 1 terminates in at most O(n log Tr(X0S0)
ε

) itera-
tions.

Corollary 5.17 If the parameter η is in the order of
√

n, then for Algorithm 1, when it

is based on the NT direction, the iteration-complexity bound is O(n log Tr(X0S0)
ε

). When

the H..K..M scaling is used, then Algorithm 1 terminates in at most O(n3/2 log Tr(X0S0)
ε

)
iterations.

From Lemma B.3, Corollaries 5.16 and 5.17 are readily achieved.
As we see, when η is a constant and the NT scaling is used, Algorithm 1 achieves

its best complexity bound which coincides with the best known complexity of IPMs for
SDO. When η is in the order of

√
n, our complexity result is the same as the one for

classical large neighborhood IPMs, since we have shown in Proposition 3.6 that in that
case our neighborhood N (τ1, τ2, η) is exactly the large neighborhood N (1− τ2).
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6 Conclusions and Further Works

As discussed previously, the contribution of this paper is a new large neighborhood path-
following algorithm having the same theoretical complexity bond as the best short-step
path-following algorithm. As usual, the next step would be to discuss issues related
to the implementation of the new algorithm. Notice that finding the step lengths in
(4.10) is relatively expensive. Although we proved the theoretical complexity for fixed
step lengths, looking for efficient heuristics to compute better step lengths in practice
deserves special attention. Another issue is how to efficiently compute the positive and
negative part of the right-hand-side in the Newton equation when not the NT scaling
is used. It is apparent that, due to the high computational cost, explicitly computing
them with eigenvalue decomposition is not desired. To develop computationally efficient
implementation strategies for our large neighborhood algorithm remains the subject of
further research.
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APPENDIX

A Some Properties of the Kronecker product

The Kronecker product of two matrices G ∈ Rm×n and K ∈ Rp×q is denote by G ⊗ K
and is defined to be the block matrix

G⊗K =




g11K · · · g1nK
...

. . .
...

gm1K · · · gmnK


 ∈ Rmp×nq.

With each matrix Q ∈ Rm×n, we associate the vector vec(Q) ∈ Rm×n defined by

vec(Q) = [q11, · · · , qm1, q12, · · · , qm2, · · · , qn1, · · · , qnn]T .

We present some useful properties of the Kronecker products.

1. (G⊗K)vec(H) = vec(KHGT ).

2. (G⊗K)T = GT ⊗KT .

3. G⊗ I is symmetric if and only if G is.

4. (G⊗K)−1 = G−1 ⊗K−1.

5. (G⊗K)(H ⊗ L) = GH ⊗KL.

6. If Λ(G) = diag(λi) and Λ(K) = diag(µj), then Λ(G⊗K) = diag(λiµj). If qi and rj

are the eigenvectors corresponding to the eigenvalues λi and µj of G and K, then
vec(rjq

T
i ) is the eigenvector corresponding to the eigenvalue λiµj of G⊗K.

7. vec(G)Tvec(K) = Tr(GK).

B Some Properties of Square and Symmetric Matri-

ces

Theorem B.1 (Schur Triangulation) Given Q ∈ Rn×n, there is a unitary matrix
U ∈ Rn such that

UQUT = Λ(Q) + N,

where N is a strictly upper triangular matrix.

Proof. For the proof, see Horn and Johnson [11], page 79. ¥
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Lemma B.2 Suppose B = A + τccT , where A ∈ Sn and c ∈ Rn is a unit vector. Let
λi(A) and λi(B) denote the ith largest eigenvalues of A and B, respectively, i.e.,

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn−1(A) ≤ λn(A),

λ1(B) ≤ λ2(B) ≤ · · · ≤ λn−1(B) ≤ λn(B).

Then there exist nonnegative numbers δ1, . . . , δn such that

λi(B) = λi(A) + δiτ, i = 1, . . . , n

with δ1 + · · ·+ δn = 1.

Proof. For the proof, see Golub and Van Loan [9], page 412. ¥

Lemma B.3 Let κ∞ be defined by (5.20), then

• if for all k the scaling matrix P k = (W k
NT )1/2, then κ∞ = 1;

• if for all k the scaling matrix P k = (Sk)1/2, then κ∞ ≤ n
τ2

;

• if for all k the scaling matrix P k = (Xk)−1/2, then κ∞ ≤ n
τ2

.

Proof. For the proof of this lemma, we refer to Monteiro’s paper [19]. ¥

The following technical lemma was first introduced and proved in Zhang [31].

Lemma B.4 Let u, v, r ∈ Rn and Q,R ∈ Rn×n satisfying Qu + Rv = r. If RQT ∈ Sn
++

then

∥∥(RQT )−1/2Qu
∥∥2

+
∥∥(RQT )−1/2Rv

∥∥2
+ 2uT v =

∥∥(RQT )−1/2r
∥∥2

. (B.1)

Proof. For the proof, we refer to Zhang’s paper [16]. ¥

To utilize Lemma B.4, we need to explore the conditions under which F̃ ẼT ∈ Sn
++,

where F̃ and Ẽ is defined by (5.8). In [26] and [16], the authors state the same necessary

and sufficient condition for F̃ ẼT ∈ Sn
++ but in different formats. In our paper, we utilize

the proposition stated in [16]. For those who are interested in the proof, they are advised
to consult the paper by Monteiro [16].

Proposition B.5 Let X,S ∈ Sn
++, X̃ and S̃ be defined by (5.1), and Ẽ and F̃ be defined

by (5.8). Then

(i) Ẽ, F̃ ∈ Sn2

++, and thus F̃ ẼT = F̃ Ẽ;

(ii) F̃ Ẽ ∈ Sn2
if and only if X̃S̃ ∈ Sn;

(iii) F̃ Ẽ ∈ Sn2
implies F̃ Ẽ ∈ Sn2

++.

26



The following results and their proofs can be found in Monteiro [16]. We use his
results throughout this paper.

Proposition B.6 For any P ∈ P(X,S), there exists an orthogonal matrix Q and diag-

onal matrices Λ(X̃) and Λ(S̃) such that:

(i) X̃ = PXP = QΛ(X̃)QT ;

(ii) S̃ = P−1SP−1 = QΛ(S̃)QT ;

(iii) Λ = Λ(X̃)Λ(S̃), and hence X̃S̃ = S̃X̃ = QΛQT .

Lemma B.7 For any Q ∈ Sn, we have

λmax(Q) = max
‖u‖=1

uT Qu, (B.2)

λmin(Q) = min
‖u‖=1

uT Qu, (B.3)

‖Q‖ = max
i=1,...,n

|λi(Q)| , (B.4)

‖Q‖2
F =

n∑
i=1

|λi(Q)|2 . (B.5)

Lemma B.8 For any Q ∈ Rn×n the following relations hold:

max
i=1,...,n

Re[(λi(Q))] ≤ 1

2
λmax(Q + QT ), (B.6)

min
i=1,...,n

Re[(λi(Q))] ≥ 1

2
λmin(Q + QT ), (B.7)

n∑
i=1

|λi(Q)|2 ≤ ‖Q‖2
F =

∥∥QT
∥∥2

F
, (B.8)

λmax(Q
T Q) =

∥∥QT Q
∥∥ = ‖Q‖2 =

∥∥QT
∥∥2

, (B.9)

‖Q‖F ≥
∥∥(Q + QT )/2

∥∥
F

. (B.10)

Lemma B.9 Let W ∈ Rn×n be a nonsingular matrix. Then, for any Q ∈ Sn, we have

λmax(Q) ≤ 1

2
λmax(WQW−1 + (WQW−1)T ), (B.11)

λmin(Q) ≥ 1

2
λmin(WQW−1 + (WQW−1)T ), (B.12)

‖Q‖ ≤ 1

2

∥∥(WQW−1 + (WQW−1)T
∥∥ , (B.13)

‖Q‖F ≤ 1

2

∥∥(WQW−1 + (WQW−1)T
∥∥

F
. (B.14)

Lemma B.10 For any u, v ∈ Rn and G ∈ Sn
++, we have

‖u‖ ‖v‖ ≤
√

cond(G)

2

(∥∥G−1/2u
∥∥2

+
∥∥G1/2v

∥∥
)

. (B.15)
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