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Abstract

After a brief introduction to Jordan algebras, we present a primal-dual interior-point
algorithm for second-order conic optimization that uses full Nesterov-Todd-steps; no line
searches are required. The number of iterations of the algorithm is O(v/N log(N/¢), where
N stands for the number of second-order cones in the problem formulation and e is the
desired accuracy. The bound coincides with the currently best iteration bound for second-
order conic optimization. We also generalize an infeasible interior-point method for linear
optimization [26] to second-order conic optimization. As usual for infeasible interior-point
methods the starting point depends on a positive number (. The algorithm either finds an
e-solution in at most O (N log(NN/¢)) steps or determines that the primal-dual problem pair
has no optimal solution with vanishing duality gap satisfying a condition in terms of (.

1 Introduction

Second-order conic optimization (SOCO) problems are convex optimization problems that min-
imize a linear objective function over the intersection of an affine linear manifold and the Carte-
sian product of a finite number of second-order (or Lorentz or ice-cream) cones. Mathematically,
a typical second-order cone in R’ has the form

n
L:{(ml,:vg;...;xn)GR”:x%ZZm?,xle}, (1)

=2

where n > 2 is some natural number.
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Let I C R™ be the Cartesian product of several second-order cones, i.e.,
K=C'xc?...xLV, (2)

where £/ C R™ for each j, j = 1,2,..., N. A second-order conic optimization (SOCO)
problem has the form
(P) min {CTQ: t Az =b,z €K},

where A € R"™*" ce€ R" and b€ R™, and n = Zjvzl n;. Without loss of generality we assume
that A has full row rank, i.e. rank (A) = m. Due to the fact that I is self-dual, the dual
problem of (P) is given by

(D) max{bTy:ATy+s:c,s€IC}.

SOCO problems are nonlinear convex problems that include linear optimization (LO) prob-
lems, convex quadratic optimization problems and quadratically constrained convex quadratic
optimization problems as special cases, and arise in many engineering problems [10, 32, 34].

On the other hand, SOCO problems are essentially a specific case of Semidefinite Optimization
(SDO) problems. Thus SOCO problems can be solved via the algorithms for SDO problems.
However, it has been pointed out [18] that an interior-point method (IPM) that solves the
SOCO problem directly has much better complexity than an IPM applied to the semidefinite
formulation of the SOCO problem.

Several authors have discussed IPMs for SOCO. Nesterov and Todd [19, 20] considered linear
cone optimization problems in which the cone is self-scaled. They presented a primal-dual IPM
for optimization over such cones. It has become clear later that self-scaled cones are precisely
the cones of squares in Jordan algebras. Adler and Alizadeh [1] studied the relationship between
SDO and SOCO problems and presented a unified approach to these problems. Alizadeh and
Goldfarb [2] and Schmieta and Alizadeh [28, 29] showed that Euclidean Jordan algebras underly
the analysis of IPMs for optimization over symmetric cones. Faybusovich [5] used Euclidean
Jordan Algebras to analyze when the Nesterov-Todd direction is well-defined.

Peng et al. [21, 22] presented primal-dual feasible IPMs by using self-regular proximity functions
for LO, SDO and SOCO. They obtained the complexity bounds O(v/N log(N/e)) for small-
update and O(v/N log N log(N/e) for large-update methods, which are currently the best known
iteration bounds for SOCO problems. Recently, Bai et al. [3] designed a primal-dual feasible
IPM for SOCO problems based on a kernel function. They obtained the same complexity bounds
as in [22].

In so-called feasible IPMs it is assumed that the starting point is feasible and lies in the interior
of the cone. Such a starting point is called strictly feasible. All the points generated by feasible
IPMs are also strictly feasible. In practice, however, it is sometimes difficult to obtain an
initial strictly feasible point. Infeasible IPMs (IIPMs) do not require that the starting point
is feasible, but only that it is in the interior of the cone. IIPMs are used in most practical
implementations. Global convergence of a primal-dual ITPM for LO was first established by
Kojima et al. [8]. Subsequently, Zhang [37], Mizuno [15] and Potra [23, 24] presented polynomial
iteration complexity results for variants of this algorithm. Later, Zhang [38] extended it to SDO.
Rangarajan [25] established polynomial-time convergence of IIPMs for conic programs over
symmetric cones using a wide neighborhood of the central path. Recently, Roos [26] established
a new IIPM which uses full Newton steps. Its complexity bound is O(nlog(n/e)). Later,
Mansouri [11] generalized it to SDO.



The aim of this paper is to generalize the ITPM for LO of Roos to SOCO. Since its analysis
requires a quadratic convergence result for the feasible case we first present a primal-dual (feasi-
ble) IPM with full NT-steps for SOCO and its analysis. To our knowledge this is the first time
that a full NT-step IPM for SOCO is considered. We use the Nesteorv-Todd (NT) direction.
We obtain the same complexity bound as in [3, 22] which is the currently best bound. Then
we extend Roos’s IIPM for LO to SOCO. We prove that the complexity bound of our IIPM is
O(N log(N/e)).

The paper is organized as follows. In Section 2 we briefly review some properties of the second-
order cone and its associated Fuclidean Jordan algebra, focussing on what is needed in the rest
of the paper. We derive some new inequalities that are crucial for the analysis of our algorithms.
Then, in Section 3 we present a feasible IPM for SOCO, and in Section 4 our ITPM. Section 5
contains some conclusions and topics for further research.

Some notations used throughout the paper are as follows. The superscript is used to denote
the transpose of a vector or matrix. R", R/} and R, denote the set of real vectors with n
components, the set of nonnegative vectors and the set of positive vectors, respectively. We
follow the convention of some high level programming languages, such as MATLAB, and use “;”
for adjoining vectors in a column. Thus for instance for column vectors z, y and z we have:

X
(r;y;2)= |y
z

Superscripted vectors such as 27 usually represent the j** block of z. It should be noted that
sometimes the notation 27 refers to the j-th power of . The meaning is always clear from the
context. R™*"™ is the space of all m xn matrices. 8", S and S" | denote the cone of symmetric,
symmetric positive semidefinite and symmetric positive definite n x n matrices, respectively. For
any symmetric matrix A, Amin (4) (Amax (A)) denotes the minimal (maximal) eigenvalue of A.
As usual, ||-|| denotes the 2—norm for vectors and matrices. We denote the trace of a matrix as
Tr(-) and the trace of a vector as tr(-). The Lowner partial ordering >x of R"™ defined by a
cone K is defined by x >k s if x —s € K. The interior of K is denoted as K. We write x > s if
x —s € Ky. P and D denote the feasible sets of the primal and the dual problem, respectively.
In this paper we assume that both the primal problem and its dual are feasible. Finally, E,
denotes the n x n identity matrix.

2 Preliminaries

2.1 Euclidean Jordan Algebras

We recall certain basic notions and well-known facts concerning Jordan algebras. For omitted
proofs we refer to the given references and also to [4, 7, 14].

Definition 2.1 Let J be an n-dimensional vector space over R. A map h : J x J —— J is
called bilinear if for all x, y, z € J and o, B € R:

(i) h(ax+ By, 2) = ah(z, 2) + Bh(y, 2);
(1) h(z, ax+ By) = ah(z, x) + Bh(z, y).



Definition 2.2 Let J be an n-dimensional vector space over R along with a bilinear map o :
(z,y) —xoy e J. Then (J,0) is called a Euclidean Jordan algebra if for all z,y € J:

(i) zoy=youx (commutativity);
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(ii) zo (22 oy) =a?o (zoy), where z*

=z ox (Jordan identity);
(7it) there exists an inner product, denoted by (x,y), such that (x oy, z) = (x,y o z) (associa-
tivity).

We call x o y the Jordan product of z and y. In addition, we assume that there is an element
e € J such that eox = xoe =z for all z € J, which is called the identity element in J. The
Jordan product is not necessarily associative, but it is power associative, i.e., the subalgebra
generated by a single element x € J is associative (Proposition II.1.2 of [4]).

For z € 7, let r be the smallest number such that the set {e, x, 2, ..., azr} is linearly depen-
dent. Then r is called the degree of x and is denoted by deg(z). The rank of 7, denoted by
rank(7), is defined as the maximum of deg(x) over all z € J. An element x € J is called
regular if deg(x) = rank(J).

For an element x of degree d, since {e, x, T2, ..., l‘d} is linearly dependent, there exist real

numbers a;(z), az(z), ..., ag(x) such that
% — ap(2)x 4 ag(2)z? + ..+ (=1)%aq(x) =0,

where 0 is the zero vector. Then the polynomial A —a () A1 +as ()N 24. . .+ (=1)%ag4(z) =0
is called the minimum polynomial of x. The minimum polynomial of a regular element x is called
the characteristic polynomial of x.

The characteristic polynomial is a polynomial of degree r in A, where 7 is the rank of J. The

roots A1, ..., A, of the characteristic polynomial of x are called the eigenvalues (spectral values)
of = [4].

Definition 2.3 (Definition 2.6 in [25]) Let z € J and A1, ..., A\, be the eigenvalues of x.
Then,

(1) tr(z) == A1+ ...+ N\, is called the trace of x.

(77) det (z):= A1 ... A\, is called the determinant of x.

Recall that a nonzero element ¢ of J is called idempotent if ¢> = ¢. A complete system of
orthogonal idempotent is a set {ci, ..., ¢;} of idempotents where ¢; o ¢; = 0 for all i # j and
c1+ ...+ ¢ =e. An idempotent is called primitive if it is not the sum of two other orthogonal
idempotents. A complete system of orthogonal primitive idempotents is called a Jordan frame.
Jordan frames always contain r primitive idempotents, where r is the rank of 7 [4].

The spectral decomposition theorem (Theorem II1.1.2 of [4]) of an Euclidean Jordan algebra J
states that for x € J there exists a Jordan frame ¢y, ..., ¢, (r is the rank of J) and real numbers
AL, ..., Ar (the eigenvalues of x) such that

T =MNc1+ ...+ N\cp.

Using this, for each x € R"™ we can define the following [2]:



1 1
square root: r? = Afer+ ...+ Mep, whenever all \; > 0, and undefined otherwise.
inverse: 1 := )\1_101 + . AT e, whenever all \; # 0, and undefined otherwise.
square: 2 := Xej +... 4+ Ne,.

2 1

Indeed, one has 22 = z oz and (a:%) = . If 7! is defined, then x o 27! = e, and we call x
invertible. Also note that since e has eigenvalue 1, with multiplicity r, tr(e) = r and det(e) = 1.

We consider the set of squares in J:
ICJZ:{.%'Z : xej}

It is well-known that this set is a convex cone with nonempty interior. It is called the cone of
squares in J. Below we denote this cone simply as K. We have z € K (z € K4) if and only if
all eigenvalues of = are nonnegative (positive).

For an element z in 7, let L(z) be the linear map of J defined by

L(z)y ==z oy, (3)

and let
P(z) :=2L(z)* — L (2?), (4)
where L(z)? = L(x)L(x). The map P is called the quadratic representation of 7. Due to

Definition 2.2.(ii) the maps L(x) and L(z?) commute. Hence, also P(z) commutes with L(x).

The automorphism group of (any convex cone) K is defined by
Aut(K) = {g € GI(K) : ¢(K) = K},

where GI(K) is the set of invertible linear maps ¢ from J into itself. The cone K is called
homogeneous if Aut(K) acts transitively on the interior of K, i.e., for all z,y in K there exists
g € Aut(K) such that gx = y. The cone K is symmetric if it is homogeneous and self-dual. The
next two results imply that the cone of squares K = K7 is symmetric.

Proposition 2.4 (Proposition 2.2 in [35] ) For each x € K1, P (z) is an automorphism of
K and P (x) Ky = K. Furthermore, P (x) is positive definite for each x € K.

Proposition 2.5 (Proposition 2.4 in [35]) Suppose that a,b € Ki. Then there exists a
unique x € K4 such that

Moreover,

z = P(a"7) (P(aé)b)é [: P(b3) (P(b‘é)a_l);] .

For the equality of the two different expressions for x we refer to, e.g., [35, Theorem 2.8].

We recall a few more results that will be needed in the sequel. Recall that two matrices are
similar if they share the same set of eigenvalues; in this case, we write A ~ B. Analogously, we
say that two elements z and y in J are similar, denoted as x ~ y, if and only if  and y share
the same set of eigenvalues. For more details we refer to [30].



Proposition 2.6 (Proposition 19 in [29]) Two elements x and y of an Euclidean Jordan
algebra are similar if and only if L(x) and L(y) are similar.

Proposition 2.7 (Corollary 20 in [29]) Let x and y be two elements in K. Then x and y
are similar if and only if P(x) and P(y) are similar.

Proposition 2.8 (Proposition 2.1 in [35] ) The following holds for any z,s € R™.
(i) x is invertible if and only if P (x) is invertible. In this case:
Pz )z t=xz P@x)'=P (z71), P(z)e= P(:c%)m = 22

(i5) If © and s are invertible, then P(z)s is invertible and (P (z)s)” ' = P (z71)s7h

(tit) For any two elements x and s:

(tv) If x,s € Ky, then P(x %) P(S%)CC.

The third identity is far from trivial; it is known as the fundamental formula for Jordan algebras.
Since P(e) = E,, taking s = e it gives

P(z*)=r (z)?.

The fourth item follows from the fundamental formula. The proof is simple. It also uses
Proposition 2.7 and goes as follows:

P(P(s2)z).
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A for our goal very important generalization is the following result. Because of its importance
we include the proof.

Lemma 2.9 (Proposition 21 in [29]) Let x, s, p € K4. Defining & = P(p)x and § =
P(p~1)s, one has

D=

P(32)§ ~ P(z?)s.

Proof:  Since P(P x%)s) ~ P(z)P(s), and similarly, (P(xz) 3) ~ P(Z)P(8), it suffices to
show that P(z)P(8) ~ P(x)P(s). Using the fundamental formula we obtain
)

P(z)P(3) = P(P(p)z)P(P(p~'s) = P(p)P(x)P(p)P(p~")P(s)P(p™") = P(p)P(x)P(s)P(p).
The last matrix is similar to P(x)P(s). Hence the proof is complete. O
The next lemma depends on Proposition 2.8(ii) and the fundamental formula.

Lemma 2.10 (Proposition 3.2.4 in [33]) Let z, s € K4. If w is the scaling point of x and
s, then

(P(ncbs)é ~ P (w)% S,



2.2 Algebraic properties of second-order cones

In this section we briefly review some algebraic properties of the second-order cone £ as defined
by (1) and its associated Euclidean Jordan algebra. For more details and proofs we refer to,
e.g., [3, 17, 22, 28, 31].

For x, s € R", we define the bilinear operator o as follows:

ros:= (sz; r182 + 81%9; ... 5 T1Sy + slxn) = (acTs; r18 + 313?) ,
where = (z2; ... ; ). One easily checks that (R", o) is an Euclidean Jordan algebra, with
the vector
e=(1;0;...;0) €R"
as identity element. In the sequel we denote the vector (z2;...;x,) shortly as z. So x = (z1; ).

One easily verifies that each z € R" satisfies the quadratic equation
22— 2wz + (3:% - ||:EH2> e=0.
This means that A2 — 221\ + <x% - ||:E||2) = 0 is the characteristic polynomial of . Hence the
rank of this Jordan algebra is 2 and the two eigenvalues of = are
Amax (€) = 21+ [|Z], Amin (2) = 21 = [|Z]] . (5)
Therefore, the trace and the determinant of z € R™ are

tr () = Amax () + Amin () = 221,
det (2) = Amax (2) Amin (@) = 27 — || Z]|* .

Lemma 2.11 For all z,s € R"™ one has
(i) tr(zos)=2xTs;
(i) det (zos) < det(z)det(s); equality holds iff T = as, a > 0;

Proof: The relation () is obvious. For (ii) we refer to (its elementary proof in) [22, Lemma
6.2.3]. 0

It is worth pointing out that the fact that (ii) does not always hold with equality is related to
the fact that the second-order cone is not closed under the Jordan product.

The spectral decomposition of vector x € R" is given by
T = )\max (l‘) c1+ )\min (33) Cc2,

where the Jordan frame {c;, o} is given by

1 T 1 —T
=-(1; = =—(1; — ).
“ 2<’uat~u>’ “ 2(’\\@11)

Here by convention ”_—;ﬂ = 0if £ = 0. Note that ¢; and ¢y belong to £ (but not to L£4).



Since z2 = (||z|*;221Z), one easily understands that {c, ¢z} is also a Jordan frame for 22.

This implies that the matrices L(x) and L(z%) commute. See, e.g., [29, Theorem 27]. (It also
confirms Definition 2.2.(i7).)

The natural inner product is given by
(z,s) :==tr(zos)=2xTs, x,5€R"

Hence, the norm induced by this inner product, which is denoted as ||-|| (cf. [2]), satisfies

lolly = v/Tora] = V88 @) = (e @02 + i (0)7)° = V2] )
We proceed with some simple properties of this inner product and the induced norm.
Lemma 2.12 Let x € R" and s € K. Then
Amin (z) tr(s) < tr(zos) < Apax (z) tr(s).

Proof: For any x € R"™ we have Apax(xz)e — x € K. Since also s € K, it follows that
tr ((Amax(z)e — z) o s) > 0. Hence the second inequality in the lemma follows by writing

tr(zos) <tr(Amax()e o s) = Apax(z)tr(e o s) = Apax(z)tr(s),

The proof of the first inequality goes in the same way. O

Lemma 2.13 For all z,s € R"™ one has
(i) |22, < ||| %; equality holds if and only if |z1| = ||Z|;
(13) tr [(x o 3)2} < tr (22 0 s?);

(i) N20 sl% < Amax (2) lslZ < Nl 5]

Proof: Using 22 = <||a:|]2 ;2:1:133) we may write, also using 2ab < a? + b2,

2 4 12 4 _i2)? 4 4
o2 =2 (el + 2o al)?) <2 (ol + (a3 + 121%) ) = alel” =l
which implies (7). Using the Cauchy-Schwarz inequality (in the third line below), we may write

2 2
tr ((a; o 3)2) = |lzos|? = (275)" + ||lz15 + 51Z||* = (z151 +278)" + ||la1s + 512

2
= 2252 + (275)" + 2} ||5]° + 51 || 3||* + dw15177 5

IN

223+ 130 512 + 3 517 + 52 12 + 42y 177 5
= (a3 +11)2) (53 + U51%) + dw1 1275

= [lz||® Is||* + 42151775 = Ltr (22 0 5%,



which proves (7). Finally, using part (ii) we may write
|z os|f=tr((zos)?) <tr(z?o0s?).
Due to Lemma 2.12 part (4) this implies
0 sll < Amas () tr (5%) = Amax (2%) [|5°[| o < Ama () [151]%

which is the first inequality in (ii7). The second inequality in (7i7) follows by applying (6). This
completes the proof. O

As we mentioned before, the Jordan product is not associative. However, remarkably enough,
the trace function is associative (which confirms Definition 2.2.(¢i7)). We have (cf. Proposition
I1.4.3 in [4])

tr((zoy)oz)=tr(zo(yoz)). (7)

An important consequence of the associativity of the trace function is that L(x) is self-adjoint
with respect to the above inner product:

(L(x)y,z) =tr((zoy)oz)=tr((yox)oz)=tr(yo(zroz)) = (y,Lx)z).

Since P(z) is a linear combination of the self-adjoint matrices L(z)? and L(x?), P(x) is self-
adjoint as well (cf. [25, page 1214]).

It easily can be verified that the cone of squares of the current Jordan algebra is given by (1),
and that

x€ LS Apin (2) >0, z€ Ly < Apin(z) > 0.

For each x € R"™, the matrices of L(x) and P(x) with respect to the natural basis will be denoted
with the same notations as the maps themselves. As a consequence we have
|]? 22177

2017 det(z)E,_1 + 2727

€1 x

, Pl)=

T 1E,

The eigenvalues of L(x) are Apax(x) and Apin(x), both with multiplicity 1, and 21, with multi-
plicity n— 2, and those of P(z) are Apax()? and Apin(7)?, both with multiplicity 1, and det(x),
with multiplicity n — 2 (cf. [2, Theorem 3]).! This implies the following two important facts.

(1) z € L (x € L) if and only if L(x) is positive semidefinite (positive definite);
(13) if x € L then P(z) is positive semidefinite; if € £ then P(z) is positive definite.

The first property implies that SOCO is a special case of semidefinite optimization (SDO).

We conclude this section with three other useful results.

Lemma 2.14 Let z,s € Ky. Then we have

(1) Amin (P(x)%S) > Amin (0 5);

!Observe that this means that the determinant of P(z), being the product of its eigenvalues, equals det(x)".



(53) Amax (P@)5) < A (2 0.5).

Proof: The proof of part (¢) of the lemma is far from trivial. We omit this proof and refer to
the literature [25, Lemma 3.5] (see also [28, Lemma 30]). We only show that (i¢) is an almost
immediate consequence of (i). We write

tr(P()'/%s) = tr(P(x)/2s 0 €) = tr(s o P(2)"/%€) = tr(v 0 s), (8)
which means that

Amin (P(2)"28) + Amaz(P(2)"28) = Apin(2 0 8) + Aaz(z 0 8).
Due to (i) this implies (i7). O

Lemma 2.15 Let z,s € K1, u = P(:L‘)%s and z =xo0s € K. Then we have

Proof: Let
A = A\min (P(:v)%s) , A2 = Amax (P(x)%s) , M1 = Amin (x0S), o = Amax (T 0 8).
Then, using Lemma 2.14 and (8) we get
pr <A <A <o, A+Ae=p+pp=tr(zos).

Since these eigenvalues are all nonnegative, there exist nonnegative numbers «, § and  such
that

M=7—a, a=7+a, m=y-—Fp=7+5 0<a<fny.
Note that since w = x o s € K4, the eigenvalue pq is positive, which explains 3 < «y. This also
implies that v > 0. We now have

i il = (- ) ¢ (e )
ot~ = (viB- o2 + (ViR )

Defining

1 2
=2+ 5 — 4
VY —a \/'y+a> (R

the inequality in the lemma reduces to h(a) < h(f3). Since

ey = (vima- )+ (vira- 2

4oy
7 —a2p =

h(a) is monotonically increasing for 0 < a < 7. Since o < 3 < 7, the inequality follows. O

h/(()é): 0SO(<’Y,

Lemma 2.16 (Lemma 2.1 and Lemma 2.2 in [3] ) Let x, s € R". Then

)\min (-T + 3) > )\min (x) + )\min (3) > )\min (JZ) - HSHF .

10



2.3 Rescaling the cone L

When defining the search direction in our algorithm, we need a rescaling of the space in which
the cone lives. Let x, s € L. Since Apin (7) and A (s) are positive, 7! and s~! exist. By
Proposition 2.5 there exists a unique w € £y such that

namely
w= P(s*%) (P(s%x)é [: P(x%) (P(xé)sl>%] . 9)

Due to Proposition 2.4, P(w) is an automorphism. The point w is called the scaling point of
and s (in this order). As a consequence there exists © € £ such that

N |=

0= P(w)_%x = P(w)2s.

We call this Nesterov-Todd (NT)-scaling of R", after the inventors. In the following lemma we
recall several properties of the NT-scaling scheme. Because of their importance we include their
short proofs.

Lemma 2.17 (cf. Proposition 6.3.3 in [22]) Let W = P(w%) for some w € K. Then the
following holds for any two vectors x, s € R™.

(i) tr(WxzoW™ls) =tr(zos);
(ii) det (Wz) = det(w)det(z), det (W~ 's) = det(w')det(s);
(ii) if w is the scaling point of x and s then det (Wxz o W™1's) = det(z)det(s).
Proof: The proof of (i) is straightforward:
tr (Wazo W_ls) =2(Wax)" (W_ls) = 22T WTW s = 2275 = tr(z o s).
For the proof of (ii) we need the matrix
Q =diag (1, —1, ..., —1) € R™", (10)

Obviously, Q?> = E,, where E,, denotes the identity matrix of size n x n. Moreover, det (z) =
27 Qu, for any x. It is well known that WQW = det(w)Q (cf. Proposition 3 in the appendix of
[17]). Hence we may write

det (Wz) = (Wz)" Q(Wz) = 2T WQWz = det(w)z” Qu = det(w)det(z).

In a similar way we can prove det (W~'s) = det(w~!)det(s). Finally, for proving (ii) we use
that if w is the scaling point of z and s then Wz = W~1s. Hence, using Lemma 2.11 and part
(7i) of the current lemma, we write

det (Wz o W_ls) = det (Wx) det (W_ls) = det(w)det(z)det(w')det(s) = det(z)det(s),

where we used that det(w)det(w ') = 1. Hence the proof is complete. O
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2.4 Rescaling the cone £

In this section we show how the definitions and properties in the previous sections can be
adapted to the case where N > 1, when the cone underlying the given problems (P) and (D) is
the Cartesian product of N cones £/, as given in (2).

First we partition any vector = € R™ according to the dimensions of the successive cones £/, so
T = (:cl; ;:cN), 2! € R,

and we define the algebra (R", o) as a direct product of the Jordan algebras (R", o), by defining
xos:= (xlosl; el xNosN).

Obviously, if e/ € £ is the unit element in the Jordan algebra for the j-th cone, then the vector

e:(el;...;eN) (11)

is the unit element in (R", o). Moreover, tr(e) = 2N, which is the rank of (R", o). One easily
verifies that L(-) and P(-) are given by [2]:

L(x) := diag (L (1‘1) e L(xN)),
P (z) := diag (P(:L‘l) s P(:L’N)).

The NT-scaling scheme for the general case can be obtained as follows. For z/, s/ € Yol , let w?
be the scaling point in £7. Then

1 1
P(wj) 2 qd :P(w3)253, 1<j<N.
The scaling point of  and s in K is then defined by

w = (wl; ;wN).
Since P(w7) is symmetric and positive definite for each j, the matrix
P(w) := diag (P (wl) yooy P (wN))

is symmetric and positive definite as well and represents an automorphism of I such that
P(w)s = x. Therefore P(w) can be used to rescale z and s to the same vector

U::(vl;...;vN), (12)

according to (22). Since L(z) := diag (L (IL‘l) , ..., L (ZL'N)), one easily gets
Amax () = Amax (L(x)) = max{)\max (ac]) 1< < N}, (13)
Amin (Z) = Amin (L(2)) = min {Apin (z7) : 1 <j < N}. (14)

Furthermore,

=3t (a9 = 32 Do () s 4] (15)

J=1

[ElrE Z |27 || = Z [ min (27)% 4 Amax (:cj)Q] : (16)

=

N
det H det CUJ H min max (.Z']) . (17)
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3 A feasible full NT-step algorithm

In this section we present a full NT-step feasible IPM and its analysis. The results of this section
will be used later on, when dealing with the purpose of this paper, a full step infeasible IPM.

3.1 The central path for SOCO

We assume that both (P) and (D) satisfy the interior-point condition (IPC), i.e., there exists
(a:o, s0, yo) such that

Az =b, 2 e Kp, AT + % = ¢, " e K.

It is well known that the IPC can be assumed without loss generality [36] . Finding an optimal
solution of (P) and (D) is equivalent to solving the following system [5].

Axr =b, x€eKk,
ATy4+s=¢, sck, (18)

ros=0.

The basic idea of primal-dual IPMs is to replace the third equation in (18), the so-called com-
plementary condition for (P) and (D), by the parameterized equation x o s = pe, with u > 0.
Thus we consider the system

Axr =b, x€ek,
ATy+s=e¢, sek, (19)

T os = pe.

For each p > 0 the parameterized system (19) has a unique solution (z (1), y (1), s (1)) and we
call z (u) and (y (u), s(u)) the p-center of (P) and (D), respectively. Note that at the p-center
we have

T

2 ()7 5 () = gt (2 (1) 05 (1)) = gt (e) = & tr(e) = N,

where we used that tr (e) = 2N. The set of u-centers (with p running through all positive real
numbers) gives a homotopy path, which is called the central path of (P) and (D) [5]. If u — 0
then the limit of the central path exists and since the limit points satisfy the complementarity
condition, the limit yields optimal solutions for (P) and (D) [5].

3.2 The Nesterov-Todd search direction

The natural way to define a search direction is to follow the Newton approach and to linearize
the third equation in (19), which leads to the system

AAz =0,
AT Ay + As = 0, (20)

roAs+soAxr =pe—xos.
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Due to the fact that  and s do not operator commute in general (i.e., L(z)L(s) # L(s)L(x)) this
system not always has a solution. For an example of this phenomenon we refer to [22, Section
6.3.1]. It is now well known that this difficulty can be solved by applying a scaling scheme. This
goes as follows. Let u € ;. Then we have

ros=pe < Pu)roPu)s= pe.

This is an easy consequence of Proposition 2.8.(i7), as becomes clear when using that zos = pe
holds if and only if z = pus™! (cf. Lemma 28 in [29]). Now replacing the third equation in (20)
by P(u)x o P(u~!)s = pe, and then applying Newton’s method, we obtain the system

AAz =0,
ATAy+ As =0, (21)
P(u)z o P(u"')As + P(u)s o P(u)Az = pe — P(u)z o P(u™!)s.

By choosing u appropriately this system can be used to define search directions. In the literature
the following choices are well known: u = 52 u==zx 2 andu=w" 2 where w is the NT-scaling
point of x and s. The first two choices lead to the so-called sz- dlrectlon and xs-direction,
respectively. In this paper we focus on the third choice, which gives rise to the N'T-direction.

For that case we define

= ] ) (22)

and
1 1
P(w) zA P(w)zA
Aim JEAP(w)S, dy = P00 282, Plw)zds (23)
Vi Vi
This enables us to rewrite the system (21) as follows:
Ad, =0, (24)
a7 AY
ds +d, = vt —w. (26)
That substitution of (22) and (23) into the first two equations of (21) yield the equations (24)

and (25) is easy to verify. It is less obvious that the third equation in (21) yields (26). After the
substitution we get, after dividing both sides by u, vo (ds + d,) = e —v2. This can be written as
L(v) (ds + d;) = e — v?. After multiplying of both sides from the left with L(v)~!, while using
L(v)~te = v7! and L(v)~'v? = v, we obtain (26). It easily follows that the above system has
unique solution. Since (24) requires that d, belongs to the null space of A, and (25) that ds
belongs to the row space of A, it follows that system (24) — (26) determines d, and dy uniquely
as the (mutually orthogonal) components of the vector v=! — v in these two spaces. From (26)
and the orthogonality of d, and ds we obtain

|y + a2 = ldal® + [lds 1% = lo™" = 0] % (27)

Therefore the displacements d,, ds (and since A has full row rank, also Ay) are zero if and only
if v=! —v = 0. In this case it easily follows that v = e, and that this implies that =, y and s
coincide with the respective p-centers.

14



To get the search directions Az and As in the original we simply transform the scaled search
directions back to the z- and s-space by using (23):

Az = JEP (W) dy,  As = P (w) " ds. (28)
The new iterates are obtained by taking a full step, as follows.
ry =z + Ax,
Y+ =y + Ay, (29)
s+ = s+ As.
Using definition (22) and Lemma 2.17.(¢), it readily follows that
ptr (v?) =tr(zos). (30)

3.3 Proximity measure

In the analysis of the algorithm we need a measure for the distance of the iterates (z,y,s) to
the current p-center (x(u),y(pn), s(p)). The aim of this section is to present such a measure and
to show how it depends on the eigenvalues of the vector v.

The proximity measure that we are going to use is defined as follows.

d(z,s; 1) =06 (v):= % Hv_l - UHF = % i H(Uj)_l - vJ'H;. (31)
j=1

According to (27) we have ||dy||% + ||ds||% = v — v_IHQF. Therefore, (31) implies that
el < 26(v),  [lds]|p < 26(v). (32)
In the sequel we will often use the following relation:
46 (v)? = v — vilﬂi, =tr (v?) +tr (v7?) — 4, (33)

. 2 . . . .
which expresses & (v)” in the eigenvalues of v? and its inverse.

3.4 The feasible algorithm

The full step feasible algorithm is given in Figure 1. We show below (cf. Lemma 3.3) that after
a full NT-step the duality gap x”'s gets its target value N . Hence, if the algorithm stops then
the duality gap equals Ny, which by then is less than e.

3.5 Analysis of the full NT-step
3.5.1 Feasibility of the full NT-step

Our aim is to find a condition that guarantees feasibility of the iterates after a full NT-step. As
before, let z, s € K4, u > 0 and let w be the scaling point of z and s. Using (22), (28) and (29),
we obtain

[NIES

ry =2+ Az = /uP (w)? (v+dy) (34)
54 =5+ As = /aP (w) "% (v +dy). (35)

15



Primal-Dual Algorithm for SOCO

Input:

Accuracy parameter € > 0;

a barrier update parameter 6, 0 < 0 < 1;

a strictly feasible pair (:UO, 30) and p° > 0 such

that 207 s0 = Nu® and 6 (:UO, Y ,uo) <.
begin

z:=a"; 5:=5"; p:=pu’

while Np > ¢ do

begin
(x, vy, s) = (z,y, s) + (Az, Ay, As);
p=(1—0)p;
end
end

Figure 1: Feasible algorithm.

Since P (w)% and its inverse P (w)_% are automorphisms of K, x4 and sy will belong to K if
and only if v + d; and v 4 ds belong to K. For the proof of our main result in this section,
which is Lemma 3.2, we need the following lemma.

Lemma 3.1 If§(v) <1 then e +d,ods € K. Moreover, if 6(v) <1 then e+ dzods € K.

Proof: Since d, and ds are orthogonal, Lemma A.3 (i) implies that the absolute values of the
eigenvalues of d, o ds do not exceed i |d. + dSH%. Since dy + ds = v~ — v and Hv_l — UH?? =
46(v)? it follows that the absolute values of the eigenvalues of d, o ds do not exceed §(v)2. This
implies that 1 — §(v)? is a lower bound for the eigenvalues of e + d, o ds. Hence, if §(v) < 1 then

e+dzods € K and if 6(v) < 1, then e + d, o ds € K. This proves the lemma. O

Lemma 3.2 The full NT-step is feasible if 6(v) < 1 and strictly feasible if 6(v) < 1.

Proof: For the proof of the first statement we introduce a step length o, 0 < a < 1, and we
define

« «
vy = v+ ady, vy =v+ ads.

We then have vQ = v, vl = v +d, and v? = v,v! = v+ ds. Since d, + ds = v=! — v, it follows
that

0v? = (v+ady) o (v+ ads) = v+ avo (dg + ds) + a?d, o d,
:v2+avo(v’1—v)+a2dmod5:(1—a)v2+ae+a2dxod5.
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Since §(v) < 1, Lemma 3.1 implies that d, o ds > —e. Substitution gives
V¥ 0v? = (1 — a)v® + ae — a’e = (1 — a) (v’ + ae) .

If 0 < o < 1, the last vector belongs to K. Hence we then have det (v$ o v$) > 0. By Lemma
2.11.(4¢) this implies that det (v$) det (vY) > 0, for each v € [0,1). It follows that det (v$) and

det (v2) do not vanish for o € [0,1). Since det (v2) = det (v)) = det(v) > 0, by continuity,
det (v$) and det (vS) stay positive for all o € [0,1). Again by continuity, we also have that
det (vi,) and det (vsl) are nonnegative. This proves that if §(v) < 1 then v + d, € K and

v+ds € K. If 6(v) < 1 then we have d; o ds =x —e and the same arguments imply that
det (v%) det (vY) > 0, for each « € [0, 1], whence v +d, € K4 and v+ ds € K. This proves the
lemma. O

The next lemma shows that the target duality gap is attained after a full NT-step.
Lemma 3.3 Let (z, s) € K and > 0. Then
x£5+ = Nupu.

Proof: Due to (34) and (35) we may write

T 1 T _1 T
oTsy = <\/ﬁP (0)? (v + dx)) <\/ﬁP (w)"2 (v + ds)> — 1 (v+dy)T (v +dy).
Using the third equation in (25) we obtain
(v +do)" (v +ds) = v v+ 0T (dp + dg) + dFds = vTv + 0T (v_l —v) + dld, = eTe + dLd,.

Since d, and d are orthogonal, and e’e = N, the lemma follows. O

3.5.2 Quadratic convergence

In this section we prove quadratic convergence to the target point (z (1), s(u)) when taking
full NT-steps. According to (22), the v-vector after the step is given by:

_ Pwy)?sy
-~ i ] : (36)

P(wy) 2 ay

Vy 1=
Vi

where w is the scaling point of x4 and s.

Lemma 3.4 (Proposition 5.9.3 in [33]) One has

N

vi~ (P+dn)? (v+dy)) "

Proof: It readily follows from (36) and Lemma 2.10 that

N

Viive = P(ws)? sy~ (P (@) sy
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Due to (34), (35) and Lemma 2.9, with p = w2, we may write

N|=
N[

P(21)? sy = puP (P ()2 (v+dy))* P ()72 (v+dy) ~ pP (4 dy)7 (v+ds)
From this the lemma follows. O

The above lemma implies

D=

Vi~ P(v+dy)? (v+ds).

(v+ds) and z = (v+d,) o (v+ds) we obtain the

[N

Now using Lemma 2.15, with u = P (v + dg)
following inequality:

46 (v4)2 = ] = tr(z) + tr(z1) — 2tr(e). (37)

Using d, + d; = v~! — v, we obtain

z=(v4+dy)o(w+ds) =vP+vo(dy+ds)+deods=0v*+vo(v' —v)+d,od,
=e+dyods. (38)

Lemma 3.5 If § := §(v) < 1, then the full NT-step is strictly feasible and

62
d(vg) < m

Proof: Due to (37) and (38) we may write

2 1

2
Z% —2’7% = “2750(2_6)‘)15‘ S)\max (Zil) HZ—GH%*

46 (v)? < ’

F

The last inequality is due to Lemma 2.13 (7i7). Now using that z = e + d, o ds we get

2 2

- dy o dsl|
I e A A
(U+) B )\min (Z) )\min (€+dxod5)

Yet we apply Lemma A.3. Part (i) of Lemma A.3 implies that 1 — §2 is a lower bound for the
eigenvalues of e + d,, o dg, as we already established in the proof of Lemma 3.1. Also using part
(74) of Lemma A.3 we may now write

|de +ds|p  168% 26*

2
< = E
W) s [0 TR0y 1o

which implies the lemma. O

Remark 3.6 [t is possible to get a tight upper bound for 6 (v4). Recall that d, and ds are
orthogonal. Hence tr(d, o ds) = 0. Therefore we have

t =t =2N, t = i N T ] j
r(w) = tr(e) r(w™) ; 1+ Amax (d; o dg) 1+ Amin (dgc ° dg)
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Substitution into (37) yields

2N 2N
1 ~\i (dy o d)
B )< (1) =)
(v+) —i:1<1+)\i(dwods) > 1+ Xi(dg o dy)’

where \; (dy o ds) runs through all the eigenvalues of d ods. To simplify the notation we denote
i (dy o ds) simply as Nj. Then we may write

2 — A -\
45 (vy) Szl+)\i+zl+)\i' (39)
Ai>0 ;<0

We define
Iy:={i: \>0}, I_:={i: \<0}.

Then, since tr(d; ods) =0
==
el el

Let 0 > 0 denote the value of the first sum. Since 1_+’\£1 is convex in A;, and vanishes if \; =0,
we may apply Corollary A.2, which gives

_)\i —0
> e
1+XN " 1+0
The second sum in (39) can be majorized in a similar way. We just write z; = —\; fori € I_.
Since lfizi is conver in z;, and vanishes if z; = 0 we obtain from Corollary A.2 that

_)\i :Z Z3 < o
14+ Z‘>01—zi l1-0

Substituting the above bounds in (39) we obtain

A <0

2
9 —o o 20
GRS prn s el e

which implies that
o

2(1 —o2)
The last expression is monotonically increasing in o. Hence we may replace it by an upper
bound. By using a +b < /2(a? + b?) we get

6 (vy) <

N

2N
1 1 . ) ) )
’ = EZ, Mo )| = &3 (Ao (o )| + [ (o )

=1

\/ (djodj)2+)\ - (djodj>2:1§:deode
Amax | dz © ds min | Qz © s ﬂ4:1 z ©Usl|lp

Iz ]| - 12l - < Q\fz (a2l + i)

= 57 (el ) = 5 e + ol = V230002

IN

S

IN

3\

i
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Substitution of this bound for o yields that

V26(v)?
§(v4) < m'

Can this be done better?

Corollary 3.7 If § (v) < % then &6 (vy) < 8 (v)%. In other words, if 6 (v) < % then the
NT-process converges quadratically fast to the u-center.

3.5.3 Updating the barrier parameter p

In this section we establish a simple relation for our proximity measure just before and after a
p-update.

Lemma 3.8 Let (z,s) € Ky, 2ls = Nu, and § = §(x,s;p). If p© = (1 —0)u for some
0<0 <1, then
2
o2 N _ ) 52
6 (z, s;u™) —2(1_9)4—(1 )6~

Proof: When updating i to u* the vector v is divided by the factor /1 — 6. Hence we may
write
2

2
0v
45(9578;#*)2:"@@1—” _ -
VI—olly | vi-o

Yet we observe that the vectors v and v~! — v are orthogonal. This is due to tr (z o s) = 2N,
which by (30) implies that tr (v?) = 2N. Hence we have

tr(vo (v ! —v)) =tr(e—0v?) =tr(e) —tr (v’) = 2N — 2N = 0.

+\/1—«9(v71—v)

F

Therefore we may proceed as follows:

2 2
46 (z, s; ,u+)2 = % [ol|7 + (1 —6) | UH; _ N +4(1 — )8%.

1 1-6

This implies the lemma. O

3.6 Iteration bound

We conclude this section with a theorem that gives us the complexity of the algorithm in Figure 1.
Because the quadratic convergence lemma (i.e., Lemma 3.5) and, when we replace 2N by n, the
lemma describing the effect of a barrier parameter update (i.e., Lemma 3.8) are exactly the
same as in [26] (cf. [26, Lemma 2.2] and [26, Lemma 2.3]), and also after a full NT-step the
target value of the duality gap is attained, we can use the same arguments as in [26] to prove
the following result.

Theorem 3.9 If 0 = ﬁ, then the number of iterations of the feasible primal-dual path-
following algorithm with full NT-steps does not exceed

N 0
2V N log i
€
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4 An infeasible full NT-step algorithm

In this section we present our infeasible interior-point algorithm. As has become usual for
infeasible IPMs we start the algorithm with a triple (2%, 4", s%) and u® > 0 such that

xO = Ceu yO =0, 80 = Ce7 :U’O = Cz) (40)
where ( is a (positive) number such that
z* + 5" =k Ce, (41)

for some optimal solutions (z*, y*, s*) of (P) and (D). The algorithm generates an e-solution of
(P) and (D), or it establishes that there do not exist optimal solutions satisfying (41).

The initial values of the primal and dual residual vectors are denoted as rl? and 70, respectively.
So we have

Tg =b— A$0, (42)
0 =c— ATy0 — 0. (43)

C

In general we have rg # 0 and 70 # 0. In other words, the initial iterates are not feasible.
The iterates generated by the algorithm will (in general) be infeasible for (P) and (D) as well,
but they will be feasible for perturbed versions of (P) and (D) that we introduce in the next
subsection.

4.1 Perturbed problems
For any v with 0 < v < 1 we consider the perturbed problem (P,), defined by
(P,) min{(c— VT‘S)TJ,‘ cb—Ax=vr), x € /C} ,
and its dual problem (D,), which is given by
(D) max{(b— m“g)Ty ce—Aly—s=uvr s¢e /C} .

Note that these problems are defined in such a way that if (z,y, s) is feasible for (P,) and (D,),
then z € K and s € K and

ry = b— Az = vry,
re:=c—Aly — s =uvrl.

In other words, the residual vectors for the given triple (z,y,s) with respect to the original
problems (P) and (D) are vr) and vr?, respectively.

If v = 1 then x = 2 yields a strictly feasible solution of (P,), and (y,s) = (3°,s%) a strictly
feasible solution of (D, ). This means that if v = 1 then (P,) and (D,) satisfy the IPC.

Lemma 4.1 Let (P) and (D) be feasible and 0 < v < 1. Then the perturbed problems (P,) and
(D) satisfy the IPC.
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Proof: Let T be a feasible solution of (P) and (7, §) a feasible solution of (D). Then AZ = b
and AT+ 5 = ¢, with € K and 5 € K. Consider

r=01-v)z+va® y=0-v)g+vy’, s=0-v)s5+vs
Since z is the sum of the vectors (1 — 1)z € K and va® € K we have = € K. Moreover

b—A:U:b—A[(l—V)E—H/:UO] =b—(1-v)b—vAz’ = v(b— Az®) = v},

showing that z is strictly feasible for (P,). In precisely the same way one shows that (y,s) is
strictly feasible for (D, ). Thus we have shown that (P,) and (D, ) satisfy the IPC. O

It should be mentioned that the problems (P,) and (D, ) have been studied first in [16], and
later also in [6].
4.2 The central path of the perturbed problems

Let (P) and (D) be feasible and 0 < v < 1. Then Lemma 4.1 implies that the problems (P,)
and (D,) satisfy the IPC, and therefore their central paths exist. This means that the system

b— Az = v, x ek (44)
c— ATy — s = vr?, seK (45)
xos = pue.

has a unique solution, for every p > 0. This unique solution is denoted as (z(u, v), y(u, v), s(u, v)).
These are the p-centers of the perturbed problems (P,) and (D,). In the sequel the parameters
w and v will always be in a one-to-one correspondence, according to

p=wvp’ =vi?

and, therefore, we feel free to denote (z(u, v), y(u, v), s(u, v)) simply as (z(v), y(v), s(v)).

Due to the choice of the initial iterates, according to (40), we have 0 0 s° = ple. Hence 2 is

the u%-center of the perturbed problem (Py) and (y°, s") the u’-center of (D1). In other words,
(x(1), y(1), s(1)) = (2°,5°, 5°).

4.3 An iteration of our algorithm

We just established that if v = 1 and u = u°, then x = 2° and (y, s) = (yo, 30) are the u-center
of (P,) and (D,) respectively. These are our initial iterates.

We measure proximity to the p-center of the perturbed problems by the quantity 6 (x, s; u) as
defined in (31). So, initially we have § (x, s; u) = 0. In the sequel we assume that at the start of
each iteration, just before the p-update, 0 (z, s; u) is smaller than or equal to a (small) threshold
value 7 > 0. Since we then have ¢ (x, s; u) = 0, this condition is certainly satisfied at the start
of the first iteration, and also z7's = Nu0.

Now we describe one (main) iteration of our algorithm. Suppose that for some v € (0, 1] we have
x, y and s satisfying the feasibility conditions (44) and (45) for u = vu®, and such that z7's = Np
and ¢ (z, s; 1) < 7. We reduce v to vt = (1 — 0) v, with 6 € (0, 1), and find new iterates x4, y+
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and s, that satisfy (44) and (45), with v replaced by v and u by u* = v+ pu® = (1 — 6) p, and
such that z7s = Nyt and 6 (x4, s;ut) < 7.
One (main) iteration consists of a feasibility step and a few centering steps. The feasibility
step serves to get iterates (x¢, yr, s¢) that are strictly feasible for (P,+) and (D,+), and such
that 6 (zy,sp;pu™) < 1/v/2. In other words, (xf, yg, sy) belongs to the region of quadratic
convergence of the pT-center (z (v7), y (v™), s(v™)) of (P,+) and (D,+). Hence, because the
NT-step is quadratically convergent in that region, a few centering steps, starting at (x FryYfs S f)
and targeting at the pu*-centers of (P,+) and (D,+) will generate iterates (., y+, sy) that are
feasible for (P,+) and (D,+) and that satisfy § (x4, sy;u™) < 7. Since each iteration reduces
the duality gap 27's with the factor 1 — 6, and the size of the residual vectors are reduced with
the same factor, given 6 we can easily compute the number of main iterations that is necessary
to satisfy the stopping criteria in the algorithm. If our aim is to get the duality gap and the
norms of the residual vectors less than or equal to some small number £ then this number is
given by

L, max {28 [l e}

— log )

0 €
During the centering steps the iterates stay feasible for (P,+) and (D,+). So from Section 3 we
precisely know how to analyze these steps. If § (z, s7; u™) < 1/+/2 then by Corollary 3.7, after
k centering steps we will have iterates (x4, y4, s4) that are still feasible for (P,+) and (D,+)
and such that

(46)

5 (s, 54, %) < (\}5)2

From this one easily deduces that § (x4, s4; u™) < 7 will hold after at most

1
10g2 <10g2 7_2) (47)

centering steps.

It follows from this that we only need to define and analyze the feasibility step. This is the most
difficult part of the analysis. In essence we follow the same chain of arguments as in [26], but
at several places the analysis is different and more elegant.

In the rest of this section we describe the feasibility step in detail. The analysis will follow in
subsequent sections. Suppose we have strictly feasible iterates (z,y,s) for (P,) and (D, ). This
means that (x,y, s) satisfies (44) and (45), with y = v¢%. We need displacements Afz, Afy and
A's such that such that

Ty =x+ Az,
yr =y + Ay, (48)
sf =s+ Afs,

are feasible for (P,+) and (D,+). One may easily verify that (xf,ys,ss) satisfies (44) and (45),
with v replaced by v+ and p by u* = vtu® = (1 — 6) p, only if the first two equations in the
following system are satisfied.
ANz = Gur),
ATA y + A s = 6ur? (49)
P(uw)z o P(u"H)ASs + P(u™ s o P(u)Ax = (1 — O)pe — P(u)z o P(u™})s,
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The third equation is inspired by the third equation in the system (21) that we used to define
search directions for the feasible case, except that we target at the p*-centers of (P,+) and
(D,+). As in the feasible case, we use the NT-scaling scheme to guarantee that the above
system has a unique solution. So we take u = w_%, where w is the NT-scaling point of x and s.
Then the third equation becomes

P(w) 2z 0 P(w)2Afs + P(w)2s o P(w) 2 Az = (1 — O)pe — P(w) 2z 0 P(w)2s.  (50)

Due to this choice of u the coefficient matrix of the resulting system is exactly the same as in
the feasible case, and hence it defines the feasibility step uniquely.

By its definition, after the feasibility step the iterates satisfy the affine equations in (44) and
(45), with v = v. The hard part in the analysis will be to guarantee that xy, sy € K4 and to
show that the new iterates satisfy & (zy,ss;ut) < 1/v/2.

4.4 The infeasible algorithm

A formal description of the algorithm is given in Figure 2. Recall that after each iteration the
residuals and the duality gap are reduced by the factor 1 — 8. The algorithm stops if the norms
of the residuals and the duality gap are less than the accuracy parameter ¢.

4.5 Analysis of the feasibility step

Let z, y and s denote the iterates at the start of an iteration with 27s = Ny and 6 (x, s; ) < 7.
Recall that at the start of the first iteration this is certainly true, because 2070 = N p® and
) (xo, s0; ,uo) = 0.

We scale the matrix A and the search directions, just as we did in the feasible case (cf. (23)),
by defining

Lie JiAP (o). af o P@EAe o P A
A= JpAP (w)2, df: v dl - o (51)

with w denoting the scaling point of x and s, as defined in (9). With the vector v as defined
before (cf. (22)), the equation (50) can be restated as

[N

Vo (d£ + d§) = (1—0)pue — pv’.
By multiplying both sides of this equation from left with ' L(v)~! this equation gets the form
df +df =1 -0t —w.
Thus we arrive at the following system for the scaled search directions for the feasibility step:
AdS = our),
lflTAfy +dl = Lt91/P (w)
p VH

[SIE

0, (52)

df +dl =1 -0t —w.
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Primal-Dual Infeasible IPM

Input:
Accuracy parameter € > 0;
barrier update parameter 6, 0 < 6 < 1;
threshold parameter 7 > 0;
parameter ¢ > 0.
begin
20 = Ce, s :=Ce, y° :=0; pu¥ = ¢Z
while max (27's, |||, ||Ir¢||) > € do
begin
feasibility step:
(x,y, s) = (z,y, s)+ (Afl‘, Ay, Afs);
update of y and v:
v:=(1-0)v;
poi= (1= 0)u;
centering steps:
while 0 (z, s, u) > 7 do
begin
(z, y, s) = (z,y, s)+ (Az, Ay, As);
end

end
end

Figure 2: Infeasible full NT-step algorithm

To get the search directions Afz and Afs in the z- and s-space we use (51), which gives
Az = yuP(w)2 df, Afs= /uP(w) 2 dl. (53)
The new iterates are obtained by taking a full step, as given by (48). Hence we have
acf::c—&—Afa::\/ﬁP(w)% (v +df), (54)
Sf:s—i—Afs:\/ﬁP(w)_% (v +d?). (55)
From the third equation in (52) we derive that
(w4d)o(w+dl)=v +vo [(1—0)v" —v] +dlodf =(1—0)e+dlodl. (56)

As we mentioned before the analysis of the algorithm as presented below is much more difficult
than in the feasible case. The main reason for this is that the scaled search directions df and
df are not (necessarily) orthogonal.
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4.5.1 Feasibility of the feasibility step

By the same arguments as in Section 3.5.1 it follows from (54) and (55) that z; and sy are

strictly feasible if and only if v + dﬁ,ﬁ and v + dg belong to K. Using this we have the following
result.

Lemma 4.2 The iterates (z/,y/, s') are strictly feasible if (1 — 0)e + dlodl e Ky

Proof: Just as in the proof of Lemma 3.2 we introduce a step length o, 0 < o < 1, and we
define

v¢ =v+adl, v¥=v+adl.
We then have v0 = v, vl = v +df and V0 = w0l = v+ d!. Since df + df = (1—0)w ! —w, it
follows that

v ov® = (v+adl) o (v+adl) =v? +avo (d +dl) + o?df o df

T S

=vi4+avo [(1- i v] + a?d; ody = (1 —a)v? + a(l — O)e + a?d, o ds.
The hypothesis in the lemma implies that dZ o df = —(1 — #)e. Substitution gives
V¥ ov =k (1 —a)v® + a(l —0)e — (1 —0)e = (1 — @) (v’ + a(l — O)e) . (57)

Since v? € K4 and a1 — 0)e € K, we have v? + a(1 — f)e € K4. Hence, if 0 < a < 1, then
(1 —a) (v*+a(l—0)e) € Ky. Due to (57) this implies that v$ o v? € K4. Therefore, all
eigenvalues of v o v are positive, whence we have det (v$ o v?) > 0, for each a € [0,1). By
Lemma 2.11.(i7) this implies that det (v$)det (v$) > 0, for each o € [0,1). It follows that

S

det (v2) and det (v2) do not vanish for a € [0,1). Since det (vQ) = det (v?) = det(v) > 0,

€T
by continuity, det (v%) and det (vY) stay positive for all a € [0,1). Again by continuity, it
follows that det (v}) and det (v}) are nonnegative. Since (57) also holds if & = 1, we have
det (vg) det (v2) > 0 for v = 1. Hence it follows that det (v;) and det (v}) are positive. Since
det (v%) and det (v$), do not vanish for all o € [0, 1], it follows that the eigenvalues of v% and
v¢ stay positive for all a € [0,1]. In particular, the eigenvalues of v! and v! are positive, which

means that v + df and v + df belong to K. Hence the proof of the lemma is complete. O

It is clear from the above lemma that the feasibility of the iterates (J:f Lyl st ) highly depends
on the eigenvalues of the vector dﬁ; o dg .

It will be convenient to denote the 2N eigenvalues of a vector x € R™ as \j(z), 1 < i < 2N.
Then it follows from Lemma 4.2 that (a:f Lyl st ) is strictly feasible if

(1—0)+N(dlodl)>0, i=1,...,2N.
We assume below that this inequality holds.

4.5.2 Proximity after the feasibility step

We proceed by deriving an upper bound for (5(xf, st pt). Let wy be the scaling point of z; and
sy. When denoting the v-vector after the feasibility step, with respect to the pT-center, as vy,
according to (22) this vector is given by

P(wy) 2a;

RV

:P<wf>8f]
p(l—10)
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Lemma 4.3 One has )
L 1
VI—fus ~ [P (v+d£>§ (Hdﬁﬂ "

Proof: It follows from (36) and Lemma 2.10 that

[N

(=0 vy = P(wp)? sy~ (Pag)? sf)

Due to (54), (55) and Lemma 2.9, with p = w2, we may write

P(.If)%Sf = uP (P(w)% (v—kdgg))éP(w)é <v+d£) ~ pP (U‘f‘d;{)é (U+d£>-

Thus we obtain .
M(1—9)uf~\/ﬁ[P(v+d£) (v+d£)]2.

From this the lemma follows. O

[NIES

The above lemma implies that

1
o pfvtd) (vrd
! vi—0) \vi—o)’

f
In the sequel we denote &(z/,s; 1) also shortly by 6(vf). By Lemma 2.15 (with 2 = 2t

1-6°
5= %, u= P(x)%s and z = x o s) this implies the inequality below:
46 (vf)? = va —v;lHi = ‘ ur —u"2 i < ‘ 22— 272 i
Since d; + ds = (1 —§)v~! — v, one has
(1-0)z=(v+dy)o(v+ds) =v*+vo(dy+ds)+dyods
=v?+vo((1-0)w ' —v)+dyods=(1—0)e+d,ods.

So we have

43 (0p)? < [ - 23 Z’F —tr(s) + (=) — %e(e), z—et dfiZS. (58)

In what follows we denote the eigenvalues \;(dy o ds) of dy o dg simply as A;, 1 <i < 2N, and A
will denote the vector in R?Y with the eigenvalues \; as entries (in some arbitrary order).

We can prove the following result. In this result ||A||; denotes the 1-norm of A, i.e., the sum of
the absolute values of the eigenvalues A;.

Lemma 4.4 If (1 —6)e+ dfodl € Ky, then
re - (1A
16(07) _f<1_0,

1
J=1-t+— -2 <L (59)

where
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Proof: Since the eigenvalues of z are 1+ \;/(1 — 6), it follows from (37) that

2N N . 2N Y
45(”f)2§2<1+1_10+1+ x _2> :Zf<1—29>’
=1 =1

1-0

One easily verifies that f(t) < f(|t|), for all ¢t € (—1,1). Hence

)

Since the function f is convex and f(0) = 0 we may apply Corollary A.2, with z; = 0
which gives the inequality in the lemma. g

An upper bound for ||Al|; can be obtained as follows.

2N N
A = D2 i (@ o) = 37 ([Amax (@) 0 @) |+ Ain (@) 0 @))])
. 2

1= =

<ﬁi¢mw@m@f+mﬂmmﬂ) fzwf ay|
j=1

N | | 1 &
<y vl v, = 3 (loo o)
()

In the present case, contrary to the case of a feasible method, the scaled search directions dﬁz
and df; are not orthogonal. As has become clear in the case of LO, this fact complicates the
analysis drastically [26]. To deal with this complication it will be convenient to define

Then it follows from Lemma 4.4 that
2v/2w
e )<f< ;)). (60)

Because we need to have d(v/) < 1/1/2, it follows from (60) that it suffices to have

2
f 2v2w(v) <o
1—0
One may easily verify that f(¢) <2 holds if 0 <t < V3 — 1~ 0.732051. Hence we should find
6 such that it is positive (and as large as possible) and such that it satisfies
2
g1 W2

— ~1—3.8637Tw(v)?,
< o1 (v)

28



which certainly holds if
0 <1—dw(v)?. (61)
It should be noted that by its definition w(v) depends on df and df , and hence on 6 itself. In

the next section we investigate this dependence.

4.5.3 Upper bound for w(v)

Recall that the scaled search directions d?; and d{ are determined by the system (52). Let us to
define the linear space S as follows:

S:={¢eR" : A =0}.
It is clear from the first equation in (52) that the affine space
{€¢eR" : At = 01/7"8},

equals d£ + &. Moreover, from linear algebra we know that the orthogonal complement of the
linear space S is the row space of A, i,e,

L={ATY : v e R™}.
From the second equation in (52), it is clear that the affine space
1 1 _
—OvP (w)zr0 4+ ATY : v e Rm}
Lt

equals dl + S+, Since SNSt = {0}, the spaces dl + S and d! + St meet in a unique point.
We call this point g. So ¢ is uniquely determined by the system

Aq = GVTE, (62)
ATY 4+ ¢ = Loop
N (w)

N\»—-

re. (63)

Lemma 4.5 One has

10()? < a3+ (lallp + /AT~ 072500) 202N

Proof: To simplify the notation in this proof we denote r» = (1 — #)v~! —v. Using exactly the
same arguments as in the proof of Lemma 4.6 in [26] one shows that

2 2
duo(0)? = [ df = llg = i3+ llal} (64)

1

From this moment on the proof differs, because in [26] we had r = v=" — v. We may proceed

as follows. One easily sees that ¢ = 0 only if d£ and déc are orthogonal, and then the lemma

is trivial because then Hd!gH% + de;”zF = ||df + df;HQF = ||7||%. Therefore, we may assume that
g # 0. The right-hand side in (64) is maximal if —r is a nonnegative multiple of ¢, i.e., if
r=—|7|rq/ |lq||p- Thus we derive from (64) that

+llalF = lallf + (lallp + lrll)* (65)

s[5 |
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Recall that v is the v-vector of vectors z and s that are feasible for (P,) and (D,). These vectors
are obtained after a full-NT step for a feasible problem, whence y|[v||7 = 227s = 2Nu. The
latter means that v is orthogonal to v — v~!. So we may write

IrllF = (11 = )07 = o[ = |1 = @™ —v) = 0] = (1= 0)°[[o™" — vl + 6> o7
Since [[v= — o||% = 46(v)2 and [[v]|% = 2N, we obtain
7|2 = 4(1 — 6)25(v)2 + 20°N.

Substitution into (65) yields the lemma. O

4.5.4 Upper bound for ||q||

N[

Recall that the vector ¢ is determined by the equations (66) and (67), where A = \/uAP (w)
with w denoting the scaling point of x and s, as defined in (9). So we have

)

-

VIAP (w)2 q = Ovr}, (66)
w)? AT _ L vP (w)2 2.
ViP (w)2 AY9 4 ¢ \/ﬁH P(w)2r, (67)

D=

We proceed by proving the following upper bound for ||¢|| 5.

Lemma 4.6 If (z°, y°, s°), (z*, y*, s*) and ¢ are as defined in (40) and (41) then

lallp < 6v/vtr (w? + w=2). (68)

Proof: To keep de notation simple we use the notations

ol

D:=P(w)2, Ty = vy, re = Ourd.
Then we have

VIAD g =1y,

1
nwDATE + g = —Dr..
Vi i

Exactly the same system occurs in [26, Section 4.4]. There it has been shown (cf. [26, eqn.
(4.14)]) that it implies the following inequality:

)12 _ 112

\/ﬁ\ICJHF§9V\/HD(8°—S e+ 1D~ (@ =24, (69)
where we used ||| = v/2|.|. Since z* is feasible for (P) we have 2* = 0. Also s* € K. Hence
we have 0 < z* <k z* + s* <k (e. In a similar we derive for s* =, 0 that 0 < s* <k Ce. It

therefore follows that

0 <k 2z’ —z* <k Ce, 0=k s”—s* <k Ce. (70)
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We first consider the term HD (50 — s*) H2 Using that D is self-adjoint with respect to the inner
product (.,.) and D?e = P (w) e = w?, we may write

(D (S —5"),D(s" = 57)) = (D* (s" = 5) ,s" — 5)

¢ s*),Ce) — <D2 (so —s"), Ce— (s — s*))

< (2 () o = (D20 = (s < )
= ¢ (Ce,w?) — ¢ (Ce — (5" — 5*),w?)

< ((Ce, w2> ¢? <e w2> Ctr( )

P

In the same way it follows that
107 (2 —a") ||} < Cor (w™).

Substitution of the last two inequalities into (69) gives

VE gl p < 0vy/tr (w?) + tr (w=2) = v¢y/tr (w? + w2

Finally, by using 1 = v’ = v¢? the inequality in the lemma follows. O

Our next task is to find an upper bound for tr (w2 + w_2). Before doing this we recall the
following relations:

P(S%)x ~ P(x%)s ~ (P (w)% S>2 ~ (P (w)™2 x)Q = w?; (71)

where the similarities are due to Proposition 2.8 (iv) and Lemma 2.10, and the equality to (22).
We now can prove the following result.

Lemma 4.7 Let x,s € K and w the scaling point of x and s. Then

tr (z + s)
gl <"t T 72
ol < 05 (72
Proof: For the moment, let u := (P(x2) )~ 2. Then, by (9), w = P(z %)u Using that P(x %)

is self-adjoint, and also Lemma 2.12, we obtain

tr (w?) = <P( )u, P(z?)u >: (u, P(2)u) < Amax(0)tr(P(z)u).

2

By using the same arguments and also P(z)e = z° we may write

tr(P(z)u) = tr(P(z)uoe) = (P(x)u,e) = (u, P(x)e) = <u,x2> < Amax (w)tr(z?),
where the last inequality follows from Lemma 2.12. Combining the above inequalities we obtain
-1
tr (w2) < Amax (P(x%)s> tr (a:2) .

Due to (71) we have




Thus we obtain
tr (m2)
5

tr (wQ) < 7;1)\@11 (v)

By noting that w™"! is the scaling element of s and z, it follows from the above inequality, by
interchanging the role of x and s, that

tr (32)

tr (w™?) < ——~2
r ('UJ ) M)\min (U)2

By adding the last two inequalities we obtain

tr (ac2) + tr (32)
- (v)2 . (73)

tr (w2 + w_2) <
Since z, s € K, we have tr (z o s) > 0. Hence, also using that tr(z2) < tr(z)? for each z € K,

tr (x2) +tr (52) < tr (x2) +tr (52) +2tr (zos) =tr ((m + 3)2) <tr(z+s)?.  (74)

Substituting (73) and (74) into (75), also using that p = v(?, yields

tr (22) 4 tr (s?) tr(z + 3)2 _tr(z+5s)
ol < 0\/ = B @F = o @) i

which completes the proof. O

4.5.5 Upper bound for tr (z + s).

In this section we compute an upper bound for tr (z + s).

Lemma 4.8 Let x and (y, s) be feasible for the perturbed problems (P,) and (D,) respectively
and (a;o, yY, 30) as defined in (40) and ¢ as in (41). We then have

vitr (z +s) <tr(zos)+2Npu.
Proof: Let (z*, y*, s*) be optimal solutions satisfying (41). We define

o=z —vi®— (1 —-v)a*,
v =y—vy’ —(1—v)y,

s =s5—vs"—(1-v)s"

From the feasibility conditions (44) and (45) of the perturbed problems (P,) and (D,), it is
easily seen that (z/, ¢/, s’) satisfies

Ax' =0,
ATy/ +s =0.
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This implies that 2’ and s’ are orthogonal, i.e.,
tr((ac—yxo—(l—y)x*) ) (3—1/30—(1—1/)5*)) =0.

By expanding the last equality and using the fact that tr (z* o s*) = 0, since the triple (z*, y*, s*)
is optimal, we obtain

vtr(s’ox +2°0s) = tr(sox) + v’tr (s’ 0 2¥)
+v(1—v)tr(sox*+2%0s*) — (1 —v)tr(soa* +s ox).

Since (mo, Y, so) are as in (40) we have
tr(soz+2%0s) =Ctr(z+s), tr(sPoa’)=2N¢? tr(sox*+2%0s%) =(tr(z* +5%).

Due to (41) we have tr (z* + s*) < (tr(e) = 2N(. Substitution gives

vitr(z+s) =tr(sox) + 202N +v (1 —v)ltr(z* +5*) — (1 —v)tr(soa* +s* ox)
<tr(sox)+ 202N +20(1-v) N — (1 —v)tr(sox* + 5" ox)
—tr(sox)+2uN¢?> — (1 —v)tr(sox* +s* ox)
<tr(sox)+2UNC?,

where the last inequality is due to the fact that z, s, z* and s* belong to K, which implies
tr(sox* +s*ox)=2(s"a* +27s%) > 0.

Since v(¢? = p, this completes the proof. O

Lemma 4.9 Let § = § (v) be given by (31). Then for each j € {1, ..., N},

1 . .
—— < Anin v’ < Amax v’ SP ) s
< i () < A (49) <9
where
p(6) =0+ 1+ (76)
Proof: Using (33), the proof is easy and similar to the proof of Lemma II.60 in [27]. O

Lemma 4.10 With the same notations as in Lemma 4.8 and p (8) as defined in (76), one has
tr (v +s) < (p(9)? + 1) 2N¢.

Proof:
v(tr (z +s) <tr(xos)+2uN.

Dividing both sides of the inequality in Lemma 4.8 by v(, while using that p = v¢?, we get

tr(z+s) < tr (T) ¢ + 2N¢.

33



Hence it suffices for the proof if we show that
b () < 2Np(5)
1

Since we have tr (%) = tr (v?) = |v]|%, by (30), because of (16) the last inequality can be

written as

()\min(vj)2 + )\max(vj)z) < 2Np((5)2.

M-

1

J

This inequality is an immediate consequence of Lemma 4.9, whence the lemma follows. O

4.5.6 Putting all things together
We proved in Section 4.5.2 (cf. eqn. (61)) that in order to have §(v/) < % one should have
6 <1—4w(v)? (77)

Then, in Lemma 4.5 (Section 4.5.3) we showed that

400 < gl + (gl -+ VAT~ 67250012 + 202N ) (78)

We may restate (77) as 4w(v)? < 1 — 6. Due to (78) this holds if

2
lali% + (lall + /A0 = 6)28(0)? + 262N ) <16 (79)
We also proved, in Lemma 4.7 (Section 4.5.4), that

tr (z + s)

all < 0 . 80
ol < 025222 (50
Furthermore, by Lemma 4.10 (Section 4.5.5)

tr (v +s) < (p(9)* + 1) 2N¢. (81)

From (80) and (81) it follows that

(p(6)* +1)2N¢ ) (p(6)* +1) 2N
Omin (V) Amin (V)

lallp <0

Since Amin (v) > ﬁ, by Lemma 4.9, we get

lgll e < 0p(5) (p(5)* + 1) 2N.

Substitution into (79) yields the following condition:

00(6) (p(8)? + 1) 2N + (8p(5) (0(5) +1) 2N + /A(L — 9)%5(0)% 4 202N ) <10,
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Since at the start of each main iteration we have §(v) < 7, this holds if the parameter 6 and 7
satisfy

[6p(7) (p(7)? +1) 2N] + [Hp(T) (p(7)* +1) 2N + \/4(1 — 0)272 + 202N ’ <1-6. (82

Dividing both sides by 49?2 N? this becomes

2
1—9)2 1 1-6

[p(7) (p(m)? +1)]° + [p(7) (p(r)? +1) + \/<0N T+ ov| S e

(83)

Since p(7) (p(7)* +1) > 1, the left-hand side is larger than 1. Hence we must have 46>°N? < 1,
which already implies 6 < ﬁ Taking

1 1
oN' " 16

this inequality is satisfied, as we now show. For the right hand side of (83) we then have

=0 _(, LYSL_sL9 s 9

462N ON) 4 4 4N T 4 4 7
For the given value of 7 one has p(7) (p(7)? + 1) = 2.27053 < 3. Hence the left-hand side does
not exceed

6 = (84)

2 r 2
25+ 5+ 1 of1 1 2+ 1 <25+ 5+ 1 0 1 2+ 1
4 2 162 ON ON| — 4 2 162 N 2N

2
1 1
g2 _

* 162 + 2

IA
|
_|_
ol ot DO | Ot

1 2
+ 2\/5] =~ 17.5801 < 18.

4.6 Iteration bound

With 7 as defined in (84), according to (47), after the feasibility step we need at most

1

centering steps to get iterates that satisfy &(z,s;u*) < 7. So each main iteration consists of
one feasibility step and at most three centering steps. In total we therefore have at most four
inner iterations per main iteration. Hence, with 6 as given in (84), the total number of inner
iterations is bounded above by four times the number of main iterations. The number of main
iterations being given by (46), we may state our main result without further proof as follows.

Theorem 4.11 If (P) and (D) have optimal solution (z*, y*, s*) such that z* + s* < (e, then
after at most

max {2N¢?, [|rj][, [|re][}
€

inner iterations the algorithm finds an e-solution of (P) and (D).

36N log
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The above iteration bound has been derived under the assumption of the existence of optimal
solutions of (P) and (D) such that z*+s* < (e. One might ask what happens if this condition is
not satisfied. In that case, during the course of the algorithm it will certainly happen that after
some feasibility step the proximity measure § (x, s; ) exceeds the value 1/ V2, because otherwise
there is no reason why the algorithm would not generate an e-solution of (P) and (D). So, if
this happens it tell us that either the problems (P) and (D) do not have optimal solutions (with
zero duality gap) or the value of ¢ has been chosen too small. In the latter case one might run
the algorithm once more with a larger value of (.

5 Concluding remarks

The first contribution of this paper is the first primal-dual interior-point algorithm for solving
SOCO problems that uses full NT-steps only. So no line searches are required. Then using the
method proposed first in [26] (see also [13]) for LO, and that was extended to SDO in [11, 12], we
extended our algorithm to an infeasible primal-dual interior-point method algorithm for SOCO
that uses full NT-steps only. In both cases the iterations bounds coincide with the currently
best known iteration bounds for SOCO.

In the current paper the feasibility step targets at the u™-center of the new pair of perturbed
problems, whereas the feasibility step in [26] targeted at the u-center of the new pair of perturbed
problems. Different options for defining the feasibility step were also considered in [9, 11, 13].
It might be a topic for further research to analyze our algorithm for SOCO with such modified
feasibility steps.

A more challenging task is to unify the analysis for LO, SOCO and SDO by considering op-
timization problems over general symmetric cones. Another topic for further research is to
consider large-update variants of the algorithm, since such methods are much more efficient in
practice. Finally, a question that might be considered is if full step methods (either of Newton
or NT-type) can be made efficient by using dynamic updates of the barrier parameter.

A Technical lemmas

Lemma A.1 Fori=1,...,n, let fi : R+ — R denote a convex function. Then we have for
any nonzero vector z € R} the following inequality:

S file) < 2 S5 i) + X F(0)
i=1 j=1 i#j

Proof: We define the function F' : R} — R by

F(z)=)_ fi(z), z=0.
i=1

Letting e; denote the j-th unit vector in R", we may write z as a convex combination of the
vectors (eTz) ej, as follows.



Indeed, >°7_; —~ =1and z;/e’z > 0 for each j. Since F(z) is a sum of convex functions, F(z)
is convex in z, and hence we have

F(z) < Z eZT—sz ((eTz) ej) = Z ;,—jz Z fi ((eTz) (ej);) -
j=1 j=1 i=1
Since (e;), = 1 if i = j and zero if i # j, we obtain
P(2) < 3 = | ("2 + D £i(0)
=1 i+

Hence the inequality in the lemma follows. O

Corollary A.2 Let f : Ry — R be a convex function such that f(0) = 0. Then we have for
any vector z € R}y the following inequality:

D fa) < f (Z ) :
i=1 =1

Proof: In Lemma A.1, take f; = f for each i, then the result follows. U

Lemma A.3 Let z,s € R" and z7s = 0, then one has
(@) —1lle+slpe <k zos 2k i llz + sllpe:
.. 2
(i1) zosllp < 505 o + sllz-

Proof: We write
xos:%((x—l—s)Q—(x—s)Q). (85)

Since (z + 5)? € K, we have
xos+i(aj—s)2 e K.

Using Lemma 2.13 (i), we may write
(2= 5)" 2|z = 9)?[| pe 2 llz = slFe.

whence it follows that
a:os+i||x—s||12weelC,

which means that —3% ||z — s||% e <k x 0 5. In the same way one derives from (85) that
1 2
illz+sllpe—zoseck,

whence z o s <k 1|z + s||3e. Since z and s are orthogonal, we have tr (z os) = 227s = 0,
whence ||z + s||p = ||z — s||p, part (i) of the lemma follows.
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For the proof of (i7) we return to (85). Using ||z||2F = tr (2?), we obtain

obtain

2
||z o s||§J = Héll ((w + 8)2 — (z — 3)2) . = 1—16tr{((x + 5)2 — (z — 3)2)2}
= % [tr (x4 s)*) + tr (v — 8)*) = 2tr ((z + 5)* o (z — 5)?)].
Since (z + s)? and (2 — s)? belong to K, the trace of their product is nonnegative. Thus we
oo sl < 1 [or (@ +9)") + tr (@0 = 9] = 15 [+ 23+ [l = 9213

Using Lemma 2.13 (i) and ||z + s||» = ||z — s||» again, we get

1 1
2 4 4 4
Iz o sly < 1 [Ilo+ slih + o = slih] = 5 Iz + sl

— 16
This proves the lemma. O
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