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Abstract

Given a power grid modeled by a network together with equations describing the power
flows, power generation and consumption, and the laws of physics, the so-called N — k problem
asks whether there exists a set of k or fewer arcs whose removal will cause the system to fail.
We present theoretical results and computation involving two optimization algorithms for this
problem.

1 Introduction

Recent large-scale power grid failures have highlighted the need for effective computational tools
for analyzing vulnerabilities of electrical transmission networks. Blackouts are extremely rare, but
their consequences can be severe. Recent blackouts had, as their root cause, an exogenous damaging
event (such as a storm) which developed into a system collapse even though the initial quantity of
disabled power lines was small.

As a result, a problem that has gathered increasing importance is what might be termed the
vulnerability evaluation problem: given a power grid, is there a small set of power lines whose
removal will lead to system failure? Here, “smallness” is parameterized by an integer k, and indeed
experts have called for small values of k (such as k = 3 or 4) in the analysis. Additionally, an explicit
goal in the formulation of the problem is that the analysis should be agnostic: we are interested
in rooting out small, “hidden” vulnerabilities of a complex system which is otherwise quite robust;
as much as possible the search for such vulnerabilities should be devoid of assumptions regarding
their structure.

This problem is not new, and researchers have used a variety of names for it: network in-
terdiction, network inhibition and so on, although the “N - k problem” terminology is common
in the industry (where “N” is the number of arcs). We will provide a more complete review of
the (rather extensive) literature later on; the core central theme is that the N — k problem is very
highly intractable, even for small values of k£ — the pure enumeration approach is simply impractical.
In addition to the combinatorial explosion, another significant difficulty is the need to model the
laws of physics governing power flows in a sufficiently accurate and yet computationally tractable
manner: power flows are much more complex than “flows” in traditional applications.

A critique that has been leveled against optimization-based approaches to the N — k problem
is that they tend to focus on large values of k, say k = 8. When k£ is large the problem tends
to become easier, but on the other hand the argument can be made that the cardinality of the
attack is unrealistically large. At the other end of the spectrum lies the case k = 1, which can be
addressed by enumeration but may not yield useful information. The middle range, 2 < k < 5, is
both relevant and difficult, and is our primary focus.

In this paper we take an approach based on strict optimization. We present results using
two models. The first (Section 2.1) is a new linear mixed-integer programming formulation that
explicitly models a “game” between a fictional attacker seeking to disable the network, and a
controller who tries to prevent a collapse by selecting which generators to operate and adjusting
generator outputs and demand levels. As far as we can tell, the problem we consider here is
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more general than has been previously studied in the literature; nevertheless our approach yields
practicable solution times for larger instances than previously studied.

The second model (Section 3) is given by a new, continuous nonlinear programming formulation
whose goal is to capture, in a compact way, the interaction between the underlying physics and the
network structure. While both formulations provide substantial savings over the pure enumerational
approach, the second formulation appears particularly effective and scalable; enabling us to handle
in an optimization framework models an order of magnitude larger than those we have seen in the
literature.

1.0.1 Previous work on vulnerability problems

There is a large amount of prior work on optimization methods applied to blackout-related problems.
[20] includes a fairly comprehensive survey of recent work.

Typically work has focused on identifying a small set of arcs whose removal (to model complete
failure) will result in a network unable to deliver a minimum amount of demand. A problem of this
type can be solved using mixed-integer programming techniques techniques, see [2], [21], [3]. We
will review this work in more detail below (Section 2.0.6). Generally speaking, the mixed-integer
programs to be solved can prove quite challenging.

A different line of research on vulnerability problems focuses on attacks with certain structural
properties, see [6], [20]. An example of this approach is used in [20]. Here, as an approximation
to the V — k problem with AC power flows, the authors formulate a linear mixed-integer program
to solve the following combinatorial problem: remove a minimum number of arcs, such that in the
resulting network there is a partition of the nodes into two sets, N1 and N, such that

D(Ny) 4+ G(Ny) + cap(Ny, Np) < Q™"

Here D(V7) is the total demand in Ny, G(N3) is the total generation capacity in No, cap(N1, Na) is
the total capacity in the (non-removed) arcs between N7 and Ny, and Q™" is a minimum amount
of demand that needs to be satisfied. The quantity in the left-hand side in the above expression
is an upper-bound on the total amount of demand that can be satisfied — the upper-bound can be
strict because under power flaw laws it may not be attained.

Thus this is an approximate model that could underestimate the effect of an attack (i.e. the
algorithm may produce attacks larger than strictly necessary). On the other hand, methods of
this type bring to bear powerful mathematical tools, and thus can handle larger problems than
algorithms that rely on generic mixed-integer programming techniques. Our method in Section 3
can also be viewed as an example of this approach.

Finally, we mention that the most sophisticated models for the behavior of a grid under stress
attempt to capture the multistage nature of blackouts, and are thus more comprehensive than the
static models considered above and in this paper. See, for example, [9]-[12], and [5].

1.0.2 Power Flows

Here we provide a brief introduction to the so-called linearized, or DC power flow model. For the
purposes of our problem, a grid is represented by a directed network N, where:

e Each node corresponds to a “generator” (i.e., a supply node), or to a “load” (i.e., a demand
node), or to a node that neither generates nor consumes power. We denote by G the set of
generator nodes.

e If node i corresponds to a generator, then there are values 0 < P/ < P If the generator
is operated, then its output must be in the range [P/™", P/%]; if the generator is not operated,
then its output is zero. In general, we expect P/™" > 0.

e If node i corresponds to a demand, then there is a value D" (the “nominal” demand value
at node 7). We will denote the set of demands by D.



e The arcs of AV represent power lines. For each arc (i,j), we are given a parameter zij >0
(the resistance) and a parameter u;; (the capacity).

Given a set C of operating generators, a power flow is a solution to the system of constraints given
next. In this system, for each arc (4, j), we use a variable f;; to represent the (power) flow on (4, j)
— possibly f;; < 0, in which case power is effectively flowing from j to i. In addition, for each node
i we will have a variable 6; (the “phase angle” at 7). Finally, if i is a generator node, then we will
have a variable P;, while if ¢ represents a demand node, we will have a variable D;. The constraints
are:

P ieC
> fu— >, fii=3 —Di i€D (1)
(i,5) €0 (4) (4,1)€8~ (4) 0  otherwise
0; —0; + @i fi; =0 V(i j) (2)
\fijl < wig V(L) (3)
P™MM < P < P Vel (4)
0<D; <D™ VjeD (5)

We will denote this system by P (N, C). Constraint (1) models flow conservation, while (4) and (5)
describe generator and demand node bounds. Optionally, one may impose additional constraints,
in particular bounds on the 6; or on the quantities |§; — 6;| (over the arcs (i, j)).

1.0.3 Basic results

A useful property satisfied by the linearized model is summarized by the following result which is
not difficult to prove.

Lemma 1.1 Let C be given, and suppose N is connected. Then for any choice of nonnegative
values P; (fori € C) and D; (for i € D) such that

ZPZ' = ZDi, (6)

1€C 1€D

system (1)-(2) has a unique solution in the f;;; the solution is also unique in the 0; — 0; (over the
arcs (i,7)).

Remark 1.2 We stress that Lemma 1.1 concerns the subsystem of P(N',C) consisting of (1) and
(2). In particular, the “capacities” u;; play no role in the determination of solutions.

When the network is not connected Lemma 1.1 can be extended by requiring that (6) hold for each
component.

Definition 1.3 Let (f,0, P, D) be feasible a solution to P(N,C). The throughput of (f,0, P, D)
1s defined as

ZiED D;
>iep D7

The throughput of N is the mazimum throughput of any feasible solution to P(N,C).

(7)



1.0.4 DC and AC power flows

Constraint (2) is reminiscent of Ohm’s equation — in a direct current (DC) network (2) precisely
represents Ohm’s equation. In the case of an AC network (the relevant case when dealing with
power grids) (2) only approzimates a complex system of nonlinear equations (see [1]). The issue
of whether to use an the more exact nonlinear formulation, or the approximate DC formulation,
is rather thorny. On the one hand, the linearized formulation certainly is an approximation only.
On the other hand, the AC formulation can prove intractable or otherwise inappropriate (e.g. the
formulation may have multiple solutions), and, we stress, is itself in any case an approximate model
of the underlying physics.

For these reasons, studies that require multiple power flow computations tend to rely on the lin-
earized formulation. This will be the approach we take in this paper, though some of our techniques
extend directly to the AC model and this will remain a topic for future research. An approach
such as ours can therefore be criticized because it relies on an ostensibly approximate model; on
the other hand we are able to focus more explicitly on the basic combinatorial complexity that
underlies the N — k problem. In contrast, an approach that uses the AC model would have a better
representation of the physics, but at the cost of not being able to tackle the combinatorial com-
plexity quite as effectively, for the simple reason that the theory and computational machinery for
linear programming are far more mature, effective and scalable than those for nonlinear, nonconvex
optimization. In summary, both approaches present limitations and benefits. In this paper, our
bias is toward explicitly handling the combinatorial nature of the problem.

A final point that we would like to stress is that whether we use the AC or DC power flow model,
the resulting problems have a far more complex structure than (say) traditional single- or multi-
commodity flow models because of side side-constraints such as (2). Constraints of this type give
rise to counter-intuitive behavior reminiscent of Braess’s Paradox [8].

2 The “N - k” problem

Let N be a network with n nodes and m arcs representing a power grid. We denote the set of arcs
by E and the set of nodes by V. A fictional attacker wants to remove a small number of arcs from
N in order to maximize damage. Somewhat informally (and, as it turns out, incompletely), the
goal of the attacker is that in the resulting network all feasible flows should have low throughput.
At the same time, a controller is operating the network; the controller responds to an attack by
appropriately choosing the set C of operating generators, their output levels, and the demands D,
so as to feasibly obtain high throughput.

Thus, the attacker seeks to defeat all possible courses of action by the controller, in other words,
we are modeling the problem as a Stackelberg game between the attacker and the controller, where
the attacker moves first. To cast this in a precise way we will use the following definition. We let
0<T™" < 1bea given value.

Definition 2.1 Given a network N,
e An attack A is a set of arcs removed by the attacker.

e Given an attack A, the surviving network N — A is the subnetwork of N consisting of the
arcs not removed by the attacker.

e A configuration is a set C of generators.

o We say that an attack A defeats a configuration C, if either (a) the maximum throughput of
any feasible solution to P(N — A,C) is strictly less than T™™", or (b) no feasible solution
to P(N — A, C) exists. Otherwise we say that C defeats A.

o We say that an attack is successful, if it defeats every configuration.



e The min-cardinality attack problem consists in finding a successful attack A with |A|
mInNImum.

Our primary focus will be on the min-cardinality attack problem. Before proceeding further we
would like to comment on our model, specifically on the parameter 77%". In a practical use of the
model, one would wish to experiment with different values for 7" — for the simple reason that an
attack A which is not successful for a given choice for 7" could well be successful for a slightly
larger value; e.g. no attack or cardinality 3 or less exists that reduces demand by 31%, and yet
there exists an attack of cardinality 3 that reduces satisfied demand by 30%. In other words, the
minimum cardinality of a successful attack could vary substantially as a function of 7",

Given this fact, it might appear that a better approach to the power grid vulnerability problem
would be to leave out the parameter 77" entirely, and instead redefine the problem to that of
finding a set of k or fewer arcs to remove, so that the resulting network has minimum throughput
(here, k is given). We will refer to this as the budget-k min-throughput problem. However, there are
reasons why this latter problem is less attractive than the min-cardinality problem.

(a) Clearly, in a sense, the min-cardinality and min-throughput problems are duals of each other.
A modeler considering the min-throughput problem would want to run that model multiple
times, because given k, the value of the budget-k min-throughput problem could be much
smaller than the value of the budget-(k + 1) min-throughput problem. For example, it could
be the case that using a budget of £k = 2, the attacker can reduce throughput by no more
than 5%; but nevertheless with a budget of k = 3, throughput can be reduced by e.g. 50%. In
other words, even if a network is “resilient” against attacks of size < 2, it might nevertheless
prove very vulnerable to attacks of size 3. For this reason, and given that the models of grids,
power flows, etc., are rather approximate, a practitioner would want to test various values
of k — this issue is obviously related to what percentage of demand loss would be considered
tolerable, in other words, the parameter 77",

(b) From an operational perspective it should be straightforward to identify reasonable values for
the quantity T7""; whereas the value k is more obscure and bound to models of how much
power the adversary can wield.

(c) Because of a subtlety that arises from having positive quantities P/™" explained next, it
turns out that the min-throughput problem is significantly more complex and is difficult to

even formulate in a compact manner.

We will now expand on (c). One would expect that when a configuration C is defeated by an attack
A, it is because only small throughput solutions are feasible in N'— A. However, because the lower
bounds P/™" are in general strictly possible, it may also be the case that no feasible solution to

PN — A,C) exists.

Example 2.2 Consider the following example on a network N with three nodes, where
1. Nodes 1 and 2 represent generators; PV =2, P"® = 4 PI"" = (), and Py = 4,
2. Node 3 is a demand node with D}°™ = 6. Furthermore, T™" =1/2.

3. There are three arcs; arc (1,2) with x12 = 1 and w12 = 3, arc (2,3) with xo3 =1 and ugg =5,
and arc (1,3) with z13 =1 and u13 = 1.

When the network is not attacked, the following solution is feasible: Py = P, =3, D3 =6, f15 =0,
fi3 = fo3 = 3, 61 = 03 =0, 03 = —3. This solution has throughput 100%. On the other hand,
consider the attack A consisting of the single arc (1,3), and suppose we choose the configuration
C = {1,2} (i.e. we operate both generators). Since P™" > ujy, P(N — A,C) has no feasible
solution, and A defeats C (in spite of the fact that we can still meet 100% of the demand).
Likewise, A defeats the configuration where we only operate generator 1. Thus, A is successful if
and only if it also defeats the configuration where we only operate generator 2, which it does not since
in that configuration we can feasibly send up to four units of flow on (2,3) and T™" =1/2 < 4/6.



As the example highlights, it is important to understand how an attack A can defeat a particular
configuration C. It turns out that there are three different ways for this to happen.

(i) Consider a partition of the nodes of A into two classes, N! and N2. Write

DY = > Dpm. k=1,2, and (8)
i€EDNNF

Pt o= Y prer gp=1,2, (9)
i€CNNkK

e.g. the total (nominal) demand in N; and N, and the maximum power generation in Ny
and Ns, respectively. The following condition, should it hold, would guarantee that A defeats
C:

77"y D™ — min{D', P'} — min{D* P*} > > uij +
j€D (i,j)¢A: €N jEN2

(i,j)¢A:i€N2, jeNI

To understand this condition, note that for k = 1,2, min{D*, P*} is the maximum demand
within N* that could possibly be met using power flows that do not leave N*. Consequently
the left-hand side of (10) is a lower bound on the amount of flow that must travel between
N'! and N2, whereas the right-hand side of (10) is the total capacity of arcs between N! and
N? under attack A. In other words, condition (10) amounts to a mismatch between demand
and supply. A special case of (10) is that where in A/ — A there are no arcs between N! and
N2, i.e. the right-hand side of (10) is zero.

(ii) Consider a partition of the nodes of A into two classes, N and N2, such that in A" — A there
are no arcs between N! and N2. Then attack A defeats C if

S D<o Y P, (11)

iDNeN1 i€eCNN1

i.e., the minimum power output within N! exceeds the maximum demand within N!. Note
that (ii) may apply even if (i) does not.

(iii) Even if (i) and (ii) do not hold, it may still be the case that the system (1)-(5) does not admit
a feasible solution. To put it differently, suppose that for every choice of demand values
0 < D; < D™ (for i € D) and supply values P™" < P; < P™% (for i € C) such that
Sicc i = Yiep Di the unique solution to system (1)-(2) in network A" — A (as per Lemma
1.1) does not satisfy the “capacity” inequalities | f;;| < w;; for all arcs (i,7) € N'— A. Then
A defeats C. This is the most subtle case of all — it involves the interplay of flow conservation
and Ohm’s law.

Note that in particular in case (ii), the defeat condition is unrelated to throughput. Never-
theless, should case (ii) arise, it is clear that the attack has succeeded (against configuration C) —
this makes the min-throughput problem difficult to model; our formulation for the min-cardinality
problem, given in Section 2.1, does capture the three defeat criteria above.

From a practical perspective, it is important to handle models where the values P/™" are pos-
itive. It is also important to model standby generators that are turned on when needed, and to
model the turning off of generators that are unable to dispose of their minimum power output,
post-attack. All these features arise in practice. Example 2.2 above shows that models where
generators cannot be turned off can exhibit unreasonable behavior. Of course, the ability to select
the operating generators comes at a cost, in that in order to certify that an attack is successful we
need to evaluate, at least implicitly, a possibly exponential number of control possibilities.



As far as we can tell, most (or all) prior work in the literature does require that the controller
must always use the configuration G consisting of all generators. As the example shows, however,
if the quantities P/™" are positive there may be attacks A such that P(N — A, G) is infeasible.
Because of this fact, algorithms that rely on direct application of Benders’ decomposition or bilevel
programming are problematic, and inwvalid formulations can be found in the literature.

Our approach works with general P™" > ( quantities; thus, it also applies to the case where
we always have P/™" = (. In this case our formulation is simple enough that a commercial integer
program solver can directly handle instances larger than previously reported in the literature.

2.0.5 Non-monotonicity

Consider the example in Figure 1, where we assume T™" = 0.3. Notice that there are two parallel
copies of arcs (2,4) and (3,5), each with capacity 10 and impedance 1. It is easy to see that the
network with no attack is feasible: we operate generator 1 and not operate generators 2 and 3, and
send 3 units of flow along the paths 1 —6 —2—4 and 1 —6 —3 — 5 (the flow on e.g. the two parallel
(2,4) arcs is evenly split).

nom

12
max
P1 =10
min
Pl =I:l

Figure 1: Non-monotone example.

On the other hand, consider the attack consisting of arc (1,6) — we will show this attack is
successful. To see this, note that under this attack, the controller cannot operate both generators
2 and 3, since their combined minimum output exceeds the total demand. Suppose, for example,
that only generator 3 is operated, and assume by contradiction that a feasible solution exists — then
this solution must route at most 3 units of flow along 3 — 6 — 2 — 4, and (since P = 8) at least
5 units of flow on (3,5) (both copies altogether). In such a case, the voltage drop from 3 to 5 is
at least 2.5, whereas the voltage drop from 3 to 4 is at most 1.56. In other words, 84 — 65 > 0.94,
and so we will have f45 > 0.94 — thus, the net inflow at node 5 is at least 5.94. Hence the attack is
indeed successful.



However, there is no successful attack consisting of arc (1,6) and another arc. To see this, note
that if one of (2,6), (3,6) or (4,5) are also removed then the controller can just operate one of the
two generators 2, 3 and meet eight units of demand. Suppose that (say) one of the two copies of
(3,5) is removed (again, in addition to (1,6)). Then the controller operates generator 2, sending
2.5 units of flow on each of the two parallel (2,4) arcs; thus 3 — 64 = 2.5. The controller also routes
3 units of flow along 2 — 6 — 3 — 5, and therefore 65 — 05 = 3.06. Consequently 64 — 05 = .56, and
fa5 = .56, resulting in a feasible flow which satisfies 4.44 units of demand at 4 and 3.56 units of
demand at 5.

In fact, it is straightforward to show that no successful attack of of cardinality 2 exists — hence
we observe non-monotonicity.

By elaborating on the above, one can create examples with arbitrary patterns in the cardinality
of successful attacks. One can also generate examples that exhibit non-monotone behavior in re-
sponse to controller actions. In both cases, the non-monotonicity can be viewed as a manifestation
of the so-called “Braess’s Paradox” [8]. In the above example we can observe combinatorial sub-
tleties that arise from the ability of the controller to choose which generators to operate, and from
the lower bounds on output in operating generators. Nevertheless, it is clear that the critical core
reason for the complexity is the interaction between voltages and flows, i.e. between “Ohm’s law”
(2) and flow conservation (1) — the combinatorial attributes of the problem exercise this interac-
tion. Thus, we view it as crucial that an optimization model address the interaction in an explicit
manner.

2.0.6 Brief review of previous work

The min-cardinality problem, as defined above, can be viewed as a bilevel program where both the
master problem and the subproblem are mixed-integer programs — the master problem corresponds
to the attacker (who chooses the arcs to remove) and the subproblem to the controller (who chooses
the generators to operate). In general, such problems are extremely challenging. A recent general-
purpose algorithm for such integer programs is given in [14].

Alternatively, each configuration of generators can be viewed as a “scenario”. In this sense
our problem resembles a stochastic program, although without a probability distribution. Recent
work [17] considers a single commodity max-flow problem under attack by an interdictor with a
limited attack budget; where an attacked arc is removed probabilistically, leading to a stochastic
program (to minimize the expected max flow). A deterministic, multi-commodity version of the
same problem is given in [18].

Previous work on the power grid vulnerability models proper has focused on cases where either
the generator lower bounds P/™" are all zero, or all generators must be operated (the single config-
uration case). Algorithms for these problems have either relied on heuristics, or on mixed-integer
programming techniques, usually a direct use of Benders’ decomposition or bilevel programming.
[2] considers a version of the min-throughput problem with Pl-mi” = 0 for all generators ¢, and
presents an algorithm using Benders’ decomposition (also see references therein). They analyze the
so-called IEEE One-Area and IEEE Two-Area test cases, with, respectively, 24 nodes and 38 arcs,
and 48 nodes and 79 arcs. Also see [21].

3] studies the IEEE One-Area test case, and allows P/™" > 0, but does not allow generators
to be turned off; the authors present a bilevel programming formulation which, unfortunately, is
incorrect, due to reasons outlined above.

2.1 An algorithm for the min-cardinality problem

In this section we will describe an iterative algorithm for the min-cardinality attack problem. The
algorithm iterates in Benders-like fashion, solving at each iteration two mixed-integer programs.
Before describing the algorithm we need to introduce some notation and concepts.



Let A be a given attack. Suppose the controller attempts to defeat the attacker by choosing
a certain configuration C of generators. Denote by z# the indicator vector for A, i.e. z;? = 1iff
(i,7) € A. Then the controller needs to solve the following linear program:

K¢(A) : te(zY) = mint (12)
Subject to:
Poieg
> fy— >, fii={ -D; ieD (13)
(4,5)€8+ (3) (7,1)€6~ (2) 0 otherwise
0; =0+ fi; =0 V(i,j) ¢ A (14)
w;t — |fil > 0, V(i,j)¢A (15)
fij = 0, V(i,j)e A (16)
Pimin < PZ < Pimax Viel (17)

Z Dj > Tmin (Z D;wm) , (19)

Jj€D Jj€D

0< Dy <D™ VjeD (20)
Remark 2.3 Using the convention that the value of an infeasible linear program is infinite, A
defeats C if and only if te(z2) > 1.

Thus, an attack A is not successful if and only if we can find C C G with t¢(24) < 1; we test
for this conditions by solving the problem:
gg fel)

This is done by replacing, in the above formulation, equations (17), (18) with

]jlmznyZ < Pz < Pimazyi’ Vi € g7 (21)
yi =0 or 1, Vied. (22)

Here, y; = 1 if the controller operates generator i.

The min-cardinality attack problem can now be written as follows:

min Z Zij (23)
tc (z) >1, VCCQG, (24)

zij = 0or 1, V(i,7). (25)

This formulation, of course, is impractical, because we do not have a compact way of representing
any of the constraints (24), and there are an exponential number of them.



Putting these issues aside, we can outline an algorithm for the min-cardinality attack prob-
lem. Our algorithm will be iterative, and will maintain a “master attacker” mixed-integer program
which will be a relazation of (23)-(25) — i.e. it will have objective (23) but weaker constraints than
(24). Initially, the master attacker MIP will include no variables other than the z variables, and
no constraints other than (25). The algorithm proceeds as follows.

Basic algorithm for min-cardinality attack problem

Iterate:
1. Attacker: Solve master attacker MIP and let z* be its solution.
2. Controller: Search for a set C of generators such that t¢(z*) < 1.

(2.a) If no such set C exists, EXIT:
>_ij #; is the minimum cardinality of a successful attack.

(2.b) Otherwise, suppose such a set C is found.
Add to the master attacker MIP a system of valid inequalities that cuts off z*.
Go to 1.

As discussed above, the search in Step 2 can be implemented by solving a mixed integer program.
Since in 2.b we add valid inequalities to the master, then inductively we always have a relaxation
of (23)-(25) and thus the value of the master at any execution of step 1, i.e. the value 3=, 27, is
a lower bound on the cardinality of any successful attack. Thus the exit condition in step 2.a is
correct, since it proves that the attack implied by z* is successful.

The implementation of Case 2.b, on the other hand, requires some care. Assuming we are in
case 2.b, we have that t¢(2*) < 1, and certainly the linear program K¢ (\A) is feasible. The optimal
dual solution would therefore (apparently) furnish a Benders cut that cuts off z*. However this
would be incorrect since the structure of constraints (12)-(20)) depends on z* itself.

Instead, we need to proceed as in two-stage stochastic programming with recourse, where the z
variables play the role as “first-stage” variables and also appear in the second-stage problem (the
subproblem); solutions to the dual of the second-stage problem can then be used to generate cuts
to add to the master problem. Toward this goal, we proceed as follows, given C and z*:

B.1 Write the dual of K¢(0).

B.2 As is standard in interdiction-type problems (see [18], [17], [14], [2]), the dual is then “com-
binatorialized” by adding the z variables and additional constraints. For example, if 3;;
indicates the dual of constraint (14), then we add, to the dual of K¢ (), inequalities of the
form

Bij — Mjzij <0, —Bij — Mjjzi; <0,
for an appropriate constant Mllj > (0. We proceed similarly with constraint (15), obtaining the
“combinatorial dual”. This combinatorial dual is the functional equivalent of the second-stage

problem in stochastic programming.

B.3 Fix the z;; variables in the combinatorial dual to z*; this yields a problem that is equivalent
to K¢(z*) and has the general structure

te(z*) = max clv
Pv < b+ Qz" (26)
Here, the v are variables, P and () are matrices, and b is a vector, of appropriate dimensions;
and we have a maximization problem since the K¢() are minimization problems. We obtain

a cut of the form
al(b+Qz)>1+¢

10



where € > 0 is a small constant and @ is the vector of optimal dual variables to (26). Since
by assumption t¢(z*) < 1 this inequality cuts off z*.

Note the use of the tolerance e. The use of this parameter gives more power to the controller, i.e.
“borderline” attacks are not considered successful. In a strict sense, therefore, we are not solving
the optimization problem to exact precision; nevertheless in practice we expect our relaxation to
have negligible impact so long as € is small. A deeper issue here is how to interpret truly borderline
attacks that are successful according to our strict model (and which our use of e disallows); we
expect that in practice such attacks would be ambiguous and that the approximations incurred
in modeling power flows, estimating demands levels, and so on, not to mention the numerical
sensitivity of the integer and linear solvers being used, would have a far more significant impact on
precision.

2.1.1 Discussion

In order to make the outline provided in B.1-B.3 into a formal algorithm, we need to specify the
constants M}] As is well-known, the folklore of integer programming dictates that the Mllj should
be chosen small to improve the quality of the linear programming relaxation of the master problem.

While this is certainly true, we have found that popular optimization packages show significant
numerical instability when solving power flow linear programs. In fact, in our experience it is
primarily this behavior that mandates that the lej should be kept as small as possible. In partic-
ular we do not want the Mllj to grow with network since this would lead to an nonscalable approach.

It turns out that our formulation K¢(A) is not ideal toward this goal. A particularly thorny
issue is that the attack A may disconnect the network, and proving “reasonable” upper bounds
on the dual variables to (for example) constraint (13), when the network is disconnected, does not
seem possible. In the next section we describe a different formulation for the min-cardinality attack
problem which is much better in this regard. Our eventual algorithm will apply steps B.1 - B.3 to
this improved formulation, while the rest of our basic algorithmic methodology as described above
will remain unchanged.

2.2 A better mixed-integer programming formulation

As before, let A be an attack and C a (given) configuration of generators. Let y¢ € RY be the
indicator vector for C, i.e. y¢ = 1if i € C and 3¢ = 0 otherwise. Consider the following linear
program:

K}(A): ti(zY) = mint (27)

Subject to:
P, ieg
(agj Z fij — Z fii=q —Di 1€D (28)
(i,7)€6% (4) (j,i)ed— () 0 otherwise

(B5) 0; — 0 +xijfi; =0 ¥ (i,j) ¢ A (29)

(picj,q%) uij t — ’f1]| Z 07 v (Zaj) Qé A (30)

(wfj+,wfj_ t—|fyl = 1, V(@EjeA (31)

(A5 Pty < B < PMyS Vieg (32)
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(HC) Z Dj > mn (Z D;wm) , (33)

j€D j€D
(AS) D; <D™ VYjeD (34)
P>0, D>0. (35)

To the left of each constraint we have indicated the corresponding dual variable — (30) is really two
constraints written as one, and the same with (31).

Note that we do not force f;; = 0 for (i,j) € A. Moreover arcs (i,j) € A are also exempted
from constraint (29). Thus, the controller has significantly more power than in K¢(.A). However,
because of constraint (31), we have t}(2) > 1 as soon as any of the arcs in A actually carries flow.
We can summarize these remarks as follows:

Remark 2.4 A defeats C if and only if t}(z*) > 1.

Note that the above formulation depends on C only through constraint (32). Using appropriate
matrices A I Ay, Ap, Ap, A, and vector b the formulation can be abbreviated as

Kz(A) : () = mint
Subject to:
Apf + Agf + ApP + ApD + At > b
pmingC < p < pmanC o vieg

Allowing the y quantities to become 0/1 variables, we obtain the problem

t*(zY) = mint (36)
Subject to:
Arf + Ag0 + ApP + ApD + At > b (37)
Pty <P < Py, ViEG (38)
y; = 0orl, Vieg. (39)

This is the controller’s problem: we have that t*(z*!) < 1 if and only if there exists some configu-
ration of the generators that defeats A.

However, for the purposes of this section, we will assume C is given and that the y¢ are constants.
We can now write the dual of K}(.A), suppressing the index C from the variables, for clarity.

AC Z yCPmm ZyCPma:c _ Z D]rzomAj + Z D]nom i+ Z Wi
iccG i€g Jj€D Jj€D (i,5)EE
Subject to:
(fi)) i —aj+wiiBij — pij + @i + i —wi; = 0 V(i,j) € E (40)

(i,5)€6% (4) (J,1)€d~(4)

(t) > uwglpi+ag)+ Y, (Wi+w;) <1 (42)
(i,5)EE (i,5)EE

(P)  —ai—v 4% =0Vieg (43)

(D)  aj+u—A; <0 VjeD (44)

(&h.65) 2’18y < M(1—27) V(i,j) e E (45)
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1 .
(0i5)  pij+aij < J(l — ) V(i,j) € E (46)
ij
(mij)  wh+w; < 2 V(0,j) €E (47)
w;; >0, w; 20, pij =0, ¢; =20 V(i,j)€EE
'Vz'—i_"}/z’_ >0 Vieg
A; >0 VjeD
w>0
57;]', ﬂij free \V/(Z,j) ekl
a; free Vi e V.
As before, for each constraint we indicate the corresponding dual variable. In (45), M is an
appropriately chosen constant (we will provide a precise value for it below). Note that we are

scaling 3;; by le]/ % _ this is allowable since xllj/ 2 0; the reason for this scaling will become clear
below.
Abbreviating

(@€, 8%, 0%, 4%, W, 707 16 AC) = 4,
we have that A¢(A) can be rewritten as:
max { wf v : AY¢ < b+ B(1-24)} (48)

where A, B, we and b are appropriate matrices and vectors. Consequently, we can now rewrite the
min-cardinality attack problem:

min Z Zz'j (49)
(4.9)

Subject to: > 1+ e, VCCG (50)
wiy¢ —t¢ > 0, VCCG, (51)

Ay + B < b+ B VYCCG, (52)

zij = 0orl, V(i,7). (53)

This formulation, of course, is exponentially large.iAni alternative is to use Benders cuts — having
solved the linear program Ac(A), let (f,0,t,P,D,£T,£7,0,7) be optimal dual variables. Then the
resulting Benders cut is

_ _ 1 _ _
t¢ + Z (( :5 +&;)M(1 — z5)) + Z (;Qij(l — zi5)) + Z Mijzij > 14+€,  (54)
(i,j)€E (,j)eE Y (i,5)eE
We can now update our algorithmic template for the min-cardinality problem.

Updated algorithm for min-cardinality attack problem

Iterate:
1. Attacker: Solve master attacker MIP, obtaining attack A.

2. Controller: Solve the controller’s problem (36)-(39) to search for a set
C of generators such that t5(z4) < 1.

(2.a) If no such set C exists, EXIT:
A is a minimum cardinality successful attack.

(2.b) Otherwise, suppose such a set C is found. Then
(2.b.1) Add to the master the Benders’ cut (54), and, optionally
(2.b.2) Add to the master the entire system (50)-(52),
Go to 1.
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Clearly, option (2.b.2) can only be exercised sparingly (if ever). Below we will discuss how we
choose, in our implementation, between (2.b.1) and (2.b.2). We will also describe how to (signif-
icantly) strengthen the straightforward Benders cut (54). One point to note is that the cuts (or
systems) arising from different configurations C reinforce one another.

At each iteration of the algorithm, the master attacker MIP becomes a stronger relaxation for the
min-cardinality problem, and thus its solution in step 1 provides a lower bound for the problem.
Thus, if in a certain execution of step 2 we certify that té(zA) > 1 for every configuration C, we
have solved the min-cardinality problem to optimality.

What we have above is a complete outline of our algorithm. In order to make the algorithm
effective we need to further sharpen the approach. In particular, we need set the constant M to
as small a value as possible, and we need to develop stronger inequalities than the basic Benders’
cuts.

2.2.1 Setting M

In this section we show how to set for M a value that does not grow with network size.

Lemma 2.5 We can set

M = max # (55)
(i,J)€EE | \/Tij Uij

Proof. Given an attack A, consider a connected component K of N'— A. For any arc (7, ) with
both ends in K, w;; + w;; = 0 by (47). Hence we can rewrite constraints (40)-(41) over all arcs
with both ends in K as follows:

NEax + Xkfrx = pr —qx, (56)
Nkbx = 0. (57)

Here, N is the node arc incidence matrix of K, ak, Ok, Pk, ¢k are the restrictions of a, 3, p, q to
K, and X[ is the diagonal matrix diag{z;; : (i,j) € K}. From this system we obtain

Nk Xi'Nrax = NgXg'(px — qr). (58)

The matrix N KX[_{lN x has one-dimensional null space and thus we have one degree of fregdom in
choosing ax. Thus, to solve (58), we can remove from Nk an arbitrary row, obtaining Nk, and
remove the same row from aj, obtaining ax. Thus, (58) is equivalent to:

NxXg'Nrax = NeXg'(px —ax), (59)

The matrix N KX[_{IN x and thus (59) has a unique solution (given px — qx); we complete this to
a solution to (58) by setting to zero the entry of avx that was removed. Moreover,

X Njor = X Njar = X P NENe X N T Nie X i (o —a)- (60)

The matrix . . . .
M =X PNE (Ng X' NE) ™ N X 02

is symmetric and idempotent, e.g. MM7T = I. Thus, from (60) we get

—1/2 —1/2 —1/2
IX P NEakls < 1Ml 1IX5*(0x — a)ll2 < 11X (0x — )2, (61)
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where the last inequality follows from the idempotent attribute. Because of constraints (42), (46)
and (47), we can see that the right-hand side of (61) is upper-bounded by the value of the convex
maximization problem,

max Z pu Qij)2 (62)
(i,j)eE
st Y wig(py +ai) <1 (63)
(i,j)eE
which, as is easily seen, equals
1
max 5 (-
(4,4)€E Tijuz;

2.2.2 Tightening the formulation

In this Section we describe a family of inequalities that are valid for the attacker problem. These
cuts seek to capture the interplay between the flow conservation equations and Ohm’s law. First
we present a technical result.

Lemma 2.6 Let Q be matriz with v rows with rank v, and let A = QT(QQT)™1Q € R™". Let
B:=1—A. Then for any p € R" we have

Ipll3 = [l4pl3 + [1Bpll3 (65)
Pl = [(Ap);| +1(Bp);| Vi=1...r (66)
Proof. A and B are symmetric and idempotent, i.e., A> = A, B> = B, and any p € R” can be

written as p = Ap + Bp. Multiplying equation this by p and using the fact that A and B are
symmetric and idempotent we get (65):

p'p = p'Ap+p'Bp (67)
= plA’p+p'B%p (68)
Ipl5 = |A4pl3 +|IBpl3 (69)

We also have ATB = A(I —A) = A— A% =0, so y’ AT By = 0 for any y € R". Thus, if we rename
Ap = z and Bp = y, then the following holds: p =z +y, Ty =0, |pl|3 = ||=|13 + ||ly|13.
Let 1 < j <r. We have

lpl3 — (gl + 1y D)? = 213 + Iyl13 — (] + lysD)* = D 2 + > w7 — 2|zl
ii#] ii#]
where the first equality follows from (65). Since 27y = 0, we have |z,y;| = | > ii4j Tiyi|. Hence,
Z iy + Z yz 2’33]% = Z x? + Z yz2 -2 Z TiYi (70)
i,i#] 1,i£] 1,i7#] 1,177 i,17£]
> > @+ >yl =2 |wyil (71)
1,977 ii#] 1,1 ]
= 3 (il i) (72)
isij
> 0 (73)

So we have ||p||3 — (Jz;] + |y;]1)? > 0, which implies ||p[l1 > IIpll2 > (|lzj| + |y;]) Vi=1...r. R

As a consequence of this result we now have:
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Lemma 2.7 Given configuration C, the following inequalities are valid for system (52)-(53) for
each (i,7) € E:

2|a —ac|+x 165 < ;2 w-c-+M( — zij) (74)
3 |a —of| + 2 |ﬁzg| <> xkl (Pf + i) + w; (75)
(k1)
where M 1= max ;) EE{\/Hukz} as before.

Proof. Suppose first that z;; = 0. Let K be the component containing (7, j) after the attack. Then
by (60) and (56),

XTVANEaC = AXTV20° - ¢, (76)
XPFE = ([= X200 - ), (77)

where A = X_I/QNKT(NKX_INKT)_INKX_1/2. Thus, we have

~1/2

1/2
2 %10l — oS+ 22165 < 3w Pl +df) < M (78)

(k,1)

where the first inequality follows from (66) proved in Lemma 2.6, and the second bound is obtained
as in the proof of Lemma 2.5.

Suppose now that z;; = 1. Here we have |a — ozc| < w$;, by (40), (46), (45). Using these (74)-(75)
can be easily shown. l

2]7

Inequalities (65)-(66) strengthen system (52)-(53); when case step (2.b.2) of the min-cardinality
algorithm is applied then (65), (66) will become part of the master problem. If case (2.b.1) is
applied, then the vector ¢¢ = (ac,ﬁc,pc,qc,wc+,wc_,yc_,'chr,uC,Ac) is expanded by adding
two new dual variables per arc (i, j).

2.2.3 Strengthening the Benders cuts

Typically, the standard Benders cuts (54) prove weak. One manifestation of this fact is that in
early iterations of our algorithm for the min-cardinality attack problem, the attacks produced in
Step 1 will tend to be “weak” and, in particular, of very small cardinality. Here we discuss two
routines that yield substantially stronger inequalities, still in the Benders mode.

In Step 2 of the algorithm, given an attack A, we discover a generator configuration C that
defeats A, and from this configuration a cut is obtained. However, it is not simply the configura-
tion that defeats A, but, rather, a vector of power flows. If we could somehow obtain a “stronger”
vector of power flows, the resulting cut should prove tighter. To put it differently, a vector of power
flows that are in some sense “minimal” might also defeat other attacks A’ that are “stronger* than
A; in other words, they should produce stronger inequalities. One way of thinking about this is in
analogy with the classical max-flow min-cut paradigm for single commodity flows.

We implement this rough idea in two different ways. Consider Step 2 of the min-cardinality
attack algorithm, and suppose case (2.b) takes place. We execute steps I and II below, where in
each case A* is initialized as F — A, and f* is initialized as the power flow that defeated A:

(I) First, we add the Benders’ cut (54).
Also, initializing B = A, we run the following step, for k =1,2,... ,|E — A|:

(1.0) Let (ig,jx) = argmin{| wl e (d,9) € .A*}.
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(I.1) If the attack BU (ig, ji) is not successful, then reset B «— BU (i, ji), and update f* to
the power flow that defeats the (new) attack B.

(I.2) Reset A* «— A* — (ig, ji).

At the end of the loop, we have an attack B which is not successful, i.e. B is defeated by
some configuration C'. If B = A we do nothing. Otherwise, we add to the master problem
the Benders cut arising from B and C’.

(IT) Set F =0 and C’ = C. We run the following step, for k =1,2,... |E — AJ:

(I1.0) Let (ig,jx) € A* be such that its flow has minimum absolute value.

(I1.1) Test whether A is successful against a controller which is forced to satisfy the condition

(I1.2) If not successful, let C’ be the configuration that defeats the attack, and reset f* to the
corresponding power flow that satisfies (79). Reset F «— F U (i, ji),

(I1.3) Reset A* — A* — (ig, ji)-

Comment. Procedure (I) produces attacks of increasing cardinality. At termination, if A # B,
then and C # C’, and yet B is still not successful. In some sense in this case C’ is a ’stronger’
configuration than C and the resulting Benders’ cut ’should’ be tighter than the one arising from C
and A. We say ’should’ because the previously discussed non-monotonicity property of power flow
problems could mean that C’ does not defeat A. Nevertheless, in general, the new cut is indeed
stronger.

In contrast with (I), procedure (II) considers a progressively weaker controller. In fact, because
we are forcing flows to zero, but we are not voiding Ohm'’s equation (2), the power flow that defeats
A while satisfying (79) is a feasible power flow for the original network. Thus, at termination of
the loop,

C' defeats every attack A’ of the form A" = AU E for each £ C F.

Thus, if F # () the cut obtained in (IT) should be particularly strong.

One final comment on procedures (I) and (II) is that each “test” requires the solution of the
controller’s problem (36)-(39), a mixed-integer program. In our testing, such problems can be
solved extremely fast using a commercial solver.

2.3 Implementation details

Our implementation is based on the updated algorithmic outline given in Section 2.2. In step (2.b.1)
we add the Benders’ cut with strengthening as in section 2.2.3, so we may add two cuts. We execute
Step (2.b.2) so that the relaxation includes up to two full systems (50)-(52) at any time: when a
system is added at iteration k, say, it is replaced at iteration k + 4 by the system corresponding
to the configuration C discovered in Step 2 of that iteration. Because at each iteration the cut(s)
added in step (2.b.1) cut-off the current vector 24, the procedure is guaranteed to converge.

2.4 Computational results the with min-cardinality model

. We tested our algorithm on a number of problems based on networks derived from the IEEE
test cases [16]: (a) a 49-node, 84-arc network with 14 demand nodes, and (b) a 98- node, 204-arc
network, with 28 demand nodes

Tables 1 presents experiments with our algorithm on the 49-node, 84-arc network, first using a
set with 4 and then using 8. The sum of maximum generator outputs, Y ;g P™")i, is the same
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for both cases; the demand nodes and their nominal demand values are identical.

Each table shows in summarized form the progress of the algorithm. Each row corresponds to
a value of the minimum throughput 7", while each column corresponds to an attack cardinality.
For each (row, column) combination, the corresponding cell is labeled “Not Enough” when using any
attack of the corresponding cardinality (or smaller) the attacker will not be able to reduce demand
below the stated throughput, while “Success” means that some attack of the given cardinality (or
smaller) does succeed. Further, we also indicate the number of iterations that the algorithm took
in order to prove the given outcome (shown in parentheses) as well as the corresponding CPU time
in seconds.

49 nodes, 84 arcs
Entries show: (iteration count), time,
Attack status (F = cardinality too small, S = attack success)
4 generators
Attack cardinality
Min. throughput 2 3 4 5
0.84 (4), 129, F | (4), 129, S
0.82 (4), 364, F | (35), 1478, F | (36), 1484, S
0.78 (4), 442, F | (4), 442, F (26), 746, S
0.74 (4), 31, F | (11), 242, F | (168), 4923, F | (168), 4923, S
0.70 (3), 31, F (4), 198, F (10), 1360, F | (203), 3067, S
0.62 (4), 86, F (4), 86, F (131), 2571, F | (450), 34298, F
8 generators ‘
Attack cardinality
Min. throughput 2 \ 3 \ 4 \ 5
0.90 (1), 13, F (3), 133, S
0.86 (1), 59, F (5), 357, F (13), 1291, S
0.84 (1), 48, F (4), 227, F (41), 2532, F (43), 2535, S
0.80 (1), 14, F (4), 210, F (8), 1689, F (50), 2926, S
0.74 (1), 8, F (3), 101, F (10), 1658, F | (68), 23433, F

Table 1: Min-cardinality problem, small network

Thus, for example, in Table 1, the algorithm proved that using an attack of size 4 or smaller
we cannot reduce total demand below 70% of the nominal value; this required 10 iterations which
overall took 1360 seconds. At the same time, in 203 iterations (3067 seconds) the algorithm found
a successful attack of cardinality 5.

Not surprisingly, the network with 8 generators proves more resilient — for example, an attack
of cardinality 5 is needed to reduce throughput below 84%, whereas the same can be achieved
with an attack of size 3 in the case of the 4-generator network. Also note that the running-time
performance does not significantly degrade as we move to the 8-generator case, even though the
number of generator configurations is 511.

Table 2 describe similar tests, but now on the 98-node, 204-arc network. Note that in the
15 generator case there are over 30000 generator configurations that must be examined, at least
implicitly, in order to certify that a given attack is successful.

2.4.1 Comparison with pure enumeration

Here we compare our algorithm with the pure enumeration approach. As noted before, even though
the controller’s problem (36)-(39) is a mixed-integer program, modern commercial solvers handle

18



98 nodes, 204 arcs
Entries show: (iteration count), time,
Attack status (F = cardinality too small, S = attack success)

10 generators
Attack cardinality

Min. throughput 2 3 4
0.89 2,177, F 30, 555, S
0.86 (2), 195, F | (12), 5150, F (14), 5184, S
0.84 (2), 152, F | (11), 7204, F | (35), 223224, F
0.82 (2), 214, F | (9), 11458, F | (16), 225335, F
0.75 (2), 255, F | (9), 5921, F | (17), 151658, F

0.60 (1), 4226, F N/R
12 generators
Attack cardinality

Min. throughput 2 3 4

0.92 (2), 318, F | (11), 7470, F | (14), 11819, S
0.90 (2), 161, F | (11), 14220, F | (18), 16926, S
0.88 (2), 165, F | (10), 11178, F | (15), 284318, S
0.84 (2), 150, F | (9), 4564, F | (16), 162645, F
0.75 (2), 130, F | (9), 7095, F (15), 93049, F
15 generators
Attack cardinality
Min. throughput 2 3 4

0.94 (2),223, F | (11), 654, S

0.92 (2), 201, F | (11), 10895, F | (18), 11223, S
0.90 (2), 193, F | (11), 6598, F | (16), 206350, S
0.88 (2), 256, F | (9), 15445, F | (18), 984743, F
0.84 (2), 133, F | (9), 5565, F | (15), 232525, F
0.75 (2), 213, F | (9), 7550, F | (11), 100583, F

Table 2: Min-cardinality problem, larger network

it with ease. Thus the enumeration approach, where we enumerate all possible attacks of a given
cardinality, should be applicable at least in case of small problems. When a successful attack of
the cardinality under consideration exists, the enumeration approach might “get lucky” and find
it quickly; on the other hand when the given cardinality is insufficient to defeat the controller all
attacks will need to be enumerated.

In order to effect a comparison, we first estimated, for each network, the time needed to solve
one controller’s problem by choosing 1000 random attacks and averaging their solution time. We
then multiplied this estimated average time by the number of cases that need to be enumerated.

In the following tables we tabulate the projected time(in seconds) it would take if a pure
numeration approach was used. The column ’time per M 1P’ indicates the average time (in seconds)
taken by CPLEX to solve one instance of controller MIP. The following table summarizes our
results; the numbers in parentheses indicate the total number of enumerations required, while each
cell entry indicates the projected total CPU time.

2.4.2 One configuration problems

For completeness, in Table 4 we present results where we study one-configuration problems where
the set of generators that the controller operates are fized. Problems of this type correspond most
closely to those previously studied in the literature. Here we applied the mixed-integer programming

19



Attack cardinality
2 3 4
(20706) (1394204) (7005871)

10 generators
Min. throughput | Time per MIP

0.89 0.051550 1067 71870

0.86 0.052284 1083 72894 3662973
0.84 0.052853 1094 73687 3702811
0.82 0.055451 1148 77310 3884826
0.75 0.077676 1608 108296 5441916
0.60 0.110078 2279 153471 7711957

12 generators
Min. throughput | Time per MIP

0.94 0.0546667 1132 76216

0.92 0.056725 1174 79086 3974116
0.90 0.052853 1685 113518 9704293
0.88 0.063490 1314 88518 4448030
0.84 0.090882 1881 126708 6367104
0.75 0.113589 2351 158365 7957849

15 generators
Min. throughput | Time per MIP

0.92 0.066127 1369 92195 4632806
0.90 0.052853 1685 113518 9704293
0.88 0.097627 2024 136290 6848586
0.84 0.116882 2420 162957 8188631
0.75 0.124245 2576 173496 7711927

Table 3: Pure enumeration, 98 nodes 204 arcs

formulation (49)-(53) restricted to the single configuration C = G. Rather than use our algorithm,
we simply solved these problems using a commercial solver, Cplex [13]. The table shows the CPU
time needed to solve the minimum-cardinality problem corresponding to the minimum throughput
shown in the first column.

As expected, the problem becomes easier as the required minimum attack size increases — more
candidates (for optimal attack) exist.

3 A continuous, nonlinear attack problem

In this section we study a new attack model. Our goals are twofold:

e First, we want to more explicitly capture how the flow conservation equations (1) interact
with the power-flow law (2) in order to produce flows in excess of capacities. More generally,
we are interested in directly incorporating the interaction of the laws of physics with the
graph-theoretic structure of the network into an algorithmic procedure. It is quite clear that
the complexity of combinatorial problems on power flows, such as the min-cardinality attack
problem, is primarily due to this interaction.

e Second, there are ways other than the outright disabling of a power line, in which the func-
tioning of the line could be hampered. There is a sense (see e.g. [23]) that recent real-world
blackouts were not simply the result of discrete line failures; rather the system as a whole was
already under “stress” when the failures took place. In fact, the operation of a power grid can
be viewed as a noisy process, this in addition to the fact that even the AC power flow model
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Min. Throughput | Min. Attack Size | Time (sec.)
0.95 2 2
0.90 3 20
0.85 4 246
0.80 5 463
0.75 6 2158
0.70 6 1757
0.65 7 3736
0.60 7 1345
0.55 8 2343
0.50 8 1328

Table 4: 49 nodes, 84 arcs, one configuration

is an approximation. Rather than attempting to model the noise and complexity in detail,
we seek a generic modeling methodology that can serve to expose system vulnerabilities.

The approach we take relies on the fact that one can approximate a variety of complex physi-
cal phenomena that (negatively) affect the performance of a line by simply perturbing that line’s
resistance (or, for AC models, the conductance, susceptance, etc.). In particular, by significantly
increasing the resistance of an arc we will, in general, force the power flow on that line to zero. This
modeling approach becomes particularly effective, from a system perspective, when the resistances
of many arcs are simultaneously altered in an adversarial fashion.

Accordingly, our second model works as follows:

(I) The attacker sets the resistance xz;; of any arc (i, 7).
(IT) The attacker is constrained: we must have x € F for a certain known set F'.

(III) The output of each generator i is fixed at a given value P;, and similarly each demand value
D; is also fixed at a given value.

(IV) The objective of the attacker is to maximize the overload of any arc, that is to say, the

attacker wants to solve
max max {M} , (80)

zeF 1) ul-j
where the f;; are the resulting power flows.

In view of Lemma 1.1, (III) implies that in (d) the vector f is unique for each choice of z; thus the
problem is well-posed.

In future work we plan to relax (III). But (I), (II), (IV) already capture a great deal of the inherent
complexity of power flows. Moreover, suppose that e.g. the value of (80) equals 1.25. Then even
if we allow demands to be reduced, but insist that this be done under a fair demand-reduction
discipline (one that decreases all demands by the same factor) the system will lose 25% of the total
demand if overloads are to be avoided (and it is not surprising that the same qualitative conclusion
holds even if demands are “unfairly” reduced to minimize maximum overload; see Table 11). Thus
we expect that the impact of (III), under this model, may not be severe.

For technical reasons, it will become more convenient to deal with the inverses of resistances, the
so-called “conductances.” For each (i,j) € E, write y;; = 1/z;;, and let y be the vector of y;;.
Then we are interested in a problem of the form

max max { |flj(y)| } : (81)

yell g Uiz
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where I' is an appropriate set, and as just discussed the notation f;;(y) is justified.

A relevant example of a set I' is that given by:

S-<B p<wsop V) (52)
ij J4 %] 1]
where B is a given ’budget’, and, for any arc (i, ), azg
maximum value for the resistance at (¢, j). Suppose the initial resistances x;; are all equal to some
common value Z, and we set mg = z for every (i,7), and B=k0Z + (|E| — k)Z, where k > 0 is an
integer and 6 > 1 is large. Then, roughly speaking, we are approximately allowing the adversary to
make the resistance of (up to) k arcs “very large”, while not decreasing any resistance, a problem
closely reminiscent of the classical N — K problem. We will make this statement more precise later.
If the objective in (81) is convex then the optimum will take place at some extreme point. In
general, the objective is not convex; but computational experience shows that we tend to converge
to points that are either extreme points, or very close to extreme points (see the computational
section).

and ajg and indicates a minimum and

3.1 Solution methodology

Problem (81) is not smooth. However, it is equivalent to:

%%X ~ i (pZJ qZJ) (83)
s.t. Z(pij +qij) =1, (84)
ij
yel, pgq>0. (85)

In order to work with this formulation we need to develop a more explicit representation of the
functions fj;(y). This will require a sequence of technical results given in the following section;
however a brief discussion of our approach follows.

Problem (83), although smooth, is not concave. A relatively recent research thrust has focused on
adapting techniques of (convex) nonlinear programming to nonconvex problems. This work has
resulted in a very large literature with interesting and useful results; see [15], [4]. Since one is
attempting to solve non-convex minimization (and thus, NP-hard) problems, there is no guarantee
that a global optimum will be found by these techniques. One can sometimes assume that a global
optimum is approximately known; and the techniques then are likely to converge to the optimum
from an appropriate guess.

In any case, (a) the use of nonlinear models allows for much richer representation of problems,
(b) the very successful numerical methodology backing convex optimization is brought to bear,
and (c) even though only a local optimum may be found, at least one is relying on an agnostic,
“honest” optimization technique as opposed to a pure heuristic or a method that makes structural
assumptions about the nature of the optimum in order to simplify the problem.

In our approach we will indeed rely on this methodology — items (a)-(c¢) precisely capture the
reasons for our choice. Points (a) and (c) are particularly important in our blackout context: we
are very keen on modeling the nonlinearities, and on using a truly agnostic algorithm to root out
hidden weaknesses in a network. And from a computational perspective, the approach does pay
off, because we are able to comfortably handle problems with on the order of 1000 arcs.

As a final point, note that in principle one could rely on a branch-and-bound procedure to
actually find the global optimum. This will be a subject for future research.
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3.1.1 Laplacians

In this section we present some background material on linear algebra and Laplacians of graphs —
the results are standard but we include a proof for completeness and continuity. See [7] for relevant
material.

As before we have a directed network G with n nodes and m arcs and with node-arc incidence
matrix N. As before we assume G is connected. For a positive diagonal matrix Y € R™*"™ we will
write

1
L =NYNt, J=L+ -117. (86)

n
where 1 € R" is the vector (1,1,...,1)7. L is called a generalized Laplacian. We have that L is
symmetric positive-semidefinite. If Ay < Ay < ... < ), are the eigenvalues of L, and v!,v2,... v"

are the corresponding unit-norm eigenvectors, then
A1 =0, but A\;>0 fori>1, (87)

because G is connected, and thus L has rank n — 1. The same argument shows that since N1 = 0,
we can assume v! = n~/2 1. Finally, since different eigenvectors are are orthogonal, we have

1Tyt = 0 for 2<i<n.

Lemma 3.1 L and J have the same eigenvectors, and all but one of their eigenvalues coincide.
Further, J is invertible.

Proof. By (87),

1
Lt =0, Jul = 511%1 = o, (88)

and further
Jv' = L' = \o' A (89)

Lemma 3.2 Let b € R™. Any solution to the system of equations Lo = b is of the form
a=Jtb+61,

for some 6 € R.

Proof. We have that L = > o )\iviv;f, and, by Lemma 3.1, J~! = Yo, )\%viv? + %11T. Now,

the system of equations La = b is feasible if and only if b lies in the column space of matrix L and
when it is so we can write b = I, v;(v] b). Assuming that this is the case, defining

a=J" = )
1=2

|~

v; (vl b) (90)

>

)

we will have L& = b. Suppose that & is another vector satisfying L& = b. Then L(a— &) = 0, and
consequently & = & + 61, for some 5. W

Define
P=1I-]

Note that the eigenvalues of P are 0 and 1 — \;, 2 < ¢ < n; thus if we have

Z Yuo < 1/2, for all u, (91)
(uv)
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then it is not difficult to show that
0<1—-X<1, foralli>2. (92)
(See [19] for related background). In such a case we can write
Jl'=I-P) ' =14+P+P+P+..., (93)
in other words, the series in (93) converges to J .
Lemma 3.3 For any integer k >0, P* = (I - NYNT)F — %llT.

Proof. We will prove the statement by induction on &, while also proving that (I — NYNT)*117 =
117, The case k = 1 holds by definition. For the general inductive step, we have

1
Pkt = |(I-NYNDF——117| P (94)
n
1 1 1
= (I-NYND*M _ —(1 - NyNTF11T — —11T |1 - NYNT) - Z11T]  (95)
n n n
1
= (I—-NYNDM_ —117T (96)
n
because by induction
(I -NYND*11T = (17— NYND* 1 - NYND11T = 117, (97)
and
117 (I - NYNT) — L] = nr-luarar 2 (98)
n n

The second inductive statement is similarly proved. B

3.2 Model details

We will now apply the above techniques to our problem (83)-(85), where, as per our modeling
assumption (III), b denote the (fixed) net supply vector, i.e. b; = P; for a generator i, b; = —D; for
a demand node i, and b; = 0 otherwise. Denoting by Y the diagonal matrix with entries 1/y;;, we
have that given Y the unique power flows f and voltages 6 are obtained by solving the system

N'O-Y~'f = 0

Nf = b
Note that if we scale Y and b by a multiplicative factor u > 0 then we obtain an equivalent system,
e.g. the power flows f increase by a factor of u and the angles 6 do not change. Thus, assuming
I' C R" is bounded (as is the case if we use (82)) then as a first step to solving (83)-(85) we can
scale I' so that condition (91) holds for every y € I'. Consequently, by (92), we can assume that

there is a constant r < 1 such that 1 — A; < r for 2 < ¢ < n. In what follows we will always make
this assumption.

By Lemma 3.2 each solution to (99)-(99) is of the form

6=J'b4+61 for some § € R, (99)
f=YNTj 1, (100)

For each arc (i,j) denote by n;; the column of N corresponding to (,7), i.e., nj; := Ne;j, where
e;j € R™ is the vector with a 1 at entry (7,j) and zero otherwise. Using (93) we therefore have

fy = ygnk {I~|—P+P2+P3+...} b, V(i,j), and (101)
o0

0:—0; = nli0 = nl[I+P+P?+ P+ b =nl}} Pro, (102)
k=0
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In the following we will be handling expressions with infinite series such as the above. In order to
facilitate the analysis we need a ’'uniform convergence’ argument, as follows. Given y € I', note
that we can write

P = P(y) = UyAm)Uw)", (103)

where U(y) is a unitary matrix and A(y) is the diagonal matrix containing the eigenvalues of P(y).
Hence, for any k& > 1 and any arc (i,7) (and dropping the dependence on yg; for simplicity),

[nL P*b| = [nLUAN*UTH| < v, (104)

J J
for some v < 1, by (92). We will rely on this bound below.

As a first consequence of (104) we have the following result, showing that appropriate assumptions
the continuous model we consider is related to the network vulnerability models in Section 2.

Lemma 3.4 Let S be a set of arcs whose removal does not disconnect G. Suppose we fix the val-
ues y;j = 1/xij for each arc (i,5) € S, and we likewise set ysy = € for each arc (s,t) € S. Let
(f(y),0(y)) denote the resulting power flow, and let (f,0) the solution to the power flow problem
on G—S.

Then,
(a) lim. g fo(y) = 0, for all (s,t) € S,
(b) For any (u,v) ¢ S, limeo fur(y) = fuo-
(¢c) For any (u,v), limeo(0u(y) — 0,(y)) = Ou — by

Proof. (a) Let G = G — (s,1), let N be node-arc incidence matrix of G, Y the restriction of ¥ to

1
E—(s,t),and P=1- NYNT - 1117
For any integer £ > 1 we have by Lemma 3.3

1 . ~
lim P* = lim(I - NYNT)* — 117 = (1 - NYNT)* — —117 = PF, (105)

e—0 e—0 n n

Consequently, by (101), for any (s,t) € S,

k=0 k=0

where the exchange between summation and limit is valid because of (104). The proof of (b), (c)
are similar il

Lemma 3.4 can be interpreted as describing a particular type of attack that is feasible for the
adversary under our models. Our computational experiments show that the pattern assumed by
the Lemma is approximately correct: given an attack budget, the attacker tends to concentrate
most of the attack on a small number of arcs (essentially, making their resistance very large), while
at the same time attacking a larger number of lines with a small portion of the budget.

In the following set of results we determine efficient closed-form expressions for the gradient and

Hessian of the objective in (81). As before, we denote by n;; the column of the node-arc incidence
matrix of the network corresponding to arc (i, j).

25



Lemma 3.5 For any integer k > 0, and any arc (i, j)

(@) 1TPF =0,
(b) jij [PFo] = P (ZU [PE1] — nygnf PR,

Proof. Note that 17P = 17(I — J) =17(I - NYNT — 1117) = 0. Hence 17 P* = 0.

0 0

0y [Pkb} ~ Oy {Ppk_lb}
. 85” (I ) (u%:EE Yo P, = lllT) P

| S s T, | P0| - 0 [1 17 ph 1b]
81/2] - - 81/7,] | \(u0)eE ] 81/7,]
_ 0 [ph-1p] _ 0 S g oy | P10
Oyij L 1 Oyy; A |
O [ pk—1y] )
= Pk—lb _ — yuvnuvngvpk_lb
Oyij L J (MZ)GE dYij [ }
= 0 _Pk—lb— _ Z [8yuv] nT pk=1p _ Z Yuw —— [’I’L AT ph—1p
8yij - _ (uv)€E 8yij (u,w)EE ayij
0 r -
= Pk—lb nZJnTPk lb _ Z Yo ’I’Luan,U 0 |:Pk_1b:|
0y;j L J Wolr 9,
- Z Yuv nuvn;{v 88 [Pk_lb} — ann;I;Pk_lb
(u,v)EE Yij
1
= |:P+_1]_T:| 0 |:Pk lb:| — ngn TPk lb
n Yij
OYij yw
= 9 k—1 T pk—1
= Po [PF18] — nignf; P10,

where the third and the last equality follow from (a). W

Using the above recursive formula we can write the following expressions:

0

Pb] = —nyn; b
0 0
P = P—[Pb] —nyn};Pb
9 3 2 0 T p2
8y--[P b = P 0 [Pb] — Pnzjn Pb —nn;; P°b
ij ij
9 4 3 0 2 T p3
8y~[P b = P m [Pb] — nmn IPb— ann P7b — nyni; P°b
1) ij
9 ok ‘ k-1 0 k—2 T k—3 T p2 T pk—1
[Pb] = P ——[Pb] — P" “nyn;;Pb— P "nyn;; P7b— ... —nim;; P70
ayij ayw

26



Consequently, defining

Vi = (;;j [I+P+P+.. |b, (107)
we have
Vi = [I+P+P2—|—...}8§”[Pb]—(I+P+P2—|—...)n¢jng (P+P2+P3+...)b
ij

= —[1+P+ P+ Jngnlp - (I+P+P 4 nynly (I+P+P + ... —1)b
= —(1+P+P 4+ )l (I+P+ P2+ )b
= —J_lnijn;fgﬂ, (108)

where the last equality follows from (99) and (93), and the fact that nile =0.

Using (101), the gradient of function f,,(y) with respect to the variables y;; can be written as:

a a — . .
ity oo [T+ PP £ Pt )b = gy g, (i) # () (109
Yij Yij
Ofy _ 7 2 p3 r 0 s g
Byis N5 {I+P+P +P +"'}b+yijnij@[I+P+P + P —I—...}b

= n;Vij + i Vi (110)

We similarly develop close-form expressions for the second order derivatives. For (u,v) # (3, ), (u,v) #
(h, k), we have the following :

0 fu

= Yuy [{+P+ P>+ P+ . Jnyn;(I+ P+ P>+ P>+ . Inpniy
0Yi;OYnk

+I+P+P+ P+ nmnj(I+P+ P>+ P+ . )nynl 0
= —yuvnng_l [nmngﬁhk + nhkngkﬁij} . (111)

Similarly, the remaining terms are:

& . . )
0 f;v = 2 n;—fvvw — 2 y“”ngv‘] lnuvngvvuv, (112)
yuU
0% ~ - N B

3.3 Implementation details

We use LOQO [22] to solve problem (83)-(85), using I' = {y >0, ﬁ < B} with values of B
that we selected. LOQO is an infeasible primal-dual, interior-point method applied to a sequence of
quadratic approximations to the given problem. The procedure stops if at any iteration the primal
and dual problems are feasible and with objective values that are close to each other, in which case
a local optimal solution is found. For numerical reasons, LOQO additionally uses an upper bound
on the overall number of iterations to perform.

At each iteration of the method applied by LOQO, it requires the Hessian and gradient of the
objective function and the constraints. The latter are easy to derive. Note that using (109), (110),
(111)-(113) one can obtain compact, closed-form expressions for the Hessian and gradient of the
objective. This approach requires the computation of quantities nva _1nij for each pair of arcs
(4,7), (u,v). At any given iteration, we compute and (appropriately) store these quantities (which
can be done in O(n? + nm) space).

27



In order to compute nZ J~1n;;, for given (i,5) and (u,v), we simply solve the sparse linear system
on variables k, A:

Nk -y~ X = 0 (114)

T

As in (99), we have k = J~!n;; + d1 for some real §. But then nl x = nl J~!n;;, the desired

quantity. In order to solve (114)-(115) we use Cplex (to solve a nominal linear program).

We point out that, alternatively, LOQO can perform symbolic differentiation in order to directly
compute the Hessian and gradient. We could in principle follow this approach in order to solve a
problem with objective (83), constraints (84), (85) and (1), (2). We prefer our approach because it
employs fewer variables (we do not need the flow variables or the angles) and primal feasibility is
far simpler.

In our implementation, we fix a value for the iteration limit, but apply additional stopping criteria:

(1) If both primal and dual are feasible, we consider the relative error between the primal and
dual values, € = M, where 'PV’ and DV’ refer to primal and dual values respectively.
If the relative error € 1s less than some desired threshold we stop, and report the solution as

“e-locally-optimal.”

(2) If on the other hand we reach the iteration limit without a stopping as in [(1)], then we
consider the last iteration at which we had both primal and dual feasible solutions. If such
an iteration exists, then we report the corresponding configuration of resistances along with
the associated congestion value. If such an iteration does not exist, then the report the run
as unsuccessful.

Finally, we provide to LOQO the starting point x;; = a:ZL] for each arc (i, 7).

3.4 Computational testing

We applied our algorithm to a number of test cases, using three constraint sets I' as in (82):

(1) T'(1), where for all (¢, 7), a;ZL] =1 and x% =5,

(2) T'(2), where for all (4, 7), a;ZL] =1 and x% = 10,

(3) T'(3), where for all (i, 7), z; = 1 and «f; = 20.

In each case, we set B = Z(i,j) :L‘ZL]' + AB, where AB represents an “excess budget”.

We used data sets derived from the IEEE test cases [16], and, in addition, we used the following
procedure to generate larger, examples. Let N'' and A2 be two power networks. We create a
new network, A3, by taking a copy of N'! and a (disjoint) copy of A2, and adding a random set
of arcs between the two copies. Each potential arc between the two copies is added with a given
probability 0 < p < 1; furthermore, the resistance and capacity of this arc are chosen equal to the
(corresponding) average (among all arcs in N'! and A2), plus a small random perturbation.

In the tables below, we state the iteration limit and the e parameter used to control termination
of LOQO. For each run, we state the objective value (i.e. the maximum arc congestion as in (80))
at termination, the corresponding run time and number of iterations used, and the termination
status. This is indicated by “Exit Status”, with the following interpretation:

(1) ’e-L-opt.”: the algorithm computed an e-locally-optimal solution.
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(2) 'PDfeas, Iter: lastItn’: the algorithm reached the iteration limit without finding an e-
locally-optimal solution, but there was an iteration at which both primal and dual problems
were feasible. ’lastItn’ gives the last iteration at which both primal and dual solutions were
feasible.

(3) 'opt.”: the algorithm attained LOQO’s internal optimality tolerance.

Tables 5 and 6 summarize the results for the 49-node, 84-arc network, with 14 demand nodes and
4 generators that we considered in section 2.4, using sets I'(1) and I'(2) respectively. Note that for
example in the case AB = 30, under I'(2), the attacker can increase (from their minimum value)
the resistance of up to 3 arcs by a factor of 10 (with 3 units of budget left over). And under I'(1),
up to 6 arcs can have their resistance increased by a factor of 5. In either case we have a situation
reminiscent of the N — k problem, with small &.

Table 5: 49 nodes, 84 arcs, I'(1)
Iteration Limit: 800, ¢ = 0.01
AB
5 10 15 20 25 30

Max Cong | 0.673054 | 0.750547 | 0.815623 | 0.865806 | 0.901453 | 0.951803
Time (sec) 12 15 18 19 28 22
Iterations 258 347 430 461 Limit 492

Exit Status | e-L-opt. | e-L-opt. | e-L-opt. | e-L-opt. | PDfeas | e-L-opt.

Tter: 613
Table 6: 49 nodes, 84 arcs, T'(2)
Iteration Limit: 800, ¢ = 0.01
AB
5 10 15 20 25 30

Max Cong | 0.67306 | 0.751673 | 0.815584 0.8685 0.91523 0.9496
Time (sec) 9 13 34 3 29 30
Iterations 177 295 Limit Limit Limit Limit

Exit Status | e-L-opt. | e-L-opt. | PDfeas PDfeas PDfeas PDfeas
Tter: 800 | Iter: 738 | Iter: 624 | Iter: 656

Table 7 presents similar results for a network with 300 nodes, 409 arcs, 42 generators and 172 loads.
Note that for the runs AB > 20 the maximum load value is identical; the optimal solutions x;;
were nearly identical, independent of the initial point given to LOQO.
Table 8 presents similar results for a network with 600 nodes, 990 arcs, 344 demand nodes and 98
generators, under set I'(2). We observed an interesting issue in the case where AB = 10. Here,
LOQO terminated with a solution in which for some arc (4, j), both p;; > 0 and ¢;; > 0 (refer to
formulation (83)-(85). The value in parenthesis indicates the true value of the congestion obtained
by solving the network controller’s problem if we were to use the resistance values (x;;) given by
LOQO.

Finally, Table 9 presents experiments on a network with 649 nodes and 1368 arcs. Here, exit
status 'DF’ means that dual feasibility was achieved, but not primal feasibility.
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Table 7: 300 nodes, 409 arcs, I'(2)
Iteration Limit: 500, ¢ = 0.01

AB
9 18 27 36
Max Cong | 0.590690 | 0.694101 | 0.771165 | 0.771165
Time (sec) 208 1248 981 825
Iterations 91 Limit 406 320
Exit Status opt. PDfeas opt. opt
Tter: 318

Table 8: 600 nodes, 990 arcs, I'(2)
Iteration Limit: 300, ¢ = 0.01

AB
10 20 27 36 40
Max Cong | 0.082735 (0.571562) | 1.076251 | 1.156187 | 1.088491 | 1.161887
Time (sec) 11848 7500 4502 11251 7800
Iterations Limit 210 114 300 208
Exit Status PDfeas e-L-opt. | e-L-opt. | PDfeas | e-L-opt.
Iter: 300 Tter: 300

3.4.1 Distribution of attack weights

Table 10 describe the distribution of z;; values at termination of the algorithm, for a number of
networks and attack budgets. For each test we show first (in parentheses) the number of nodes and
arcs, followed by the the attack budget and constraint set. The data for each test shows, for each
range of resistance values, the number of arcs whose resistance falls in that range.

Note that in each test case the adversary can increase up to three resistances to their maximum
value. In all three cases many resistances take relatively small values and a small number of arcs
have high resistance. Recall that for set I'(2) we always have z;5*" = 10, thus in the case of the
(300, 409) network exactly three arcs are in the top range, while for the (600, 990) network two are
in the top range and one more has relatively high resistance. In the case of the small network the
distribution seems more “continuous”, although as we will see in the next section that the three
highest resistance arcs play a significant role.

3.4.2 Comparison with the minimum-cardinality attack model

In this section we describe some comparisons with the mixed-integer programming model consid-
ered in Section 2.1. A direct comparison on case-by-case basis is not possible, because the nonlinear
model assumes that all demands and generator outputs are fixed, whereas the model in Section 2.1
in particular allows load-shedding with a minimum desired throughput of D™" — we could set up
problem instances where D™ = 1.0 but in that case an attack that disconnects a demand node,
even one with tiny demand, would be considered a success for the attacker.

To deal with these issues and still obtain a meaningful comparison, we set an example with 49
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Table 9: 649 nodes, 1368 arcs, I'(2)
Iteration Limit: 500, ¢ = 0.01

AB
20 30 40 60
Max Cong | (0.06732) 1.29567 | 1.942652 | (0.049348)1.395398 | 2.045111
Time (sec) 66420 36274 54070 40262
Iterations Limit 374 Limit Limit
Exit Status DF e-L-opt. DF PDfeas
Iter: 491

Table 10: Solution histogram

| (49,90) AB =57,I'(3) | (300,409) AB =27,T'(2) || (600,990) AB =36,I(2) |

Range Count Range Count Range Count
[1, 1] 8 [1, 1] 1 [1, 1] 14
(1,2] 72 (1, 2] 405 (1, 2] 970
(2,3] 4 (2,9] 0 (2, 5] 3
(5,6] 1 (9, 10] 3 (5, 6] 0
(6,7] 1 (6, 7] 1
(7,8] 4 (7,9] 0
(8,20] 0 (9, 10] 2

nodes and 88, and an example with 49 nodes and 90 arcs, in which no demand or generator node
can be disconnected from the rest by removing up to three arcs. In each case there are 4 generators
and 14 demand nodes. By scaling up all capacities by a common constant we then obtained a
family of problems.

In terms of the mixed-integer programming model, we then set-up a one-configuration problem
with D™ = 1, with the goal of investigating its vulnerability should up to three arcs be removed.
Here we remind the reader that the algorithms 2.1 seek a minimum-cardinality attack that defeat
the controller, and not the most severe attack of a given cardinality. Once our problem is solved
the optimal attack is certified to be successful (and of minimum-cardinality), but not necessarily
the most severe attack of that cardinality. Nevertheless, by adjusting our formulation (49)-(53) we
can search for a successful attack of any given cardinality, if it exists. The problem we obtain is:

t* = maxt (116)

Subject to: Zzij < k, (117)
(i)

wiyt —t > 0, VCCG, (118)

Ay + Bz < b+ B VYCCG, (119)

zij = 0orl, V(i,7). (120)

where k (= 3) is a the number of arcs that the attacker can be remove. However, all this for-
mulation guarantees is that t* > 1 if and only if a successful attack of cardinality < k exists —
because of the nature of our formulation, when ¢* > 1 then ¢* will be an approximation (in general,
close) to the highest severity. A final detail is that since 3 lines will not disconnect the demands
from the generators, the “severity” of an attack as per formulation (117)-(120) is the maximum arc
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congestion post-attack; thus putting the problem on a common ground with the nonlinear models
we consider.

For our experiments we used I'(1) (which allows resistances to increase by up to a factor of 20)
with an excess budget of 60, on the network with 49 nodes, 90 arcs, 4 generators and 14 demand
nodes. Note that the parameters allow the attacker to concentrate the budget on three arcs.

Table 11 contains the results. Each row corresponds to a different experiment, where a common
multiplier used to scale up all capacities. We used, respectively, 1.0,1.2,1.4,1.6,1.8,2.0, thus ob-
taining examples that are progressively more difficult to interdict.

In the "MIP’ section, the column headed Cong’ indicates the congestion (max. arc overload)
in the network obtained by removing the arcs produced by the mixed-integer programming model,
and the column headed ’ATTACK’ indicates which arcs were removed by the MIP.

In the 'NONLINEAR’ section, ’Cong’ indicates the maximum congestion resulting from the
increase in resistances computed by the model. We also list the 6 arcs with highest resistances (and
the resistance values).

The column headed 'Tmpact’ indicates the maximum congestion obtained by deleting the three
arcs with maximum resistance (as computed by the model), while leaving all other resistances
unchanged. We also performed the following test: we removed the top three highest resistance
arcs, while keeping all other resistances unchanged, but now we allow the controller to reduce total
demand by up to 10% with the objective of minimizing the maximum congestion; the resulting
congestion value is shown in the column labeled 'I-10%’.

Finally, using all resistance values as computed by the nonlinear model, and without removing
any arcs, we allowed the controller to reduce total demand by up to 10%, again with the objective of
minimizing the maximum congestion. The column labeled ’C-10%’ shows the resulting congestion
value.

Table 11: Comparison between models

MIP NONLINEAR
Cong | Attack | Cong Top 6 Arcs Impact | I-10% | C-10%
59(7.79), 27(7.20), 41(7.03),
1.440880 | 29,32,45 || 2.149673 | 67(7.02), 54(6.72), 79(5.71) | 1.717584 | 1.334536 | 1.671452
29(8.28), 27(7.72), 41(7.32),

(

(

(
1.431320 | 27,2941 | 1.786874 | 67(7.19), 54(6.92), 79(5.78) | 1.431320 | 1.112113 | 1.386416
29(8.31), 27(7.74), 41(7.53),
1.226846 | 27,29,41 | 1.556341 | 67(7.48), 54(7.18), 79(6.15) | 1.226846 | 0.953240 | 1.213288
29(8.18), 27(7.58), 41(7.53),
(
(
(
(
(

1.073490 | 27,29,41 || 1.359954 | 67(7.58), 54(7.22), 79(6.25) | 1.073490 | 0.834085 | 1.054584
29(8.43), 27(7.90), 41(7.53),
0.692488 | 18,57,60 || 1.202712 | 67(7.48), 54(7.18), 79(6.12) | 0.954213 | 0.741409 | 0.935953
29(7.87), 27(7.29), 41(7.04),
0.686301 | 20,89,45 || 1.077328 | 67(7.01), 54(6.70), 79(5.63) | 0.858792 | 0.667268 | 0.838777

Note that the results in Table 11 show some significant, overlap between the results from the two
models. As before, we see that the solutions to the nonlinear model tend to concentrate the attack
on a relatively small number of lines, while at the same time investing small portions of the attack
budget on other lines.

Moreover, the two models are consistent: the severity of the attack, for both models, decrease
as the scale increases (as one should expect). Finally, the top three highest resistance arcs selected
by the nonlinear model have significant impact from the point of view of the min-cardinality model.
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