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Abstract. We modify the first order algorithm for convex programming proposed by Nesterov
[5]. The resulting algorithm keeps the optimal complexity obtained by Nesterov with no need of a
known Lipschitz constant for the gradient, and performs better in practically all examples in a set
of test problems.

1. Introduction. We study the nonlinear programming problem

(P )
minimize f(x)

subject to x ∈ R
n,

where f : R
n → R is convex and continuously differentiable, with a Lipschitz constant

L > 0 for the gradient and a convexity parameter µ ≥ 0. It means that for all
x, y ∈ R

n,

‖∇f(x) −∇f(y)‖ ≤ L‖x − y‖(1.1)

and

f(x) ≥ f(y) + ∇f(y)T (x − y) +
1

2
µ‖x − y‖2.(1.2)

If µ > 0, the function is said to be strongly convex. Note that µ ≤ L. The
algorithms described in this paper use the convexity parameter, but do not assume
that it is positive. But we do assume that the problem has an optimal solution. We
do not assume that the Lipschitz constant is known, although its knowledge may be
very helpful. In fact, our main algorithms do not need the assumption that L < +∞,
unless for the complexity analysis. Hence it can be used for instance in problems
involving logarithmic barriers.

The most widely known method for solving this problem is the steepest descent
algorithm, devised by Cauchy in the nineteenth century. It constructs a sequence (xk)
in which xk+1 = xk−νk∇f(xk). The step length must produce a large decrease of f(·).
There are several methods for this line search, described in nonlinear programming
textbooks. If L is known, then the constant step length νk = 1/L ensures the global
convergence of the algorithm.

In the second half of last century there was much activity in the development
of quasi-Newton algorithms, which iteratively construct matrices which in a certain
sense approach the Hessian matrices ∇2f(xk), to endow the methods with superlinear
convergence. All these methods compute only first derivatives, so that each iteration
is based on the accumulated first order information from the previous iterates. The
main objective of these methods is to obtain high asymptotic convergence speeds.
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mail :karas@mat.ufpr.br. Research done while visiting the Tokyo Institute of Technology, Global
Edge Institute. Supported by PRONEX - Optimization and MEXT’s program.

1



2 C. C. GONZAGA AND E. W. KARAS

The last quarter of the twentieth century saw the coming of computational com-
plexity theory into the realm of continuous convex optimization. Linear and quadratic
programming were revolutionized by the introduction of interior point methods, and
for the first time methods for differentiable optimization had their practical efficiency
motivated by complexity theory.

Complexity results for nonlinear programming are limited to convex problems,
but they are impressive (see Nemirovsky and Yudin [3] and Shor [7]): no method for
solving (P) based on accumulated first order information can achieve an iteration-
complexity bound of less than O(1/

√
ε), where ε > 0 is the absolute precision of

the final objective function value. The steepest descent method cannot achieve a
complexity better than O(1/ε). These results and much more are explained in Yurii
Nesterov’s book [5]. This reference will be continuously cited in this text.

This paper is about Nesterov’s ingenious treatment of steepest descent, first pub-
lished in 1983 [4]. The theory laid dormant for many years, and is now calling the
attention of the continuous optimization community. The method relies heavily on
complexity results, and is not easy (although very worthwhile) to understand: he
proves that with insignificant increase in computational effort per iteration, the com-
putational complexity of the steepest descent method is lowered to the optimal value
O(1/

√
ε). Besides the impact on actual computation that may be anticipated, the

beauty of this work is in showing how highly non-trivial theoretical complexity results
can beat the existing intuition and improve a century old method.

Our paper does a fine tuning of Nesterov’s algorithm. His method relies heavily
on the knowledge of the Lipschitz constant L, and achieves optimal complexity with
the smallest possible computational time per iteration: only one gradient computation
and no function evaluations (besides the ones used in the line search, if it is done at
all). We trade this economy in function evaluations for an extra inexact line search,
eliminating the need to know L or µ and improving the efficiency of each iteration,
while keeping the optimal complexity in number of iterations.

We believe that our best algorithm is the one presented in Section 4, based on a
decreasing sequence of estimates for the parameter µ.

Structure of the method.

A detailed explanation of the method is in Nesterov’s book. Here we give a
rough description of its main features. It uses local properties of f(·) (the steepest
descent directions) and global properties of convex functions, by generating a sequence
functional upper bounds imposed on the epigraph of f(·). The functional upper
bounds are simple distance functions with the shape

φk(x) = φ∗

k +
γk

2
‖x − vk‖2,

where φ∗

k ∈ R, γk > 0 and vk ∈ R
n. Note that these functions are strictly convex

with minimum φ∗

k at vk. At start, v0 = x0 is a given point and γ0 > 0 is given. If L
is available, then one should take γ0 = L.

The method will compute a sequence of points xk, a sequence of positive para-
meters λk → 0 and a sequence of functions φk(·). The construction is such that at
each iteration φ∗

k ≥ f(xk) (in the present paper, we require φ∗

k = f(xk)). Hence any
optimal solution x∗ satisfies f(x∗) ≤ φ∗

k ≤ φk(xk), and so we can think of φk(·) as an
upper bound imposed to the epigraph of f(·). This is shown in Fig. 1.1 .

The second order constants are defined as γk −µ = λk(γ0−µ). So, as k increases,
the functions φk(·) become flatter, as shown in Fig. 1.1.
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Fig. 1.1. The mechanics of the algorithm.

Now, the very non-trivial construction: Nesterov shows how to define these func-
tions so that

f(xk) ≤ φk(·) ≤ λkφ0(·) + (1 − λk)f(·).

With this property (which will be developed in detail in Sec. 2), an immediate exam-
ination of an optimal solution results in

f(xk) ≤ φk(x∗) ≤ λkφ0(x
∗) + (1 − λk)f(x∗) = f(x∗) + λk(φ0(x

∗) − f(x∗)),

and we see that f(xk) → f(x∗) with the speed with which λk → 0. Nesterov’s
method ensures λk = O(1/k2), and this means optimal complexity: an error of ε > 0
is achieved in O(1/

√
ε) iterations.

The practical efficiency of the method depends on how much each iteration ex-
plores the local properties around each iterate xk to push λk down. Of course, the
worst case complexity cannot be improved, but the speed can be improved in practical
problems. This is the goal of this paper.

Structure of the paper. Section 2 begins by presenting in detail a prototype al-
gorithm and its main variants, as they should be implemented. Then, after some
technical results on quadratic functions, we describe all variables, functions and pa-
rameters needed in the analysis. Section 3 discusses some details on how the methods
can be implemented and simplified in several different environments, keeping the the
optimal complexity. Section 4 describes a modified algorithm based on adaptive es-
timates of the strong convexity parameter and does a complete complexity analysis,
proving that Nesterov’s complexity bound is preserved. Finally, Section 5 compares
numerically the performance of the algorithms. The numerical results show that the
new algorithm performs better in practically all examples in a set of randomly gener-
ated toy test problems.

2. Description of the main algorithms. In this section we present a pro-
totype algorithm which includes the choice of two parameters (αk and θk) in each
iteration: different choices of these parameters give different algorithms. There are
several ways of choosing these parameters. Nesterov has a fixed rule for choosing
them, based on the Lipschitz constant L. In our methods only the choice of θk is
needed, while αk is determined by solving a second degree equation.

Section 2.1 states the algorithms as they should be implemented, with no explana-
tion of their theoretical bases. Understanding the motivation of the algorithm depends
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on the study of the convex combination of two simple quadratic functions, which is
done separately in Section 2.2. Then we can describe all variables and functions used
in the theoretical development in Section 2.3.

2.1. The algorithm. Here we state the prototype algorithm, followed by three
different ways of implementing the steps. At this moment it is not possible to un-
derstand the meaning of each procedure: this will be the subject of the rest of this
section.

Consider the problem (P ). Here we assume that the strong convexity parameter
µ is given (possibly null). In Section 4 we modify the algorithm to use an adaptive
decreasing sequence of estimates for µ.

Algorithm 2.1. Prototype algorithm.

Data: x0 ∈ R
n, v0 = x0, γ0 > µ (γ0 = L if L is known).

k = 0
repeat

dk = vk − xk.
Choose θk ∈ [0, 1].
yk = xk + θkdk.
If ∇f(yk) = 0, then stop with yk as an optimal solution.
Steepest descent step: xk+1 = yk − ν∇f(yk).
Choose αk ∈ (0, 1].
γk+1 = (1 − αk)γk + αkµ.

vk+1 =
1

γk+1

(

(1 − αk)γkvk + αk(µyk −∇f(yk))
)

.

k = k + 1.

Steepest descent step. Any efficient line search procedure may be used in the
steepest descent step. We know that if L is known, then the step length ν = 1/L
ensures that f(yk) − f(xk+1) ≥ ‖∇f(yk)‖2/(2L). We require that the line search
used must be at least as good as this, whenever L is known. Of course, a perfect
line search would do, but it is not practically feasible. An Armijo search with well
chosen parameters is usually the best choice, and even if L is not known it ensures
a decrease of at least ‖∇f(yk)‖2/(4L), which is also acceptable for the complexity
analysis. Hence we shall assume that at all iterations

f(yk) − f(xk+1) ≥ 1

4L
‖∇f(yk)‖2.(2.1)

Choice of the parameters.

• Our algorithm
Choice of θk: compute θk ∈ [0, 1] such that

f(xk + θkdk) ≤ f(xk) and
either θk = 1 or f ′(xk + θkdk, dk) ≥ 0. (These are an Armijo condition
with parameter 0 and a Wolfe condition with parameter 0.)

Choice of αk: compute αk ∈ [0, 1] as the largest root of the equation

Aα2 + Bα + C = 0(2.2)



FINE TUNING NESTEROV’S METHOD 5

with

Q = γk

(µ

2
‖vk − yk‖ + ∇f(yk)T (vk − yk)

)

,

A = Q +
1

2
‖∇f(yk)‖2 + (µ − γk)

(

f(xk) − f(yk)
)

,

B = (µ − γk)
(

f(xk+1) + f(xk)
)

− γk

(

f(yk) − f(xk)
)

− Q,

C = γk

(

f(xk+1) − f(xk)
)

.

We shall prove that this equation always has a real root and its largest root
is in [0,1].

• Nesterov’s algorithm
Choice of θk: compute αN as the positive solution of the equation

2Lα2 − (1 − α)γk − αµ = 0.

Compute

θk =
γk

γk + αNµ
αN .(2.3)

Original choice of αk: set αk = αN or
Modified choice of αk: compute αk as the largest root of (2.2), as in our algorithm.

Nesterov’s choice (αk = αN and θk computed in (2.3)) is the best possible in the
following sense: it uses only one gradient computation and no function computations
per iteration, and has optimal complexity. It has the following disadvantages:

• It does not explore the local efficiency of the Cauchy step, relying on the
knowledge of the Lipschitz constant to compute αk. As we shall see, the
speed of the algorithm depends on how fast γk is reduced, which implies that
in each iteration the value of αk should be as large as the theory allows.

• The sequence of function values (f(xk)) is not monotonically decreasing, al-
though it converges to f(x∗) with optimal complexity.

Our method does not depend on the knowledge of the Lipschitz constant, and
computes αk which in a sense is the largest possible. But this computation requires an
inexact line search along the direction d, which may need several function evaluations.
It has the following positive points:

• It does not depend on the knowledge of L, or even on the existence of L,
but make use of it whenever available. Of course, the complexity results only
makes sense when L exists (although unknown).

• The sequence (f(xk)) decreases toward f(x∗) with optimal complexity.
• When L is known, the extra line search can be abbreviated to limit the number

of function calculations to a predetermined number: this will be described in
Section 3.

2.2. Combining simple quadratic functions. The algorithm is based on the
construction of a sequence of simple quadratic functions φk(·). In this section we
concentrate on the study of combinations of these quadratics. An example of this
construction is in Fig. 2.1.
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Here we are calling “simple” a quadratic function whose Hessian has the shape
tI, with t ≥ 0. We shall consider two such functions:

φ(x) = φ∗ +
γ

2
‖x − v‖2,

ℓ(x) = ℓ0 + gT (x − y) +
µ

2
‖x − y‖2,

where φ∗, ℓ0, µ, γ ∈ R, g, y, v ∈ R
n. For simplicity, we assume that

γ > µ ≥ 0,

because this is the case in this paper. Both functions have scalar Hessians, but ℓ(·)
may be linear. If µ > 0, then ℓ(·) is minimized at x̂ = y − g

µ
, and

min
x∈Rn

ℓ(x) = ℓ(x̂) = ℓ0 −
‖g‖2

2µ
,(2.4)

and ℓ(·) may be expressed as ℓ(x) = ℓ(x̂) +
µ

2
‖x − x̂‖2.

We shall study the convex combinations of these two functions, defining for α ∈ R

and x ∈ R
n,

φ+(α, x) = (1 − α)φ(x) + αℓ(x),(2.5)

φ∗

+(α) = inf
x∈Rn

φ+(α, x) ∈ R ∪ {−∞},(2.6)

γ+(α) = (1 − α)γ + αµ.(2.7)

The function φ+(α, ·) is also a simple quadratic function, with Hessian γ+(α)I. If
γ+(α) > 0, then φ∗

+(α) is finite. If γ+(α) < 0, then φ∗

+(α) = −∞. For the case in
this paper we have the following fact:

Fact 2.2. Assuming that γ > µ ≥ 0,

{α ∈ R | γ+(α) > 0} = (−∞, αmax),

with αmax =
γ

γ − µ
.

Proof. Trivial from (2.7).

So φ∗

+(α) is well defined for any α 6= αmax. Here we shall look at what happens
for α = αmax, and eliminate an annoying “pathological” situation. When α = αmax,
γ+(α) = 0 and φ+(αmax, ·) is linear. In general, φ∗

+(αmax) = −∞, but it may happen
that φ+(αmax, ·) is constant and φ∗

+(αmax) > −∞. We shall see that in this unlikely
situation everything is very simple. We state this as a lemma.

Lemma 2.3. Consider two simple quadratic functions φ(·) and ℓ(·), as above,
with γ > µ and assume that ℓ(·) is not constant. Define αmax = γ/(γ − µ). Then
φ∗

+(αmax) is finite only if µ > 0, and the minimizers of φ(·) and ℓ(·) coincide. In this
case, φ∗

+(·) is linear in (−∞, αmax].
Proof. By construction, φ+(αmax, ·) is linear, because γ+(αmax) = 0. Assuming

that infx∈Rn φ+(αmax, x) is finite, we conclude that

φ+(αmax, ·) = (1 − αmax)φ(·) + αmaxℓ(·)
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is constant.
If µ = 0, then αmax = 1 and ℓ(·) is constant, contradicting the hypothesis. Hence

µ > 0, and we may write ℓ(x) = ℓ∗ + µ‖x − x̂‖, where x̂ is the minimizer of ℓ(·).
Differentiating the expression for φ+ in relation to x, we have for any x ∈ R

n,

(1 − αmax)γ(x − v) + αmaxµ(x − x̂) = 0.

If, by contradiction, v 6= x̂, then substituting x = v, we get αmaxµ = 0, which cannot
be true, proving that v = x̂. Now, since v is the minimizer of both φ(·) and ℓ(·), we
have for any α ∈ (−∞, αmax], φ∗

+(α) = (1−α)φ∗ +αℓ(v), which is linear, completing
the proof.

The following lemma was essentially proved by Nesterov.
Lemma 2.4. For any α ∈ (−∞, αmax), the function x 7→ φ+(α, x) is a simple

quadratic function given by

φ+(α, x) = φ∗

+(α) +
γ+(α)

2
‖x − v+(α)‖2,(2.8)

with

φ∗

+(α) = ℓ0 −
α2

2γ+(α)
‖g‖2+

+(1 − α)

(

φ∗ − ℓ0 +
αγ

γ+(α)

(

µ‖y − v‖2

2
+ gT (v − y)

))(2.9)

and

v+(α) =
1

γ+(α)
[(1 − α)γv + α(µy − g)] .(2.10)

In particular, if µ > 0 then

φ∗

+(1) = ℓ0 −
‖g‖2

2µ
.(2.11)

Proof. The proof is straightforward and done in detail in Nesterov’s book [5].
The expression (2.10) is obtained by differentiation of (2.5). Now, x = v+(α) is the
unique minimizer of (2.5). Substituting the expression (2.10) into (2.5), we obtain

φ∗

+(α) = (1 − α)φ∗ + αℓ0 −
α2

2γ+(α)
‖g‖2 +

α(1 − α)γ

γ+(α)

(µ

2
‖y − v‖2 + gT (v − y)

)

.

Adding and subtracting ℓ0, we have (2.9). Finally (2.11) follows from (2.9) with α = 1
and γ+(α) = µ > 0, completing the proof.

We now use Danskin’s theorem in the format presented in Bertsekas [1] to prove
that φ∗

+(α) is concave.
Lemma 2.5. The function α ∈ R 7→ φ∗

+(α) constructed above is concave in R and
differentiable in (−∞, αmax).

Proof. We know that φ∗

+(α) = −∞ for α > αmax.
If φ∗

+(αmax) is finite, then Lemma 2.3 ensures that φ∗

+(·) is linear in (−∞, αmax]
and hence this case is proved. Assume then that φ∗

+(αmax) = −∞. We must prove
that φ∗

+(·) is concave and differentiable in (−∞, αmax). We will prove the concavity
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in an arbitrary interval [α1, α2] ⊂ (−∞, αmax). For each α ∈ [α1, α2], φ+(α, ·) has a
unique minimizer v+(α). By continuity of v+(·) in (2.10), v+([0, ᾱ]) is bounded, i.e.,
there exists a compact set V ⊂ R

n such that

φ∗

+(α) = min
x∈V

φ+(α, x).

So, the hypotheses for Danskin’s theorem are satisfied:
• φ+(·, x) is concave (in fact linear) for each x ∈ R

n,
• φ+(α, ·) has a unique minimizer in the compact set V for each α ∈ [α1, α2].
We conclude that φ∗

+(·) is concave and differentiable in [α1, α2]. Since [α1, α2] was
arbitrary, this proves the concavity and differentiability in (−∞, αmax), completing
the proof.

We can now study the equation

φ∗

+(α) = P,

for a given P ∈ R. We shall be interested in the case in which φ∗ > inf
x∈Rn

ℓ(x) and ℓ(·)
is not constant.

Lemma 2.6. Assume that φ∗ ≥ inf
x∈Rn

ℓ(x). Given a constant P ≥ inf
x∈Rn

ℓ(x), then

• either φ∗

+(α) < P for all α ∈ [0, 1] (this situation will always be avoided),
• or φ∗

+(α) = P has one or two real roots and the largest root belongs to [0, 1].
The roots are computed by solving the second degree equation

Aα2 + Bα + C = 0(2.12)

with

Q = γ
(µ

2
‖v − y‖ + gT (v − y)

)

,

A = Q +
1

2
‖g‖2 + (µ − γ) (φ∗ − ℓ0) ,

B = (µ − γ) (P + φ∗) − γ (ℓ0 − φ∗) − Q,

C = γ (P − φ∗) .

Proof. If φ∗

+(α) < P for all α ∈ [0, 1], then trivially there are no solutions
for φ∗

+(α) = P . Otherwise, let ᾱ be the largest α ∈ [0, 1) such that φ∗

+(ᾱ) =
maxα∈[0,1]φ

∗

+(α) (which exists because φ∗

+(·) is concave and continuous in [0, 1), with
φ∗

+(1) < φ∗

+(ᾱ)). Since φ∗

+(1) < φ∗

+(ᾱ) and P ≥ φ∗

+(1), the concave function de-
creases from ᾱ to 1, and crosses the value P exactly once in [ᾱ,+∞), at some point
α′ ∈ [0, 1]. Setting φ∗

+(α) = P in (2.9) and multiplying both sides of the equation by
γ+(α) = (1−α)γ + αµ, we obtain a second degree equation in α. The largest root of
this equation must be α′, completing the proof.

2.3. Analysis of the algorithm. The algorithm constructs a sequence of points
(xk) and a sequence of functions (φk(·)). Each iteration constructs φk+1(·) so that
φk+1(·) ≤ (1 − αk)φk(·) + αkf(·). φk(·) is a simple quadratic function with Hessian
γkI, and γk+1 = (1 − αk)γk + αkµ. So, γk converges to µ at the same rate as φk(x∗)
converges to f(x∗), where x∗ is an optimal solution.

This section describes in detail the construction of these functions, and we should
keep in mind that we have two main objectives:
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• Prove that the algorithm is well defined, i.e., that we can compute αk such
that f(xk+1) = min

x∈Rn

φk+1(x);

• Prove that αk is large, i.e., αk = Ω(
√

γk+1), which ensures the optimal com-
plexity.

The geometry of one iteration is shown in Fig. 2.1: the figure at the left shows
the points present in an iteration for a 2-dimensional problem. The figure at the right
shows the functions involved in an iteration of a 1-dimensional problem.

A complete proof of the optimal complexity will be done in Section 4, for an
algorithm based on adaptive estimates of µ. That proof will be trivially true for the
case of a fixed µ.

Now we describe the variables and functions associated with each iteration k =
0, 1, . . . of the algorithm.

• xk, vk ∈ R
n, with x0 given and v0 = x0.

• αk ∈ [0, 1).

• γk ∈ R++: second order constants. γ0 > µ is given, and should be taken as
γ0 = L whenever L is available.

• yk ∈ R
n: a point in the segment joining xk and vk

yk = xk + θk(vk − xk).

It is from yk that a steepest descent step is computed in each iteration to
obtain xk+1. This paper will discuss in detail the computation of θk.

• φk(·): function defined for x ∈ R
n by

φk(x) = φ∗

k +
γk

2
‖x − vk‖2,(2.13)

with φ∗

0 = f(x0). By construction, φk(·) is a simple quadratic function which
assumes the minimum φ∗

k at vk. These are the functions discussed in the
introduction, whose construction and properties are described from now on.
Nesterov constructs these functions so that φ∗

k ≥ f(xk). We shall require that
φ∗

k = f(xk) at all iterations.
• xk+1 = yk − ν∇f(yk): next iterate, computed by a line search. As we

commented above, a good line search ensures

f(xk+1) ≤ f(yk) − 1

4L
∇f(yk).(2.14)

Construction of the functions φk(·).. Now we quote Nesterov [5] to describe the
construction of the functions φk(·). We start from given xk, vk, φk(·), γk. At this point
we assume that yk is also given (its calculation will be the task of this paper). Assume
also that xk+1 has been computed and that (2.14) holds.

Once yk and xk+1 is given, we must compute αk. Here we use an abuse of notation
to include α as a variable and define the function

α ∈ R, x ∈ R
n 7→ φk(α, x).

The function φk+1(·, ·) is obtained by a convex combination of φk(·, ·) and a lower
quadratic approximation of f(·) around yk:

φk+1(α, x) = (1 − α)φk(x) + αℓk(x),(2.15)
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Fig. 2.1. One iteration of the algorithm

where

ℓk(x) = f(yk) + ∇f(yk)T (x − yk) +
µ

2
‖x − yk‖2.

We shall assume that at all iterations ℓ(·) is not constant, otherwise yk would be
an optimal solution for the problem (P ). Let φ∗

k+1(α) = min{φk+1(α, x) |x ∈ R
n}.

The choice of α must be such that φ∗

k+1(α) = f(xk+1): we must show under what
conditions this is feasible.

We see that φk+1(·) is the combination of two simple quadratic functions. Using
the results of Section 2.2, we obtain directly from Lemma 2.4 with y = yk, v = vk,
γ = γk, γ+(α) = γk+1, ℓ0 = f(yk), g = ∇f(yk) the following:

vk+1(α) =
(1 − α)γkvk + α(µyk −∇f(yk))

γk+1
.(2.16)

φ∗

k+1(α) = f(yk) − α2

2γk+1
‖∇f(yk)‖2 + (1 − α)[φ∗

k − f(yk)+

+
αγk

γk+1

(µ

2
‖yk − vk‖2 + ∇f(yk)T (vk − yk)

)

].

(2.17)

Setting yk = xk + θkdk, with dk = vk − xk and θk ∈ [0, 1] this may be written as

φ∗

k+1(α) = f(yk) − α2

2γk+1
‖∇f(yk)‖2 + (1 − α)ζ(α, θk)(2.18)

with

ζ(α, θ) = φ∗

k − f(xk + θdk)+

+
αγk

(1 − α)γk + αµ

(µ

2
(1 − θ)2‖dk‖2 + (1 − θ)f ′(xk + θdk, dk)

)

.(2.19)

Lemma 2.7. Assume that f(xk) ≤ φ∗

k, yk = xk + θkdk with dk = vk − xk and
θk ∈ [0, 1]. Assume also that xk+1 is obtained by a Cauchy step from yk, satisfying
(2.14), where the Lipschitz constant L is possibly infinite. Then

φ∗

k+1(α) ≥ f(xk+1) +

(

1

4L
− α2

2γk+1

)

‖∇f(yk)‖2 + (1 − α)ζ(α, θk).(2.20)
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Furthermore

ζ(α, θ) ≥
(

−θ +
αγk

(1 − α)γk + αµ
(1 − θ)

)

f ′(xk + θdk, dk).(2.21)

Proof. The expression (2.20) follows directly from (2.18) and the fact that the
steepest descent step satisfies (2.14).

Using the facts that f(xk) ≤ φ∗

k and µ ≥ 0 in the definition of ζ(·, ·), we can write

ζ(α, θ) ≥ f(xk) − f(xk + θdk) +
αγk

(1 − α)γk + αµ
(1 − θ)f ′(xk + θdk, dk).

By the convexity of f(·), we know that f(xk)−f(xk +θdk) ≥ −θf ′(xk +θdk, dk), and
so

ζ(α, θ) ≥
(

−θ +
αγk

(1 − α)γk + αµ
(1 − θ)

)

f ′(xk + θdk, dk),

completing the proof.

Now we are ready to show the two main results cited above:
• For the choices of θk taken by Algorithm 2.1, it is always possible to compute

αk such that φ∗

k+1(αk) = f(xk+1).
• For these choices, the value of αk is large, i.e., αk = Ω(

√
γk+1).

We begin by describing Nesterov’s choice.

Nesterov’s choice.. When a Lipschitz constant L is known, Nesterov’s choices are:
• αN is computed so that the central term in (2.20) is null. So, αN is the positive
solution of the second degree equation

2Lα2 − (1 − α)γk − αµ = 0.(2.22)

• θN is so that the right hand side of (2.21) is null:

θN =
γk

γk + αNµ
αN .(2.23)

Note: If L is unknown but exists, αN and θN are well defined (but unknown).
Otherwise we set αN = 0, θN = 0.

Nesterov’s original method sets αk = αN and θk = θN , obtaining directly from
(2.20) and ζ(αN , θN ) = 0 that

φ∗

k+1(αN ) ≥ f(xk+1) and αN =

√

γk+1

2L
.(2.24)

The next lemma uses the definition of αN (possibly null if L is unknown) to show
under what conditions we can compute αk ≥ αN such that φ∗

k+1(αk) = f(xk+1). We
use directly Lemma 2.6.

By construction, we have

φ∗

k+1(0) = φ∗

k ≥ f(xk)(2.25)

φ∗

k+1(1) = inf
x∈Rn

ℓk(x) ≤ f(x∗) ≤ f(xk+1).(2.26)
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Let us first eliminate a trivial case: due to (2.26), if φ∗

k+1(1) = f(xk+1) then

xk+1 is an optimal solution, and we may terminate the algorithm. Let us assume that
φ∗

k+1(1) < f(xk+1).
Lemma 2.8. Consider an iteration k of Algorithm 2.1. Assume that φ∗

k+1(1) <

f(xk+1). Assume that yk = xk + θkdk is chosen so that ζ(αN , θk) ≥ 0. Then there
exists a value αk ∈ [αN , 1] that solves the equation φ∗

k+1(αk) = f(xk+1) in (2.17).

Proof. Assume that αN and yk = xk+θkdk have been computed as in the Lemma.
Now use the result in Lemma 2.6, with the same attribution of variables as we used
in (2.16). Then

φ∗

k = f(xk) > ℓk(xk) ≥ inf
x∈Rn

ℓk(x).

Taking P = f(xk+1) and α = αN with ζ(αN , θk) ≥ 0 we get

φ∗

k+1(αN ) ≥ f(xk+1),

and by Lemma 2.6 the equation φ∗

k+1(α) = f(xk+1) has a real root, and the largest
root α′ is in [0, 1]. Note that α′ ≥ αN , because α′ is the largest root of the concave
function φ∗

k+1(·) − P .

We conclude from this lemma that the equality φ∗

k+1(αk) = f(xk+1) can always
be achieved whenever ζ(αN , θk) ≥ 0.

Theorem 2.9. Algorithm 2.1 with both choices (modified Nesterov and ours) of
θk is well defined and generates sequences (xk) and (φ∗

k) such that for all k = 0, 1, . . .,
φ∗

k = f(xk). Besides this, the parameters αk and γk satisfy

γk − µ = αk(γ0 − µ) and αk ≥
√

γk+1

2L
.(2.27)

Proof. (i) Let us first prove that both versions of the algorithm are well defined:
Nesterov: immediate. Taking θk = θN we obtain by definition of αN and θN ,
ζ(αN , θN ) = 0 and Lemma 2.8 ensures that αk ∈ [αN , 1) can be computed as de-
sired.
Our method: since f(xk)−f(xk+θkdk) ≥ 0 and f ′(xk+θkdk, dk) ≥ 0 by construction,
then ζ(α, θk) ≥ 0 for any α ∈ [0, 1], and Lemma 2.8 can be used similarly.
(ii) In both cases we obtain ζ(αk, θk) ≥ 0. Hence from (2.20),

f(xk+1) = φ∗

k+1(αk) ≥ f(xk+1) +

(

1

4L
− α2

2γk+1

)

‖∇f(yk)‖2,

which immediately gives

αk ≥
√

γk+1

2L
,

completing the proof.

We conclude from this that Nesterov’s algorithm, which uses the value θk = θN

with αk = αN can be improved by re-calculating αk using (2.17) (and keeping θk =
θN ).

Remark.. Even computing the best value for αk, the sequence (f(xk)) is not neces-
sarily decreasing.
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Remark.. In the case µ = 0, the expressions get simplified. Then αN is the positive
solution of Lα2

k = (1 − αk)γk, and expression (2.21) is reduced to

ζ(α, θ) ≥ α − θ

1 − α
f ′(xk + θd, d)

In this case, θN = αN .

3. More on the choice of θk. The choice of θk proposed by us depends on
a line search along dk. The effort needed by this search depends very much on the
comparative difficulties of computing function values and gradients. If a gradient
computation demands much more time than a function evaluation, then the line
search can be very good. Otherwise, the effort in the line search must be reduced. In
this section we show some results on how the search can be simplified.

The scope of this section is to discuss the amount of computation needed in this
line search, and to show that when L and µ are known the line search may be done
in polynomial time. The results in this section may have limited interest in a first
reading.

We conclude from the preceding analysis that what must be shown for a given
choice of yk = xk + θkdk in an iteration k is that ζ(αN , θk) ≥ 0. The following lemma
summarizes the conditions that ensure this property. These conditions will lead to
new algorithms.

Lemma 3.1. Let yk = xk + θkdk be the choice made by Algorithm 2.1 in iteration
k, and let θN be the Nesterov choice (2.23). Assume that one of the following condi-
tions is satisfied:
(i) f(yk) ≤ f(xk) and f ′(yk, dk) ≥ 0;
(ii) f(yk) ≤ f(xk) and θk ≥ θN ;
(iii) f ′(yk, dk) ≥ 0 and θk ≤ θN ;

(iv) f ′(xk, dk) ≥ −µ

2
‖dk‖2 and θk = 0.

Then ζ(αN , θk) ≥ 0 (and αk ≥ αN may be computed using (2.17)).
Proof. (i) It has been proved in Theorem 2.9.
Let us substitute θk = θN + ∆θ in (2.21), with γN = (1 − αN )γk + αNµ:

ζ(αN , θk) ≥
(

−θN +
αNγk

γN

(1 − θN ) − ∆θ − αNγk

γN

∆θ

)

f ′(xk + θkdk, dk).

By definition of θN , −θN + αNγk(1 − θN )/γN = 0. Hence

ζ(αN , θk) ≥ −
(

1 +
αNγk

γN

)

∆θ f ′(xk + θkdk, dk).(3.1)

(ii) Assume that f(yk) ≤ f(xk) and θk ≥ θN .
If f ′(yk, dk) ≤ 0, then the result follows from (3.1) because ∆θ ≥ 0. Otherwise, it
follows from (i).
(iii) Assume now that f ′(yk, dk) ≥ 0 and θk ≤ θN .
Then the result follows from (3.1) because ∆θ ≤ 0.
(iv) This case is also trivial by (2.19), completing the proof.

All that we must do is to specify in Algorithm 2.1 the choice of θk and αk as
follows:
Choose θk ∈ [0, 1] satisfying one of the conditions in Lemma 3.1.
Compute αk such that φ∗

k+1 = f(xk+1) using (2.17).
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We must discuss the computation of θk, which requires a line search. Of course,
if L is given, we can use θk = θN and ensure the optimal complexity, but larger values
of αk may be obtained.

We would like to obtain θk (and then αk) such that ζ(αk, θk) is as large as possible.
Since the determination of αk depends on the steepest descent step from yk = xk +
θkdk, we cannot maximize ζ(·, ·). But positive values of ζ(α, θk) will be obtained if θk

is such that f(xk)− f(xk + θkdk) and f ′(xk + θkdk, dk) are made as large as possible
(of course, these are conflicting objectives).
• We define (but do not compute) two points:

θ′ ∈ argmin{f(xk + θdk) | θ ≥ 0},(3.2)

θ′′ = max{θ ∈ [0, 1] | f(xk + θdk) ≤ f(xk)}.(3.3)

Let us examine two important cases:
• If f ′(xk, dk) ≥ 0, then we should choose θk = 0: a Cauchy step from xk follows.
• If f(xk + dk) ≤ f(xk), then we may choose θk = 1: a Cauchy step from vk follows.

If none of these two special situations occur, then 0 < θ′ < θ′′ < 1. Any point
θk ∈ [θ′, θ′′] gives ζ(α, θk) ≥ 0 for any α ∈ [0, 1], and yk = xk +θkdk satisfies condition
(i) of Lemma 3.1. A point in this interval can be computed by the interval reduction
algorithm described in the Appendix.

We have no complexity estimates for a line search procedure such as this if L
and µ are not available. When these constants are known, it is possible to limit the
number of iterations in the line search to keep Nesterov’s complexity. We shall discuss
briefly the choice of θk in three possible situations, according to our knowledge of the
constants.

Case 1. No knowledge of L or µ.. We start the iteration checking the special
cases above: If f(xk + dk) ≤ f(xk), then we choose θk = 1: a Cauchy step from vk

will follow. Otherwise, we must decide whether f ′(xk, dk) ≥ 0. This may be done as
follows:

Compute f(xk + θ̃dk) for a small value of θ̃ > 0
If f(xk + θ̃dk) ≥ f(xk), compute ∇f(xk) and then f ′(xk, dk) = ∇f(xk)T dk.
Else f ′(xk, dk) < 0.

If f ′(xk, dk) ≥ 0, set θk = 0. Else, do a line search as in the Appendix, starting
with the points 0, θ̃ and 1.

Remarks.. Of course we cannot specify the meaning of “small θ̃”, but this is usually
easy in practical applications. An intellectually satisfying guess is the following: Let
L be a very large upper bound for the (unknown) Lipschitz constant. Compute αN

and θ̃ = θN by (2.22) and (2.23).

Case 2: L is given.. In this case we start the search with θN computed as in (2.23).
The line search can be abbreviated to keep the number of function calculations within
a given bound, resulting in a step satisfying one of the three first conditions in Lemma
3.1. There are two cases to consider, depending on the sign of f(xk)− f(xk + θNdk).
• f(xk + θNdk) < f(xk): Condition (ii) of Lemma 3.1 is satisfied for any θk ≥ θN

such that f(xk + θkdk) ≤ f(xk). We may use an interval reduction method as in the
Appendix, or simply take steps to increase θ. A trivial method is the following, using
a constant β > 1:
θk = θN

while βθk ≤ 1 and f(xk + βθk) ≤ f(xk), set θk = βθk.
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In any method, the number of function calculations may be limited by a given
constant, adopting as θk the largest computed step length which satisfies the descent
condition.
• f(xk + θNdk) > f(xk): Condition (iii) of Lemma 3.1 holds for θN , and we intend
to reduce the value of θ. For an interval reduction search between 0 and θN we need
an intermediate point ν such that f(xk + νdk) ≤ f(xk), if it exists. We propose the
following procedure:
Compute f(xk + νdk) for ν << θN

If f(xk + νdk) ≥ f(xk), set θk = ν
Else compute θk by an interval reduction method as in the Appendix, starting with
the points 0, ν and θN . The algorithm can be interrupted at any time, setting θk = B.

Case 3: L and µ > 0 are given.. This is a special case of case 2, with an interesting
property: a point satisfying condition (i) in Lemma 3.1 can be computed in polynomial
time without computing ∇f(xk), using the next lemma.

Lemma 3.2. Consider θ′ = argmin{f(xk + θdk) | θ ≥ 0} and θ′′ > θ′ such that
f(xk + θ′′dk) = f(xk), if it exists. Define θ̄ = µ/(2L).

If f(xk + θ̄dk) ≤ f(xk) − µ2

8L
‖d‖2, then θ′ ≥ θ̄ and θ′′ − θ′ ≥ θ̄,

otherwise f ′(xk, dk) ≥ −µ

2
‖d‖2.

Proof. Assume that f(xk + θ′dk) ≤ f(xk + θ̄dk) ≤ f(xk) − µ2

8L
‖d‖2.

Using the Lipschitz condition at θ′ with f ′(xk + θ′dk, dk) = 0, we get for θ ∈ R,

f(xk + θdk) ≤ f(xk + θ′dk) +
L

2
(θ − θ′)2‖d‖2.

Using the assumption,

f(xk + θdk) ≤ f(xk) +

(

L(θ − θ′)2 − µ2

4L

) ‖d‖2

2
.

For θ = 0, this gives Lθ′2 − µ2/(4L) ≥ 0, or equivalently θ′2 ≥ θ̄2, proving the first
inequality.
For θ = θ′′, f(xk + θ′′) = f(xk), and we obtain immediately (θ′′ − θ′)2 ≥ θ̄2.

Assume now that f(xk + θ̄dk) > f(xk) − µ2

8L
‖d‖2.

By the Lipschitz condition for ∇f(·), we know that

f(xk + θ̄dk) ≤ f(xk) + f ′(xk, dk)θ̄ +
L

2
θ̄2‖d‖2.

Assuming by contradiction that f ′(xk, dk) < −µ‖d‖2/2, we obtain

f(xk + θ̄dk) < f(xk) − µ

2
θ̄‖d‖2 +

L

2
θ̄2‖d‖2

= f(xk) − µ2

4L
‖d‖2 +

µ2

8L
‖d‖2

= f(xk) − µ2

8L
‖d‖2,

contradicting the hypothesis and completing the proof.
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In this case we may use a golden search, as follows:

If f(xk + θ̄dk) ≥ f(xk) − µ2

8L
‖d‖2, set θk = 0 and stop (condition (iv) in Lemma 3.1

holds).
If f(xk + dk) ≤ f(xk), set θk = 1 and stop (condition (ii) in Lemma 3.1 holds).
(Now we know that θ′ ≤ θ′′ − µ/(2L) < 1).
Use an interval reduction search as in the Appendix in the interval [θ̄, 1]

If we use a golden section search, then at each iteration j before the stopping
condition is met, we have A ≤ θ′ ≤ θ′′ ≤ B, and the interval length satisfies B −A ≤
βj , with β = (

√
5 − 1)/2 ≈ 0.62. Using the lemma above, a point B ∈ [θ′, θ′′] will

have been found when βj ≤ µ/(2L). Hence the number of iterations of the search will
be bounded by

jmax =
log(µ/(2L))

log β
.

This provides a bound on the computational effort per iteration of O(log(2L/µ))
function evaluations.

4. Adaptive convexity parameter µ. In computational tests (see next sec-
tion) we see that the use of a strong convexity constant is very effective in reducing
the number of iterations. But very seldom such constant is available. In this section
we state an algorithm which uses a decreasing sequence of estimates for the value of
the constant µ. We assume that a strong convexity parameter µ∗ (possibly null) is
given, and the method will generate a sequence µk → µ∗, starting with µ0 ∈ [µ∗, γ0).
We still need an extra hypothesis: that the level set associated with x0 is bounded.
Note that since f(·) is convex, this is equivalent to the hypothesis that the optimal
set is bounded. We begin by the algorithm as it may be implemented, and comment
afterwards.

The algorithm iterations are the same as in Algorithm 2.1, using a parameter
µk ≥ µ∗. The parameter is reduced (we do this by setting µk = max{µ∗, µk/10}) in
two situations:
• When γk −µ∗ < β(µk −µ∗), where β > 1 is fixed (we used β = 1.02), meaning that
γk is too close to µk.
• When it is impossible to satisfy the equation φ∗

+(α) = f(xk+1) for α ∈ [0, 1]. By
Lemma 2.6, this can only happen when P = f(xk+1) < minx∈Rn ℓ(x). This minimum
is given by φ∗

k+1(1) = f(yk) − ‖∇f(yk)‖2/(2µk), using expression (2.11). So, µk

cannot be larger than

µ̃ =
‖∇f(yk)‖2

2(f(yk) − f(xk+1))
.

If µk > µ̃, we reduce µk.
Notation: Denote φk+1(x) = φk+1(αk, x) and φ∗

k+1 = φ∗

k+1(αk).

Algorithm 4.1. Algorithm with adaptive convexity parameter.
Data: x0 ∈ R

n, v0 = x0, γ0 > 0, β > 1, µ∗ = µ, µ0 ∈ [µ∗, γ0).
(we suggest µ0 = max{µ∗, γ0/100}, β = 1.02, γ0 = L if L is known.)
k = 0
repeat

dk = vk − xk.
Choose θk ∈ [0, 1] as in Algorithm 2.1.
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yk = xk + θkdk.
If ∇f(yk) = 0, then stop with yk as an optimal solution.
Steepest descent step: xk+1 = yk − ν∇f(yk). If L is known, ν ≥ 1/L.
If γk − µ∗ < β(µk − µ∗), then µk = max{µ∗, µk/10}.
Compute µ̃ =

‖∇f(y)‖2

2(f(yk) − f(xk+1))
.

If µk > µ̃, then µk = max{µ∗, µ̃/10}.
Compute αk as the largest root of (2.2) with µ = µk.
Set µk+1 = µk.
γk+1 = (1 − αk)γk + αkµk.

vk+1 =
1

γk+1

(

(1 − αk)γkvk + αk(µkyk −∇f(yk))
)

.

k = k + 1.

We now show the optimality of the algorithm, using an additional hypothesis.

Hypothesis.. Given x0 ∈ R
n, assume that the level set associated with x0 is

bounded, i.e.,

D = sup{‖x − y‖ | f(x) ≤ f(x0), f(y) ≤ f(x0)} < ∞.

Define Q =
D2

2
.

Lemma 4.2. Consider γ0 > µ∗. Let x∗ be an optimal solution of (P ). Then, at
all iteration of Algorithm 4.1,

φk(x∗) − f(x∗) ≤ γ0 + L

γ0 − µ∗
Q(γk − µ∗).(4.1)

Proof. First let us prove (4.1) for k = 0. By definition of φ0 and convexity of f
with Lipschitz constant L for the gradient, we have

φ0(x
∗) − f(x∗) = f(x0) − f(x∗) +

γ0

2
‖x∗ − x0‖2

≤ L + γ0

2
‖x∗ − x0‖2

≤ (L + γ0)Q.

Thus, we can use induction. By (2.15) and (1.2), we have

φk+1(x) = (1 − αk)φk(x) + αk

(

f(yk) + ∇f(yk)T (x − yk) +
µk

2
‖x − yk‖2

)

≤ (1 − αk)φk(x) + αk

(

f(x) +
µk − µ∗

2
‖x − yk‖2

)

.

Thus,

φk+1(x
∗) − f(x∗) ≤ (1 − αk) (φk(x∗) − f(x∗)) + αkQ(µk − µ∗).

Using the induction hypothesis and the definition of γk+1, we have

φk+1(x
∗) − f(x∗) ≤ (1 − αk)

γ0 + L

γ0 − µ∗
Q(γk − µ∗) + αkQ(µk − µ∗)

≤ γ0 + L

γ0 − µ∗
Q ((1 − αk)γk + αkµk − µ∗)

≤ γ0 + L

γ0 − µ∗
Q(γk+1 − µ∗),
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completing the proof.

Now we prove a technical lemma, following a very similar result in Nesterov [5].
Lemma 4.3. Consider a positive sequence (λk). Assume that there exists M > 0

such that λk+1 ≤ (1 − M
√

λk+1)λk. Then, for all k > 0,

λk ≤ 4λ0

M2

1

k2
.

Proof. Denote ak =
1√
λk

. Since {λk} is a decreasing sequence, we have

ak+1 − ak =

√
λk −

√

λk+1
√

λkλk+1

=
λk − λk+1

√

λkλk+1

(√
λk +

√

λk+1

) ≥ λk − λk+1

2λk

√

λk+1

.

Using the hypothesis,

ak+1 − ak ≥ λk − (1 − M
√

λk+1)λk

2λk

√

λk+1

=
M

2
.

Thus, ak ≥ a0 +
Mk

2
≥ Mk

2
and consequently λk ≤ 4

M2k2
, completing the proof.

Now we can discuss how fast (γk − µ∗) goes to zero for estimating the rate of
convergence of the algorithm.

Lemma 4.4. Consider γ0 > µ. Then, for all k ≥ 0,

γk − µ∗ ≤ 8β2L

(β − 1)2
1

k2
(γ0 − µ∗).

Proof. By the definition of γk+1,

γk+1 − µ∗ = (1 − αk)(γk − µ∗) + αk(µk − µ∗).

By the algorithm, (γk − µ∗) ≥ β(µk − µ∗). Thus,

γk+1 − µ∗ ≤ (1 − αk)(γk − µ∗) +
αk

β
(γk − µ∗)

=

(

1 − β − 1

β
αk

)

(γk − µ∗).

By Theorem 2.9

αk ≥
√

γk+1

2L
≥

√

γk+1 − µ∗

2L
,

thus

γk+1 − µ∗ ≤
(

1 − β − 1

β
√

2L

√

γk+1 − µ∗

)

(γk − µ∗).

Applying Lemma 4.3 with λk = γk − µ∗, for k = 1, 2, . . ., and M =
β − 1

β
√

2L
, we

complete the proof.
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The next theorem discusses the complexity bound of the algorithm.
Theorem 4.5. Consider γ0 > µ∗ ≥ 0. Then Algorithm 4.1 generates a sequence

(xk) such that, for all k > 0,

f(xk) − f(x∗) ≤ 8β2QL(L + γ0)

(β − 1)2k2
.

Proof. By construction, f(xk) ≤ φk(x) for all x ∈ R
n, in particular for x∗. Using

this, Lemma 4.2 and then Lemma 4.4, we have:

f(xk) − f(x∗) ≤ (L + γ0)

γ0 − µ∗
Q(γk − µ∗) ≤ 8β2QL(L + γ0)

(β − 1)2k2
,

completing the proof.
This lemma ensures that an error of ε > 0 for the final objective function value

is achieved in O(1/
√

ε) iterations.

5. Numerical results. In this section, we report the results of our computa-
tional experiments, comparing the variants of Algorithm 2.1 and Algorithm 4.1. The
codes are written in Matlab.

We solved 60 quadratic problems with Hessian matrix and initial point generated
randomly, with space dimension from 50 to 10000, L from 100 to 10000 and µ = 1.

We considered as stopping criterion the value of the objective function with ε =
10−6.
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Fig. 5.1. Case in which µ and L are given.

We show in Figs. 5.1 to 5.3 three different situations. In each of them the figure
at the left is the sequence of function values for a typical case generated at random
with µ = 1, L = 1000, n = 100. The figure at the right shows performance profiles
for the 60 problems, using the number of iterations as criterion. In all cases we test
four algorithms, indicated by:
• θN , αN : Nesterov’s original algorithm.
• θN , αG: Nesterov’s choice of θ and α computed by (2.2).
• θG, αG: parameters chosen in our version of Algorithm 2.1.
• θG, αG, µk: Algorithm 4.1
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Fig. 5.2. Case in which µ and L are unknown.
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Fig. 5.3. Case in which L is given.

First test - Fig. 5.1.. : assuming that L and µ are known. We see that all algorithms
behave similarly. If we assume that our methods use twice the time per iteration
as Nesterov’s (by performing two line searches), Nesterov has the best performance
because it solves all problems with less than double of the number of iterations of the
best method for each problem.

Second test - Fig. 5.2.. : L and µ are unknown. We used µ = 0 and γ0 = 100L,
a large hint for the Lipschitz constant. We see from the figure that Algorithm 4.1 is
the best. It is the fastest in 98% of the cases and Nesterov’s method uses more than
14 times the best number of iteration in 50% of the cases (more than 7 times in all
cases). The usage of the adaptive parameter µk improves very much the behavior of
our method as well.

Third test - Fig. 5.3.. : L known and µ unknown. This case is interesting.
Algorithm 4.1 is again the best, but our method θG, αG performs very poorly. The
reason is that γk decreased too fast, causing the functions φk(·) to be too flat.

We conclude from these preliminary tests that Algorithm 4.1 has a good chance
of being a good method. More tests, using non-quadratic functions are needed.



FINE TUNING NESTEROV’S METHOD 21

Appendix: interval reduction search. Let g : [0, 1] → R be a convex differ-
entiable function. Assume that g(0) = 0, g′(0) < 0 and g′(1) > 0. We shall study the
problem of finding θ ∈ [0, 1] such that g(θ) ≤ 0 and g′(θ) ≥ 0.

This can be seen as a line search problem with an Armijo constant 0 and a Wolfe
condition with constant 0, for which there are algorithms in the literature (see for
instance [6, 2]).

In the present case, in which the function is convex, we can use a simple interval
reduction algorithm, based on the following step:
Assume that three points 0 ≤ A < ν < B ≤ 1 are given, satisfying g(A) ≥ g(ν) ≤
g(B). Note that as consequences of the convexity of g, the interval [A,B] contains a
minimizer of g and g′(B) ≥ 0. The problem can be solved by the following interval
reduction scheme:

Algorithm 5.1. Interval reduction algorithm
while g(B) > 0,

Choose ξ ∈ [0, 1], ξ 6= ν.
Set u = min{ν, ξ}, v = max{ν, ξ}.
If g(u) ≤ g(v), set B = v, ν = u, else set A = u, ν = v.

The initial value of ν and the values of ξ in each iteration may be such that u and
v define the golden section of the interval [A,B], and then the interval length will be
reduced by a factor of (

√
5 − 1)/2 ≈ 0.62 in each iteration.

We can also choose ξ as the minimizer of the quadratic function through g(A),
g(ν), g(B). In this case one must avoid the case ξ = µ, in which ξ must be perturbed.
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