
An SDP-based divide-and-conquer

algorithm for large scale noisy

anchor-free graph realization

Ngai-Hang Z. Leung ∗, and Kim-Chuan Toh †

August 19, 2008

Abstract

We propose the DISCO algorithm for graph realization in R
d, given sparse

and noisy short-range inter-vertex distances as inputs. Our divide-and-conquer
algorithm works as follows. When a group has a sufficiently small number of
vertices, the basis step is to form a graph realization by solving a semidef-
inite program. The recursive step is to break a large group of vertices into
two smaller groups with overlapping vertices. These two groups are solved
recursively, and the sub-configurations are stitched together, using the over-
lapping atoms, to form a configurations for the larger group. At intermediate
stages, the configurations are improved by gradient descent refinement. The
algorithm is applied to the problem of determining protein molecule struc-
ture. Tests are performed on molecules taken from the Protein Data Bank
database. Given 20–30% of the inter-atom distances less than 6Å that are
corrupted by a high level of noise, DISCO is able to reliably and efficiently
reconstruct the conformation of large molecules. In particular, given 30% of
distances with 20% multiplicative noise, a 13000-atom conformation problem
is solved within an hour with an RMSD of 1.6Å.

1 Introduction

The field of distance geometry is the study of sets of points based on only pairwise
distances between points. One of the particular problems in distance geometry is
the graph realization problem—to assign coordinates to vertices in a graph, with
the restriction that distances between certain pairs of vertices are specified to lie
in given intervals. Two practical instances of the graph realization problem are the
molecular conformation problem and the sensor network localization problem.

∗Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore
117543.

†Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore
117543 (mattohkc@nus.edu.sg); and Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore
117576. Research supported in part by NUS Academic Research Grant R146-000-076-112.

1

The molecular conformation problem is to determine the structure of a protein
molecule based on pairwise distances between atoms. Determining protein confor-
mations is central to biology, because knowledge of the protein structure aids in the
understanding of protein functions, which would lead to further applications in phar-
maceutical and medicine. In this problem, the distance constraints are obtained from
knowledge of the sequence of constituent amino acids; minimum separation distances
(MSDs) derived from van der Waals interactions; and nuclear magnetic resonance
(NMR) spectroscopy experiments. We take note of two important characteristics of
molecular problems: the number of atoms may go up to tens of thousands, and the
distance data may be very sparse and highly noisy.

The sensor network localization problem is to determine the location of wireless
sensors in a network. In this problem, there are two classes of objects: anchors
(whose locations are known a priori) and sensors (whose locations are unknown
and to be determined). In practical situations, the anchors and sensors are able
to communicate with one another, if they are not too far apart (say within radio
range), and obtain an estimate of the distance between them.

While the two problems are very similar, the key difference between molecu-
lar conformation and sensor network localization is that the former is anchor-free,
whereas in the latter the positions of the anchor nodes are known a priori.

Recently, semidefinite programming (SDP) relaxation techniques have been ap-
plied to the sensor network localization problem [1]. While this approach was suc-
cessful for moderate-size problems with sensors in the order of a few hundreds, it was
unable to solve problems with large number of sensors, due to limitations in SDP
algorithms, software and hardware. A distributed SDP-based algorithm for sen-
sor network localization was proposed in [3], with the objective of localizing larger
networks. One critical assumption required for the algorithm to work well is that
there exist anchor nodes distributed uniformly throughout the physical space. The
algorithm relies on the anchor nodes to divide the sensors into clusters, and solves
each cluster separately using an SDP relaxation. In general, a divide-and-conquer
algorithm must address the issue of combining the solutions of smaller subproblems
into a solution for the larger subproblem. This is not an issue in the sensor net-
work localization problem, because the solutions to the clusters automatically form
a global configuration, as the anchors endow the sensors with global coordinates.

A natural question arises as to whether the distributed method proposed in [3]
can be applied to molecular conformation. Unfortunately, it does not, as the assump-
tion of uniformly distributed anchor nodes does not hold in the case of molecules.

The authors of [3] proposed a distributed SDP-based algorithm (the DAFGL
algorithm) for the molecular problem [2]. The performance of the DAFGL algorithm
is satisfactory when given 50% of pairwise distances less than 6Å that are corrupted
by 5% multiplicative noise. The main objective of this paper is to design a robust
and efficient distributed algorithm that can handle the challenging situation [25]
when 30% of short-range pairwise distances are given, and are corrupted with 10–
20% multiplicative noise.

In this paper, we describe a new distributed approach, the DISCO (for DIS-
tributed COnformation) algorithm, for the anchorless graph realization problem.
By applying the algorithm to molecular conformation problems, we demonstrate its

2

reliability and efficiency. In particular, for a 13000-atom protein molecule, we were
able to estimate the positions to an RMSD (root mean square deviation) of 1.6Å
given only 30% of the pairwise distances (corrupted by 20% multiplicative noise)
less than 6Å.

The remainder of the paper is organized as follows: Section 2 describes existing
molecular conformation algorithms; Section 3 details the mathematical models for
molecular conformation; Section 4 explains the design of DISCO; Section 5 contains
the experiment setup and numerical results; Section 6 gives the conclusion.

The DISCO webpage [12] contains additional material, including the DISCO
code, and a video of how DISCO solves the 1534-atom molecule 1F39.

In this paper, we adopt the following notational conventions. Lower case letters,
such as n, are used to represent scalars. Lower case letters in bold font, such as s,
are used to represent vectors. Upper case letters, such as X, are used to represent
matrices. Upper case letters in calligraphic font, such as D, are used to represent
sets. Cell arrays will be prefixed by a letter “c” and be in the math italic font, such
as cAest. Cell arrays will be indexed by curly braces {}.

2 Related Work

In this section, we give a brief tour of select existing works. Besides presenting the
algorithms, we would like to highlight that each algorithm was tested on different
types of input data. For instance, some inputs were exact distances, while others
were distances corrupted by low levels of noise, yet others were distances corrupted
with high levels of noise; some inputs consist of all the pairwise distances less than a
certain cut-off distance, while others give only a proportion of the pairwise distances
less than a certain cut-off distance. It is also the case that not all the authors
used the same error measure. Although the accuracy of a molecular conformation
is most commonly measured by the RMSD, some of the authors did not provide
the RMSD error, but only the maximum violation of lower or upper bounds for
pairwise inter-atom distances. (We present more details about the RMSD measure
in Section 5.) Finally, because we aim to design an algorithm which is able to scale
to large molecules, we make a note of the largest molecule which each algorithm was
able to solve in the tests done by the authors. We summarize this information in
Table 1.

2.1 Methods Using the Inner Product Matrix

It is known from the theory of distance geometry that there is a natural correspon-
dence between inner product matrices and distance matrices [21, 22, 23]. Thus,
one approach to the molecular conformation problem is to use a distance matrix
to generate an inner product matrix, which can then be factorized to recover the
atom coordinates. The methods we present in §2.1 differ in how they construct the
inner product matrix, but use the same procedure to compute the atom coordinates;
we describe this procedure in detail below. If we denote the atom coordinates by
columns xi, and let X = [x1 . . .xn], then the inner product matrix Y is given by
Y = XTX. We can recover approximate coordinates X̃ from a noisy Ỹ by taking

3

the best rank-3 approximation Ỹ ≈ X̃T X̃, based on the eigenvalue decomposition
of Ỹ .

The EMBED algorithm [9] was developed by Havel, Kuntz and Crippen in 1983.
Given lower and upper bounds on some of the pairwise distances as input, EMBED
attempts to find a feasible conformation as follows. Initially, we only have bounds on
some of the distance pairs. EMBED begins by using the triangle and tetrangle in-
equalities to compute distance bounds for all pairs of points. EMBED then chooses
random numbers within the bounds to form an estimated distance matrix D̃, and
checks if D̃ is close to a valid rank-three Euclidean distance matrix by considering
the three largest eigenvalues (in magnitude) of Ỹ , the inner product matrix corre-
sponding to D̃. In the fortunate case, the three eigenvalues are positive, and are
much larger than the rest. This would indicate that the estimated distance matrix
D̃ is close to a true distance matrix, and the coordinates obtained from the inner
product matrix are likely to be fairly accurate. In the unfortunate case where at
least one of the three eigenvalues is negative, the estimated distance matrix D̃ is
far from a valid distance matrix. In this case, EMBED repeats the step of choosing
an estimated distance matrix until it obtains one that is close to a valid distance
matrix. As a postprocessing step, the coordinates are improved by applying local
optimization methods.

The DISGEO package [10], was developed by Havel and Wüthrich in 1984, so as
to solve larger conformation problems. The EMBED algorithm is unable to compute
a conformation of the whole protein structure, due to the high dimensionality of the
problem. DISGEO works around this limitation by using two passes of EMBED. In
the first pass, coordinates are computed for a subset of atoms subject to constraints
inherited from the whole structure. This step forms a “skeleton” for the structure.
The second pass of EMBED computes coordinates for the remaining of the atoms,
building upon the skeleton computed in the first pass. As Havel and Wüthrich are
biologists, their aim is to design an algorithm that can compute protein structures
based on realistic input data. They tested the performance of DISGEO on the BPTI
protein, which has 454 atoms. The input consists of distance (3290) and chirality
(450) constraints needed to fix the covalent structure, and bounds (508) for distances
between hydrogen atoms in different amino acid residues that are less than 4Å apart,
to simulate the distance constraints available from a NOESY experiment. Using a
pseudostructure representation, they were able to solve for 666 geometric points1

given 3798 distance and 450 chirality constraints, with three computed structures
having an average RMSD of 2.08Å from the known crystal structure. Havel’s DG-II
package [8], published in 1991, improves upon DISGEO by producing from the same
input as DISGEO five structures having an average RMSD of 1.76Å from the crystal
structure.

The alternating projections algorithm (APA) for molecular conformation was de-
veloped in 1990 [5, 16]. As in EMBED, APA begins by using the triangle inequality
to compute distance bounds for all pairs of points. We can think of the lower and
upper bounds as forming a rectangular parallepiped, which the authors refer to as

1 In NMR experiments, certain protons may not be stereospecifically assigned. For such pairs
of protons, the upper bounds are modified via the creation of “pseudoatoms”, as is the standard
practice in NOE experiments.

4

a data box. Next, a random dissimilarity matrix ∆ in the data box is chosen. (The
dissimilarity matrix serves the same function as the estimated distance matrix in
EMBED.) The dissimilarity matrix is smoothed by column metrization, so that it
adheres to the triangle inequality. Next, ∆ is projected onto the cone of matrices
that are negative semidefinite on the orthogonal complement of e = (1, 1, . . . , 1)T ,
then back onto the data box. The alternating projections are repeated five times.
The theoretical basis of this procedure is that as the number of projection steps goes
to infinity, the resultant matrix converges to a distance matrix that satisfies the lower
and upper bounds [16]. Finally, the atom coordinates are obtained from the inner
product matrix, which is computed from the last dissimilarity matrix. The post-
processing step involves performing stress minimization on the resultant structure.
In [16], APA was applied to the BPTI protein to compare its performance to DIS-
GEO and DG-II. Under the exact same inputs as DISGEO and DG-II, the five best
structures out of thirty produced by APA had an average RMSD of 2.39Å compared
with the crystal structure.

Classical multidimensional scaling (MDS) is a collection of techniques for con-
structing configurations of points from pairwise distances. Trosset has applied MDS
to the molecular conformation problem [21, 22, 23] since 1998. Again, the first step
is to use the triangle inequality to compute distance bounds for all pairs of points.
Trosset’s approach is to solve the problem of finding the squared dissimilarity matrix
that minimizes the distances to the cone of symmetric positive semidefinite matrices
of rank less than d, while satisfying the squared lower and upper bounds. The prob-
lem is solved by applying a local optimization method, namely a limited memory
approximate Hessian method. The coordinates can be extracted from an inner prod-
uct matrix that is computed from the squared dissimilarity matrix. In [23], MDS
is applied to five molecules with less than 700 atoms. For points with pairwise dis-
tances dij less than 7Å, lower and upper bounds of the form (dij−0.01Å, dij +0.01Å)
are given; for pairwise distances greater than 7Å, a lower bound of 7Å is specified.
The method was able to produce estimated configurations that had a maximum
bound violation of less than 0.1Å. The author did not report the RMSD of the com-
puted configurations, but mentioned that the configurations are “quite acceptable
by the standards of computational chemistry”.

More recently, in 2006, Grooms, Lewis, and Trosset proposed a dissimilarity pa-
rameterized approach [6]. The authors advocate using a dissimilarity parametriza-
tion rather than a coordinate-based parametrization. Although the latter has fewer
independent variables, the former seems to have converge to “better” minimizers.
Their method is named StrainMin because of its origins in the strain criterion of
classical MDS. They propose to minimize an objective function which is the sum
of the fit of the dissimilarity matrix to the data and the distance of the dissimi-
larity matrix to the space of rank d positive semidefinite matrices (the strain). By
analyzing the properties of the objective function, they developed an efficient local
optimization method that makes use of second-order information. The approach
was tested on input data that consists of exact distances between atoms less than
6Å apart, and a 2.5Å lower bound as a representative van der Waal radii for atoms
whose distance is unknown. They were able to satisfy the distance bounds with
a maximum violation of 0.2Å, for an ensemble of 6 PDB molecules. However, the

5

RMSD errors were not reported.
The DAFGL algorithm of Biswas, Toh and Ye in 2008 [2] is a “parent” of this

work. DAFGL differs from the previous methods in that it applies SDP relaxation
methods to obtain the inner product matrix. Due to limitations in SDP algorithms,
software and hardware, the largest SDP problems that can be solved are of the or-
der of a few hundred atoms. In order to solve larger problems, DAFGL employs a
distributed approach. It applies the symmetric reverse Cuthill-Mckee matrix permu-
tation to divide the atoms into smaller groups with overlapping atoms. Each group
is solved using SDP, and the overlapping groups are used to align the local solutions
to form a global solution. Tests were performed on 14 molecules with number of
atoms ranging from 400–5600. The input data consists of 70% of the distances dij

below 6Å, given as lying in intervals [dij, dij] where

dij = max
(

0, (1− 0.05|Zij|)dij

)

, dij = (1 + 0.05|Zij |)dij,

and Z ij, Z ij are standard normal random variables with zero mean and unit variance.
Given such input, DAFGL is able to produce a conformation for most molecules with
an RMSD of 2–3Å.

Distributed algorithms (based on successive decomposition) similar to those in
[2] were proposed for fast manifold learning in [27, 28]. In addition, those papers
also considered recursive decomposition. The manifold learning problem is to seek
a low-dimensional embedding of a manifold in a high dimensional Euclidean space
by modelling it as a graph-realization problem. The resulting problem has similar
characteristics as the anchor-free graph realization problem we are considering in
this paper, but there are some important differences which we should highlight.
For the manifold learning problem, exact pairwise distances between any pairs of
vertices are available, but for the problem considered in this paper, only a very
sparse subset of pairwise distances are assumed to be given and are only known
within given ranges. Such a difference implies that for the former problem, any
local patch will have a “unique” embedding (up to rigid body motion and certain
approximation errors) computable via an eigenvalue decomposition, and the strategy
to decompose the graph into sub-graphs is fairly straightforward. In contrast, for
the latter problem, given the sparsity of the graph and the noise in the distances
data, the embedding problem itself requires a new method, not to mention that
sophisticated decomposition strategies also need to be devised.

2.2 Buildup Methods

The ABBIE program [11] was developed by Hendrickson in 1995, to solve molecular
conformation problems given exact distance data. As embedding problems in one
dimension are strongly NP-complete, and in two and higher spatial dimensions are
NP-hard [17], ABBIE uses a divide-and-conquer approach to make the computation
more tractable. ABBIE aims to divide the problem into smaller pieces by identifying
uniquely realizable subgraphs—subgraphs that permit a unique realization. The
first step is to use graph algorithms to divide the atoms into maximally uniquely
realizable subgraphs. If at the end of this step, a subgraph is too large to be
solved directly, then ABBIE continues by using small vertex separators to break a

6

subgraph into smaller pieces, and recurse on the pieces. ABBIE proceeds to use
heuristics to group vertices into chunks—subsets of vertices whose relative positions
to one another are fixed. Finally, ABBIE uses an optimization routine to combine
chunks and vertices together. Hendrickson tested ABBIE on the protein molecule
with PDB ID 7RSA. After discarding end chains, the molecule had 1849 atoms.
The input data included the exact distances between all pairs of atoms in the same
amino acid (13879), and 1167 additional distances between H atoms less than 3.5
Å apart. This made for a total of 15046 edges so that the mean degree of a vertex
is 16.3. Although it was not explicitly mentioned in the paper, we presume he was
able to get the exact solution up to roundoff error.

Dong and Wu [4, 26], presented their geometric buildup algorithm in 2003, which
also relies on having exact distances. The essential idea of this algorithm is that if
four atoms form a four-clique—four atoms with distances between all pairs known—
the atom positions are fixed relative to one another. The algorithm starts by finding
a four-clique and fixing the coordinates of the four atoms. The other atom positions
are determined atom-by-atom; when the distance of an atom to four atoms with
determined coordinates is known, that atom position can be uniquely determined.
The authors conducted numerical experiments on ten protein molecules, the largest
of which has 4200 atoms. When given all the distances less than 8Å, the geometric
buildup algorithm is able to accurately estimate all atoms; when given all the dis-
tances less than 5Å, the geometric buildup algorithm is able to accurately estimate
nine of the ten atoms.

2.3 Global Optimization Methods

For an introduction to optimization-based methods for molecular conformation,
see [13]. Here we describe briefly two such methods.

The DGSOL code [14, 15] by Moré and Wu in 1999 treats the molecular confor-
mation problem as a large nonlinear least squares problem. As the objective function
has many local minima, they apply Gaussian smoothing to the objective function
to increase the likelihood of finding the global minima. They applied DGSOL to
two protein fragments consisting of 100 and 200 atoms respectively. Distances were
specified for atoms in the same or neighboring residues, and given as lower bounds
dij = 0.84dij and upper bounds dij = 1.16dij, where dij denotes the true distance
between atoms i and j. DGSOL was able to compute structures with a minimum
and average RMSD of 0.37Å and 1.0Å respectively for 100 atoms and a minimum
and average RMSD of 0.7Å and 2.9Å respectively for 200 atoms.

The GNOMAD algorithm [25] by Williams, Dugan and Altman in 2001 attempts
to satisfy the input distance constraints as well as MSD constraints. Their algorithm
applies to the situation when we are given sparse but exact distances. The knowledge
of MSD constraints is useful in limiting the search space, but if they are not applied
intelligently, then they may keep the algorithm stuck in an unsatisfactory local
minimum. Since it is difficult to optimize all of the atom positions simultaneously,
because of the high dimensionality of the problem, GNOMAD updates the positions
of the atoms one atom at a time. The authors tested GNOMAD on the protein
molecule with PDB ID 1TIM, which has 1870 atoms. Given all the covalent distances

7

and distances between atoms that share covalent bonds to the same atom, as well
as 30% of short-range distances less than 6Å, they were able to compute estimated
positions with an RMSD of 2–3Å2.

We end this section by noting that while the GNOMAD algorithm would in-
creasing get stuck in an unsatisfactory local minimum with more stringent MSD
constraints, the addition of such lower bound constraints are highly beneficial for
the DISCO algorithm proposed in this paper.

3 Mathematics of Molecular Conformation

We begin this section with the SDP models for sensor network localization in §3.1.
These are closely related to the SDP models for molecular conformation, which we
present next in §3.2. We then introduce the gradient descent method for improving
sensor positions in §3.3. Finally, we present the alignment problem in §3.4.

3.1 SDP Models for Sensor Network Localization

The setting of the sensor network localization problem is as follows. We are given
a set of na anchor nodes with known coordinates ai ∈ R

d, i = 1, . . . , na, and we
wish to determine the coordinates of ns sensor nodes si ∈ R

d, i = 1, . . . , ns. The
information that is available is measured distances or distance bounds for some of
the pairwise distances ‖ai− sj‖ for (i, j) ∈ N a and ‖si− sj‖ for (i, j) ∈ N s. In the
“measured distances” model, we have measured distances for certain pairs of nodes,

d̃a
ij ≈ ‖ai − sj‖ (i, j) ∈ N a,

d̃s
ij ≈ ‖si − sj‖ (i, j) ∈ N s.

(1)

In this model, the unknown positions {si}ns

i=1 is the best fit to the measured distances,
obtained by solving the following nonconvex minimization problem:

min

{

∑

(i,j)∈N s

∣

∣‖si − sj‖2 − (d̃s
ij)

2
∣

∣ +
∑

(i,j)∈N a

∣

∣‖ai − sj‖2 − (d̃a
ij)

2
∣

∣

}

. (2)

We denote the measured anchor-sensor and sensor-sensor distance matrices by D̃a

and D̃s respectively. In the “distance bounds” model, we have lower and upper
bounds on the distances between certain pairs of nodes,

da
ij ≤ ‖ai − sj‖ ≤ d

a

ij (i, j) ∈ N a,

ds
ij ≤ ‖si − sj‖ ≤ d

s

ij (i, j) ∈ N s.
(3)

2 The RMSD of 1.07Å reported in Figure 11 in [25] is inconsistent with that appearing in Figure
8. It seems that the correct RMSD should be about 2–3 Å.

8

In this model, the unknown positions {si}ns

i=1 is the best fit to the measured distance
bounds, obtained by solving the following nonconvex minimization problem:

min

{

∑

(i,j)∈N s

(

‖si − sj‖2 − (ds
ij)

2
)

−
+

(

‖si − sj‖2 − (d
s

ij)
2
)

+

+
∑

(i,j)∈N a

(

‖ai − sj‖2 − (da
ij)

2
)

−
+

(

‖ai − sj‖2 − (d
a

ij)
2
)

+

}

,

(4)

where α+ = max{0, α}, α− = max{0,−α}. We denote the lower and upper bound
anchor-sensor and sensor-sensor distance matrices by Da, D

a
and Ds, D

s
respec-

tively.
In order to proceed to the SDP relaxation of the problem, we need to consider

the matrix

Z =

[

Y XT

X Id

]

where Y = XT X, X = [s1 . . . sn]. (5)

By denoting the i-th unit vector in R
ns by ei, and denoting eij = ei − ej , we note

that

‖ai − sj‖2 = [ej ;−ai]
T Z[ej;−ai],

‖si − sj‖2 = [eij ; 0d]
T Z[eij ; 0d].

We can therefore conveniently express the constraints (1) as

(d̃a
ij)

2 ≈ [ej;−ai]
T Z[ej ;−ai] (i, j) ∈ N a,

(d̃s
ij)

2 ≈ [eij; 0d]
T Z[eij; 0d] (i, j) ∈ N s;

and (3) as
(da

ij)
2 ≤ [ej ;−ai]Z[ej ;−ai]

T ≤ (d
a

ij)
2 (i, j) ∈ N a,

(ds
ij)

2 ≤ [eij ; 0d]Z[eij ; 0d]
T ≤ (d

s

ij)
2 (i, j) ∈ N s.

The SDP relaxation is then to relax the constraint (5) into the constraints

Z =

[

Y XT

X Id

]

where Y < XT X, X = [s1 . . . sn]. (6)

By considering the Schur complement, we have Y < XT X if and only if Z < 0, and
thus (6) is equivalent to the following

Z =

[

Y XT

X Id

]

< 0. (7)

We can now express the measured distances model (2) as

min
∑

(i,j)∈N a t+ij + t−ij +
∑

(i,j)∈N s u+
ij + u−

ij

s.t.

[ej ;−ai]
T Z[ej ;−ai] + t+ij − t−ij = (d̃a

ij)
2 (i, j) ∈ N a,

[eij ; 0d]
T Z[eij ; 0d] + u+

ij − u−
ij = (d̃s

ij)
2 (i, j) ∈ N s,

Z(ns + 1 : d, ns + 1 : d) = Id,

Z < 0.

(8)

9

Similarly we can express the distance bounds model as

Find Z

s.t.

(da
ij)

2 ≤ [ej;−ai]
T Z[ej ;−ai]≤ (d

a

ij)
2 (i, j) ∈ N a,

(ds
ij)

2 ≤ [eij ; 0d]
T Z[eij ; 0d] ≤ (d

s

ij)
2 (i, j) ∈ N s,

Z(ns + 1 : d, ns + 1 : d) = Id,

Z < 0.

(9)

Once we have obtained a matrix Z by solving either (8) or (9), we recover the
estimated sensor positions X = [s1 . . . sns

] from Z as follows. If there are less
than d + 1 anchors, then X is obtained from the best rank-d approximation of the
(1, 1)-block of Z; otherwise, X is set to be equal to the (2, 1)-block of Z.

So and Ye [18] have shown that if the distance data is uniquely localizable, then
the SDP relaxation (8) or (9) is able to produce the exact sensor coordinates up to
rounding errors. We refer the reader to [18] for the definition of “uniquely localiz-
ability”. Intuitively, it means that there is only one configuration in R

d (perhaps up
to translation, rotation, reflection) that satisfies all the distance constraints. The
result of So and Ye gives us a degree of confidence that the SDP relaxation tech-
nique is a strong relaxation. We can therefore hope that applying SDP relaxation
to sparse and noisy problems will be successful.

We now discuss what happens when the distance data is sparse and/or noisy, so
that there is no unique realization. In such a situation, it is not possible to compute
the exact coordinates. Further, the X and Y extracted from the solution Z of the
SDP (8) or (9) will not satisfy Y = XT X, and Y will be of dimension greater than d.
We present an intuitive explanation for this phenomenon. Suppose we have points
in the plane, and certain pairs of points are constrained so that the distance between
them is fixed. If the distances are perturbed slightly, then some of the points may
be forced out of the plane in order to satisfy the distance constraints. Therefore,
under noise, Y will tend to have a rank higher than d. Another reason for Y having
a higher rank is that if there are multiple solutions, the interior-point methods used
by many SDP solvers converge to a solution with maximal rank [7].

This situation presents us with potential problems. If Y has a higher rank than
X, then the solution X extracted from Z is likely not to be an accurate solution. To
ameliorate this situation, we add the following regularization term into the objective
function

−γ〈I − aaT , Z〉, (10)

with a = [ê; â], â =
∑na

i=1 ai/
√

na + ns, ê = e/
√

na + ns, and γ a positive regular-
ization parameter. This term spreads the sensors further apart and induces them to
exist in a lower-dimensional space. We refer interested readers to [1] for details on
the derivation of the regularization term. Thus the measured distances model (8)
becomes

min
∑

(i,j)∈N a t+ij + t−ij +
∑

(i,j)∈N s u+
ij + u−

ij − γ〈I − aaT , Z〉

s.t. constraints in (8) hold.
(11)

10

and the distance bounds model (9) becomes

min −〈I − aaT , Z〉

s.t. constraints in (9) hold.
(12)

3.2 SDP Models for Molecular Conformation

The setting of the molecular conformation problem is as follows. We wish to deter-
mine the coordinates of n atoms si ∈ R

d, i = 1, . . . , ns, given measured distances or
distance bounds for some of the pairwise distances ‖si−sj‖ for (i, j) ∈ N . One can
observe that the molecular conformation problem can be viewed as a sensor network
localization problem without anchors. Since the molecular conformation problem is
a special class of sensor network localization problems, we can apply simplifications
to the SDP formulations which we have derived previously. For reasons of clarity and
convenience, we shall borrow the notation and terminology of the sensor network
localization in this section. We shall henceforth refer to atoms as sensors.

In this problem, there are no anchors, so the (2, 2)-block of Z no longer serves
any purpose. Instead, we only need to consider the smaller matrix Y to express the
distance between sensors,

‖si − sj‖2 = eT
ijY eij .

The constraint that Z < 0 is correspondingly replaced by the constraint Y < 0.
The regularization term (10) is replaced by

−γ〈I − êêT , Y 〉
where γ is a positive regularization parameter and ê = e/

√
ns. Since anchors are

absent, the sensors have translational, rotational and reflective freedom. This can
cause numerical difficulties when solving the SDP relaxed problem. The difficulties
can be ameliorated when we remove the translational freedom, by introducing a
constraint that corresponds to setting the center of mass to be the origin,

〈Y, E〉 = 0,

where E is the matrix of all ones. Finally, as before, the estimated sensor positions
X = [s1 . . . sns

] are obtained from the best rank-d approximation of Y .
Putting all this together, we have the measured distances model

min
∑

(i,j)∈N s u+
ij + u−

ij − γ〈I − aaT , Z〉

s.t.

eT
ijY eij + u+

ij − u−
ij = (d̃s

ij)
2 (i, j) ∈ N s,

〈Y, E〉 = 0,

Y < 0, u+, u− ≥ 0,

(13)

and the distance bounds model

min −〈I − aaT , Z〉

s.t.

(ds
ij)

2 ≤ eT
ijY eij ≤ (d

s

ij)
2 (i, j) ∈ N s,

〈Y, E〉 = 0,

Y < 0.

(14)

11

3.3 Coordinate Refinement via Gradient Descent

If we are given measured pairwise distances d̃ij, then the sensor coordinates can be
computed as the minimizer of

min f(X) :=
∑

(i,j)∈N a

(

‖ai − sj‖ − d̃a
ij

)2
+

∑

(i,j)∈N s

(

‖si − sj‖ − d̃s
ij

)2
. (15)

Note that the above objective function is different from that of (2). Similarly, if we
are given bounds for pairwise distances dij and dij , then the configuration can be
computed as the solution of

min f(X) :=

[

∑

(i,j)∈N a

(

‖ai − sj‖ − da
ij

)2

−
+

(

‖ai − sj‖ − d
a

ij

)2

+

]

+

[

∑

(i,j)∈N s

(

‖si − sj‖ − ds
ij

)2

−
+

(

‖si − sj‖ − d
s

ij

)2

+

]

.

(16)

Again, note that objective function is different from that of (4). We can solve (15)
or (16) by applying local optimization methods. For simplicity, we choose to use a
gradient descent method with backtracking line search. The implementation of this
method is rather straightforward. It is a simple exercise in calculus to compute the
gradient of f with respect to the sensor coordinate si, and so the gradient of f is
easy to obtain.

The problems (15) and (16) are highly nonconvex problems with many local
minimizers. If the initial iterate X0 is not close to a good solution, then it is
extremely unlikely that the X obtained from a local optimization method will be
a good solution. In our case however, when we set X0 to be the conformation
produced from solving the SDP relaxation, local optimization methods are often
able to produce an X with higher accuracy than the original X0.

3.4 Alignment of Configurations

The molecular conformation problem is anchor-free. so that a configuration has
translational, rotational, and reflective freedom. Nevertheless, we need to be able
to compare two configurations, to determine how similar they are. In particular,
we need to compare a computed configuration to the true configuration. In order
to perform a comparison of two configurations, it is necessary to align them in
a common coordinate system. We can define the “best” alignment as the affine
transformation T that minimizes

min

{ n
∑

i=1

‖T (ai)− bi‖ : T (x) = Qx + c, Q ∈ R
d×d, Q is orthogonal

}

. (17)

The constraint on the form of T restricts it to be a combination of translation,
rotation and reflection. In the special case when A and B are centered at the origin,
(17) reduces to an orthogonal procrustes problem

min
{

‖QA−B‖F : Q ∈ R
d×d, Q is orthogonal

}

.

It is well known that the optimal Q can be computed from the singular value de-
composition of ABT .

12

4 The DISCO Algorithm

Here we present the DISCO algorithm (for DIStributed COnformation). In §4.1,
we explain the essential ideas that are incorporated into the design of DISCO. We
present the procedures for the recursive and basis cases in §4.2 and §4.3 respectively.

4.1 The Basic Ideas of DISCO

Prior to this work, it was known that the SDP relaxation technique and gradient
descent are able to accurately localize moderately sized problems (say the number
of atoms is less than 500). However, many protein molecules have more than 10000
atoms. In this work, we develop techniques to solve large-scale problems.

A natural idea is to employ a divide-and-conquer approach, which will follow
the general framework: If the number of atoms is not too large, then solve the
atom positions via SDP, and utilize gradient descent refinement to compute im-
proved coordinates; Otherwise break the atoms into two subgroups, solve each
subgroup recursively, and align and combine them together, again postprocessing
the coordinates by applying gradient descent refinement.

How should we divide an atom group into two subgroups? We would wish to
minimize the number of edges between the two subgroups. This is because when we
attempt to localize the first subgroup of atoms, the edges with atoms in the second
subgroup are lost. On the other hand, we wish to maximize the number of edges
within a subgroup. The more edges within a subgroup, the more constraints on the
atoms, and the more likely that the subgroup is localizable.

How should we join the two localized subgroups together to localize the atom
group? Our strategy is for the two subgroups to have overlapping atoms. If the
overlapping atoms are accurately localized in the estimated configurations, then
they can be used to align the two subgroup configurations. If the overlapping atoms
are not accurately localized, it would be disastrous to use them in aligning the two
subgroup configurations. Therefore, DISCO incorporates a heuristic criterion for
determining when the overlapping atoms are accurately localized.

It is important to realize that not all the atoms in a group may be localizable, for
instance, some atoms may have fewer than four neighbors in that group. This must
be taken into account when we are aligning two subgroup configurations together.
If a significant number of the overlapping atoms are not localizable in either of the
subgroups, the alignment may be highly erroneous (see Figure 4). This problem
could be avoided if we can identify and discard the unlocalizable atoms in a group
A heuristic algorithm is used by DISCO to identify atoms which are likely to be
unlocalizable.

The pseudocode of the DISCO algorithm is presented in Algorithm 1. We illus-
trate how the DISCO algorithm solves a small molecule in Figure 1.

13

Algorithm 1 The DISCO algorithm

procedure Disco(L, U)
if number of atoms < basis size then

[cAest, cI] ← DiscoBasis(L, U)
else

[cAest, cI] ← DiscoRecursive(L, U)
end if

return cAest, cI
end procedure

procedure DiscoBasis(L, U)
cI ← LikelyLocalizableComponents(L, U)
for i = 1, . . . ,Length(cI) do

cAest{i} ← SdpLocalize(cI{i}, L, U)
cAest{i} ← Refine(cAest{i}, cI{i}, L, U)

end for

return cAest, cI
end procedure

procedure DiscoRecursive(L, U)
[L1, U1, L2, U2] ← Partition(L, U)
[cAest1, cI1] ← Disco(L1, U1)
[cAest2, cI2] ← Disco(L2, U2)
cAest ← [cAest1, cAest2]
cI ← [cI1, cI2]
repeat

[cAest, cI] ← CombineChunks(cAest, cI)
[cAest, cI] ← Refine(cAest, cI, L, U)

until no change
return cAest, cI

end procedure

14

Figure 1: (top left and right) Since the number of atoms is too large (n = 402 >
basis size = 300), we divide the atoms into two subgroups. (middle left and right) We
solve the subgroups independently. (bottom left) The subgroups have overlapping
atoms, which are colored in green. (bottom right) The overlapping atoms allow us
to align the two subgroups to form a realization of the molecule.

15

4.2 Recursive Case: How to Split and Combine

4.2.1 Partitioning into Subgroups

Before we discuss DISCO’s partitioning procedure, we briefly describe the procedure
used by DISCO’s parent, the DAFGL algorithm [2]. The DAFGL algorithm parti-
tions the set of atoms into consecutive subgroups, such that consecutive subgroups
have overlapping atoms (see Figure 2). It then solves each subgroup separately,
and combines the solutions together. Partitioning in DAFGL is done by repeat-
edly applying the symmetric reverse Cuthill-McKee (RCM) matrix permutation to
submatrices of the distance matrix. The RCM permutation is specially designed to
cluster the nonzero entries of a matrix (which in this case are the known distances)
towards the diagonal. We observe in Figure 2 that many of the edges are not avail-
able to any subgroup, as they lie outside all the shaded squares. We believe that
DAFGL’s partitioning procedure loses too many edges, and this is the reason why
DAFGL performs poorly when the given distances are sparse, say less than 50% of
pairwise distances less than 6Å.

Figure 2: This permutation of the distance matrix illustrates DAFGL’s partitioning
strategy. The dots represent the known distances, and the shaded squares represent
the subgroups.

We hope that the above discussion has helped us to learn from our parents’
mistakes; namely, in the design of DISCO’s partitioning method, to make an extra
effort to keep as many edges as possible.

Suppose we wish to localize the set of atoms A, but there are too many atoms in
A for us to apply an SDP relaxation. We therefore divide A into two nonoverlapping
subgroups A1 and A2. The two objectives in this division are that the number of
edges between subgroups is approximately minimized, to maximize the chance that
each subgroup will be localizable; and the subgroups are approximately equal in
size, so that the recursive procedure will be fast.

However, it is not apparent, after localizing A1 and A2, how to combine them
to form a configuration for A. Our method is to make use of overlapping atoms
between the subgroups. If the overlapping atoms are localized in both groups, then

16

the two configurations can be aligned via a combination of translation, rotation, and
refection. Of course, A1 and A2 were constructed to have no overlapping atoms.
Thus we need to enlarge them to subgroups B1 ⊃ A1,B2 ⊃ A2 which have overlap-
ping atoms. We construct Bi, i = 1, 2, by adding some atoms Ãi⊕1 ⊂ Ai⊕1 to Ai.
(We define ⊕ by 1⊕ 1 = 2, 2⊕ 1 = 1.) The set of atoms Ã1, Ã2 are auxiliary atoms
added to A1 and A2 to create overlap. While A1 and A2 were constructed so as
to minimize the number of edges (i, j) ∈ N with i ∈ A1, j ∈ A2; Ã1 and Ã2 are
constructed so as to maximize the number of edges (i, j) ∈ N with i ∈ A1, j ∈ Ã2,
and (i, j) ∈ N with i ∈ Ã1, j ∈ A2. The reason for this is that we want the set of
atoms Bi = Ai ∪ Ãi⊕1, i = 1, 2 to be localizable, so we want as many edges within
B1 and B2 as possible.

We can succinctly describe the partitioning as splitting A into two localizable
groups A1 and A2, then growing A1 into B1 and A2 into B2 so that B1 and B2 are
both likely to be localizable. The splitting step should minimize inter-group edges,
to maximize the likelihood that A1 and A2 are localizable; while the growing step
should maximize inter-group edges, to maximize the likelihood that Ã2 and Ã1 are
localizable in B1 and B2.

To make our description more concrete, we give the pseudocode of the partition
algorithm as Algorithm 2. The operation of the algorithm is also illustrated in
Figure 4.2.1. We elaborate on the details of the pseudocode below. The Partition

method consists of three stages: Split, Refine and Overlap.

In the Split method, we use compute the RCM permutation p of the rows and
columns of the distance matrix D, that approximately minimizes the bandwidth of
the matrix D(p, p). This is conveniently implemented as the symrcm command in
MATLAB. The RCM permutation has the effect of clustering the nonzero entries
towards the main diagonal, so that if we split the matrix with a vertical cut and
horizontal cut through the center of the matrix, then the majority of the edges are
in the (1,1) and (2,2) blocks, and only a few of the edges are in the (1,2) and (2,1)
blocks. Thus if we select A1 = p(1 : bn/2c) and A2 = p(bn/2c + 1 : n), this
approximately minimizes the number of edges from A1 to A2 (see Figure 4.2.1, top
left).

In the Refine method, we can reduce the number of inter-group edges as follows:
If an atom a ∈ A1 is “closer” to A2 than A1, then switch it over to A2. An atom is
“closer” to group A1 rather than group A2 if one of the two conditions hold:

1. it has more neighbors in group A1;

2. it has the same number of neighbors in groups A1 and A2, and its closest
neighbor is in A1.

In the Overlap method, we compute B1 and B2. We begin by setting Bi to Ai,
then add to Bi the atom a not in Bi that is closest to Bi, repeating until Bi is has
the desired number of atoms.

17

Algorithm 2 The partition algorithm

procedure Partition(D)
[A1,A2] ← Split(D)
[A1,A2] ← Refine(D,A1,A2)
[B1,B2] ← Overlap(D,A1,A2)
return B1,B2

end procedure

procedure Split(D)
P ← SymRcm(D)
A1 ← p(1 : bn

2
c), A2 ← p(bn

2
c+ 1 : n)

return A1,A2

end procedure

procedure Refine(D,A1,A2)
for i = 1, 2 do

while exists a ∈ Ai closer to Ai⊕1 do

Ai ← Ai \ {a}
Ai⊕1 ← Ai⊕1 ∪ {a}

end while

end for

end procedure

procedure Overlap(D,A1,A2)
for i = 1, 2 do

repeat

a ← the closest point to Ai that is not in Ai

Ai ← Ai ∪ {a}
until Ai is of desired size

end for

end procedure

18

Figure 3: (top left) An RCM permutation gives us a balanced cut, with few cross-
edges (number of cross-edges = 317). (top right) Refining the split reduces the
number of cross-edges (number of cross-edges = 266). (bottom) Expanding the
nonoverlapping subgroups A1,A2 into the overlapping subgroups B1,B2.

4.2.2 Alignment of Atom Groups

Here we describe how to combine the computed configurations for B1 and B2 to
form a configuration for A. We shall adopt the following notation to facilitate our
discussion. Let B1, B2 be the coordinates for the atoms in B1,B2 respectively, and
let C1, C2 be the coordinates for the overlapping atoms in B1,B2 respectively. If a is
an atom in A, then let a denote its coordinates in the configuration for A. If a ∈ B1

(resp. a ∈ B2), then let b1 (resp. b2) denote its coordinates in the configuration B1

(resp. B2).
The first method we used to produce a configuration for A was to consider the

composition of translation, rotation and reflection T that best aligns C2 to C1. If a
is in B1 but not in B2, then we set a = b1; if a is not in B1 but is in B2, then we set
a = T (b2); if a is in both B1 and B2, then we set a = (b1 + T (b2))/2, the average
of b1 and T (b2). While this method is simple, it suffers from the disadvantage that
a few outliers can have a high degree of influence on the alignment. If a significant
number of the overlapping atoms are poorly localized, then the alignment may be
destroyed.

The method used by DISCO is slightly more sophisticated, so as to be more
robust. Our strategy is to use an iterative alignment process. If we again let T be
the composition of translation, rotation and reflection that best aligns C2 to C1, we

19

find the overlapping point such that the distance between its position in the two
configurations ‖b1 − T (b2)‖ is greatest. If it is greater than two times the mean
distance over all overlapping points, then it is likely that this point is not accurately
localized in either of the two configurations, so that we remove this outlier point,
and repeat the process; if the distance is less than two times the mean distance over
all overlapping points, then we conclude that this point is not an outlier, and this
T may give us a good alignment. By discarding points whose coordinates do not
agree well, it is hoped that our alignment only uses points that are well-localized in
both groups. The linear transformation T obtained from discarding outlier points
goes through a second test. If the alignment of the remaining overlapping points has
high error, that is if the RMSD is greater than a certain threshold, this indicates
that it is not possible to accurately align B1 and B2 together, and we do not align
them; if the RMSD is not too great, then we will proceed to align B1 and B2.

4.3 Basis Case: Localizing An Atom Group

4.3.1 When DISCO Fails

A prototype of DISCO was able to accurately localize certain molecules, but would
produce high-error structures for other molecules. Usually, the root of the trouble
was that the configuration for one particular subgroup had high error. Unfortu-
nately, aligning a good configuration and a bad configuration often produces a bad
configuration, so that the error propagates up to the complete protein configuration
(see Figure 4).

There are several reasons for some atom groups to be badly localized. The first
reason is rather obvious—some of the atoms may only have three or fewer neighbors
and so are not uniquely localizable in general. The second reason is more subtle.
When we plotted the estimated positions against the true positions, we noticed that
the badly localized groups often consisted of two subgroups; each subgroup was well
localized relative to itself, but there were not many edges between the two subgroups,
implying that the subgroups were not well-positioned relative to each other.

4.3.2 Identifying a Likely-localizable Core

As we may observe from Figure 4, if one subgroup is poorly localized, the complete
protein configuration could be destroyed. Thus we must make an extra effort to
ensure that we are able to accurately localize each subgroup.

Here we make a slight digression to a related result. In the case when exact
distances are given, Hendrickson [11] established sufficient conditions for unique
localizability in R

3. These conditions are not of great import to us, and so we give
only a flavor of the conditions: (1) vertex 4-connectivity, (2) redundant rigidity—the
graph is rigid after the removal of any edge, (3) stress testing—the null space of the
so-called “stress matrix” has dimension 4.

Unfortunately, Hendrickson’s results, while interesting, are not immediately ap-
plicable to our situation. Imagine a conformation that is kept rigid by a set of edges,
which are constrained to be of specified distances. If the specified distances are re-
laxed to distance bounds, it is possible that the conformation will have freedom to

20

↘ ↙

Figure 4: In each atom plot, a circle represents a true atom position, the red
dot represents an estimated atom position, and the blue line joins the correspond-
ing true and estimated atom positions. In this figure, we show how two subgroup
configurations (the arrow tails) are aligned to produce a configuration for a larger
group (where the arrow heads point). In this example, because one subgroup con-
figuration is poorly localized, the resulting configurations formed from this poorly
localized configuration are also unsatisfactory.

flex or bend into a shape that is drastically different from the original. Thus to get
a good localization with noisy distances requires stricter conditions than to get a
good localization with exact distances.

To ensure that we can get a good localization of a group, we may have to discard
some of the atoms, or split the group into several subgroups (see §4.3.1). Atoms
with fewer than 4 neighbors should be removed, because we have no hope of lo-
calizing them accurately. We should also check if it is possible to split the atoms
into two subgroups, both larger than the MinSplitSize3, which have fewer than
MinCrossEdges edges between them. If this were the case, it may not be possible to
localize both subgroups together accurately, but if we split the subgroups, it may be
possible to localize each of them accurately. The optimal choice of these parameters
is not known, but we have found that the value of 20 for MinSplitSize and 50
for MinCrossEdges seems to work well in practice. With regard to our choice for
MinCrossEdges, in the case of exact distances, in general 6 edges are needed to align

3 We are looking for two rigid subgroups, which have few edges between them. The rigid
subgroups should not be a very small group of atoms.

21

two rigid subgroups. However, in our case the distance data may be very noisy, so
we may need many more edges to align the two groups well. This is why the rather
conservative value of 50 is chosen.

How should we split the atoms into two subgroups, both subgroups with at least
MinSplitSize atoms, so that there are as few edges between them as possible?
This problem is familiar to us, because it is similar to the partitioning problem that
has been discussed in §4.2.1. Of course, in the partitioning problem, we would like
the two subgroups to have approximately the same size; while here we would like
both subgroups to have at least MinSplitSize atoms. Nevertheless, the similarity
of the two problems suggests that we could learn from the partitioning approach.
DISCO find the approximate minimum split by first applying the RCM permutation
to permute the rows and columns of the distance matrix and cluster the nonzero
entries towards the diagonal. It then tries values of p from MinSplitSize to n −
MinSplitSize + 1, to see which is the cut such that the number of edges between
atoms 1 : p and (p + 1) : n is minimized (see Figure 5).

Again, to make our ideas more concrete, we present the pseudocode of DISCO’s
localizable components algorithm in Algorithm 3.

Algorithm 3 Computing the likely-localizable core

procedure LocalizableComponents(A)
Remove atoms with fewer than 4 neighbors from A
[nCrossEdges,A1,A2] ← MinSplit(A)
if nCrossEdges < MinCrossEdges then

cI1 ← LocalizableComponents(A1)
cI2 ← LocalizableComponents(A2)
return [cI1, cI2]

else

return A
end if

end procedure

procedure MinSplit(A)
p ← SymRcm(D)
for i = MinSplitSize, . . . , n− MinSplitSize − 1 do

nCrossEdges{i} ← nCrossEdges(D, p(1 : i), p(i + 1 : n))
end for

i ← MinIndex(nCrossEdges)
nCrossEdges← nCrossEdges{i}
A1 ← A(1 : i)
A2 ← A(i + 1 : n)

end procedure

5 Numerical Experiments

In §5.1, we explain computational issues in the DISCO algorithm. In §5.2, we present
the experimental setup. In §5.3, we discuss the numerical results.

22

Figure 5: Finding the cut that minimizes the number of edges between subgroups.

5.1 Computational Issues

5.1.1 SDP Localization

In Section 3, we presented the “measured distances” and “distance bounds” SDP
models for the graph realization problem. We now have to decide which model is
more suitable for DISCO. In particular, we will compare the two models in terms of
the running time and the accuracy of the computed configuration.

We decided to use the “measured distances” model for DISCO, because the
running time is superior, while the accuracy is comparable to that of the “distance
bounds” model. With regards to the running time, DISCO uses the software SDPT3
to solve the SDPs arising from the graph realization problems. The running time
of SDPT3 is of the order of O(mn3) + O(m2n2) + Θ(m3) + Θ(n3), where m is the
number of constraints and n is the dimension of the SDP matrix. In our case, m
corresponds to the number of distances/bounds, and n corresponds to the number
of atoms. The “distance bounds” model has (roughly) twice as many constraints as
the “measured distances” model, and in practice, it may be 3–8 times slower on the
same input.

In the “measured distances” model, the regularization parameter γ has to be
chosen judiciously. The regularization parameter affects the configuration in the
following way: the larger the regularization parameter, the more separated the com-
puted configuration. In the extreme case when the regularization parameter is very
large, the regularization term will dominate the distance error term to the extent
that the objective value goes to minus infinity because the atoms move as far apart
as possible rather than fitting the distance constraints.

We have found that the value γ = γ̄ := m/25n seems to work well in practice.
We present our intuition for choosing such a value in the following. It is expected
that if the value of the distance terms

∑

(i,j)∈N s

u+
ij + u−

ij

23

and the value of the separation term

γ〈I − E/n, Y 〉
in (13) are balanced, then the computed configuration will neither be too compact
nor too separated. Note that

〈I − E/n, Y 〉 ≈ 〈I, Y 〉,
since we have the constraint 〈E, Y 〉 = 0 in (13). If we let r denote the half-diameter
of the chunk, and we make the very crude estimates that

u+
ij + u−

ij ≈ r2/25, Yii ≈ r2,

then this gives rise to the choice of γ = m/25n. The factor m/n comes from that
there are m edges and n diagonal terms. In our numerical experiments, we have
found that values γ ∈ (1

4
γ̄, 4γ̄) seem to work well in practice, so the SDP model

works well for a reasonably wide range of γ.
It would be useful to be able to quantify how “separated” an estimated config-

uration is, compared to the true configuration. Ideally, we define the separation of
a computed configuration as

σ(X) =
1

|N s|
∑

(i,j)∈N s

‖si − sj‖
‖strue

i − strue
j ‖

,

which requires us to know the true configuration. However, since we do not have
the true configuration available. It is more appropriate then to use the approximate

separation of a computed configuration

τ(X) =
1

|N s|
∑

(i,j)∈N s

‖si − sj‖
d̃s

ij

. (18)

The approximate separation of the computed configuration gives us a mean to decide
whether the SDP should be resolved with a different regularization parameter. If
the approximate separation indicates that the computed solution is “too compact”
(τ(X) < 0.8), then resolving the SDP with a larger γ (doubling γ) may produce a
“more separated” configuration that is closer to the true configuration. Similarly,
if the computed solution is “too separated” (τ(X) > 1.1), then resolving the SDP
with a smaller γ (halving γ) may produce a more accurate configuration.

The inclusion of minimum separation distance (MSD) constraints can also help
us to compute a better configuration from the SDP model. Due to physical reasons,
there is a minimum separation distance between any two atoms i and j, which we
shall denote by αij. After solving the SDP (13), we check to see if the minimum
separation condition

‖si − sj‖2 ≈ Yii + Yjj − 2Yij ≥ α2
ij

is satisfied for all pairs (i, j). If that is not true, then we let E be the set of pairs
(i, j) which violate the condition. We then resolve the SDP (13), with the additional
constraints

Yii + Yjj − 2Yij ≥ α2
ij, ∀(i, j) ∈ E .

24

We observed that imposing the minimum separation constraint improves the qual-
ity of the SDP solution. While it was reported in [25, p. 526] that the minimum
separation constraints pose a significant global optimization challenge for molecular
structure determination, we believe that the minimum separation constraints may
in fact be advantageous for finding a lower rank SDP solution from (13).

In this paper, we set the minimum separation distance αij to 1Å uniformly,
regardless of the types of the i-th and j-th atoms. In a more realistic setting, it is
desirable to set αij as the sum of the van der Waals radii of atoms i, j if they are
not covalently bonded. In that setting, the MSD αij is usually larger than 1Å. For
example, αij ≈ 3.2Å for the carbon and oxygen atoms if they are not covalently
bonded.

5.1.2 Gradient Descent

We have found that a regularized gradient descent refinement performs better than
the nonregularized counterpart. Recall that the atom coordinates obtained via SDP
localization are obtained by projecting Y onto the space of rank-d matrices. This
tends to give rise to a configuration that is “too compact”, because the discarded
dimensions may make significant contributions to some of the pairwise distances.
Introducing a separation term in the objective function may induce the atoms to
spread out appropriately.

Here we describe the regularized gradient descent. Let us denote the initial
iterate by X0 = [s0

1, . . . , s
0
n], which we will assume is centered at the origin. The

regularized objective function is

min f(X) :=
∑

(i,j)∈N s

(

‖si − sj‖ − d̃s
ij

)2 − µ
n

∑

i=1

‖si‖2, (19)

where µ > 0 is a regularization parameter. Typically, a choice of

µ =

∑

(i,j)∈N s

(

‖s0
i − s0

j‖ − d̃s
ij

)2

10
∑n

i=1‖s0
i ‖2

works well in practice.
We remark that choosing a suitable maximum number of iterations and tolerance

level to terminate the gradient descent can significantly reduce the computational
time of the gradient descent component of DISCO.

5.2 Experimental Setup

The DISCO source code was written in MATLAB, and is freely available from the
DISCO website [12]. DISCO uses the SDPT3 software package of Toh, Todd and
Tütüncü [20, 24, 19] to solve SDPs arising from graph realization.

Our experimental platform was a dual-processor machine (2.40GHz Intel Core2
Duo processor) with 4GB RAM, running MATLAB version 7.3, which only runs on
one core.

25

We tested DISCO using input data obtained from a set of 12 molecules taken
from the Protein Data Bank (PDB). The conformation of these molecules is al-
ready known, so that our computed conformation can be compared with the true
conformation.

The sparsity of the inter-atom distances was modelled by choosing at random
a proportion of the short-range inter-atom edges, subject to the condition that the
distance graph is connected4. It is important to note that the degree of some atoms
may be less than 4, so that they are not localizable, but we do not discard these
atoms. We have chosen to define short-range inter-atom distances as those less than
6Å. The “magic number” of 6Å was selected because NMR techniques are able to
give us information about the distance between some pairs of atoms if they are less
than approximately 6Å apart. We have adopted this particular input data model
because it is simple and fairly realistic [25, 2].

In realistic molecular conformation problems the exact inter-atom distances are
not given, but only lower and upper bounds on the inter-atom distances are known.
Thus after selecting a certain proportion of short-range inter-atom distances, we add
noise to the distances to give us lower and upper bounds. In this paper, we have
experimented with “normal” and “uniform” noise. The noise level is specified by a
parameter ν, which indicates the expected value of the noise. When we say we have
a noise level of 20%, what that means is that ν = 0.2. In the normal noise model,
the bounds are specified by

dij = max
(

1, (1− |Z ij|)dij

)

, dij = (1 + |Z ij|)dij,

where Z ij , Zij are independent normal random variables with zero mean and stan-

dard deviation ν
√

π/2. In the uniform noise model, the bounds are specified by

dij = max
(

1, (1− |Z ij|)dij

)

, dij = (1 + |Z ij|)dij,

where Z ij, Z ij are independent uniform random variables in the interval [0, 2ν]. We
have defined the normal and uniform noise models in such a way that for both noise
models, the expected value of |Zij |, |Zij| is ν.

In addition to the lower and upper bounds, which are available for only some
pairwise distances, we have minimum separation distances (MSDs) between all pairs
of atoms. Due to physical reasons, two atoms i and j must be separated by an MSD
αij, which depends on particular details such as the type of the pair of atoms (e.g. C-
N, N-O), whether they are covalently bonded, etc. The MSD gives a lower bound for
the distance between the two atoms. As mentioned in the previous subsection, for
simplicity, we set the minimum separation distance to be 1Å uniformly, regardless
of the types of atoms.

The error of the computed configuration is measured by the root mean square
deviation (RMSD). If the computed configuration X is optimally aligned to the
true configuration X∗, using the procedure of §3.4, then the RMSD is defined by
the following formula

RMSD =
1√
n

(n
∑

i=1

‖xi − x∗
i ‖2

)

.

4 The interested reader may refer to the code for the details of how the selection is done.

26

The RMSD basically measures the “average” deviation of the computed atom posi-
tions to the true atom positions.

5.3 Results and Discussion

To help the reader to appreciate the difficulty of the molecular conformation prob-
lem, under the setup we have just described, we solved two of the smaller molecules
using sparse but exact distances. This information is presented in Table 2. Even if
we solve a molecular problem in a centralized fashion without divide-and-conquer,
due to the sparsity of the distance data, the problem is not localizable, and we can
only get an approximate solution.

The performance of DISCO is listed in Tables 3 and 4, for the case when the
initial random number seed is set to zero, i.e. randn(’state’,0), rand(’state’,0).
The RMSD plots across the molecules, with 10 runs given different initial random
number seeds, is shown in Figure 6.

When given 30% of the short-range distances, corrupted by 20% noise, DISCO
is able to compute an accurate structure. We have a final structure (core structure)
with an RMSD of 0.9–1.6 Å (0.6–1.6 Å). The core structure is the union of the
likely-localizable components. Typically, the core structure is solved to a slightly
higher accuracy.

We believe these are the best numbers which we could hope for, and we present
an intuitive explanation of why this is so. For simplicity, let us assume that the
mean distance of any given edge is 3 Å. This is reasonable because the maximum
given distance is about 6 Å. Given 20% noise, we give a bound of about 2.4–3.6 Å
for that edge. Thus each atom can move about 1.2 Å. The RMSD should therefore
be approximately 1.2 Å.

When given 20% of the short-range distances, the conformation problems become
more difficult, due to the extreme sparsity of available distances. For each problem,
the mean degree of each atom is 7.4–8.6, so the data is highly sparse. We set a lower
level of 10% noise for these experiments. Even under such challenging input, DISCO
is still able to produce a fairly accurate structure (≈ 2 Å) for all the molecules except
1RGS and 1I7W (≈ 4 Å) in Table 4.

In Figure 6, we plot the RMSDs for different random inputs of the same molecule.
The graphs indicate that DISCO is able to produce an accurate conformation (<
3 Å) for most of the molecules over different random inputs. DISCO does not
perform so well on the two molecules 1RGS and 1I7W, which have less regular
geometries. Although we have designed DISCO with safeguards, DISCO will never-
theless occasionally make mistakes in aligning sub-configurations that are not well
localized.

6 Conclusion and Future Work

We have proposed a novel divide-and-conquer, SDP-based algorithm for the molec-
ular conformation problem. Our numerical experiments demonstrate that DISCO
is able to solve very sparse and highly noisy problems accurately, in a short amount
of time. The largest molecule with more than 13000 atoms was solved in about one

27

hour to an RMSD of 1.6Å, given only 30% of pairwise distances less than 6Å and
corrupted by 20% multiplicative noise.

We hope that with the new tools and ideas developed in this paper, we will be
able to tackle molecular conformation problems with highly realistic input data, as
was done in [10].

References

[1] P. Biswas, T.-C. Liang, K.-C. Toh, T.-C. Wang, and Y. Ye, Semidefi-

nite programming approaches for sensor network localization with noisy distance

measurements, IEEE Trans. on Auto. Sci. and Eng., 3 (2006), pp. 360–371.

[2] P. Biswas, K.-C. Toh, and Y. Ye, A distributed SDP approach for large

scale noisy anchor-free graph realization with applications to molecular confor-

mation, SIAM J. on Sci. Comp., 30 (2008), pp. 1251–1277.

[3] P. Biswas and Y. Ye, A distributed method for solving semidefinite programs

arising from ad hoc wireless sensor network localization, tech. report, Dept. of
Management Sci. and Eng., Stanford University, Oct 2003.

[4] Q. Dong and Z. Wu, A geometric build-up algorithm for solving the molec-

ular distance geometry problems with sparse distance data, Journal of Global
Optimization, 26 (2003), pp. 321–333.

[5] W. Glunt, T. Hayden, S. Hong, and J. Wells, An alternating projec-

tion algorithm for computing the nearest euclidean distance matrix, SIAM J. of
Mat. Anal. and Appl., 11 (1990), pp. 589–600.

[6] I. G. Grooms, R. M. Lewis, and M. W. Trosset, Molecular embedding

via a second-order dissimilarity parameterized approach, December 2006. Sub-
mitted to SIAM Journal on Scientific Computing. Revised April 2007.

[7] O. Güler and Y. Ye, Convergence behavior of interior point algorithms,
Math. Prog., 60 (1993), pp. 215–228.

[8] T. F. Havel, A evaluation of computational strategies for use in the determi-

nation of protein structure from distance constraints obtained by nuclear mag-

netic resonance, Progress is Biophysics and Molecular Bio., 56 (1991), pp. 43–
78.

[9] T. F. Havel, I. D. Kuntz, and G. M. Crippen, The combinatorial dis-

tance geometry approach to the calculation of molecular conformation, J. of
Theor. Biol., 104 (1983), pp. 359–381.

[10] T. F. Havel and K. Wüthrich, A distance geometry program for deter-

mining the structures of small proteins and other macromolecules from nuclear

magnetic resonance measurements of 1h-1h proximities in solution, Bull. of
Math. Bio., 46 (1984), pp. 673–698.

28

[11] B. Hendrickson, The molecule problem: exploiting structure in global opti-

mization, SIAM J. of Optimization, 5 (1995), pp. 835–857.

[12] N.-H. Z. Leung and K.-C. Toh, The DISCO web page. http://

deutsixfive.googlepages.com/disco.html.

[13] M. Locatelli and F. Schoen, Structure prediction and global optimization,
Optima (Mathematical Programming Society Newsletter), 76 (2008), pp. 1–8.

[14] J. J. Moré and Z. Wu, Global continuation for distance geometry problems,
SIAM J. of Optimization, 7 (1997), pp. 814–836.

[15] , Distance geometry optimization for protein structures, J. on Global Op-
timization, 15 (1999), pp. 219–234.

[16] R. Reams, G. Chatham, W. Glunt, D. McDonald, and T. Hayden,
Determining protein structure using the distance geometry program apa, Com-
puters & Chemistry, 23 (1999), pp. 153–163.

[17] J. B. Saxe, Embeddability of weighted graphs in k-space is strongly np-hard, in
Proceedings of the 17th Allerton Conference on Communication, Control, and
Computing, 1979, pp. 480–489.

[18] A. M.-C. So and Y. Ye, Theory of semidefinite programming for sensor

network localization, in SODA: Proceedings of the sixteenth annual ACM-SIAM
symposium on discrete algorithms, 2005, pp. 405–414.

[19] K.-C. Toh, M. J. Todd, and R. H. Tutuncu, The SDPT3 web page.
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

[20] K.-C. Toh, M. J. Todd, and R. H. Tutuncu, SDPT3—a MATLAB soft-

ware package for semidefinite programming, Optimization Methods and Soft-
ware, 11 (1999), pp. 545–581.

[21] M. W. Trosset, Applications of multidimensional scaling to molecular con-

formation, Computing Science and Statistics, 29 (1998), pp. 148–152.

[22] , Distance matrix completion by numerical optimization, Computational
Optimization and Applications, 17 (2000), pp. 11–22.

[23] , Extensions of classical multidimensional scaling via variable reduction,
Computational Statistics, 17 (2002), pp. 147–163.

[24] R. H. Tutuncu, K.-C. Toh, and M. J. Todd, Solving semidefinite-

quadratic-linear programs using SDPT3, Mathematical Programming Ser. B,
95 (2003), pp. 189–217.

[25] G. A. Williams, J. M. Dugan, and R. B. Altman, Constrained global

optimization for estimating molecular structure from atomic distances, Journal
of Computational Biology, 8 (2001), pp. 523–547.

29

[26] D. Wu and Z. Wu, An updated geometric build-up algorithm for solving

the molecular distance geometry problems with sparse distance data, Journal
of Global Optimization, 37 (2007), pp. 661–673.

[27] Z. Zhang and H. Zha, Principal manifolds and nonlinear dimension reduc-

tion via local tangent space alignment, SIAM Journal of Scientific Computing,
26 (2004), pp. 313–338.

[28] , A domain decomposition method for fast manifold learning, in Proceedings
of NIPS, 2005.

30

Algorithm(s) Largest
molecule
(No. of
atoms)

Inputs Output

EMBED (83),
DISGEO (84),
DG-II (91),
APA (99)

454 All distance and chirality constraints needed
to fix the covalent structure are given exactly.
Some or all of the distances between hydro-
gen atoms less than 4Å apart and in different
amino acid residues given as bounds.

RMSD
2.08Å

DGSOL (99) 200 All distances between atoms in successive
residues given as lying in [0.84dij, 1.16dij].

RMSD
0.7Å

GNOMAD (01) 1870 All distances between atoms that are cova-
lently bonded given exactly;
all distances between atoms that share cova-
lent bonds with the same atom given exactly;
additional distances given exactly, so that 30%
of the distances less than 6Å are given;
physically inviolable minimum separation dis-
tance constraints given as lower bounds.

RMSD
2–3Å(*)

MDS (02) 700 All distances less than 7Å were given as lying
in [dij − 0.01Å, dij + 0.01Å].

violations
< 0.01Å

StrainMin (06) 5147 All distances less than 6Å are given exactly,
a representative lower bound of 2.5Å is given
for other pairs of atoms.

violations
< 0.1Å

ABBIE (95) 1849 All of distances between atoms in the same
amino acid given exactly. All distances corre-
sponding to pairs of hydrogen atoms less than
3.5Å apart from each other, given exactly.

Exact

Geometric
build-up (07)

4200 All distances between atoms less than 5Å
apart from each other given exactly.

Exact

DAFGL (07) 5681 70% of the distances less than 6Å were given
as lying in [dij , dij], where dij = max(0, (1 −
0.05|Zij |)dij), dij = (1 + 0.05|Zij |)dij , and

Zij , Zij are standard normal random variables
with zero mean and unit variance.

RMSD
3.16Å

Table 1: A summary of protein conformation algorithms. (*) The RMSD of 1.07Å
reported by GNOMAD may be incorrect, and the true value should be about 2–3Å
since the number reported in Figure 11 of [25] does not agree with that appears in
Figure 8.

31

Input data: subsets of exact distances ≤ 6Å

Molecule n 30% distances 20% distances
RMSD (Å) ` RMSD (Å) `

1GM2 166 0.10 0 0.83 10
1PTQ 402 0.39 9 1.16 38

Table 2: The molecular problem with sparse but exact distance data cannot always
be solved exactly. We have denoted by n the number of atoms in the molecule and
by ` the number of atoms with degree less than 4.

Input data: 30% distances ≤ 6Å, corrupted by 20% noise

Molecule n ` RMSD (Å) Time (h:m:s)
Normal Uniform Normal Uniform

1GM2 166 0 0.92 (0.94) 0.74 (0.76) 00:00:08 00:00:13
1PTQ 402 9 1.08 (0.96) 1.00 (0.85) 00:00:23 00:00:18
1PHT 814 15 1.45 (0.69) 1.15 (0.56) 00:01:22 00:01:00
1AX8 1003 16 1.35 (1.17) 1.00 (0.80) 00:01:31 00:01:07
1TIM 1870 45 1.23 (1.03) 0.94 (0.80) 00:04:18 00:03:28
1RGS 2015 37 1.52 (1.36) 1.51 (1.41) 00:05:25 00:03:53
1KDH 2923 48 1.38 (1.16) 1.21 (0.89) 00:07:57 00:05:30
1BPM 3672 36 1.10 (1.03) 0.79 (0.73) 00:11:24 00:08:08
1TOA 4292 62 1.15 (1.07) 0.89 (0.78) 00:13:25 00:09:06
1MQQ 5681 46 0.92 (0.86) 0.82 (0.74) 00:23:56 00:17:24
1I7W 8629 134 2.45 (2.34) 1.51 (1.40) 00:40:39 00:31:26
1YGP 13488 87 1.92 (1.93) 1.50 (1.52) 01:20:35 01:00:55

Table 3: We have denoted by ` the number of atoms with degree less than 4.
The mean degree of an atom is 10.8–12.6. The approximate core of the structure
consists typically of 94–97% of the total number of atoms. For large molecules,
the SDP localization consumes about 70% of the running time, while the gradient
descent consumes about 20% of the running time.

32

Input data: 20% distances ≤ 6 Å, corrupted by 10% noise

Molecule n ` RMSD (Å) Time (h:m:s)
Normal Uniform Normal Uniform

1GM2 166 7 1.44 (1.25) 0.92 (0.77) 00:00:04 00:00:04
1PTQ 402 46 1.49 (1.17) 1.48 (1.14) 00:00:14 00:00:10
1PHT 814 53 1.53 (1.13) 1.40 (0.97) 00:01:02 00:00:54
1AX8 1003 78 1.69 (1.40) 1.52 (1.17) 00:01:00 00:00:55
1TIM 1870 143 1.77 (1.41) 1.84 (1.50) 00:02:43 00:02:33
1RGS 2015 189 9.82 (9.51) 1.83 (1.39) 00:03:32 00:03:14
1KDH 2923 210 1.74 (1.31) 1.63 (1.13) 00:04:28 00:04:45
1BPM 3672 187 1.46 (1.14) 1.31 (0.91) 00:06:52 00:06:33
1TOA 4292 251 1.67 (1.26) 1.58 (1.16) 00:08:39 00:08:49
1MQQ 5681 275 1.17 (0.95) 1.17 (0.92) 00:14:31 00:14:21
1I7W 8629 516 4.04 (3.69) 3.87 (3.52) 00:26:52 00:26:04
1YGP 13488 570 1.83 (1.63) 1.70 (1.46) 01:01:21 00:57:31

Table 4: We have denoted by ` the number of atoms with degree less than 4. The
mean degree of an atom is 7.4–8.6. The approximate core of the structure consists
typically of 88–92% of the total number of atoms. For large molecules, the SDP
localization consumes about 60% of the running time, while the gradient descent
consumes about 30% of the running time.

33

0 5 10
0

1

2

3

4

5

R
M

S
D

Molecule number

20% normal noise

0 5 10
0

1

2

3

4

5

Molecule number

20% uniform noise

0 5 10
0

5

10

15

20

R
M

S
D

Molecule number

10% normal noise

0 5 10
0

5

10

15

20

Molecule number

10% uniform noise

Figure 6: For each molecule, ten random inputs were generated with different initial
random number seeds. We plot the the RMSDs of the ten structures produced by
DISCO against the molecule number. (top left) 30% short-range distances, 20%
normal noise (top right) 30% short-range distances, 20% uniform noise (bottom
left) 20% short-range distances, 10% normal noise (bottom right) 20% short-range
distances, 10% uniform noise.

34

