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ABSTRACT. ldentifying critical nodes in a graph is important to urstand the structural
characteristics and the connectivity properties of thevagk. In this paper, we focus on
detecting critical nodes, or nodes whose deletion resultss minimum pair-wise connec-
tivity among the remaining nodes. This problem, known a<tRiE ICAL NODE PROBLEM
has applications in several fields including biomedicieedommunications, and military
strategic planning. We show that the recognition versiothefproblem is\’ »-complete
and derive a mathematical formulation based on integeadipeogramming. In addition,
we propose a heuristic for the problem which exploits the lwiomtorial structure of the
graph. The heuristic is then enhanced by the applicatioriazfad improvement method. A
computational study is presented in which we apply the et@gogramming formulation
and the heuristic to real and randomly generated data setsallFinstances tested, the
heuristic is able to efficiently provide optimal solutiomsa fraction of the time required
by a commercial software package.

1. INTRODUCTION

Given a graph and an integlerthe objective of the&RITICAL NODE PROBLEM (CNP)
is to find a set ok nodes in the graph whose deletion results in the maximumar&tw
fragmentation. By this we mean, minimize the pair-wise @mtivity between the nodes
in thek-vertex deleted subgraph. Similar studies appearing isdlo&l networks literature
include those by Bavelais|[3] and Freemar [12] which empkasizie centrality and pres-
tige, both of which are usually functions of node degree. E\mv, they lack applications
to problems which emphasize network fragmentation and ectirity.

The CRITICAL NODE PROBLEM has several applications in the field of social network
analysis. Social networks have attracted a significant amailattention in recent years.
The study of these graphs is important to better understewetal properties which are
most common in network depictions of social interactiortdliding cohesion, transitivity,
and centrality of specific actors of the graph [2]. The stuflyhe various properties of
social networks such as diameter, radiality, and connigctve responsible for social con-
tagion and provide scope for containment of an epidemicreatb These properties also
help in designing strategies for communication breakdawhsiman and telecommunica-
tion networks[[24].

ThecNPfinds applications in network immunizatidn [6.126] where saaccination is
an expensive process and only a specific number of peoplegletbds nodes of a graph,
can be vaccinated. The immunized nodes cannot propagatértiseand the goal is to
identify the individuals to be vaccinated in order to redtloe overall transmissibility of
the virus. There are several vaccination strategies iritgrature (see e.g[.|[6. 26]) offering
control of epidemic outbreaks; however, none of the progase optimal strategies. The
vaccination strategies suggest emphasizingéngrality of nodes as a major factor rather
thancritical nodes whose deletion will maximize the disconnectivityhaf ggraph. Deletion
of central nodes may not guarantee a fragmentation of ttveonkebr even disconnectivity,
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in which case disease transmission cannot be preventeduBesocial networks model
the patterns of humans, they vary greatly over time. Thdioglships between people,
represented by edges in the social network, are transiehthemne is a constant rewiring
between the nodes as new relationships are establishedprdpesed critical node tech-
nigue minimizes the transmission of the disease over aannstof the dynamic network.

Furthermore, theNpP can be applied to the study of covert terrorist networks, reltze
certain number of individuals have to be identified whoseti@h will result in the maxi-
mum breakdown of communication between individuals in teevork [18]. Likewise in
order to stop the spreading of a virus over a telecommupicaietwork, one can identify
the critical nodes of the graph and take them offline. Siryiléfrone’s ultimate goal is to
prevent communication on a wired telecommunication ndtwamn efficient way of doing
so would be to jam the critical nodes. This has been studigbercontext of wireless
networks by Commander et al. in [7].

Before proceeding, we mention one final area in whichdkeriCAL NODE PROBLEM
finds several applications, and that is in the field of trantstion engineering [11]. Two
particular examples are as follows. In general, for transpion networks, it is important
to identify critical nodes in order to ensure they operalialpéy for transporting people and
goods throughout the network. Further, in planning for eyaecy evacuations, identifying
the critical nodes of the transportation network is crucighe reason is two-fold. First,
knowledge of the critical nodes will help in planning theoaktion of resources during the
evacuation. Secondly, in the aftermath of a disaster théyalp in re-establishing critical
traffic routes.

Borgatti [4] has studied a similar problem, focusing on ndeection resulting in maxi-
mum network disconnectivity. Other studies in the area ofendetection such as centrality
[3,[12] focus on the prominence and reachability to and froendentral nodes. However,
little emphasis is placed on the importance of their rolehia hetwork connectivity and
diameter. Perhaps one reason for this is that all of the afen¢éioned references relied
on simulation to conduct their studies. Although the sirtiates have been successful, a
mathematical formulation is essential for providing ifgignd helping to reveal some of
the fundamental properties of the probleml|[22]. In the nektisn, we present a mathe-
matical model based on integer linear programming whiclviges optimal solutions for
the CRITICAL NODE PROBLEM

We organize this paper by first formally defining the problem discussing its com-
putational complexity. Next, we provide an integer progmang (IP) formulation for the
corresponding optimization problem. In Sectidn 3 we introgla heuristic to quickly pro-
vide solutions for instances of the problem. We present goetiational study in Sectidd 4,
in which we compare the performance of the heuristic ag#iresbptimal solutions which
were computed using a commercial software package. Sonctudtimg remarks are given
in Sectior{’b.

2. PROBLEM DEFINITION

The formal definition of the problem is given by:
CRITICAL NODE PROBLEM (CNP)
INPUT: An undirected grap = (V,E) and an integek.
OUTPUT:A = argminy; jcv\a) Uij (G(V \ A)) : |A] <k, where

P 1, if i andj are in the same component®fV \ A),
"7 )0, otherwise.
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The objective is to find a subs&iC V of nodes such tha#\| <k, whose deletion minimizes
the pair-wise connectivity among the nodes in the inducédsaphG(V \ A).

This problem is similar to th&INIMUM k-VERTEX SHARING [21], where the objective
is to minimize the number of nodes deleted to achiewevway partition. Here we are
considering the complementary problem, where we know thalmu of vertices to be
deleted and we try to maximize the number of components fdmne implicitly limit the
sizes of the components. Borgaltl [4] has given a comprebeiikistration to facilitate
the understanding of the objective function and its nowiatity.

2.1. Computational Complexity. We now prove that the recognition version of thep

is Al »-complete. Consider the recognition version of ther:

K-CRITICAL NODE PROBLEM (K-CNP)

INPUT: An undirected graple = (V, E) and an integek.

QUESTION: Is there a sé¥l, whereM is the set of all maximal connected components
of G obtained by deleting nodes or less, such th&,cy W < K, whereay, is the
cardinality of componert, for eachh € M?

In order to prove that the KenPis Af #-complete, we make use of the following lem-
mata. In particular, we prove that optimizing the objecfivection not only maximizes
the pair-wise disconnectivity among the nodes, but alsomies the variance in the car-
dinalities of the components. Particularly, in Lemitha 1 wevskhat for any two solutions
resulting in the same number of components, if the cardiealdf the components are
equal in one solution, and not equal in the other, then theatibg value of the latter will
always be worse than that of the former.

Lemmal. Let M beapartitionof G= (V,E) into L componentsobtained by deleting a set

L ) _ (V]—k) (M=% g
D of nodes, where |D| = k. Then the objective function §peu "h("zh Y > (2_'-_ )

with equality holdingif and onlyif o = 0y, ¥ h,| € M, where o}, isthe size of hi" component
of M.

Proof.

Casel: op #0, VhileM.

Note thaty,cv 0nh = [V| — k. Then given a solution for an instance of thep, we have
that
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Thus, we have that

onon—1) _ (V=K (‘V‘T*k—l)_

2 - 2 ¢

heM
Case2:. op =0, VhileM.

In this case, each componentMfwill be of size ‘V‘T’k which is obviously the average
size of a component dfl. Thus
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Conversely, if[[8) holds, but each componenibfs not the same size, it follows that not
all components will be of average size and hence
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Similar to the above result, we see that
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This is a contradiction and we have the proof. O

The following lemma provides a similar result as above. Hamven this case, the
number of components induced by each solution are not asstoie equal.

Lemma 2. Let M1 and M3 be two sets of partitions obtained by deleting D1 and D, sets
of nodes respectively from graph G = (V,E), where |D1| = |D2| = k. Let L; and L, be the
number componentsin M1 and M> respectively and L1 > Lo. If o, = 01,V h,| € M1, then
we obtain a better objective function value by deleting the set D;.

Proof. Let f(M1) andf(Mz) be the objective function values obtained by delefingand
D, respectively. Let us assume thidtM1) > f(Mz). Letu = @ From Lemmall, we

have that2 {41 < f(M,). Then we have

VIZkY (VK
Wﬁf(M2)<f(M1)—Ll( L1 )( Ly 1). (14)
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Examining [I%) carefully reveals the necessary contramticNotice that[(TW) states

V=K [ V]—k V=K [ V]|—k
L (M55) (5 -1) L (M55) (M -1)
> < > (15)
IR e S R U R (WTRLEY )
=L > Li. a7
This contradicts the hypothesis that> L, and we have the result. O

We can now prove the following theorem regarding the conipjlef the cNP.
Theorem 1. The K-CRITICAL NODE PROBLEMIs A/ ?-complete.

Proof. To show this, we must prove that (1) NP € AL 2; (2) Somen 2 -complete prob-
lem reduces to KENPin polynomial time.

(1) K-cNP € a2 since given any grapB = (V,E), and deleting any set of at most
k nodes, we can determine the objective value {iE|) time using a depth-first
search([1].

(2) To complete the proof, we show a reduction from thBEPENDENT SET PROB
LEM (1sP) [B], which is well-known to bexnl #-complete [[I3]. Given a graph
G = (V,E), theisp seeks to determine & contains an independent set of skze
This is equivalent to determining if there exists an emptygsaeph ofG of sizek
by deleting|V| — k nodes and their adjacent edges.

Let G = (V,E) be the graph obtained by replacing each nodeG by aT-
clique with one of the clique nodes coinciding with Note if T = 1, then we
have the original grapi®. Consider the Kenp on G which asks if there exists a
partitionM of G obtained by deletingy/| — k nodes such that

Gn(0h—1) KI(T-1) (VM-kT-1(T-2)
L 2 T2 2 ‘

We claim there is a one-to-one correspondence betweeasium G and thecnp
on G. If there is an independent set of sizén G, it is clearly a solution to the
CNP, as we will havé&k components of siz€ and|V| —k components of siz€ — 1.
This would result in the required objective function valoethecNp. Conversely,
if there is a partition oM satisfying the objective by deletify | — k nodes, then
we have an independent set of skze

We give a constructive proof to show this. The first part ireslshowing that
the objective value of thenPonG is always better when the nodes of the original
graphG are deleted fron® as opposed to deleting cligue nodes. For a giveR
solution, let us assume that in a clique, a non-coincidingens deleted and the
coinciding node from this clique is not deleted. If we swapsih nodes in the
solution, that is, if we delete the coinciding node and repldhe non-coinciding
node, then the objective function value either remainsaees or decreases if the
number of components increases.

Now let us assume that a non-coinciding clique node and iteimbng node are
deleted fromG. In this case, if we swap from the solution set the non-cdiing
node with an undeleted coinciding node, then again the tbgacalue will either
decrease or remain unchanged. To see this, let us assumentip®rent corre-
sponding to the clique with both its coinciding and non-cading nodes deleted
is of size(T —b), whereb > 2, as there may be other non-coinciding nodes deleted
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from this clique. Also, let the coinciding node that was neleded be a part of
some component of siZB+ a. Now the objective function before the swap will
be

(T+a)(T+a-1) (T—b)(T—b—1)
2 + 2 !

Z1 =S+ (18)

whereSis the contribution from other components present in thelyraAfter
swapping these two nodes, the objective function value evbal

7,5 T-D0-2)  (@@-1)  (T-b)(T-b+1)

> + > + 5 ) (19)
Now, if we take the difference we see that
Z1—Zo=aT+b—-1>0, VT >0. (20)

Since we are deleting only/ | — k nodes, we have a partitidvi with

Gn(0h—1) KI(T-1 (V=K@ -1(T-2)
v 2 - 2 2 ’
by deleting only the nodes of the original graph. Since ndnéh@ new nodes
(i.e., the nodes from thE-cliques) are deleted frof@, the deletion of théV|—k

nodes results in exact|y | — k components of siz€ — 1. This contributes exactly
M{”(T’Z) towards the objective function. The remainikig nodes form at

mostk components. Hence from Lemifna 2, this contributes at Y to the
objective function. From Lemnid 1, th& nodes involve exactlig components of
sizeT, representing th&-cliques ofG, with one node in eachi-clique presentin

the original graplG, and none of them connected to each other. Hence deletion of
|V| — k nodes fronG results ink independent nodes in the original graBhThis
completes the proof.

O

2.2. Integer Programming Formulations. When studying combinatorial problems, in-
teger programming models are usually quite helpful for ftimg some of the formal prop-
erties of the probleni[22]. With this in mind we now develojireear integer programming
formulation for theCcNP.

To begin with, define the surjectian: V x V — {0,1} as above. Further, we introduce
a surjectionv: V — {0,1} defined by

(21)

1, if nodei is deleted in the optimal solution,
0, otherwise.
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Then theCcRITICAL NODE PROBLEMadmits the following integer programming formula-
tion

(CNP-1) Minimize .Zvu” 22)

Ije
s.t.

uij+Vvi+v;>1 V(i,j) €E, (23)
Uij+Uujk—ui <1,V (i,j,k) €V, (24)
Uij —Ujk+ug <1,V (i,],k) €V, (25)
—Uij +Ujk+ug <1, V(ijk eV, (26)
2=k @
uij € {0,1}, Vi, j €V, (28)
vi € {0,1}, VieV. (29)

Note the objective is to find the set bihodes whose removal results in a graph which
has the minimum pair-wise connectivity between the remaimiodes. This is accom-
plished by the objective function. The first set of constisin (23) implies that if nodeis
andj are in different components and if there is an edge betwesn tthen one of them
must be deleted. Furthermore, constrainis (P4)-(26) hegemply that for all triplets of
nodesq, j,k, thatifi andj are in same component apdndk are in same component, then
necessarilk andi must be in the same component. Constrdint (27) ensureshihavtal
number of deleted nodes is less than or equél féinally, (28) and[(2B) define the proper
domains for the variables used. Thus, a solution to the @mtpgpgramming formulation
CNP-1 characterizes a feasible solution to ther. On the other hand, it is clear that a
feasible solution to thenp will define at least one feasible solution@NP-1. Therefore,
CNP-1is a correct formulation for thenrp.

We note here that in all likelihood, there exist alternativathematical programming
formulations for thecNp. For example, notice that the conditions which satisfy theutar
constraints[(24),[(25), anf {(26) @BNP-1 can be satisfied by the single constraint+
Ujk + Uk # 2,V (i, j,k) € V. By appropriately defining a new set of binary variables, this
constraint set could be incorporated into the model. Thghtride useful for breaking down
the symmetry of the problem if one was attempting to expluit polyhedral structure of
the model. This is beyond the scope of this paper, and is aneisting topic for future
research. That said, we make no claims as to the superidrigrrmulation CNP-1 over
others.

Notice that if the objective was a function of the number ahpmnents, then an approx-
imation for themaxiMum K-cuT PROBLEM[13,[17] could be employed by modifying the
cost function of the Gomory-Hu tree [14]. An even simpler @geh would be to identify
the cut vertices in the graph, if any exist. Studies to assessgulnerability of a network
with similar objective functions are studied in [19] 20].€lbbjective function in([20] is to
maximize traffic flow while deleting a set &fedges([20] from the graph. Ih[1L9], a very
similar objective to the one proposed in this paper is prieserWhereas our objective is to
minimize the pair-wise connectivity between the nodeg aitéetingk nodes, the objective
in [19] maximizes the node disconnectivity between a sebafee nodes and sink nodes
by deleting a set of arcs.

Recall thaty; ;v Uij is @ measure of the total pair-wise connectivity of the graydtice
that sinceu;j is binary and equal to 1 if and only ifand j are in the same component in
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the optimal solution, the objective function could be reten as
Oh(oh—1)

h;A — (30)

whereM is the set of all maximal connected components apds the size of thehit"
component, which can be easily identified by fast algorithikes breadth or depth first
search algorithms i (|E|) time using an adjacency list representation of the network
[1.18]. We will use [3D) as the objective function optimizegdtbe heuristic in the following
section. In addition to the relative ease of calculatingdielinality of the components of
a graph, there is an intuitive explanation for the choicd3@) (as our objective function.
As we proved in LemmBl1 and Lemrh 2 above, optimizing (30) mids the number
of connected components while simultaneously minimizivguariance in the component
sizes. For example, consider an arbitrary unweighted gvafth150 nodes. According
to our objective, it is more preferable to have a partitiothv@ components each with 50
nodes, as opposed to a partition with 5 components with oviadnd46 nodes and the rest
of them having a single node.

3. HEURISTIC FORDETECTING CRITICAL NODES

Pseudo-code for the proposed heuristic is provided in E[duiTo begin with, the algo-
rithm finds a maximal independent set (MIS). This set isatlitiempty, and is computed
sequentially as follows. First, a single vertex is addedhtoget. Next by iterating through
the vertices, a node that is not adjacent to the starting imddded to the MIS. Then a
vertex adjacent to neither of these is added, and so on. §hitinued until we can find
no more vertices to include, and thus the set is maximal iaddent.

LetM; be the set of all connected components in the node inducepiaphG(MISU j).
After the initial MIS is computed, in the loop from lines 2t&g heuristic greedily selects
the node €V not currently in the MIS which returns the minimum objectiuaction for
the graphG(MISU {j}),Vj € V. The set MIS is augmented to include nddand the
process repeats untMIS| = |V| — k. At this time, the method terminates and the set of
critical nodes to be deleted is given as those ngde¥ such thatj € V \ MIS.

procedure CriticalNode(G,k)

1 MIS <« MaximalIndepSet(G)

while (|MIS| # V| — k) do

3 i —argmin{ Tpey, 292 : j eV \MIS}
4 MIS — MISU{i}
5
6

N

end while
returnV\ MIS /x set ofk nodes to delete/
end procedureCriticalNode

FIGURE 1. Heuristic for detecting critical nodes.

The intuition behind using an independent set is that thgsydh induced by this set is
empty. Stated otherwise, the deletion of those nodes thabam the independent set will
result in an empty subgraph. Notice that this will provide tiptimal solution for an in-
stance of thenpif |MIS| > |V| —k. However, if the size of the MIS is less thaf| — k, we
simply keep adding nodes which provide the best objectigavi the set until it reaches
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the desired size. The heuristic is computationally efficard the complexity is given in
the following theorem.

Theorem 2. The proposed algorithm has complexity o ([V|?|E|).

Proof. To begin with, finding the MIS using the sequential methodcdbsd above re-
quires linear time. Next, thevhile loop from lines 2-5 will iterate at most (|V| — k)
times. In each iteration, the number of search operatioonsedses froniV| — 1 to [V| —
(V| —k) = k. Note that we are performing the search of a sparse grapkhvsinitially
empty. There will be one comparison step for every seardiopeed in order to determine
the node that provides the minimum increase in the objefitivetion. This will in turn be
dominated by the complexity of the search procedure whighireso (|E|) time. Hence,
the total number of iterations will be

V-1 k-1

O(V[=14+V|=24---+|V[-|V[+k =0 ( Zl i—_Zi) =o(VPP—K2) = o (|V]).

Thus the overall complexity i©(|V|?|E|), and the proof is complete. O

The proposed algorithm finds a feasible solution to ¢i®ReTICAL NODE PROBLEM
however, the solution is not guaranteed to be globally oallpoptimal. Therefore, we
can enhance the heuristic with the application of a localkcbe@utine as follows. Consider
the pseudo-code presented in Figdre 2. The routine recadvieput the solution from the
CriticalNode heuristic and performs a 2-exchange local search. fLe¥ — Z be a
function returning the objective function value for a givaat in the sense of (B0) above.
That is, consider a pair of nodésnd j such that € MIS and j ¢ MIS. Then for all
such pairs, we sgte MIS andi ¢ MIS and examine the change in the objective function.
If it improves, then the swap is kept; otherwise, we undo thepsand continue to the
next node pair. Notice that the loop from lines 3-20 repedtdenthe local improvement
condition is not met. This general statement can lead toemphtation problems and it
is @ common practice to limit the number of local search fters by some user defined
value. The intuition is that as this value grows larger, tletion gets closer to optimality
with respect to its local neighborhood.

Finally, we can combine the construction and local improgatralgorithms into one
multi-start heuristicCriticalNodeLS as shown in Figurgl3. This procedure produces
MaxIter local optima and the overall best solution from all iteratigs returned. In order
to implement the multi-start framework, the starting nodedach maximal independent
set is randomly chosen. Since the initial MIS is createdrdatastically, this node is only
accepted as a starting node if it has not been previouslgtsele Therefore, we see that
MaxIter will be bounded above bj/|. This simple randomization scheme ensures that
different areas of the solution space are explored in eacation.

4. COMPUTATIONAL RESULTS

The proposed heuristic was implemented in the programming language and com-
piled using GNUg++ version 34.4, using optimization flagsd2. It was tested on &C
equipped with a 1700 MHz Int8 Pentiun® M processor and.D gigabytes of RAM op-
erating under the Microséh Windows® XP Professional environment. The parameter
MaxIter was set equal t{)/|, and the number of iterations of the local search was 2. Itis
reasonable to forgo the implementation of the local searcbgalure using this approach,
and simply allow the routine to examine swaps until a locgdriovement condition is met.
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procedureLocalSearch(V \ MIS)

1 X*«—MIS

> local _improvement — .TRUE.

3 whilelocal _improvement do

4 local .improvement <« .FAL SE.

5 for [i,j] € VxV do

6 ifie MISand j € MIS then

7 MIS «— MIS\ i

8 MIS — MISU j

9 if f(MIS) < f(X*) then

10 X* — MIS

11 else

12 MIS — MIS\ j /xundo swapx/
13 MIS «— MISUI

14 end if

15 if improvement_condition_notmet then
16 local .improvement «+— .TRUE.
17 end if

18 end if

19 end

20 end while

21 return (V\ X*) /xsetofk nodes to delete/
end procedureLocalSearch

FIGURE 2. Local search algorithm for critical node heuristic.

procedureCriticalNodeLS(G,k)
X* 0
f(X*) o0
for j =1toMaxIter do
X « CriticalNode(G,k)
X « LocalSearch(X)
if f(X) < f(X*) then
X*—X
end if
end
10 return (V\X*) /xsetofk nodes to delete/
end procedureCriticalNodeLS

© 00N oUW N e

FIGURE 3. Heuristic with local search for detecting critical nodes

This local improvement condition could be a maximum comfomatime, a maximum
number of iterations in which there is no improvement in thgeotive value, or a fixed
number of iterations. In our experiments, we obtained gesdlts in reasonable comput-
ing times by fixing the number of local search iterations to 2.
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FIGURE 4. Terrorist network compiled by Krebs.

As a basis of comparison, we have implemented the integgrgmaming model for the
CRITICAL NODE PROBLEMusing the CPLEXM version 9 optimization suite from ILOG
[Q]. CPLEX contains an implementation of the simplex metffts], and uses a branch
and bound algorithni [25] together with advanced cuttingppltechniques [15, 23].

We tested the IP model and heuristic on a set of randomly g&tbgraphs ranging in
size from 75 to 150 nodes with varying densities. The grapgre\generated with version
1.4 of the publicly available Barabasi graph generator byi@rfl0]. For each random
instance, we report solutions for 3 valueskpfthe number of nodes to be deleted. In
addition, we have tested the algorithms on the terroristolt compiled by Krebs [18]
shown in Figuré 4. This network depicts the relationshipgsvben the terrorists involved
in the horrific attacks of September 11, 2001. The graph wastoacted after the attacks
with data which were publicly available beforgl.

We begin by providing the results from the terrorist netwfd&] shown in Figuré .
This graph has 62 nodes and 153 edges. Notice that node 38 ttiral node with
degree 22. We applied the IP formulation and the heuristicisonetwork with 6 values of
k. The results are provided in Taljle 1. Notice that for all eslofk, the heuristic computed
the optimal solution requiring on averag®03 seconds of computation time. The average
time to compute the optimal solution using CPLEX was 5387%econds. Clearly even
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TABLE 1. Results of IP model and heuristic on terrorist networladat

from Krebs.
Instance IP Model Heuristic
Nodes | Objective Execution Objective Execution
Deleted k) | Value Time (s) | Value Time (s)
20 20 1269 20 001
15 61 27777 61 001
10 169 333706 169 002
9 214 279233 214 002
8 282 1511194 282 001
7 327 1079208 327 001
42 14 8%
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FIGURE 5. Optimal solution whek = 20.

for this relatively small network, the heuristic is the medtof choice. FigurEl5 shows the
resulting graph of the terrorist network according to theéropl solution to thecNpP for the
instance withk = 20.

In order to provide evidences of its scalability and robas#; the proposed heuristic
was tested on a set of randomly generated scale-free graph[2 presents the results
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of the heuristic and the optimal solver when applied to thedoen instances. For each
instance, we report the number of nodes and arcs, the vakiesifig considered, the opti-
mal solution and computation time, and finally the heuristitition and the corresponding
computation time. For each graph, we report solutions faff@rént values ok.

Notice that for all the instances tested, our method was mbt®mpute the optimal
solution. Furthermore, the required time to compute thenggdtsolution was less than one
second for all but one instance, averaging on330seconds for all 27 instances. On the
other hand, CPLEX required 288! seconds on average to compute the optimal solution,
requiring over 5000 seconds in the worst case. Our computtexperiments indicate
that the proposed heuristic is able to efficiently provideedient solutions for large-scale
instances of thendl.

TABLE 2. Results of IP model and heuristic on randomly generated
scale free graphs.

Instance IP Model Heuristic
Nodes Arcs Deleted| Objective Executior] Objective Executiorn
Nodesk) | Value Time (s) | Value Time (s)
75 140 20 36 667 36 003
75 140 25 18 3328 18 003
75 140 30 7 4.23 7 0.04
75 210 25 26 9371 26 004
75 210 30 8 357 8 0.05
75 210 35 2 4.36 2 0.04
75 280 33 26 74919 26 004
75 280 35 20 16434 20 006
75 280 37 13 8398 13 011
100 194 25 44 15114 44 009
100 194 30 20 5966 20 011
100 194 35 10 851 10 012
100 285 40 23 13647 23 011
100 285 42 17 26382 17 017
100 285 45 11 1678 11 023
100 380 45 22 12813 22 015
100 380 47 16 24307 16 016
100 380 50 10 22872 10 011
125 240 33 62 504751 62 030
125 240 40 29 11892 29 024
125 240 45 16 1709 16 039
150 290 40 40 416 40 047
150 290 50 12 2629 12 0831
150 290 60 1 2492 1 0.851
150 435 61 19 2955 19 0741
150 435 65 13 3145 13 1952
150 435 67 11 3791 11 0801

IThe experimental data including the instances tested areilable at the following url:
http://plaza.ufl.edu/clayton8/cnp/
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5. CONCLUSION

In this paper, we propose a novel approach for identifyirgdtitical nodes of a sparse
graph, whose deletion results in maximum network discotivigec This problem has a
wide variety of applications from epidemiology to antiftaism protection. The proposed
method is based on integer linear programming. In additieprove that the correspond-
ing decision problem is( »-complete. Furthermore, we describe the implementation of
a heuristic for efficiently computing solutions to largeakcinstances. The heuristic is
further intensified by the application of a local search nagi$m. Computational results
indicate that the heuristic produces high quality solwioma fraction of the time required
by the commercial integer programming solver CPLEX.
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