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ABSTRACT. Identifying critical nodes in a graph is important to understand the structural
characteristics and the connectivity properties of the network. In this paper, we focus on
detecting critical nodes, or nodes whose deletion results in the minimum pair-wise connec-
tivity among the remaining nodes. This problem, known as theCRITICAL NODE PROBLEM

has applications in several fields including biomedicine, telecommunications, and military
strategic planning. We show that the recognition version ofthe problem isN P -complete
and derive a mathematical formulation based on integer linear programming. In addition,
we propose a heuristic for the problem which exploits the combinatorial structure of the
graph. The heuristic is then enhanced by the application of alocal improvement method. A
computational study is presented in which we apply the integer programming formulation
and the heuristic to real and randomly generated data sets. For all instances tested, the
heuristic is able to efficiently provide optimal solutions in a fraction of the time required
by a commercial software package.

1. INTRODUCTION

Given a graph and an integerk, the objective of theCRITICAL NODE PROBLEM (CNP)
is to find a set ofk nodes in the graph whose deletion results in the maximum network
fragmentation. By this we mean, minimize the pair-wise connectivity between the nodes
in thek-vertex deleted subgraph. Similar studies appearing in thesocial networks literature
include those by Bavelas [3] and Freeman [12] which emphasize node centrality and pres-
tige, both of which are usually functions of node degree. However, they lack applications
to problems which emphasize network fragmentation and connectivity.

The CRITICAL NODE PROBLEM has several applications in the field of social network
analysis. Social networks have attracted a significant amount of attention in recent years.
The study of these graphs is important to better understand several properties which are
most common in network depictions of social interactions including cohesion, transitivity,
and centrality of specific actors of the graph [2]. The study of the various properties of
social networks such as diameter, radiality, and connectivity are responsible for social con-
tagion and provide scope for containment of an epidemic outbreak. These properties also
help in designing strategies for communication breakdownsin human and telecommunica-
tion networks [24].

TheCNP finds applications in network immunization [6, 26] where mass vaccination is
an expensive process and only a specific number of people, modeled as nodes of a graph,
can be vaccinated. The immunized nodes cannot propagate thevirus and the goal is to
identify the individuals to be vaccinated in order to reducethe overall transmissibility of
the virus. There are several vaccination strategies in the literature (see e.g., [6, 26]) offering
control of epidemic outbreaks; however, none of the proposed are optimal strategies. The
vaccination strategies suggest emphasizing thecentrality of nodes as a major factor rather
thancritical nodes whose deletion will maximize the disconnectivity of the graph. Deletion
of central nodes may not guarantee a fragmentation of the network or even disconnectivity,
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in which case disease transmission cannot be prevented. Because social networks model
the patterns of humans, they vary greatly over time. The relationships between people,
represented by edges in the social network, are transient and there is a constant rewiring
between the nodes as new relationships are established. Theproposed critical node tech-
nique minimizes the transmission of the disease over an instance of the dynamic network.

Furthermore, theCNP can be applied to the study of covert terrorist networks, where a
certain number of individuals have to be identified whose deletion will result in the maxi-
mum breakdown of communication between individuals in the network [18]. Likewise in
order to stop the spreading of a virus over a telecommunication network, one can identify
the critical nodes of the graph and take them offline. Similarly, if one’s ultimate goal is to
prevent communication on a wired telecommunication network, an efficient way of doing
so would be to jam the critical nodes. This has been studied inthe context of wireless
networks by Commander et al. in [7].

Before proceeding, we mention one final area in which theCRITICAL NODE PROBLEM

finds several applications, and that is in the field of transportation engineering [11]. Two
particular examples are as follows. In general, for transportation networks, it is important
to identify critical nodes in order to ensure they operate reliably for transporting people and
goods throughout the network. Further, in planning for emergency evacuations, identifying
the critical nodes of the transportation network is crucial. The reason is two-fold. First,
knowledge of the critical nodes will help in planning the allocation of resources during the
evacuation. Secondly, in the aftermath of a disaster they will help in re-establishing critical
traffic routes.

Borgatti [4] has studied a similar problem, focusing on nodedetection resulting in maxi-
mum network disconnectivity. Other studies in the area of node detection such as centrality
[3, 12] focus on the prominence and reachability to and from the central nodes. However,
little emphasis is placed on the importance of their role in the network connectivity and
diameter. Perhaps one reason for this is that all of the aforementioned references relied
on simulation to conduct their studies. Although the simulations have been successful, a
mathematical formulation is essential for providing insight and helping to reveal some of
the fundamental properties of the problem [22]. In the next section, we present a mathe-
matical model based on integer linear programming which provides optimal solutions for
theCRITICAL NODE PROBLEM.

We organize this paper by first formally defining the problem and discussing its com-
putational complexity. Next, we provide an integer programming (IP) formulation for the
corresponding optimization problem. In Section 3 we introduce a heuristic to quickly pro-
vide solutions for instances of the problem. We present a computational study in Section 4,
in which we compare the performance of the heuristic againstthe optimal solutions which
were computed using a commercial software package. Some concluding remarks are given
in Section 5.

2. PROBLEM DEFINITION

The formal definition of the problem is given by:
CRITICAL NODE PROBLEM (CNP)
INPUT: An undirected graphG = (V,E) and an integerk.
OUTPUT:A = argmin∑i, j∈(V\A) ui j

(

G(V \A)
)

: |A| ≤ k, where

ui j :=

{

1, if i and j are in the same component ofG(V \A),

0, otherwise.
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The objective is to find a subsetA⊆V of nodes such that|A| ≤ k, whose deletion minimizes
the pair-wise connectivity among the nodes in the induced subgraphG(V \A).

This problem is similar to theMINIMUM k-VERTEX SHARING [21], where the objective
is to minimize the number of nodes deleted to achieve ak-way partition. Here we are
considering the complementary problem, where we know the number of vertices to be
deleted and we try to maximize the number of components formed and implicitly limit the
sizes of the components. Borgatti [4] has given a comprehensive illustration to facilitate
the understanding of the objective function and its non-triviality.

2.1. Computational Complexity. We now prove that the recognition version of theCNP

isN P -complete. Consider the recognition version of theCNP:
K-CRITICAL NODE PROBLEM (K-CNP)
INPUT: An undirected graphG = (V,E) and an integerk.
QUESTION: Is there a setM, whereM is the set of all maximal connected components
of G obtained by deletingk nodes or less, such that∑h∈M

σh(σh−1)
2 ≤ K, whereσh is the

cardinality of componenth, for eachh ∈M?
In order to prove that the K-CNP is N P -complete, we make use of the following lem-

mata. In particular, we prove that optimizing the objectivefunction not only maximizes
the pair-wise disconnectivity among the nodes, but also minimizes the variance in the car-
dinalities of the components. Particularly, in Lemma 1 we show that for any two solutions
resulting in the same number of components, if the cardinalities of the components are
equal in one solution, and not equal in the other, then the objective value of the latter will
always be worse than that of the former.

Lemma 1. Let M be a partition of G = (V,E) in to L components obtained by deleting a set

D of nodes, where |D| = k. Then the objective function ∑h∈M
σh(σh−1)

2 ≥
(|V |−k)

(

|V |−k
L −1

)

2 ,
with equality holding if and only if σh = σl ,∀ h, l ∈M, where σh is the size of hth component
of M.

Proof.
Case 1: σh 6= σl, ∀ h, l ∈M.
Note that∑h∈M σh = |V |− k. Then given a solution for an instance of theCNP, we have
that

1
L ∑

h∈M

(

σh−
1
L ∑

h∈M

σh

)2
=

1
L ∑

h∈M

σ2
h−
(1

L ∑
h∈M

σh

)2
(1)

≥ 0 (2)

=

(

|V |− k
L

)2

−

(

|V |− k
L

)2

. (3)

This implies that

1
L ∑

h∈M

σ2
h ≥

(

|V |− k
L

)2

. (4)

Therefore,

1
L ∑

h∈M

σ2
h−

1
L ∑

h∈M

σh ≥

(

|V |− k
L

)2

−
1
L ∑

h∈M

σh (5)

=

(

|V |− k
L

)2

−
|V |− k

L
. (6)
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Thus, we have that

∑
h∈M

σh(σh−1)

2
≥

(|V |− k)
(

|V |−k
L −1

)

2
. (7)

Case 2: σh = σl, ∀ h, l ∈M.

In this case, each component ofM will be of size |V |−k
L , which is obviously the average

size of a component ofM. Thus

∑
h∈M

σh(σh−1)

2
=

(|V |− k)
( |V |−k

L −1
)

2
. (8)

Conversely, if (8) holds, but each component ofM is not the same size, it follows that not
all components will be of average size and hence

1
L ∑

h∈M

σ2
h−
(1

L ∑
h∈M

σh

)2
> 0 (9)

=

(

|V |− k
L

)2

−

(

|V |− k
L

)2

. (10)

Similar to the above result, we see that

1
L ∑

h∈M

σ2
h >

(

|V |− k
L

)2

. (11)

Thus,

1
L ∑

h∈M

σ2
h−

1
L ∑

h∈M

σh >

(

|V |− k
L

)2

−
|V |− k

L
. (12)

⇒ ∑
h∈M

σh(σh−1)

2
>

(|V |− k)
(

|V |−k
L −1

)

2
. (13)

This is a contradiction and we have the proof. �

The following lemma provides a similar result as above. However in this case, the
number of components induced by each solution are not assumed to be equal.

Lemma 2. Let M1 and M2 be two sets of partitions obtained by deleting D1 and D2 sets
of nodes respectively from graph G = (V,E), where |D1|= |D2|= k. Let L1 and L2 be the
number components in M1 and M2 respectively and L1 ≥ L2. If σh = σl,∀ h, l ∈M1, then
we obtain a better objective function value by deleting the set D1.

Proof. Let f (M1) and f (M2) be the objective function values obtained by deletingD1 and

D2 respectively. Let us assume thatf (M1) > f (M2). Let u = (|V |−k)
L2

. From Lemma 1, we

have thatL2(u)(u−1)
2 ≤ f (M2). Then we have

L2(u)(u−1)

2
≤ f (M2) < f (M1) =

L1

(

|V |−k
L1

)(

|V |−k
L1
−1
)

2
. (14)
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Examining (14) carefully reveals the necessary contradiction. Notice that (14) states

L2

(

|V |−k
L2

)(

|V |−k
L2
−1
)

2
<

L1

(

|V |−k
L1

)(

|V |−k
L1
−1
)

2
(15)

⇒
(|V |− k)(|V |− k−L2)

2
<

(|V |− k)(|V |− k−L1)

2
(16)

⇒ L2 > L1. (17)

This contradicts the hypothesis thatL1≥ L2, and we have the result. �

We can now prove the following theorem regarding the complexity of the CNP.

Theorem 1. The K-CRITICAL NODE PROBLEM is N P -complete.

Proof. To show this, we must prove that (1) K-CNP∈ N P ; (2) SomeN P -complete prob-
lem reduces to K-CNP in polynomial time.

(1) K-CNP∈ N P since given any graphG = (V,E), and deleting any set of at most
k nodes, we can determine the objective value inO (|E|) time using a depth-first
search [1].

(2) To complete the proof, we show a reduction from theINDEPENDENT SET PROB-
LEM (ISP) [5], which is well-known to beN P -complete [13]. Given a graph
G = (V,E), the ISP seeks to determine ifG contains an independent set of sizek.
This is equivalent to determining if there exists an empty subgraph ofG of sizek
by deleting|V |− k nodes and their adjacent edges.

Let Ḡ = (V̄ , Ē) be the graph obtained by replacing each nodeu ∈ G by a T -
clique with one of the clique nodes coinciding withu. Note if T = 1, then we
have the original graphG. Consider the K-CNP on Ḡ which asks if there exists a
partitionM of Ḡ obtained by deleting|V |− k nodes such that

∑
h∈M

σh(σh−1)

2
≤

kT (T −1)

2
+

(|V |− k)(T −1)(T −2)

2
.

We claim there is a one-to-one correspondence between theISP on G and theCNP

on Ḡ. If there is an independent set of sizek in G, it is clearly a solution to the
CNP, as we will havek components of sizeT and|V |−k components of sizeT−1.
This would result in the required objective function value for theCNP. Conversely,
if there is a partition ofM satisfying the objective by deleting|V |− k nodes, then
we have an independent set of sizek.

We give a constructive proof to show this. The first part involves showing that
the objective value of theCNPonḠ is always better when the nodes of the original
graphG are deleted from̄G as opposed to deleting clique nodes. For a givenCNP

solution, let us assume that in a clique, a non-coinciding node is deleted and the
coinciding node from this clique is not deleted. If we swap these nodes in the
solution, that is, if we delete the coinciding node and replace the non-coinciding
node, then the objective function value either remains the same, or decreases if the
number of components increases.

Now let us assume that a non-coinciding clique node and its coinciding node are
deleted fromḠ. In this case, if we swap from the solution set the non-coinciding
node with an undeleted coinciding node, then again the objective value will either
decrease or remain unchanged. To see this, let us assume the component corre-
sponding to the clique with both its coinciding and non-coinciding nodes deleted
is of size(T−b), whereb≥ 2, as there may be other non-coinciding nodes deleted



6 A. ARULSELVAN, C. COMMANDER, L. ELEFTERIADOU, AND P. PARDALOS

from this clique. Also, let the coinciding node that was not deleted be a part of
some component of sizeT + a. Now the objective function before the swap will
be

Z1 = S +
(T + a)(T + a−1)

2
+

(T −b)(T −b−1)

2
, (18)

whereS is the contribution from other components present in the graph. After
swapping these two nodes, the objective function value would be

Z2 = S +
(T −1)(T −2)

2
+

(a)(a−1)

2
+

(T −b)(T −b +1)

2
. (19)

Now, if we take the difference we see that

Z1−Z2 = aT + b−1≥ 0, ∀ T ≥ 0. (20)

Since we are deleting only|V |− k nodes, we have a partitionM with

∑
h∈M

σh(σh−1)

2
≤

kT (T −1)

2
+

(|V |− k)(T −1)(T −2)

2
,

by deleting only the nodes of the original graph. Since none of the new nodes
(i.e., the nodes from theT -cliques) are deleted from̄G, the deletion of the|V |− k
nodes results in exactly|V |−k components of sizeT −1. This contributes exactly
(|V |−k)(T−1)(T−2)

2 towards the objective function. The remainingkT nodes form at

mostk components. Hence from Lemma 2, this contributes at leastkT (T−1)
2 to the

objective function. From Lemma 1, thekT nodes involve exactlyk components of
sizeT , representing theT -cliques ofḠ, with one node in eachT -clique present in
the original graphG, and none of them connected to each other. Hence deletion of
|V |− k nodes fromḠ results ink independent nodes in the original graphG. This
completes the proof.

�

2.2. Integer Programming Formulations. When studying combinatorial problems, in-
teger programming models are usually quite helpful for providing some of the formal prop-
erties of the problem [22]. With this in mind we now develop a linear integer programming
formulation for theCNP.

To begin with, define the surjectionu : V ×V 7→ {0,1} as above. Further, we introduce
a surjectionv : V 7→ {0,1} defined by

vi :=

{

1, if nodei is deleted in the optimal solution,

0, otherwise.
(21)
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Then theCRITICAL NODE PROBLEMadmits the following integer programming formula-
tion

(CNP-1) Minimize ∑
i, j∈V

ui j (22)

s.t.

ui j + vi + v j ≥ 1, ∀ (i, j) ∈ E, (23)

ui j + u jk−uki ≤ 1, ∀ (i, j,k) ∈V, (24)

ui j−u jk + uki ≤ 1, ∀ (i, j,k) ∈V, (25)

−ui j + u jk + uki ≤ 1, ∀ (i, j,k) ∈V, (26)

∑
i∈V

vi ≤ k, (27)

ui j ∈ {0,1}, ∀ i, j ∈V, (28)

vi ∈ {0,1}, ∀ i ∈V . (29)

Note the objective is to find the set ofk nodes whose removal results in a graph which
has the minimum pair-wise connectivity between the remaining nodes. This is accom-
plished by the objective function. The first set of constraints in (23) implies that if nodesi
and j are in different components and if there is an edge between them, then one of them
must be deleted. Furthermore, constraints (24)-(26) together imply that for all triplets of
nodesi, j,k, that if i and j are in same component andj andk are in same component, then
necessarilyk andi must be in the same component. Constraint (27) ensures that the total
number of deleted nodes is less than or equal tok. Finally, (28) and (29) define the proper
domains for the variables used. Thus, a solution to the integer programming formulation
CNP-1 characterizes a feasible solution to theCNP. On the other hand, it is clear that a
feasible solution to theCNP will define at least one feasible solution toCNP-1. Therefore,
CNP-1 is a correct formulation for theCNP.

We note here that in all likelihood, there exist alternativemathematical programming
formulations for theCNP. For example, notice that the conditions which satisfy the circular
constraints (24), (25), and (26) inCNP-1 can be satisfied by the single constraintui j +
u jk + uki 6= 2,∀ (i, j,k) ∈ V. By appropriately defining a new set of binary variables, this
constraint set could be incorporated into the model. This might be useful for breaking down
the symmetry of the problem if one was attempting to exploit the polyhedral structure of
the model. This is beyond the scope of this paper, and is an interesting topic for future
research. That said, we make no claims as to the superiority of formulationCNP-1 over
others.

Notice that if the objective was a function of the number of components, then an approx-
imation for theMAXIMUM K-CUT PROBLEM[13, 17] could be employed by modifying the
cost function of the Gomory-Hu tree [14]. An even simpler approach would be to identify
the cut vertices in the graph, if any exist. Studies to assessthe vulnerability of a network
with similar objective functions are studied in [19, 20]. The objective function in [20] is to
maximize traffic flow while deleting a set ofk edges [20] from the graph. In [19], a very
similar objective to the one proposed in this paper is presented. Whereas our objective is to
minimize the pair-wise connectivity between the nodes after deletingk nodes, the objective
in [19] maximizes the node disconnectivity between a set of source nodes and sink nodes
by deleting a set ofk arcs.

Recall that∑i, j∈V ui j is a measure of the total pair-wise connectivity of the graph. Notice
that sinceui j is binary and equal to 1 if and only ifi and j are in the same component in
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the optimal solution, the objective function could be rewritten as

∑
h∈M

σh(σh−1)

2
, (30)

whereM is the set of all maximal connected components andσh is the size of thehth

component, which can be easily identified by fast algorithmslike breadth or depth first
search algorithms inO (|E|) time using an adjacency list representation of the network
[1, 8]. We will use (30) as the objective function optimized by the heuristic in the following
section. In addition to the relative ease of calculating thecardinality of the components of
a graph, there is an intuitive explanation for the choice of (30) as our objective function.
As we proved in Lemma 1 and Lemma 2 above, optimizing (30) maximizes the number
of connected components while simultaneously minimizing the variance in the component
sizes. For example, consider an arbitrary unweighted graphwith 150 nodes. According
to our objective, it is more preferable to have a partition with 3 components each with 50
nodes, as opposed to a partition with 5 components with one having 146 nodes and the rest
of them having a single node.

3. HEURISTIC FORDETECTING CRITICAL NODES

Pseudo-code for the proposed heuristic is provided in Figure 1. To begin with, the algo-
rithm finds a maximal independent set (MIS). This set is initially empty, and is computed
sequentially as follows. First, a single vertex is added to the set. Next by iterating through
the vertices, a node that is not adjacent to the starting nodeis added to the MIS. Then a
vertex adjacent to neither of these is added, and so on. This is continued until we can find
no more vertices to include, and thus the set is maximal independent.

Let M j be the set of all connected components in the node induced subgraphG(MIS∪ j).
After the initial MIS is computed, in the loop from lines 2-5,the heuristic greedily selects
the nodei ∈ V not currently in the MIS which returns the minimum objectivefunction for
the graphG(MIS∪ { j}),∀ j ∈ V . The set MIS is augmented to include nodei, and the
process repeats until|MIS| = |V |− k. At this time, the method terminates and the set of
critical nodes to be deleted is given as those nodesj ∈V such thatj ∈V \MIS.

procedure CriticalNode(G,k)
 MIS← MaximalIndepSet(G)
 while (|MIS| 6= |V |− k) do
 i← argmin

{

∑h∈M j

σh(σh−1)
2 : j ∈V \MIS

}

 MIS←MIS∪{i}
 end while
 return V \MIS /∗ set ofk nodes to delete∗/
end procedure CriticalNode

FIGURE 1. Heuristic for detecting critical nodes.

The intuition behind using an independent set is that the subgraph induced by this set is
empty. Stated otherwise, the deletion of those nodes that arenot in the independent set will
result in an empty subgraph. Notice that this will provide the optimal solution for an in-
stance of theCNP if |MIS| ≥ |V |−k. However, if the size of the MIS is less than|V |−k, we
simply keep adding nodes which provide the best objective value to the set until it reaches



DETECTING CRITICAL NODES IN SPARSE GRAPHS 9

the desired size. The heuristic is computationally efficient and the complexity is given in
the following theorem.

Theorem 2. The proposed algorithm has complexity O (|V |2|E|).

Proof. To begin with, finding the MIS using the sequential method described above re-
quires linear time. Next, thewhile loop from lines 2-5 will iterate at mostO (|V | − k)
times. In each iteration, the number of search operations decreases from|V |−1 to |V |−
(|V |− k) = k. Note that we are performing the search of a sparse graph, which is initially
empty. There will be one comparison step for every search performed in order to determine
the node that provides the minimum increase in the objectivefunction. This will in turn be
dominated by the complexity of the search procedure which requiresO (|E|) time. Hence,
the total number of iterations will be

O (|V |−1+ |V |−2+ · · ·+ |V |− |V |+ k) = O

(

|V |−1

∑
i=1

i−
k−1

∑
i=1

i

)

= O (|V |2− k2) = O (|V |2).

Thus the overall complexity isO(|V |2|E|), and the proof is complete. �

The proposed algorithm finds a feasible solution to theCRITICAL NODE PROBLEM;
however, the solution is not guaranteed to be globally or locally optimal. Therefore, we
can enhance the heuristic with the application of a local search routine as follows. Consider
the pseudo-code presented in Figure 2. The routine receivesas input the solution from the
CriticalNode heuristic and performs a 2-exchange local search. Letf : V 7→ Z be a
function returning the objective function value for a givenset in the sense of (30) above.
That is, consider a pair of nodesi and j such thati ∈ MIS and j 6∈ MIS. Then for all
such pairs, we setj ∈MIS andi 6∈MIS and examine the change in the objective function.
If it improves, then the swap is kept; otherwise, we undo the swap and continue to the
next node pair. Notice that the loop from lines 3-20 repeats while the local improvement
condition is not met. This general statement can lead to implementation problems and it
is a common practice to limit the number of local search iterations by some user defined
value. The intuition is that as this value grows larger, the solution gets closer to optimality
with respect to its local neighborhood.

Finally, we can combine the construction and local improvement algorithms into one
multi-start heuristicCriticalNodeLS as shown in Figure 3. This procedure produces
MaxIter local optima and the overall best solution from all iterations is returned. In order
to implement the multi-start framework, the starting node for each maximal independent
set is randomly chosen. Since the initial MIS is created deterministically, this node is only
accepted as a starting node if it has not been previously selected. Therefore, we see that
MaxIter will be bounded above by|V |. This simple randomization scheme ensures that
different areas of the solution space are explored in each iteration.

4. COMPUTATIONAL RESULTS

The proposed heuristic was implemented in theC++ programming language and com-
piled using GNUg++ version 3.4.4, using optimization flags -O2. It was tested on aPC
equipped with a 1700 MHz IntelR© PentiumR© M processor and 1.0 gigabytes of RAM op-
erating under the MicrosoftR© WindowsR© XP Professional environment. The parameter
MaxIter was set equal to|V |, and the number of iterations of the local search was 2. It is
reasonable to forgo the implementation of the local search procedure using this approach,
and simply allow the routine to examine swaps until a local improvement condition is met.
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procedure LocalSearch(V \MIS)
 X∗←MIS
 local improvement← .TRUE.
 while local improvement do
 local improvement← .FALSE.
 for [i, j] ∈VxV do
 if i ∈MIS and j 6∈MIS then
 MIS←MIS\ i
 MIS←MIS∪ j
 if f (MIS) < f (X∗) then
 X∗←MIS
 else
 MIS←MIS\ j /∗ undo swap∗/
 MIS←MIS∪ i
 end if
 if improvement condition notmet then
 local improvement← .TRUE.
 end if
 end if
 end
 end while
 return (V \X∗) /∗ set ofk nodes to delete∗/
end procedure LocalSearch

FIGURE 2. Local search algorithm for critical node heuristic.

procedure CriticalNodeLS(G,k)
 X∗← /0
 f (X∗)← ∞
 for j = 1 toMaxIter do
 X ← CriticalNode(G,k)
 X ← LocalSearch(X)
 if f (X) < f (X∗) then
 X∗← X
 end if
 end
 return (V \X∗) /∗ set ofk nodes to delete∗/
end procedure CriticalNodeLS

FIGURE 3. Heuristic with local search for detecting critical nodes.

This local improvement condition could be a maximum computation time, a maximum
number of iterations in which there is no improvement in the objective value, or a fixed
number of iterations. In our experiments, we obtained good results in reasonable comput-
ing times by fixing the number of local search iterations to 2.
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FIGURE 4. Terrorist network compiled by Krebs.

As a basis of comparison, we have implemented the integer programming model for the
CRITICAL NODE PROBLEMusing the CPLEXTM version 9 optimization suite from ILOG
[9]. CPLEX contains an implementation of the simplex method[15], and uses a branch
and bound algorithm [25] together with advanced cutting-plane techniques [16, 23].

We tested the IP model and heuristic on a set of randomly generated graphs ranging in
size from 75 to 150 nodes with varying densities. The graphs were generated with version
1.4 of the publicly available Barabási graph generator by Dreier [10]. For each random
instance, we report solutions for 3 values ofk, the number of nodes to be deleted. In
addition, we have tested the algorithms on the terrorist network compiled by Krebs [18]
shown in Figure 4. This network depicts the relationships between the terrorists involved
in the horrific attacks of September 11, 2001. The graph was constructed after the attacks
with data which were publicly available before 9/11.

We begin by providing the results from the terrorist network[18] shown in Figure 4.
This graph has 62 nodes and 153 edges. Notice that node 38 is the central node with
degree 22. We applied the IP formulation and the heuristic tothis network with 6 values of
k. The results are provided in Table 1. Notice that for all values ofk, the heuristic computed
the optimal solution requiring on average 0.013 seconds of computation time. The average
time to compute the optimal solution using CPLEX was 5387.31 seconds. Clearly even
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TABLE 1. Results of IP model and heuristic on terrorist network data
from Krebs.

Instance IP Model Heuristic
Nodes Objective Execution Objective Execution

Deleted (k) Value Time (s) Value Time (s)
20 20 12.69 20 0.01
15 61 277.77 61 0.01
10 169 3337.06 169 0.02
9 214 2792.33 214 0.02
8 282 15111.94 282 0.01
7 327 10792.08 327 0.01

FIGURE 5. Optimal solution whenk = 20.

for this relatively small network, the heuristic is the method of choice. Figure 5 shows the
resulting graph of the terrorist network according to the optimal solution to theCNP for the
instance withk = 20.

In order to provide evidences of its scalability and robustness, the proposed heuristic
was tested on a set of randomly generated scale-free graphs.Table 2 presents the results
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of the heuristic and the optimal solver when applied to the random instances. For each
instance, we report the number of nodes and arcs, the value ofk being considered, the opti-
mal solution and computation time, and finally the heuristicsolution and the corresponding
computation time. For each graph, we report solutions for 3 different values ofk.

Notice that for all the instances tested, our method was ableto compute the optimal
solution. Furthermore, the required time to compute the optimal solution was less than one
second for all but one instance, averaging only 0.33 seconds for all 27 instances. On the
other hand, CPLEX required 289.44 seconds on average to compute the optimal solution,
requiring over 5000 seconds in the worst case. Our computational experiments indicate
that the proposed heuristic is able to efficiently provide excellent solutions for large-scale
instances of theCNP1.

TABLE 2. Results of IP model and heuristic on randomly generated
scale free graphs.

Instance IP Model Heuristic
Nodes Arcs Deleted Objective Execution Objective Execution

Nodes (k) Value Time (s) Value Time (s)
75 140 20 36 66.7 36 0.03
75 140 25 18 33.28 18 0.03
75 140 30 7 4.23 7 0.04
75 210 25 26 93.71 26 0.04
75 210 30 8 3.57 8 0.05
75 210 35 2 4.36 2 0.04
75 280 33 26 749.19 26 0.04
75 280 35 20 164.34 20 0.06
75 280 37 13 83.98 13 0.11
100 194 25 44 151.14 44 0.09
100 194 30 20 59.66 20 0.11
100 194 35 10 8.51 10 0.12
100 285 40 23 136.47 23 0.11
100 285 42 17 263.82 17 0.17
100 285 45 11 16.78 11 0.23
100 380 45 22 128.13 22 0.15
100 380 47 16 243.07 16 0.16
100 380 50 10 228.72 10 0.11
125 240 33 62 5047.51 62 0.30
125 240 40 29 118.92 29 0.24
125 240 45 16 17.09 16 0.39
150 290 40 40 41.6 40 0.47
150 290 50 12 26.29 12 0.831
150 290 60 1 24.92 1 0.851
150 435 61 19 29.55 19 0.741
150 435 65 13 31.45 13 1.952
150 435 67 11 37.91 11 0.801

1The experimental data including the instances tested are available at the following url:
http : //plaza.ufl.edu/clayton8/cnp/
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5. CONCLUSION

In this paper, we propose a novel approach for identifying the critical nodes of a sparse
graph, whose deletion results in maximum network disconnectivity. This problem has a
wide variety of applications from epidemiology to anti-terrorism protection. The proposed
method is based on integer linear programming. In addition,we prove that the correspond-
ing decision problem isN P -complete. Furthermore, we describe the implementation of
a heuristic for efficiently computing solutions to large-scale instances. The heuristic is
further intensified by the application of a local search mechanism. Computational results
indicate that the heuristic produces high quality solutions in a fraction of the time required
by the commercial integer programming solver CPLEX.
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