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Abstract
We present a method for very large scale unconstrained optimization of smooth func-
tions. It combines ideas of Sequential Subspace Optimization (SESOP) [4, 2] with
those of the Truncated Newton (TN) method. Replacing TN line search with sub-
space optimization, we allow Conjugate Gradient (CG) iterations to stay matched
through consequent TN steps. This resolves the problem of TN sensitivity to an early
break of the CG process. For example, when an objective function is quadratic, the
SESOP-TN trajectory coincides with the trajectory of CG as applied directly to the
objective. Standard TN lacks this property and converges more slowly. Numerical
experiments illustrate the effectiveness of the method. Matlab code is available at
http://ie.technion.ac.il/˜mcib/sesoptn.html

1 Derivation of the method

Consider a problem of unconstrained minimization of a smooth function of a very large
number (possibly, millions) of variables

min f(x), x ∈ Rn.

Truncated Newton [1, 6] is one of the methods of choice for such problems. At every outer
iteration it approximately minimizes a quadratic Taylor expansion qk(x) around the current
iterate xk, using limited number of CG steps. The expansion qk(x) is given by

qk(x) = f(xk) + gkT
(x− xk) +

1

2
(x− xk)T Hk(x− xk), (1)

where gk = ∇f(xk) is the gradient and Hk = ∇2f(xk) – the Hessian of f at xk. The outer
iteration of TN is accomplished with a line search, in order to guarantee function decrease.
The overall effectiveness of the TN method is rather sensitive to the choice of stopping rule
for the internal CG optimization. We attempt to overcome this difficulty, replacing the line
search with subspace optimization. In this way we allow the CG iterations to stay mathced
through consequent TN steps.

1



Subspace optimization Suppose that TN step k was truncated after l CG iterations.
Coming back from the quadratic model to the original objective, we would like to imitate
the next CG step, using f(x) instead of q(x). CG iteration l + 1 inside TN would perform
optimization of the quadratic model q(x) over the affine subspace Skl, passing through the
current inner iterate xkl and spanned by the last CG step xkl−xk,l−1 and the current gradient
∇q(xkl). Instead, the next SESOP iteration will minimize f over the extended affine subspace
Sk ⊃ Skl. In order to provide monotone descent of f , we add to Sk the TN direction

dTN = xkl − xk.

Now xk ∈ Sk, and any monotone method used for the subspace optimization over Sk starting
from xk, will reduce the objective relatively to f(xk). Optionally, we include several previous
outer steps and gradients of f into Sk, in order to improve the function descent, when the
TN directions are not good enough.

Next Truncated Newton step After performing the subspace optimization, we start a
new TN iteration. At this stage, in order to keep alignment through the global CG sequence,
we perform the first new CG step as an optimization of the new quadratic model qk+1(x)
over the 2D subspace spanned by xk+1 − xkl and g(xk+1).

Summary of SESOP-TN algorithm: outer iteration k

1. TN step Solve approximately Newton system∇2f(xk)dk
TN = −∇f(xk), i.e. minimize

quadratic model qk(x) in (1), using l steps of CG. Denote the last CG iterate as xkl.

2. Subspace optimization step xk+1 ≈ arg minx∈Sk
f(x),

where affine subspace Sk passes through xk and is spanned by:

* TN Direction dk
TN = xkl − xk;

* Last value of the gradient of quadratic model ∇qk(x
kl) used in TN;

* Last used CG direction in TN: (xkl − xk,l−1);
* [Optionally] directions of several previous outer steps and gradients of f .

3. Goto TN step, while performing the first new CG step as an optimization of quadratic
model qk+1(x) over 2D subspace spanned by (xk+1 − xkl) and ∇f(xk+1).

The presented procedure resolves the problem of TN sensitivity to early break of the CG
process. For example, when the objective function is quadratic, SESOP-TN trajectory co-
incides with the trajectory of CG applied directly to the objective function, independently
of the stopping rule in the TN step. Standard TN lacks this property and converges more
slowly when truncated too early. Note also that subspace optimization can be carried out
very efficiently if

f(x) = ϕ(Ax) + ψ(x),

where computing the linear map Ax is expensive relatively to the nonlinear functions ϕ(·)
and ψ(·) (see [4] for the details).
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SESOP-TN Standard TN
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Figure 1: Solving linear least squares (2), with 400 variables. The SESOP-TN trajectory
does not depend on the number of CG iterations in TN step. Standard TN converges more
slowly, when CG is truncated too early.

2 Preliminary Numerical Experiments

Quadratic function First, let us demonstrate ”proof of the concept” using a pure quadratic
function. We solve the linear least squares problem

min ||Ax− b||2 (2)

with n = 400 variables, where the square random matrix A has zero-mean i.i.d. Gaussian
entries with variance 1/n. As we see in Figure 1, SESOP-TN trajectory, as expected, does
not depend on the number of CG iterations in the TN step. Standard TN (the right plot)
lacks this property.

Two non-linear examples The first problem is Exponents-and-Squares [7] with n = 200
variables:

min e−1T x +
1

2

n∑
j=1

j2x2
j .

The second example is Linear Support Vector Machine (SVM), see [5] for more details on
unconstrained formulation of SVM. We used data set Astro-physics-29882 [3] with 99758
variables, and selected randomly 1495 training examples from there. In both problems (see
Figure 2), SESOP-TN consistently outperformed classic TN, when restricted to 1, 10 or 40
CG iterations in TN step.
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Exponents-and-Squares, 200 variables
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Linear SVM, 99758 variables
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Figure 2: Two nonlinear problems. The plots show the residual between the current objective
and the optimal value versus CG iteration count.
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