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Abstract

PSwarm was developed originally for the global optimization of functions with-
out derivatives and where the variables are within upper and lower bounds. The
underlying algorithm used is a pattern search method, more specifically a coordinate
search method, which guarantees convergence to stationary points from arbitrary
starting points. In the (optional) search step of coordinate search, the algorithm
incorporated a particle swarm scheme for dissemination and thus it can globally ex-
plore the possible nonconvexity of the objective function. Our extensive numerical
experiments showed that the resulting algorithm is highly competitive with other
global optimization methods also based on function values.

PSwarm is extended is this paper to handle general linear constraints. The poll
step incorporates now positive generators for the tangent cone of the approximated
active constraints, including a provision for the degenerate case. The search step has
also been adapted accordingly. In particular, the initial population for particle swarm
used in the search step is computed by first inscribing an ellipsoid of maximum volume
to the feasible set. We have again compared PSwarm to other solvers (including some
designed for global optimization) and the results confirm its competitiveness in terms
of efficiency and robustness.
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1 Introduction

A significant number of applied optimization problems involve functions whose derivatives
are unknown. In some practical instances those derivatives can be computed but then either
the cost of the calculation is prohibitive or the functions are noisy and the derivatives
meaningless. Computing stationary points of optimization problems without using the
derivatives of the problem defining functions is a challenging task, in particular when
the functions evaluations are expensive. However, there are state-of-the-art derivative
methods and software which can handle problems with many dozen (or even more than
one hundred) optimization variables, in serial computation, using a reasonable number of
functions evaluations. A comprehensive review on derivative-free optimization is given in
the upcoming book [10].

In many of the abovementioned problems the objective functions are nonconvex, a sit-
uation which typically occurs when one tries to fit or adjust observable data by regression
using nonlinear models (see, for instance, the recent study [13] on the estimation of stellar
parameters from observable measurements). When the goal is to find a global optimizer,
the overall computation is significantly more complicated. The contribution of the math-
ematical programming community to the solution of these problems has been limited and
mostly directed to the application of heuristic techniques. In our view, not enough testing
and benchmarking have been reported to help us finding the most efficient and robust
techniques.

The authors developed in [34] an algorithm for the minimization of a function without
using its derivatives but specifically for the case where the variables are restricted to upper
and lower bounds. The underlying method is based on coordinate search which is known to
be one of the simplest (directional) direct search methods. Such a choice is particularly well
suited for problems with simple bounds since the coordinate directions conform naturally
to the local geometry of the constraints. We made use of the possibility of organizing each
iteration of these methods around a search step and a poll step. The poll step is where the
coordinate search was applied. The search step was used to incorporate a dissemination
scheme in an attempt to equip the overall method with the capability of finding a global
minimizer. We selected particle swarm for this purpose because it is a simple population-
based scheme of straightforward parallelization. We took advantage of having used a
population in the search step to then poll at the best particle, which improved the overall
robustness of the algorithm. In the vicinity of a global minimizer, the application of the
poll step allows the use of a reduced number of particles which is trivially achieved by
dropping particles once they become too close to each other. This procedure improves the
efficiency of the overall scheme. One is able to prove (see [34]) that the algorithm is globally
convergent to first-order stationary points and, under some additional conditions, that it
can eventually meet the stopping criterion used in both search and poll steps. Our extensive
numerical experiments reported in [34] showed that the resulting algorithm (PSwarm) is
highly competitive with other global optimization methods also based on function values.

In this paper we extend PSwarm to solve optimization problems defined by general
linear constraints (without using the derivatives of the objective function, which might
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be nonsmooth and/or noisy). We treat only the case of inequality constraints. (Equality
constraints might be converted into inequalities although it is known that such a technique
can introduce degeneracy.) The poll step incorporates now positive generators for the tan-
gent cone of the approximated active constraints, including a provision for the degenerate
case. The search step has also been adapted for general linear constraints. In particular,
the initial population for particle swarm (needed for the search step) is computed by first
inscribing an ellipsoid of maximum volume to the feasible set. Feasibility is maintained
during the search step by judiciously controlling the displacement of the particles. We have
again compared PSwarm to other global solvers and the results confirm its competitiveness
in terms of efficiency and robustness.

The paper is organized as follows. We start by reviewing in Section 2 the material re-
lated to the PSwarm algorithm for bound constraints. In Section 3 we provide a description
of the changes introduced to the PSwarm algorithm to deal with general linear constraints.
Numerical results for a wide test set of problems are presented in Section 4 (where we
also introduce a new type of profiles for benchmarking of derivative-free methods). We
conclude the paper in Section 5 with some conclusions and prospects of future work.

In this paper, we address linearly constrained problems written in the form

min
z∈Ω

f(z) (1)

s.t. Az ≤ b (2)

where
Ω = {z ∈ Rn : ` ≤ z ≤ u} ,

A ∈ Rm×n, and b ∈ Rm. The inequalities ` ≤ z ≤ u are posed componentwise and ` ∈
(−∞,R)n, u ∈ (R,+∞)n, ` < u. We explicitly separate the simple bound constraints from
the remaining linear ones since we are interested in exploiting such distinction whenever
possible.

2 PSwarm for bound constraints

The particle swarm algorithm simulates the behavior of a population of particles, in an
attempt to widely (and in some sense optimally) explore some given problem space or
feasible region. It is a stochastic algorithm in the sense that it relies on parameters drawn
from random variables, and thus different runs for the same starting swarm may produce
different outputs. It was firstly proposed in [12, 19] and recently used for global optimiza-
tion [32, 8]. Particle swarm is based on a population (swarm) of s particles, where s is
known as the population size. Each particle is associated with a velocity which indicates
where the particle is moving to. Let t be a time instant (an iteration in the optimization
context). The new position xi(t+1) of the i-th particle at time t+1 is computed by adding
to the old position xi(t) at time t a velocity vector vi(t+ 1):

xi(t+ 1) = xi(t) + vi(t+ 1), i = 1, . . . , s. (3)
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The velocity vector for a given particle at a given time is a linear stochastic combination
of the velocity in the previous time instant, of the direction to the particle’s best position,
and of the direction to the best swarm position (for all particles). In fact, the velocity
vector associated with each particle i is updated by

vi
j(t+ 1) = ι(t)vi

j(t) + µω1j(t)
(
yi

j(t)− xi
j(t)
)

+ νω2j(t)
(
ŷj(t)− xi

j(t)
)

, (4)

for j = 1, . . . , n, where ι(t) is the weighting ‘inertia’ factor, µ > 0 is the ‘cognition’
parameter, and ν > 0 is the ‘social’ parameter. The numbers ω1j(t) and ω2j(t), j = 1, . . . , n,
are randomly drawn from the uniform (0, 1) distribution. In our notation, yi(t) is the
position of the i-th particle with the best objective function value so far calculated, and ŷ(t)
is the particle position with the best (among all particles) objective function value found so
far. Thus, the update (4) adds to the previous velocity vector a stochastic combination of
the directions to the best position of the i-th particle and to the best (among all) particles
position.

The bound constraints in the variables can be trivially enforced by (orthogonally) pro-
jecting onto Ω the new particles positions computed by equation (3).

Direct search methods attempt to minimize a function by comparing its value in a
finite number of trial points at each iteration. This class of methods does not use or try
to approximate any type of derivative information (see [10]). Direct search of directional
type is based on the concept of positive spanning and relies on the fact that a positive
spanning set for Rn contains at least one direction of descent at a nonstationary point
where the objective function is continuously differentiable. A simple positive spanning set
is the maximal positive basis formed by the coordinate vectors and the negative coordinate
vectors:

D⊕ = {e1, . . . , en,−e1, . . . ,−en}.

The elementary directional direct search method based on D⊕ is known as coordinate
search. Under the presence of constraints, it is also necessary to include in the set D
of search directions those that guarantee the presence of a feasible descent direction at
nonstationary points. However, when the constraints are of the simple bounds type, the
set D = D⊕ includes all such feasible descent directions (see [10, 20]).

When directional direct search is applied to constrained problems where the derivatives
of the constraints are available (which is clearly the case of the problems studied in this
paper), the iterates are typically kept feasible. This requires an initial feasible starting
point and the maintenance of feasibility throughout the iterations. In the simple bounds
case both can be enforced easily. In general, one way of rejecting infeasible trial points
can be accomplished by using the extreme barrier function which, in the case of simple
bounds, assigns f(z) to a point z ∈ Ω and +∞ otherwise.

To follow the notation of the particle swarm framework, we will use ŷ(t) to denote the
current iterate. Given a positive spanning set D and the current iterate ŷ(t), one defines
the mesh Mt and the poll set Pt. The mesh Mt is given by

Mt =
{
ŷ(t) + α(t)Dz, z ∈ Z|D|+

}
, (5)
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where α(t) > 0 is the mesh or step size parameter, Z+ is the set of nonnegative integers,
and |D| is the cardinality of the set D (which is view as a matrix in (5)). The definition
of the mesh (in other words the choices of D and α(t)) has to meet some integrality
requirements for the method to achieve global convergence to stationary points, in other
words, convergence to stationary points from arbitrary starting points. For unconstrained
problems or problems with simple bounds these requirements can be trivially satisfied for
the choice D = D⊕.

The search step of these methods conducts a finite search in the mesh Mt. Their poll
step is executed only if the search step fails to find a feasible point for which f is lower
than f(ŷ(t)). The poll step evaluates the extreme barrier function at the points in the poll
set

Pt = {ŷ(t) + α(t)d, d ∈ D} ⊂ Mt,

trying to find a feasible point where f is lower than f(ŷ(t)). If the poll step fails then the
mesh size parameter must be reduced. Otherwise the mesh size parameter is kept constant
or increased. The search step is optional and it is the poll step that essentially guarantees
the global convergence properties of the directional direct search methods to stationary
points. The subclass of these methods where D is kept finite across all iterations (like
coordinate search) is known as (generalized) pattern search.

The hybrid method implemented in the PSwarm solver for simple bounds constrained
optimization is a pattern search method that incorporates a particle swarm search in the
search step. The idea is to start with an initial population and to apply one step of particle
swarm at each search step. Consecutive iterations where the search steps succeed reduce
to consecutive iterations of particle swarm, in an attempt to identify a neighborhood of
a global minimizer. Whenever the search step fails, the poll step is applied to the best
position over all particles, performing a local search in the poll set centered at this point.
The points calculated in the search step by the particle swarm scheme must belong to the
mesh Mt. This task can be done in several ways and, in particular, one can compute their
‘projection’ onto Mt. The stopping criterion of PSwarm is the conjunction of the stopping
criteria for particle swarm and pattern search and can be proved to be eventually achieved
under appropriate conditions. PSwarm is based on coordinate search, which guarantees
global convergence to stationary points in the simple bounds case.

3 PSwarm for general linear constraints

The extension of PSwarm to general linear constraints of the form (2) must take into ac-
count both the search step (particle swarm) and the poll step. We point out first that our
goal is to design an algorithm which maintains feasibility since in many practical appli-
cations linear constraints are typically unrelaxable (meaning that the objective function
can only be evaluated when the constraints are satisfied [10]). Also, when dealing with ex-
tremely costly function evaluations, a feasible algorithm always provides a feasible estimate
once stopped prematurely.
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Figure 1: Feasible region for problem hs024. An example of an initial randomly generated
population in Ω.

We describe below the main structure of the PSwarm algorithm for linearly constrained
problems of the form (1)–(2) indicating in bold the differences from the pure simple bounds
version (minimize f(z) s.t. z ∈ Ω). In the poll step no mechanism is explicitly used to
control the displacement along the polling directions in terms of feasibility. Rather, it is
directly applied the extreme barrier function

f̂(z) =

{
f(z) if z ∈ Ω and Az ≤ b,

+∞ otherwise.

The search step, as we will later see, incorporates explicit procedures to enforce feasibility
before the objective function is evaluated and, therefore, there is no need here to make use
of the extreme barrier function.

Algorithm 3.1

1. Choose the stopping tolerances αtol > 0 and vtol > 0. Choose the initial population
size s. Set I = {1, . . . , s}.

2. Calculate (randomly) the initial feasible swarm positions x1(0), . . . , xs(0) (when gen-
eral linear constraints (2) are present use, e.g., the technique of the max-
imum volume inscribed ellipsoid). Calculate (randomly) the initial swarm ve-
locities v1(0), . . . , vs(0).

3. Set yi(0) = xi(0), i = 1, . . . , s, and ŷ(0) ∈ arg minz∈{y1(0),...,ys(0)} f(z). Choose α(0) >
0. Let t = 0.
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4. [Search Step]

Set ŷ(t+ 1) = ŷ(t).

For all i ∈ I (for all particles) do:

• If f(xi(t)) < f(yi(t)) then

– Set yi(t+ 1) = xi(t) (update the particle i best position).

– If f(yi(t+ 1)) < f(ŷ(t+ 1)) then

∗ Set ŷ(t + 1) = yi(t + 1) (update the particles best position; search step
and iteration successful).

∗ Set α(t+ 1) = φ(t)α(t) (optionally expand the mesh size parameter).

• Otherwise set yi(t+ 1) = yi(t).

5. [Poll Step]

Skip the poll step if the search step was successful. Compute a set of polling di-
rections D (either use D⊕ or compute a set positive generators for the
tangent cone of the approximated active constraints when general linear
constraints (2) are present).

• If there exists d(t) ∈ D such that f̂(ŷ(t) + α(t)d(t)) < f̂(ŷ(t)) then

– Set ŷ(t + 1) = ŷ(t) + α(t)d(t) (update the leader particle position; poll step
and iteration successful).

– Set α(t+ 1) = φ(t)α(t) (optionally expand the mesh size parameter).

• Otherwise, f̂(ŷ(t) + α(t)d(t)) ≥ f̂(ŷ(t)) for all d(t) ∈ D, and

– Set ŷ(t+ 1) = ŷ(t) (no change in the leader particle position; poll step and
iteration unsuccessful).

– Set α(t+ 1) = θ(t)α(t) (contract the mesh size parameter).

6. Compute vi(t + 1), i ∈ I, using (4). Compute xi(t + 1), i ∈ I, using equation (7)
below.

7. If α(t + 1) < αtol and ‖vi(t + 1)‖ < vtol, for all i ∈ I, then stop. Otherwise,
increment t by one, drop particles in the search step if too close to each other and
update I accordingly, and go to Step 4.

In our implementations we typically choose φ(t) = 1 or φ(t) = 2 after two consecutive
poll successes along the same direction and θ(t) = 1/2. A particle xi(t) is dropped when
there exists another one, say xj(t), such that ‖xi(t)−xj(t)‖ ≤ α(t) and f(xj(t)) ≤ f(xi(t)).
Note also that we omit the projection of xi(t) onto the mesh Mt.

7



0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

x
1

x 2

Maximum volume ellipsoidUser provided initial guess

Initial feasible population

Figure 2: The maximum volume ellipsoid inscribed into the feasible region of problem
hs024.

3.1 Generating an initial feasible population

The first issue that arises is how to generate an initial feasible population for the search
step. When only simple bounds are present, an initial feasible population can be trivially
calculated in Ω following an uniform distribution. Thus, one possibility would be to ignore
first the linear constraints different from simple bounds and then randomly generate points
in Ω. However, such a strategy may not generate a sufficiently diverse feasible population
for global optimization purposes (or even fail in the sense that no feasible point is gener-
ated). See, for example, Figure 1 where an initial randomly generated population using
only the simple bounds led to a population with only three feasible particles.

There are techniques to randomly generate points in a polytope (see [30] and the ref-
erences therein) but require the calculation of extreme points which seemed to us too
expensive and hard to code. We wanted to use something simple and efficient. The idea
we explored consisted of first computing the maximum volume ellipsoid inscribed in the
feasible region and then using this ellipsoid to randomly generate the points (see Figure 2).
Our motivation resulted partially from the fact that there exists good state-of-the-art op-
timization software to calculate this type of ellipsoids [35].

Let us write the maximum volume inscribed ellipsoid using a center c and a nonsingular
scaling matrix E:

E(c, E) = {w ∈ Rn : w = c+ Es, ‖s‖ ≤ 1} .

The initial population can be then easily generated using

xi(0) = c+ %1/nEς, i = 1, . . . , s,

where % is a scalar drawn from the uniform distribution in (0, 1) and ς is an n dimensional
vector drawn from the uniform distribution in (−1, 1)n (normalized afterwards using the
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`2-norm). User provided feasible initial guesses (see Figure 2) can be easily included in the
population.

The well-posedness of the problem of inscribing an ellipsoid of maximum volume into
the feasible region is only guaranteed if the feasible region is bounded and, in addition, if
A is full rank and there exists a point z such that Az < b.

In an attempt to regularize this ellipsoid calculation, one adds to the problem formula-
tion fictitious bounds whenever the feasible region is unbounded (which is detected by first
trying to inscribe an ellipsoid of maximum volume). Such fictitious bounds are used in the
algorithm only for this purpose. In our implementation we made the following choices:

−zi ≤ −min(−100, (ui − 3|ui|)), if `i = −∞ and ui 6= +∞,
zi ≤ max(100, (`i + 3|`i|)), if `i 6= −∞ and ui = +∞,

min

(
−100,−10 min

j=1,...,n, `j 6=−∞
`j

)
≤ zi ≤ max

(
100, 10 max

j=1,...,n, uj 6=+∞
uj

)
if `i = −∞ and ui = +∞.

(6)

The computation of the ellipsoid with maximum volume inscribed into the resulting
polytope is carried out in PSwarm by the interior point code1 developed by Zhang and
Gao [35].

3.2 Imposing feasibility in the search step

To maintain feasibility of the new generated particles in the search step we damp the
displacement in (3) introducing step size parameters αi

j,max > 0 which depend on each
component of each particle:

xi
j(t+ 1) = xi

j(t) + αi
j,maxv

i
j(t+ 1), j = 1, . . . , n, i ∈ I, (7)

where I ⊆ {1, . . . , n} is the set of particles still in action.
The computation of αi

j,max = αi
maxα

i
j,Ω is done in two phases taking into account the

structure of the constraints. The step size αi
j,Ω is the maximum step length allowed by the

bound constraints:

αi
j,Ω =



min
(

1,
`j−xi

j(t)

vi
j(t+1)

)
if vi

j(t+ 1) < 0,

min
(

1,
uj−xi

j(t)

vi
j(t+1)

)
if vi

j(t+ 1) > 0,

1 if vi
j(t+ 1) = 0.

(8)

To simplify the notation we now write v̄i
j(t+ 1) = αi

j,Ωv
i
j(t+ 1).

1The code in [35] is originally implemented in MATLAB. We rewrote it in C using the BLAS [9] and
LAPACK [7] linear algebra packages, for our own usage in the C version of PSwarm.
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Let Ki be the set of indices corresponding to constraints which can lead to infeasibility
by following the search direction v̄i(t+ 1):

Ki =
{
k ∈ {1, . . . ,m} : akv̄

i(t+ 1) > 0
}
,

where ak is the k-th row of the matrix A. The maximum step length along the velocity
v̄i(t+ 1) is given by

αi
max = min

k∈Ki

(
1,
bk − akx

i(t)

akv̄i(t+ 1)

)
. (9)

This step length calculation allows larger steps and therefore a greater flexibility in the
search phase.

Finally, we point out that the generation of an initial feasible population for the search
step and the imposition of feasibility during this step automatically guarantee an initial
feasible polling point ŷ(0).

3.3 Calculating the positive generators for the poll step

As we said before, in the presence of general linear constraints, the set D⊕ of polling
directions does not guarantee global convergence for generalized pattern search algorithms.
The set D of directions used in the poll step must now contain positive generators for the
tangent cone of the constraints which are ε-active (ε > 0) at the current point (meaning
the constraints for which the residual at the current point is no larger than ε in absolute
value). This can be done in a number of ways (see [10, 20]). One possibility is to ask D to
include all positive generators for all the tangent cones for all ε ∈ [0, ε∗], where ε∗ > 0 is
independent of the iteration counter (see Lewis and Torczon [22]). Other alternatives only
ask D to include the positive generators of the tangent cones of the ε-active constraints
for the current value of ε, but require further provisions like the acceptability of new
iterates based on a sufficient decrease condition. The approach by Lucidi, Sciandrone,
and Tseng [23] requires the parameter ε to be reduced at unsuccessful iterations and a
projection onto the feasible set during polling. Kolda, Lewis, and Torczon [21] adjust the
parameter ε so that ε = ε(t) = O(α(t)). Our choice in PSwarm follows ε = ε(t) = O(α(t))
to avoid calculating all positive generators but ignores the sufficient decrease requirement
to avoid rejecting points which yield a (simple) decrease in the function.

The set D is thus computed each time a poll step is executed by identifying first the ε-
active constraints. At poll steps where no ε-active constraints are identified we set D = D⊕
as in [34]. When the matrix Ā, associated with the ε-active constraints, is rank defficient,
it is not possible to calculate the positive generators of the tangent cone from an unique
matrix factorization of Ā. Following some of the ideas in Abramson et al. [6], the algorithm
given below (used in PSwarm) tries to dynamically decrease the parameter ε in order to
obtain a set of ε-active constraints corresponding to a full row rank matrix Ā.

When no small enough ε is found for which Ā is full row rank, the algorithm reverts to
the simple mode D = D⊕. One could think that such a procedure is inappropriate and not
aligned to the basic requirements needed for global convergence of the overall algorithm.
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However, our numerical experience has shown us that this is a robust and efficient way of
handling degeneracy. In part this is due to the randomness features of the search step. We
summarize below the algorithm used to compute the polling directions.
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Algorithm 3.2

1. Let ε = min(εinit, 10α(t)) and εlimit = min(0.1, ε2).

2. While ε > εlimit do

(a) Let Ā be a matrix formed by:

• the rows of the matrix A such that akz − bk ≥ −ε, k = 1, . . . ,m,

• the rows of the matrix I such that zj ≥ uj − ε, j = 1, . . . , n.

• the rows of the matrix −I such that zj ≤ `j + ε, j = 1, . . . , n.

(b) If 0 < dim(Ā) < n and rank(Ā) = dim(Ā) then:

• Compute a QR factorization of the matrix Ā>.

• Let B = QR−>, N = I −BĀ, and stop with D = [B −B N −N ].

(c) If dim(Ā) = 0 then stop and consider D = D⊕, else ε = ε/2.

3. If no D has been computed (the condition of the while loop has become false) consider
also D = D⊕.

In our tests we set εinit = 0.1.

4 Numerical results

We have numerically compared PSwarm to other existing solvers for the derivative-free
optimization of functions subject to linear constraints, having in ming the goal of global
optimization.

4.1 Test problems

To obtain a sufficiently large set of test problems we searched all known databases of non-
linear programming problems. We were able to gather 110 linearly constrained problems
from a total of 1564 problems, collected from the following sources: Vanderbei [33] (given
in AMPL, which includes the CUTE [15] collection), GLOBALlib [2] (available in AMPL
format at [27]), one problem from [31], three problems from [17], one from [24], and four
from [25].

The 110 problems collected were all written in AMPL [14]. They include 23 problems
with a linear objective function, 55 with a quadratic objective function, and 32 with a
non-quadratic objective function.

Ten additional highly nonconvex problems were obtained by random generation of the
linear constraints, following the scheme reported in [28]. For these additional problems,
the objective function (see Pinter [29]) is given by

r × n×
n∑

i=1

(xi − x∗i )2 + (sin (g1 × P1(x)))2 + (sin (g2 × P2(x)))2 ,

12



n 3 10 15 20 25 30 35 40 45 50
m 2 5 10 15 20 25 30 35 40 45
ma 1 2 5 7 10 12 15 17 20 22

Table 1: Dimensions of the 10 highly nonconvex problems.

where

P1(x) =
n∑

i=1

(xi − x∗i )2 +
n∑

i=1

(xi − x∗i )2 ,

P2(x) =
n∑

i=1

(xi − x∗i ) ,

r = 0.025, g1 = 1, and g2 = 1. These problems have simple bound constraints on all
variables (x ∈ [−10, 10]n) and the linear constraints are randomly generated using the
following procedure (ma is the number of active linear constraints at the global minimizer):

Algorithm 4.1

1. Randomly generate the solution x∗ from an uniform distribution (in the simple bound
domain Ω).

2. Randomly generate the elements of the matriz A from the uniform distribution in
(−10, 10). Denote the rows of A by ak, k = 1, . . . ,m.

3. Let bk = akx
∗, k = 1, . . . ,ma.

4. Let bk = akx
∗ + u, where u is a random number drawn from an uniform distribution

in (1, 10) and k = ma + 1, . . . ,m.

The 10 problems selected resulted from the combination of the parameters n, m, and ma,
reported in Table 1.

4.2 Solvers tested

The set of solvers used in our numerical comparisons were ASA, NOMADm, and DIRECT.
ASA [16] stands for Adaptative Simulated Annealing and is written in C. We used the

ASA-AMPL interface previous developed for [34]. Note that ASA uses the extreme barrier
function to reject infeasible trial points.

NOMADm [4] is a MATLAB [3] version of the Nonlinear Optimization for Mixed vAri-
ables and Derivatives solver [5]. We were not able to use the particle swarm option that
NOMADm incorporates in the search step because it is only available for problems with
simple bounds. We have selected a maximal positive basis as in PSwarm. Note that
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PSwarm follows a simplified version of the way in which NOMADm handles the computa-
tion of the positive generators of the ε-active constraints.

DIRECT (DIviding RECTangles) is a MATLAB implementation [1] of the method
described in [18]. DIRECT uses a penalty strategy to deal with constraints. The penalty
parameters are fixed for each constraint and kept constant during all the iterations. In
our testing we used 106 for all constraints. We did some additional testing to see if the
numerical results could be improved by perturbing the values of the penalty parameters
but no significant differences were observed.

To test PSwarm, NOMADm, and DIRECT, we considered the problems directly coded
in AMPL and used the AMPL-MATLAB interface developed for this purpose.

A critical issue that relates all the solvers is the choice of the initial guess. PSwarm
allows the user to specify an initial guess (in fact the user can provide an initial population)
which is included in the initial population if shown to be feasible. For NOMADm it is
mandatory to provide an initial guess. When the provided guess is not feasible, NOMADm
tries to project the provided point onto the feasible region. ASA is also expecting an initial
guess but it does not force this initial guess to be feasible and tries to proceed to a better
feasible point (as infeasible points are automatically rejected). No initial guesses can be
given to DIRECT. We also point out that some of the problems coded by us in AMPL
do not include an initial guess. Thus, in order to be as fair as possible to all solvers, no
initial guess is considered and, when requested, it is randomly generated within the bound
constraints following an uniform distribution. We used the fictitious bounds (6) for this
purpose. While PSwarm, NOMADm, and ASA use these bounds solely for the calculation
of an initial guess or population, DIRECT uses them during the optimization phase.

4.3 Numerical results (performance profiles)

Figures 3–5 depict performance profiles obtained by using the procedure described in [34]
(a modification of the performance profiles from [11]) for the 4 solvers and the 110 test
problems (imposing a maximum of 2000 total function evaluations). The stochastic solvers
(ASA and PSwarm) were run 10 times for each of the problems. Then, from the 10 runs,
we computed the final minimum, maximum, and average objective function values.

For the 10 highly nonconvex problems we imposed a maximum of 10000 total function
evaluations. The performance profiles are shown in Figures 6–8. Since NOMADm is not
designed for global optimization we ran it 10 times for different randomly generated initial
guesses, a procedure we only applied for these test problems. Note that NOMADm does
not appear in Figure 8 since it fails for at least one run for all problems (and therefore the
worst performace is always a failure).

Since the 110 test problems considered include linear, quadratic, and non-quadratic
objective functions, we also looked at the performance profiles for each type of problems.
To shorten the presentation, we present here only the performance profiles for the non-
quadratic objective functions using average objective function values (see Figure 9). The
remaining performance profiles can be seen at the PSwarm web page http://www.norg.

uminho.pt/aivaz/pswarm. For the linear objective function problems, PSwarm was the
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Figure 3: Performance profiles for the 110 problems (minimum objective function value
for 10 runs with maxf = 2000).
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Figure 4: Performance profiles for the 110 problems (average objective function value for 10
runs with maxf = 2000).
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Figure 5: Performance profiles for the 110 problems (maximum objective function value
for 10 runs with maxf = 2000).
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Figure 6: Performance profiles for the 10 highly nonconvex problems (minimum objective
function value for 10 runs with maxf = 10000).
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Figure 7: Performance profiles for the 10 highly nonconvex problems (average objective
function value for 10 runs with maxf = 10000).
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Figure 8: Performance profiles for the 10 highly nonconvex problems (maximum objective
function value for 10 runs with maxf = 10000).
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Figure 9: Performance profiles for the subset of 110 problems with non-quadratic objective
functions (average objective function value for 10 runs with maxf = 2000).

most effective and robust solver. In the quadratic objectives case, we observed a small
advantage of DIRECT, and for the non-quadratic objective function problems PSwarm
was again the most effective and robust solver.

4.4 Numerical results (function profiles)

The performance profiles presented before measure the efficiency and robustness of the
solvers when a maximum number of function evaluations is imposed in terms of the quality
of the final value of the objective function. These profiles do not show how effective and
robust each solver is in terms of the number of objective function evaluations necessary to
compute a global minima (or to achieve some reduction in the objective function value).

Our first attempt to measure performance differently was to use the recently proposed
data profiles [26] for derivative-free optimization. These profiles measure how well a solver
does when asked to achieve a certain level of accuracy within some computational budget
(CPU time or total number of function evaluations). However, these data profiles are
not so practical in our case because some solvers are stochastic, and more importantly,
do not necessarily produce a monotone decreasing sequence of best found so far objective
function values. Further, since the goal of this paper is global optimization, the information
contained in data profiles for smaller values of the budget is not so relevant.

In this paper we propose what we call function profiles to measure the efficiency and
robustness of global derivative-free solvers in terms of function evaluations required to
achieve some level of global optimality. To explain how our profiles are calculated, let P
be a set of test problems and S a set of solvers. Define rp,s as the number of objective
function evaluations taken by solver s to solve problem p, for p ∈ P and s ∈ S. rp,s is
set to +∞ whenever a failure occurs, i.e., when solver s is unable to provide a feasible
point for problem p. A failure is also declared when solver s is unable to produce a
feasible point for problem p within a specified relative error τ , i.e., rp,s is set to +∞ when
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Figure 10: Function profiles for the 110 problems (average objective function value for 10
runs).

(fp,s−fp,L)/|fp,L| > τ , where fp,s is the objective function value obtained by the solver s on
problem p and fp,L is the best objective function obtained by all the solvers for problem p.
We define the function profile ρs(ν) of a solver s ∈ S as the fraction of problems where the
number of objective function evaluations is lower than ν

ρs(ν) =
1

|P|
size{p ∈ P : rp,s < ν}.

The values of ρs(ν) are calculated setting a limit for the number of function evaluations and
letting the solvers stop when their stopping criteria are met. In the case of this paper we
used 2000 for the 110 problems test set and 10000 for the 10 highly nonconvex problems.

Figures 10 and 11 depict the function profiles for, respectively, the 110 test set and the
set of 10 highly nonlinear test problems. Due to the stochasticity of some of the solvers,
the quantity rp,s represents now the average number of function evaluations (for the 10
runs), and fp,s and fp,L are the average function values. We report results for τ = 0.1 but
no major differences were observed with different values.

By looking at function profiles, one can obtain useful information on the solvers perfor-
mance in term of function evaluations needed for global optimization. For example from
Figure 10, we observe that NOMADm solved about 40% of the problems using less than
1000 function evaluations, while PSwarm solved about 20%. Considering ν = 2000, we
infer that PSwarm is able to solve about 70% of the problems, and thus that it is the most
robust among all.

DIRECT never uses less than the provided budget defined in terms of the total number
of function evaluations (and for some problems it significantly exceeds the imposed budget).
Figure 11 does not include DIRECT because this code was unable to solve any of the
problems up to the requested accuracy (τ = 0.1).
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Figure 11: Function profiles for the 10 highly nonconvex problems (average objective func-
tion value for 10 runs).

5 Conclusions and future work

The main goal of this paper was to extend PSwarm [34] to general linear constraints. We
were mainly motivated from the fact that PSwarm yielded encouraging results for problems
with simple bounds. In some applications the constraints assume a more general linear
form which prohibits the application of this older version of PSwarm, in particular when
such constraints are unrelaxable. We studied various possibilities to extend PSwarm to
linear constraints and the presentation of this paper is the result of intensive testing.

This paper also contributes to the field of global derivative-free optimization by re-
porting a comprehensive numerical comparison of different solvers. For this purpose we
collected a vast collection of linearly constrained optimization problems, a number of them
nonconvex, which can be used by others researchers to perform their testing. Finally, we
introduced new function profiles (different from the data profiles [26]) for the assessment
of the efficiency and robustness of solvers in terms of the number of function evaluations
needed to achieve a certain level of global optimality.

The natural next step is to try to handle nonlinear constraints. It is not clear to us how
to proceed toward this goal. We plan to have a beta version soon which embeds PSwarm
for linear constraints into some penalty or augmented Lagrangian scheme, but this might
not be the way to go. Our experience has shown us that global derivative-free optimization
is an extremely difficult field where decently good performance is the result of intensive
research — and thus the definite extension of PSwarm to nonlinear constraints is expected
to take a significant effort.
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