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Abstract

The number partitioning problem (NPP) is to divide n numbers a1, . . . , an into two disjoint
subsets such that the difference between the two subset sums – the discrepancy, ∆, is minimized.
In the balanced version of NPP (BalNPP), the subsets must have the same cardinality. With
ajs chosen uniformly from [1, R], R > 2n gives the hard phase, when there are no equal partitions
(i.e., ∆ = 0) with high probability (whp). In this phase, the minimum partition is also unique
whp. Most current methods struggle in the hard phase, as they often perform exhaustive
enumeration of all partitions to find the optimum.

We propose reductions of NPP and BalNPP in the hard phase to the closest vector problem
(CVP). We can solve the original problems by making polynomial numbers of calls to a CVP
oracle. In practice, we implement a heuristic which applies basis reduction (BR) to several
CVP instances (less than 2n in most cases). This method finds near-optimal solutions without
proof of optimality to NPP problems with reasonably large dimensions – up to n = 75. second,
we propose a truncated NPP algorithm, which finds approximate minimum discrepancies for
instances on which the BR approach is not effective. In place of the original instance, we
solve a modified instance with āj = baj/T e for some T ≤ R. We show that the expected
optimal discrepancy of the original problem given by the truncated solution, E (∆∗

T ), is not much
different from the expected optimal discrepancy: E (∆∗

T ) ≤ E (∆∗)+nT/2. This algorithm can
be used to find good quality partitions within a short time for problems of sizes up to n = 100.
Third, we propose a direct mixed integer programming (MIP) model for NPP and BalNPP.
We then solve a lattice-based reformulation of the original MIP using standard branch-and-cut
methods. Assuming it terminates, the MIP model is guaranteed to find the optimum partition.

1 Introduction

The number partitioning problem (NPP) is to divide n numbers a1, . . . , an into two disjoint subsets
such that the sums of the subsets are as close as possible to each other. In the constrained NPP,
the difference of the cardinalities of the subsets is upper bounded by a small number [1]. The
most common version of the constrained NPP is the balanced NPP (BalNPP), where the two
subsets must have the same cardinality (or differ by 1, when n is odd). The absolute value of the
difference between the subset sums is called the discrepancy of a given partition, and is denoted
by ∆. A partition is perfect if ∆ = 0 (or ∆ = 1 when

∑
j aj is odd). NPP finds several practical

and theoretical applications – multiprocessor scheduling, VLSI circuit design, cryptography, and
choosing balanced sides for a ball game are a few of them [2].

NPP is known to be NP-complete [3]. Further, it is known to have poor heuristics [4, 5]. The
best known polynomial time heuristic is the Karmarkar-Karp differencing method [6] (also known
as KK heuristic), which runs in O(n log n) time. The bottleneck step is maintaining a sorted list
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of the numbers as the algorithm continues to run. When the ai’s are random real numbers that
are independent and identically distributed (i.i.d.) in the interval [0, 1], Yakir [7] proved that the
expected value of the discrepancy achieved by the KK heuristic is O(n−0.72 ln n). Mertens [8] has
recently reported this bound to be exact. The median value of the optimum discrepancy was
shown to be much smaller by Karmarkar et al. [9] – O(

√
n 2−n). Lueker [10] derived the same

bound for the expected optimal discrepancy. When the ajs are i.i.d. integers drawn from [1, R],
the expected optimal discrepancy is E (∆∗) = O(

√
n 2−n R) for NPP, and E (∆∗) = O(n 2−n R) for

BalNPP [11, 5]. Korf [12] proposed a complete version of the KK heuristic (complete-KK, or CKK
for short), which starts with the partition given by the KK heuristic, and produces better solutions
as it continues to run. Mertens [5] proposed a similar complete differencing heuristic for BalNPP.
Currently, the complete versions of differencing appear to be the best methods in practice.

NPP and BalNPPexhibits a phase transition when the size of ajs change. This phase transition
has been fully characterized mathematically [13, 1]. When R < 2n, there are many perfect partitions
with high probability (whp) as n →∞, giving the easy phase. Since any perfect partition is optimal
by definition, finding one will solve the problem. R > 2n gives the hard phase, as there are no perfect
partitions as n increases in this range whp, and the optimum partition is also unique whp. Most
known heuristics struggle in the hard phase, as the optimality of non-perfect partition(s) is not
proven until examining all possibilities. Thus, running time of CKK is typically exponential in n
for instances in the hard phase. Further, its rate of convergence is slow – O(1/N θ) with θ < 1, where
N is the number of partitions examined so far. In fact, Mertens [5] argues that these heuristics
cannot be significantly better than random search. He also suggests that a better description of
NPP, distinct from the one provided in the context of differencing strategies, may be the key to
achieve improved performances.

1.1 Our Contributions

We establish correspondences between number partitioning in the hard phase and lattice problems,
using which we propose algorithms for NPP that are fundamentally distinct from differencing
methods (we treat NPP and BalNPP in a unified way). First, we present an efficient reduction of
NPP in the hard phase to an instance of the closest vector problem (CVP) in a lattice (see Section
3). We can solve NPP instances using a polynomial number of calls to a CVP oracle, assuming we
have access to one. In practice, we propose a discrete search algorithm that uses basis reduction
(BR) to tackle the CVP instances. Using Kannan’s homogenization technique [14], we cast the
instance of CVP as an instance of the shortest vector problem (SVP) in a related lattice. We apply
BR to several (up to 2n in most cases) such SVP instances, which are generated using the estimates
of the expected optimal discrepancy (E (∆∗)). Using routines for block Korkine-Zolotarev reduction
[15], this BR heuristic finds optimal or near-optimal discrepancies for instances with n up to 75 in
the hard phase within an hour of computation on a typical personal computer.

The discrete search algorithm does not find good partitions for larger problems within a few
hours of computation. Hence we propose a truncated NPP heuristic to obtain approximate
minimum discrepancies for larger NPP instances (see Section 4). In place of the original instance,
we solve a modified NPP instance with numbers āj = baj/T e for some T ≤ R. We show that the
expected optimal discrepancy for the original problem corresponding to the solution of the truncated
problem is not much different from the expected optimal discrepancy: E (∆∗

T ) ≤ E (∆∗)+nT/2. A
natural choice is to set T = 10t for t ≥ 1, which amounts to truncating the last t digits from each
aj . For large values of n on which the discrete search is not efficient, we choose T such that the
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truncated instances are well into the easy phase, and hence are solved quickly by a lattice-based
approach to solve standard knapsack problems [16]. We are able to obtain good quality solutions
to problems of sizes up to n = 100 within a few minutes of computation using this approach.

The discrete search and truncation algorithms find partitions without proof of their optimality
or quality. In order to get a certificate of optimality of the solution obtained using the lattice
based approaches, we propose a direct mixed integer programming (MIP) model for NPP and
BalNPP (see Section 5). Using a framework similar to that used for reducing NPP to CVP, we
solve a BR-based reformulation of the original MIP using a commercial solver employing branch-
and-cut methods. The original MIP formulation cannot be handled efficiently by current solvers,
mainly due to the huge numbers involved in the hard phase of NPP. The MIP model is guaranteed
to find the optimal discrepancy, as long as the solution process is completed. Instances with up to
n = 50 in the hard phase are solved efficiently within several minutes.

1.2 Related Work

NPP is related to the subset sum problem (or 0-1 knapsack problem), which is used in the study
of lattice problems such as CVP and SVP [17, Chap. 3,4]. The correspondence is immediate for an
NPP instance with at least one perfect partition (i.e., in the easy phase), but has not been studied
previously for instances in the hard phase. In this context, Howgrave-Graham and Joux have
recently proposed some generic algorithms to solve hard knapsack problems, i.e., with density very
close to 1 [18]. Their algorithms are motivated by the algorithm for knapsack problems proposed
by Schroeppel and Shamir thirty years ago [19]. These approaches could be adapted to tackle an
instance of NPP in the hard phase by solving a series of related knapsack problems, the approach
being termed the approximate knapsack problem. Our lattice-based approaches to solve NPP and
BalNPP instances appears to do better than the above approaches to solve them as approximate
knapsacks for dimensions up to n = 75 (see Subsection 3.2.2).

BR-based reformulations for integer programs (IPs) have been studied by several researchers [20,
21, 22, 23]. Our reformulation of the MIP model for NPP is a generalization of the preconditioning
method for IPs termed column basis reduction, proposed earlier by the first author and Pataki
[23], to the case of MIPs. Lattice-based approaches specifically for NPP in the hard phase are new,
and are fundamentally different from previous approaches, most of which are based on differencing
strategies. CVP is NP-hard, and so is SVP under randomized reductions [17]. At the same time,
current algorithms can solve instances of CVP and SVP for reasonably large dimensions efficiently
[24, 25], thus making our methods competitive in practice for number partitioning in the hard
phase.

2 Definitions, and Notation

In the context of an NPP with n positive numbers a1, . . . , an, a partition defines two sets of indices
S1 ⊂ {1, . . . , n} and S2 = {1, . . . , n} \ S1. A balanced partition must satisfy | |S1| − |S2| | ≤ 1.
The discrepancy associated with a partition is ∆ = |

∑
j∈S1

aj −
∑

j∈S2
aj |. We assume the ajs

are i.i.d. among the integers in the interval [1, R] for some R ∈ Z>0. Without loss of generality, we
assume that α =

∑
j aj is even. If the sum is indeed odd, we can reduce any one aj by one, and

equivalently solve the resulting instance. Note that when α is even, ∆ for any partition will also
be even.
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We will use bold lower case letters to denote vectors, e.g., a = (a1, . . . , an). Whether a vector is
a row or a column vector is evident from the context. We use upper case letters to denote matrices.
We let E (∆) denote the (theoretical) expected value of the random variable ∆, and use 〈∆〉 to
denote the average value of ∆ as observed in computations.

Connection to 0-1 knapsack problem We let β = α/2. Each partition corresponds to the
solutions of two related 0-1 knapsack problems:

n∑
j=1

ajxj = β ± ∆/2, xj ∈ {0, 1} ∀j.

If xj = 1 for all j ∈ S1 (and zero otherwise) solves the knapsack with right-hand side (rhs) equal to
β −∆/2, then x′j = 1 for all j ∈ S2 solves the knapsack with the rhs of β + ∆/2 (and vice-versa).
For instances of NPP in the easy phase (∆ = 0), we could solve the binary knapsack problem with
rhs of β to recover a perfect partition. On the other hand, this correspondence cannot be utilized
directly for NPP instances in the hard phase, as ∆ > 0 is unknown to start with. Instead, we use
the connection to define and study a decision (or promise) version of NPP, which we subsequently
reduce to the closest vector problem. We denote this problem as Decision NPP (DNPP for short)
indexed by a parameter d (we do not include the ajs in this notation for the sake of brevity).

Definition 1. (DNPPd) Given numbers a1, . . . , an and an even number 2d, decide if a partition
exists with ∆ ≤ 2d. Equivalently, find a solution xj ∈ {0, 1} ∀j to the knapsack

∑
j ajxj = β − δ

for some δ ≤ d, if one exists.

The original (search) version of NPP is not substantially harder than DNPP. More precisely,
given an oracle to solve DNPP, we can solve the search version of NPP by making a polyno-
mial number of calls to the oracle, while performing a binary search on the value of the optimal
discrepancy (see Section 3.1).

We define a similar decision version for BalNPP, which we term DBalNPP.

Definition 2. (DBalNPPd) Given numbers a1, . . . , an and an even number 2d > 0, decide if a
balanced partition exists with ∆ ≤ 2d. Equivalently, find a solution xj ∈ {0, 1} ∀j that satisfies∑

j xj = bn/2c to either the knapsack
∑

j ajxj = β − δ or to the knapsack
∑

j ajxj = β + δ, for
some δ ≤ d, if one exists.

Notice that we are considering both knapsacks in order to account for the case when n is odd.
In this case, the subset with the lower (by one) cardinality can have either the lower or the higher
sum. We also point out that the definitions of DNPPd and DBalNPPd are applicable with d = 0,
in which case they are equivalent to the original knapsack (with rhs β).

Background on lattices Let b1, . . . , bn be a set of n linearly independent vectors in Rm with
m ≥ n. The lattice generated by these vectors is the set of all integer linear combinations of them:

L(b1, . . . , bn) = {
∑

j bjxj : xj ∈ Z }.

b1, . . . , bn forms a basis for the lattice L. Putting these vectors into an m × n basis matrix B,
vectors in L are also described by Bx for some x ∈ Zn. We use the Euclidean norm for vectors,
unless mentioned otherwise. Intuitively, a reduced basis for a lattice consists of vectors that are
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“short” and “nearly orthogonal”, and can be viewed as an extension to lattices of the concept of
a Gram-Schmidt orthogonalized basis of a real space. Several notions of reduced basis have been
proposed [26, 27], and several classes of algorithms are also available to perform basis reduction
[27, 28, 29, 15].

Two fundamental problems related to a lattice are the shortest vector problem and the closest
vector problem. Given a lattice basis B ∈ Zm×n, the shortest vector problem (SVP) is to find a
non-zero vector in the lattice Bx with x ∈ Zn \ {0} such that ‖Bx‖≤‖By ‖ for all y ∈ Zn \ {0}.
Given a lattice basis B ∈ Zm×n and a target vector u, the closest vector problem (CVP) is to find
a lattice vector Bx with x ∈ Zn such that ‖Bx − u‖≤‖By − u‖ for any y ∈ Zn. These are the
search (default) versions of SVP and CVP. We study the decision version of CVP, termed DCVP,
to which we will reduce DNPP.

Definition 3. (DCVP) Given a lattice basis B ∈ Zm×n, a target vector u, and a rational γ > 0,
decide if ‖Bx− u‖≤ γ for some x ∈ Zn, or if ‖Bx− u‖> γ for all x ∈ Zn.

We denote such an instance of DCVP by (B,u, γ). A similar decision version can be defined for
SVP as well. The search and promise versions of SVP and CVP are equivalent [17]. Basis reduction
is one of the staple methods used for solving instances of SVP and CVP [25]. We now present the
reductions of decision versions of NPP and BalNPP to decision versions of CVP.

3 Reducing NPP to CVP

Our reductions of NPP and BalNPP to CVP are motivated by the surprisingly simple reduction
of the subset sum problem to CVP presented originally by Micciancio [30] (also presented in [17,
Chap 3]). We believe it is non-trivial to obtain a similarly simple reduction of number partitioning
in the hard phase to CVP, especially for the balanced version. Further, our reductions subsume the
reduction of subset sum to CVP as a special case.

Notice that the existence of a reduction from NPP to CVP is not a surprising fact, given that
both problems are NP-complete. The purpose of our reductions is not just to prove the equivalence
of the two problems, or the NP-completeness of NPP. The sole purpose of these reductions is to
motivate the creation of a new family of lattice-based algorithms to NPP and BalNPP problems
specifically in the hard phase. These lattice-based approaches and their computational evaluation
constitute the main contribution of this paper.

Theorem 4. For any integer d > 0, DNPPd is reducible to DCVP.

Proof Given the vector of numbers a = (a1, . . . , an) associated with the DNPPd, we create an
(n + 1)× n basis matrix B and a target vector u as follows:

B =
[
2d I
a

]
, u =

[
d 1
β

]
. (3.1)

I is the n × n identity matrix and 1 is the n-vector of all ones. The output of the reduction is
the instance of DCVP specified as (B,u, d

√
n + 1). To be exact, we need to specify a rational

number in place of the bound d
√

n + 1. We can use any rational number γ such that d
√

n + 1 ≤

γ <
√

d2(n + 1) + 1. For instance, we can choose γ =

√(
d2(n + 1) +

1
4

)
=

√
(4d2(n + 1) + 1)/2.
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We can then evaluate this square root to a constant precision – two digits past the decimal place
will do. Recall that we can find square roots, and do multiplication and division in time and space
polynomial in the input size [31]. Dividing the approximation to

√
(4d2(n + 1) + 1) by 2, we can

indeed construct a suitable γ that has size polynomially bounded in d and n, in polynomial time
as well.

To show this reduction is correct, we show that if DNPPd is a YES instance, then (B,u, d
√

n + 1)
is a YES instance of DCVP; while if DNPPd is a NO instance, then (B,u, d

√
n + 1) is a NO DCVP

instance.

(⇒) Assume DNPPd is a YES instance. Let x be the 0-1 solution satisfying ax = β − δ for some
δ ≤ d. Consider the distance between the target vector u and the lattice vector Bx:∥∥∥∥[

d(2x− 1)
ax− β

]∥∥∥∥2

= d2
∑

j

(2xj − 1)2 + (ax− β)2 = d2n + δ2 ≤ d2(n + 1). (3.2)

The second equality uses the fact that xj ∈ {0, 1}, and hence 2xj − 1 = ±1 for all j. Thus,
‖Bx− u‖ ≤ d

√
n + 1 showing that (B,u, d

√
n + 1) is a YES instance of DCVP.

(⇐) We show that if (B,u, d
√

n + 1) is a YES instance of DCVP, then DNPPd is a YES instance.
Let x ∈ Zn (not necessarily binary) be such that ‖Bx− u‖≤ d

√
n + 1. The upper bound given in

Equation (3.2) holds in this case as well (without involving δ). We note that each 2xj −1 is an odd
number, and hence contributes at least 1 to the summation term. Thus

∑
j(2xj − 1)2 ≥ n. Hence,

for the above upper bound to hold, it must be the case that
∑

j(2xj − 1)2 = n, and thus each
xj ∈ {0, 1}. Indeed, if one of the terms |2xj − 1| is larger than 1, then it must be at least 3, and
hence the sum will be at least (n + 8). It immediately follows that the contribution of the second
term in the squared norm has to be at most d2, thus showing that DNPPd is a YES instance.

For the case of BalNPP, we add the cardinality constraint that forces the partition to be balanced
to the basis matrix and the target vector of the DCVP instance. It is critical to choose the weight
for this constraint appropriately for this reduction to work – we choose the weight as d + 1.

Theorem 5. For any integer d > 0, DBalNPPd is reducible to DCVP.

Proof Given the vector of numbers a = (a1, . . . , an) associated with DBalNPPd, we create an
(n + 2)× n basis matrix B′ and a target vector u′ as follows:

B′ =

 2d I
(d + 1)1T

a

 , u′ =

 d 1
(d + 1)bn/2c

β

 . (3.3)

The output of the reduction is the instance of DCVP specified as (B′,u′, d
√

n + 1). We can replace
the distance bound d

√
n + 1 with an appropriate rational number γ, and prove the correctness of

this reduction, similar to the case of DNPP.

(⇒) Assume DBalNPPd is a YES instance. Let x be the 0-1 solution satisfying one of the two
knapsacks ax = β ± δ for some δ ≤ d, and

∑
j xj = bn/2c. Consider the distance between the

target vector u′ and the lattice vector B′x:∥∥∥∥∥∥
 d(2x− 1)

(d + 1)(
∑

j xj − bn/2c)
ax− β

∥∥∥∥∥∥
2

= d2
∑

j

(2xj − 1)2 + (d + 1)2(
∑

j

xj − bn/2c)2 + (ax− β)2

= d2n + δ2 ≤ d2(n + 1). (3.4)
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Thus we get ‖B′x− u′‖ ≤ d
√

n + 1 showing that (B′,u′, d
√

n + 1) is a YES instance of DCVP.

(⇐) We show that if (B′,u′, d
√

n + 1) is a YES instance of DCVP, then DBalNPPd is a YES
instance. Let x ∈ Zn (not necessarily binary) be such that ‖B′x−u′ ‖≤ d

√
n + 1. The upper bound

given in Equation (3.4) holds in this case as well (without involving δ). Again, since 2xj −1 is odd,∑
j(2xj − 1)2 ≥ n. Hence, for the upper bound to hold, it must be the case that

∑
j(2xj − 1)2 = n,

and thus each xj ∈ {0, 1}. Similarly,
∑

j xj = bn/2c, else the upper bound will not hold due to the
weight of (d + 1)2. Hence, we must have |(ax− β)| ≤ d, thus showing that DBalNPPd is a YES
instance.

We make the following observations about the reductions.

� These reductions subsume the cases of perfect partition (d = 0) in the following sense. We
just need to modify the outputs of the reductions slightly – use d = 1 in B,u or B′,u′. The
bound on the distance is given as

√
n, again by setting d = 1, and decreasing the factor n+1

to n, as we desire ax = β.

� The reductions apply without modification to the cases of partitioning numbers into unequal
sets. For instance, if we want to assign 30% of the total sum to one subset (instead of 50%),
we just set β = b0.3αc.

� The reductions apply without modification to the cases of constrained partitions that are not
balanced. We just replace bn/2c with the appropriate number in this case.

3.1 A binary search algorithm for NPP

The reductions of the decision problems presented in the last section suggest an algorithm to solve
the search versions of NPP and BalNPP. Assuming we have an oracle that solves DCVP, we
perform a binary search on the discrepancy values, calling the oracle a polynomial number of times
(see Fig. 1). We reduce the size of the interval for the optimal discrepancy value by at least a
factor of half in each step, until we collapse it to a single number. The number of calls to the oracle
is O(log β), which is in fact a very conservative estimate. The expected value of the optimum
discrepancy is much smaller than R, and hence the number of calls needed is also much smaller
in expectation. Micciancio and Voulgaris [32] have recently proposed a deterministic algorithm for
most lattice problems including CVP, which runs in Õ(22n+o(n)) time. This algorithm is the most
efficient one known currently for SVP and CVP. Using this algorithm to solve each DCVP instance,
the binary search algorithm will have a running time of Õ(22n+o(n) log β).

While this scheme appears promising, we have two main concerns going against it. First, there
is no such oracle available for DCVP. There are several algorithms that come close [15, 25], at least
in practice; but they are not guaranteed to solve every instance. Many of these methods try to
solve a corresponding instance of the shortest vector problem, often using basis reduction. Given
an instance of DCVP (B,u, d

√
n + 1) as specified in Equation (3.1), we create the matrix

D =
[
B u
0 M

]
=

2d I d1
a β
0 M

 , where M is a suitably large number. (3.5)

We then try to solve the decision SVP (DSVP) instance for the lattice L(D) by adapting the
methods of Lagarias and Odlyzko [33], and that of Coster et al. [16] to our case. If x is a 0-1
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Binary Search for NPP

∆l := 0, ∆u := β;
while ∆u −∆l > 1

2d := (∆u + ∆l)/2;
solve DNPPd by solving DCVPd;
if DNPPd ≡ YES

∆u := min {∆(DNPPd), 2d };
else

∆l := 2d;
end if

end while

Figure 1: A binary search algorithm to solve NPP by solving several instances of DCVP. The
quantity ∆(DNPPd) represents the minimum discrepancy obtained when solving the YES instance
of DNPPd.

vector such that ‖Bx − u ‖≤ d
√

n + 1, thus making the DCVP a YES instance, then the vector
z = [d(2x − 1) (ax − β) −M ]T is a short(est) vector in L(D) for appropriately chosen values of
M . Equivalently, the vector z̃ = [d(2x− 1) (ax− β)]T is a short vector in L(D̃), where D̃ = [B u],
with ‖ z̃ ‖≤ d

√
n + 1. We apply basis reduction on D, and search for vectors of the form z in the

reduced D matrix. This reduction of DCVP to DSVP is essentially the homogenization technique
proposed by Kannan [14], which is not exact [17]. Note that the argument for this reduction works
for the case of balanced partition as well by using B′,u′ in place of B,u.

Once we have identified a vector z̃ of this form, a straightforward calculation will yield the
corresponding x vector, and hence the partition. On the other hand, if no such z̃ vector is obtained,
we conclude that the DSVP instance is a NO instance. Unfortunately, the latter option does not
always lead to accurate conclusions – the method may not identify any vectors z̃ even when there
exists a corresponding vector x. We implemented this method, and it is remarkably efficient for
smaller problems (n ≤ 40). When solving DNPPd, we often find a partition with ∆ much smaller
than 2d, which results in the binary search converging faster. But for larger n, the method often
fails to identify any partition after all the runs, i.e., after we get ∆u −∆l ≤ 1.

The second drawback of this algorithm is that it does not utilize the estimates available for the
expected optimal discrepancies (E (∆∗)). We start the calculations with ∆u = β, while the actual
discrepancy is typically much smaller. Taking all these observations into account, we propose the
following rather straightforward algorithm, which works quite efficiently in practice even though
we do not provide a proof of convergence.

3.2 A discrete search algorithm for NPP

We propose a very simple heuristic that uses the estimates on E (∆∗) to generate a small number of
DCVP instances, and tackles them using BR as described in Equation (3.5). We set d = cE (∆∗) =
c
√

2π/3
√

n2−n R for NPP, and use c
√

π/3n2−nR for BalNPP for a parameter c. We then vary
the value of c over a pre-determined range by choosing several (O(n)) values from [2/n, 2n + 2].
We use the block Korkine-Zolotarev (BKZ) reduction routines [15] available in the Number Theory
Library [34]. We are not guaranteed to find the z vectors for every D. We first try n values of the
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form 2i/n for i = 1, . . . , n for c. If no 0-1 solutions are found, we try n more values of the form
2i for i = 2, . . . , n. We stop the sequence of DCVP instances once we find a partition with good
quality, i.e., with ∆ ≤ 2nE (∆∗). The treatment of DBalNPP is identical to that of DNPP.

The results of our tests are presented in Figure 2. Near optimal discrepancies are consistently
obtained for n ≤ 75 without proof of optimality. All computations were performed on an Intel
Pentium 4 PC with 3.2 GHz CPU and 1 MB RAM. For each n, the value of R is chosen such that
the instances generated are in the hard phase with high probability – typically, one or two orders
of magnitude larger than E (∆∗). The details are given in Table 1 in the Appendix. The average
best discrepancies over 100 trials are plotted.

For each of the 2n values of c we try, we apply basis reduction to the original D matrix described
in Equation 3.5. If no good partition is found even after the 2n runs, we repeat the procedure on five
different random permutations of each D matrix considered in the previous run. As the dimension
grows, we will have to try more number of such randomly permuted starting bases until we get a
good solution. We do not have a bound on the number of such bases we have to consider for each
n, but it seems to grow with increasing n. For n = 80 with three random permutations considered
for each D in the original sequence, we are able to find a good partition in 9712 seconds, but the
success percentage drops to 74% for n = 85 with only three passes each. In other words, no 0-1
short vector is found as a solution by the discrete search heuristic for 26% of the problem instances.
For these instances, we have to try several more random permuted starting bases, resulting in large
increases of computational time.

3.2.1 Comparison to Complete Differencing

For comparison purposes, we have implemented the complete KK (CKK) differencing algorithm for
NPP [12] and the complete balanced largest differencing method (CBLDM) [35] for BalNPP. In
the original papers, these authors report the number of nodes examined by the complete versions of
the differencing methods as a measure of the hardness of solving the instances. In our case, we run
these heuristics for the same time limit as taken by the basis reduction heuristic, and record the
best discrepancy obtained by that time. To be conservative, we actually ran CKK and CBLDM for
110% of the average time taken by the BR heuristic on instances of the same size (n and R). BR
heuristic consistently finds smaller discrepancies (better by orders of magnitude) than CKK and the
CBLDM heuristic. The improvements appear to be increasing with n, although the computational
time is also increasing quite fast. We have also recorded the average discrepancies found by the
KK and the BLDM heuristics, which are the values corresponding to the first partition found by
these differencing strategies.

While both Korf [12] and Mertens [35] mention the steps to recover the actual partition from
their differencing methods, they do not give the details of this step for the complete versions of their
algorithms. The partition is recovered by two-coloring a graph that gets built as the differencing
algorithm runs. We start with one node representing each number (thus a total of n nodes). When
we replace two numbers in the list by their difference (and commit to place them in different
subsets), we add an edge between the corresponding nodes. The partition is obtained by two-
coloring the resulting graph, which will be a tree. In the complete versions of differencing, we also
replace two numbers by their sum (and commit to place them in the same subset). We add an extra
node to the graph, and add two edges connecting the extra node and the nodes corresponding to the
two numbers. The partition is recovered by two-coloring the resulting graph, which will again be
a tree. Since the BR heuristic automatically provides the partition (and not just the discrepancy)
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we find the partitions in the case of CKK and CBLDM algorithms, for the sake of fair comparison.
The previous authors may well have been locating the partitions, but their papers [12, 35] do not
mention the details. In our implementation, the times taken by the two-coloring components of the
complete algorithms were not negligible.

We must add a note about the slight up-and-down nature of the curves of discrepancy values
for increasing n values in Figure 2. These variations reflect the choices of R for each n (see Table 1
in the Appendix). For example, the estimate for the optimal discrepancy of an NPP instance with
n = 35 and R = 1012 is

∆∗ =

√
2π

3
√

n 2−n R = 249.18,

while the same estimate for n = 40 and R = 1013 is 83.25. We made the choices of R such that
these estimates exceed zero. To make sure, we also checked whether the partition found happens to
be perfect, and did not include such partitions in the calculations. As expected, perfect partitions
were found only rarely given the choices of R values.
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Figure 2: Comparison of discrepancies given by the BR heuristic, KK, and CKK heuristics for NPP
instances (on left) and BalNPP instances (on right). The expected optimum discrepancies are
also plotted. Discrepancies are plotted on log scale. Average run times are plotted on the right
axis.

3.2.2 Comparison to Schroeppel-Shamir algorithm

Schroeppel and Shamir (SS) proposed a O(2n/2) time and O(2n/4) space algorithm to solve the
knapsack problem [19]. It was claimed in this paper that knapsacks with sizes up to n = 100 could
be solved in practice at that time using this algorithm, even though no detailed computational
evidence was provided. In the context of number partitioning, this algorithm solves BalNPP in
the easy phase. The algorithm could be easily modified to solve the unbalanced case, i.e., NPP,
in the easy phase with the same time and space complexities. This work did not explicitly address
the case of NPP and BalNPP in the hard phase. Howgrave-Graham and Joux (HJ) have recently
proposed a new family of generic algorithms for the knapsack problem [18], which improve the
running time bound to O(20.3113n). A natural way to use these algorithms for knapsacks to solve
NPP and BalNPPin the hard phase is to solve a series of knapsack problems with varying target
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(right-hand side) values to find the optimal choice. Termed the approximate knapsack problem
[18], the number of times HJ or SS algorithm gets applied depends on the size of the bound we
have on the target value. In the worst case, we have to solve O(β) individual knapsacks as part of
this approach. Hence the time complexity of the approximate knapsack problem to solve NPP and
BalNPP is O(20.3113n β). For instances that are well into the hard phase, we could have β ≥ 22n

– see details for n = 60 instances discussed below. Recall that the running time of the CVP-based
binary search algorithm (Figure 1) depends only on log β.

Howgrave-Graham and Joux have given estimates for running times of SS and HJ algorithms
on an n = 96 instance of knapsack problem with n bit length numbers [18], i.e., with density of 1.
They estimate their implementation of SS algorithm could take 1, 500 days on a single computer
with typical configuration, when a good decomposition into four balanced quarters is not readily
available for the instance. In comparison, the HJ algorithm could take only up to 5 days for such
an instance. Of course, the SS and HJ algorithms are guaranteed to find the optimal solution
for the knapsack problem when they terminate. On the other hand, a heuristic version of the HJ
algorithm found a solution in less than 10 hours. Notice that these times are for solving instances of
the knapsack problem, even though they have high density. This calculation needs to be repeated
many times to solve instances of number partitioning in the hard phase. At this point, our discrete
search heuristic is not as effective as the HJ algorithm for n = 95 to find near optimal solutions,
even though we find good quality solutions within 63 seconds using the truncation heuristic – see
Section 4.

In a personal communication, Joux mentioned that their implementation of the SS algorithm on
a knapsack instance with n = 60 numbers each of bit length 70 took around 11 minutes to solve as
an approximate knapsack problem. It was also reported that this value of n was not large enough
for the HJ algorithm to perform better than SS. We tried our discrete search algorithm on n = 60
for R = 1021, and obtained an average discrepancy of 15,798 in an average time of 116.2 seconds
(averages over 100 random instances). Note that the average time for this set of instances is slightly
smaller than, but is comparable to, the average time we observed for n = 60 instances with R = 1019

(Table 1). The expected optimal discrepancy for this choice of parameters is E (∆∗) = 9723. We
also tried the discrete search method for n = 60 instances with R = 1036, which corresponds to a
bit length of around 120 (log2(1036) = 119.6). We obtained an average discrepancy of 9.534× 1018,
in the average time of 158.1 seconds (over 100 instances). The expected optimal discrepancy is
E (∆∗) = 9.723×1018. With the bit size of 2n, the SS algorithm would be expected to take a much
longer time to solve the approximate knapsack problem, while the running time of the discrete
search algorithm is still comparable to the previous cases with smaller bit lengths.

4 Truncated NPP

The discrete search algorithm is currently not efficient for hard phase NPP instances of size n = 80
or higher. When n is fixed, the expected optimal discrepancy value depends linearly on the size
parameter R. Using this relationship as the key, we propose the truncated NPP heuristic, whose
goal is to find a good quality partition quickly when n is large. We solve a truncated instance in
place of the original instance, denoted in short as TruncNPP.

Definition 6. (TruncNPP) Given an NPP instance a1, . . . , an and a real number T > 0, the
truncation parameter, solve a new NPP instance with numbers āj = baj/T e. Let β̄ =

∑
j āj/2, and

let x̄ be an optimal solution to the new problem. Using x̄ as a solution to the original NPP, we
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get a discrepancy ∆T = 2 |
∑

j aj x̄j − β|. The smallest such discrepancy obtained by truncation is
denoted by ∆∗

T .

A natural choice for T is 10t for some integer t ≥ 0. In this case, we cut off the last t digits
from each number aj to obtain the truncated problem. We now bound the quality of the expected
optimal discrepancy obtained using TruncNPP. The expectation is taken over the numbers (ajs),
as described by Borgs et al. [13].

Theorem 7. The expected optimal discrepancy obtained from TruncNPP satisfies E (∆∗
T ) ≤

E (∆∗)+nT/2, where E (∆∗) is the expected optimal discrepancy and T is the truncation parameter.

Proof Let āj = baj/T e = aj/T + εj for εj ∈ (−1/2, 1/2]. With the optimal solution x̄ for
TruncNPP, the optimal discrepancy of the truncated problem is given as

∆̄ = 2
∣∣∣∑j āj x̄j − β̄

∣∣∣ = 2
∣∣∣∑j(aj/T )x̄j +

∑
j εj x̄j − 1/2

∑
j (aj/T + εj)

∣∣∣
= 2

∣∣∣1/T
(∑

j aj x̄j − β
)

+
(∑

j εj x̄j − 1/2
∑

j εj

)∣∣∣
⇒ ∆̄ ≥ (1/T )∆T − 2

∣∣∣∑j εj x̄j − 1/2
∑

j εj

∣∣∣
⇒ ∆T ≤ T ∆̄ + Tε, where ε = 2

∣∣∣∑j εj x̄j − 1/2
∑

j εj

∣∣∣ =
∣∣∣∑j εj(2x̄j − 1)

∣∣∣ .

Hence, E (∆∗
T ) ≤ TE

(
∆̄∗) + nT/2,

as ε ≤ n/2, with the upper bound attained when εj = 1/2 for all j with xj = 1, and all remaining
εj = −1/2. The size parameter for āj ’s is R/T . Hence the expected value of the optimal discrepancy
for the truncated problem satisfies E

(
∆̄∗) = O(

√
n 2−n R/T ). Hence TE

(
∆̄

)
= O(

√
n 2−n R) =

E (∆∗), the expected optimal discrepancy for the original NPP instance.

Notice that if T is large enough such that the truncated NPP has E
(
∆̄∗) = 0, then the upper

bound of nT/2 holds for E (∆∗
T ). In other words, if we truncate the problem to the easy phase, the

discrepancy thus obtained will have the size of the truncation parameter times n on average. The
upper bound on ε is rather conservative. Since aj are i.i.d. integers, it is reasonable to expect the
εj also to be i.i.d. in (−1/2, 1/2]. Under some more simplifying assumptions (independence of xj

distribution from εj) the expected value of ε will be much smaller than nT/2.

We illustrate the effectiveness of TruncNPP to find good quality solutions for large instances
of NPP and BalNPP within a short time in Figure 3. Each point on the graphs represents the
average best discrepancies over 100 trials. For n in the range 80 to 100, we choose R for the
original NPP instance such that it is in the hard phase whp. Since the discrete search heuristic is
not efficient, we choose the truncation parameter T such that the truncated instance is well into
the easy phase, i.e., it is a 0-1 knapsack problem. We solve the subset sum problem using the BR
approach of Coster et al. [16]. We start with an initial truncation parameter T0 = Ts, and apply
BKZ reduction to five different randomly permuted bases corresponding to the knapsack problem
lattice. If a 0-1 solution is not found, we increase T by a factor of 10, i.e., we set Tj = 10Tj−1, and
repeat the BR process. For n = 100, we try 10 different starting bases. We stop the runs once a
0-1 solution corresponding to a partition with discrepancy not more than the bound specified in
Theorem 7. The results indicate that this truncation heuristic finds better quality partitions than
the KK and CKK heuristics. Similar to the previous case, we run the CKK algorithm for 1.1×
time taken by the truncation heuristic.

Similar results were obtained for BalNPP as well. The expected optimal discrepancies for these
instances are much smaller than the 〈∆T 〉 values obtained. For example, E (∆∗) for the n = 100
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case is only 1.142×103. The goal of the truncation heuristic is only to find a good quality partition
in short time, and not to search for near optimal partitions. We could obtain smaller discrepancies
through truncation by starting with smaller values of Ts, but the running time will also increase
in this case. One could also consider truncating an instance well into the hard phase such that the
truncated instance is also in the hard phase. The value of ∆T thus obtained in this case will be
much closer to ∆∗. For values of n at which the discrete search heuristic is finds a near optimal
partition efficiently, increasing the value of R does not appear to blow up the running times much
– see the discussion of the case for n = 60 in Section 3.2.2. Hence, we may as well solve the original
instance directly rather than truncating it to the easy phase. On the other hand, we are not able
to handle the truncated hard phase instances for n ≥ 80 efficiently, and hence we truncate these
instances to the easy phase to obtain a good solution quickly.
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Figure 3: Comparison of TruncNPP method and KK,CKK heuristics for NPP (on left) and for
BalNPP instances (on right). Discrepancies are plotted on a log scale, but notice the difference
in ranges of values plotted on the left y-axis, as compared to Figures 2 and 4.

5 A Mixed Integer Program (MIP) for NPP

The discrete search and truncation algorithms do not provide any guarantees of optimality or
quality of the solutions found. We try to address the question of how to provide a certificate of
optimality for the solutions provided by the lattice-based approaches. A key shortcoming of the
BR approach for both NPP in the hard phase and for subset sum problems is that it cannot impose
bounds on variables. For the instances on which it fails, i.e., does not find 0-1 vectors, it typically
finds relatively short vectors that correspond to solutions with a few xj = −1, 2 etc. We can force
such bounds through explicit optimization models. NPP is naturally modeled as a mixed integer
program (MIP), as shown below.

min ∆ = 2w
s.t. w ≥

∑
j aj xj − β

w ≥ −(
∑

j aj xj − β)
xj ∈ {0, 1} ∀ j.

(5.6)
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The first two constraints model w ≥ |
∑

j ajxj − β|, which implies w ≥ 0. Given the objective
function to minimize 2w, the above inequality will be tight at the optimal solution. Integer pro-
gramming can be solved in polynomial time in fixed dimensions by Lenstra’s algorithm [36]. Basis
reduction is one of the key steps in this algorithm. At the same time, no practical implementations
of this algorithm are known. The standard techniques to solve MIPs are branch-and-bound and
cutting planes [37], often referred to as branch-and-cut in conjunction. Still, we are not able to
submit the NPP MIP to a state-of-the-art MIP solver such as CPLEX, due to the huge numbers
involved. As far as we know, there are no arbitrary precision MIP solvers available. Hence we
propose a BR-based reformulation of the NPP MIP, which can be handled by CPLEX. We write
the MIP (5.6) as

min {2w |Ax + fw ≤ b, (x, w) ∈ Zn × R},

where

A =


a
−a
−I
I

 , f =


−1
−1
0
0

 , and b =


β
−β
0
1

 .

We then form D =
[
A b
0 M

]
, with M being a large number (> β), and apply BR on D to obtain

D̃. We must have D̃ = DV for some unimodular matrix V (i.e., det(V ) = ±1) , which has the
form

V =
[
U v
0 1

]
. Hence, D̃ =

[
Ã b̃
0 M

]
, where Ã = AU, and b̃ = b + Av.

Note that U is also unimodular. We then obtain a reformulation of the MIP given as

min {2w | Ãy + fw ≤ b̃, (y, w) ∈ Zn × R}.

The equivalence of the original MIP and the reformulated MIP is shown by the one-to-one corre-
spondence of the integer variables x and y:

y = U−1(x + v), x = Uy − v.

For BalNPP, we add the constraint
∑

j xj = bn/2c to the original MIP, and also add a row of
ones to A and the entry bn/2c to b. The rest of the analysis remains same.

This reformulation technique is an extension of a similar technique for integer programs termed
column basis reduction (CBR) [23] to the case of MIPs. CBR generalizes previous reformulation
techniques proposed by Aardal et al. for equality constrained IPs [20, 21]. In our case, the variable
w will have an integer value in any optimal solution. As such, we could have treated it as the
(n + 1)-st integer variable (along with x), and the analysis of CBR would have applied. The
reformulation presented here is more general, and applies for general MIPs where we could have a
set of continuous variables w in place of the single variable w.

Intuitively, we reduce the original MIP to an instance of extended CVP (lattice is L(A) extended
by the addition of f , and the target vector is b). As we did before, we reduce the CVP to an instance
of extended SVP using Kannan’s homogenization technique, and then try to solve the latter using
direct BR application to its lattice. We now go one step further, as compared to the BR heuristic.
We convert the unsolved (by BR) version of SVP to an instance of MIP and solve it using branch-
and-cut methods. We present results of MIP runs on NPP and BalNPP in Figure 4. Once again,
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each point on the graphs represents the average best discrepancies and time over 100 trials. The
version of CPLEX used is 9.0.

Notice that the MIP model is guaranteed to find the optimal discrepancy, as long as the solver
finishes the run. Hence, we selected instances in the hard phase without having to choose R too
large (if an instance had a perfect partition, we discarded the same). The improvements over the
complete versions of differencing methods is marked, and seems to increase with larger values of
n. Still, similar to the case of the BR algorithm, the run times also increase rapidly with n. For
problems with n ≥ 60, the method takes several hours to terminate, and hence is not efficient.
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Figure 4: Comparison of MIP model and KK,CKK heuristics, for NPP (on left), and BalNPP (on
right). “opt” represents the average optimal discrepancy, and not the expected optimal discrepancy.
Discrepancies are plotted on log scale. Average run times are plotted on the right axis. We point
out that the slight decrease in the discrepancies from n = 45 to n = 50 is not a trend – it so
happens that we chose the R value for n = 50 slightly smaller than that used for the n = 50
instances reported in the BR algorithm runs (Figure 2). We still considered only instances in the
hard phase (even with the smaller R value).

6 Discussion

Unlike most previous methods, the BR-based discrete search algorithm does not start with a feasible
solution (corresponding to some partition), and improve on it. As such, the algorithm needs to
run till the good partition is found. The The idea of truncation is very general, and can be used
in conjunction with any other method that can solve, or find good approximate solutions to, the
truncated instance. Similar to the BR algorithm, the truncation heuristic also adapts to more
general partition problems such as unequal division and general constrained partitions. Although,
we should mention that an unequal partition problem can be reduced to a standard NPP instance
by adding one more number that is chosen based on the extent of inequality of shares.

At the heart of both the BR heuristic and the MIP model is a routine for basis reduction. While
BKZ reduction is adequate for moderate dimensions, the efficiency of the reduction is not good as
n becomes large. The lack of a true CVP oracle is the only reason why we could not develop the
binary search procedure to solve instances of NPP by solving a limited number of DNPP instances.
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Gama and Nguyen [24] have recently reported the state of the art of basis reduction algorithms.
They are able to solve specific SVP instances for dimensions higher than 100. An adequate BR
algorithm could extend the applicability of our methods to NPP instances with much larger n. Until
then, the KK heuristic may still be the best option to get rough estimates of the discrepancies for
NPPs with hundreds of numbers.

All methods presented in this paper are naturally extended to the case of multi-way partitions
(i.e., three or more subsets). We will use a binary variable for each aj-subset pair, and the rela-
tionships can be expressed as linear equations and inequalities. Limits on the expected values of
optimal discrepancies are known in this case as well [38], and could be used just as in the discrete
search algorithm.
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Appendix: Details of Computation

We present details of the calculations represented by the graphs in Figures 2, 3, 4 in the following
tables. Each point on the plots corresponds to the average value of 100 trials. The reduction
parameter 1/4 < ν < 1 in the BKZ reduction [29] routine is fixed at 0.999 for all our calculations.

For the discrete search heuristic presented in Figure 2 and in Tables 1 and 2, the BlockSize
parameter in BKZ reduction was set as half of the number of columns, i.e., as b(n + 1)/2c for
instances of size n. For values of n up to 75, the choice of half blocksize performed well. While
increasing the blocksize further only increased the computational time by up to a factor of 2, it
did not improve the solution quality by much. For the truncated problems with 80 ≤ n ≤ 100,
increasing the blocksize beyond half did help in improving the quality of solutions obtained. The
choices of blocksize for each n are listed in Tables 3 and 4.
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Table 1: Details of the data plotted for NPP in Figure 2 (left figure). R is given in log10 units –
the R value for n = 45 is 1015 for instance. 〈#BR〉 gives the average number of BR runs, i.e., the
number of values tried for the parameter c in the discrete search algorithm. Time is in seconds.

n R 〈#BR〉 〈Time〉 〈∆KK〉 〈∆CKK〉 〈∆〉 E (∆∗)
30 11 4.6 0.27 1.674e+07 6.186e+05 737.22 738.23
35 12 5.7 0.76 8.940e+07 1.204e+06 261.72 249.18
40 13 8.3 2.37 4.699e+08 3.268e+06 93.24 83.25
45 15 7.9 5.49 2.555e+10 7.923e+07 279.14 275.92
55 17 15.3 57.31 1.078e+11 1.754e+08 37.11 29.79
50 16 11.5 17.62 9.328e+11 5.063e+08 104.60 90.89
60 19 15.9 129.3 5.580e+13 1.415e+10 117.60 97.23
65 20 18.1 243.02 2.081e+14 9.701e+10 51.50 31.63
70 22 23.6 2683.67 3.227e+16 6.736e+11 150.47 102.56
75 23 65.0 4701.93 1.850e+17 3.062e+12 334.40 33.17

Table 2: Details of the data plotted for BalNPP in Figure 2 (right figure). R is given in log10

units. 〈#BR〉 gives the average number of BR runs, and Time is in seconds.

n R 〈#BR〉 〈Time〉 〈∆BLDM 〉 〈∆CBLDM 〉 〈∆〉 E (∆∗)
30 10 3.6 0.15 6.533e+10 7.452e+05 284.99 52.20
35 11 5.1 0.53 3.289e+11 7.562e+05 84.68 17.62
40 13 4.5 0.98 1.142e+14 8.442e+07 231 58.86
45 14 7.4 3.75 5.594e+14 8.572e+07 99.04 19.51
50 15 7.8 8.76 1.291e+16 4.272e+08 46.76 6.43
55 16 19.7 55.31 7.299e+16 3.217e+08 33.05 2.11
60 18 7.8 60.08 1.655e+19 5.022e+10 42.2 6.88
65 20 11.2 157.71 8.024e+20 4.366e+11 95.2 22.36
70 21 21.9 576.86 2.039e+22 3.638e+12 82.15 7.25
75 23 17.2 949.96 2.172e+24 9.221e+13 206.4 23.46

Table 3: Details of the data plotted for TruncNPP for NPP instances in Figure 3 (plot on the
left). Blk gives the BlockSize parameter used in the Block Korkine-Zolotarev (BKZ) [34] BR routine
for each n. ts gives the starting truncation level in log10 units, i.e., Tstart = 10ts . 〈t〉 gives the
average truncation parameter over all trials in log10 units.

n R Blk ts 〈t〉 〈#BR〉 〈Time〉 〈∆KK〉 〈∆CKK〉 〈∆〉
80 26 70 13 14.9 11.8 57.17 6.051e+19 1.111e+17 6.767e+15
85 27 70 15 16.0 12.1 66.38 1.347e+21 1.295e+18 9.804e+16
90 29 80 17 17.9 13.6 43.01 6.425e+22 1.439e+20 7.488e+18
95 30 80 17 18.3 8.8 62.34 3.020e+23 5.661e+20 1.001e+19
100 32 90 18 19.7 20.1 247.54 2.327e+25 7.454e+21 5.568e+20
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Table 4: Details of the data plotted for TruncNPP for BalNPP instances in Figure 3 (plot on
the right). Blk gives the BlockSize parameter used in the Block Korkine-Zolotarev (BKZ) [34] BR
routine for each n. ts gives the starting truncation level in log10 units, i.e., Tstart = 10ts . 〈t〉 gives
the average truncation parameter over all trials in log10 units.

n R Blk ts 〈t〉 〈#BR〉 〈Time〉 〈∆BLDM 〉 〈∆CBLDM 〉 〈∆〉
80 25 70 14 14.9 6.15 18.52 7.525e+18 1.786e+16 4.177e+15
85 26 70 14 15.5 9.55 40.91 4.627e+19 4.118e+17 5.883e+16
90 28 80 16 17.2 8.3 46.34 4.364e+21 8.163e+18 1.222e+18
95 29 80 17 18.5 9.05 51.87 5.300e+22 7.387e+19 1.085e+19
100 31 90 17 18.6 23.75 318.07 3.412e+24 9.105e+20 4.716e+19

Table 5: Details of the data plotted for the MIP approach to NPP in Figure 4 (left figure). R is
given in log10 units. 〈#BB〉 gives the average number of branch-and-bound nodes evaluated by
CPLEX 9.0 to solve each instance. Time is in seconds. Since the MIPs were solved to optimality,
we report the average optimal discrepancy under 〈∆∗〉.

n R 〈#BB〉 〈Time〉 〈∆KK〉 〈∆CKK〉 〈∆∗〉
20 8 3305 0.61 1.032e+05 2.822e+03 599.64
25 9 5940 1.36 7.317e+05 6.990e+03 222.18
30 10 13340 3.55 1.001e+06 1.358e+04 73.38
35 12 115905 37.95 6.296e+07 6.402e+04 258.76
40 13 289124 112.72 3.759e+08 1.664e+05 77.26
45 15 2291299 513.20 3.548e+10 8.715e+06 198.25
50 15 3423102 915.60 2.929e+10 1.310e+06 10.20

Table 6: Details of the data plotted for the MIP approach to BalNPP in Figure 4 (right figure). R
is given in log10 units. 〈#BB〉 gives the average number of branch-and-bound nodes evaluated by
CPLEX 9.0 to solve each instance. Time is in seconds. Since the MIPs were solved to optimality,
we report the average optimal discrepancy under 〈∆∗〉.

n R 〈#BB〉 〈Time〉 〈∆BLDM 〉 〈∆CBLDM 〉 〈∆∗〉
20 7 1070 0.20 4.816e+07 6.870e+03 155.43
25 8 1379 0.33 7.317e+07 5.583e+03 40.31
30 10 20847 5.56 5.969e+09 1.105e+05 229.69
35 11 32214 10.23 6.296e+10 1.554e+05 53.15
40 13 790583 281.66 1.008e+14 7.751e+05 362.32
45 14 465825 402.20 4.402e+14 3.595e+06 35.14
50 14 1104529 785.21 7.871e+14 4.335e+06 8.75
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