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Abstract

In this paper we study linear optimization problems with multi-dimensional linear positive
second-order stochastic dominance constraints. By using the polyhedral properties of the second-
order linear dominance condition we present a cutting-surface algorithm, and show its finite conver-
gence. The cut generation problem is a difference of convex functions (DC) optimization problem.
We exploit the polyhedral structure of this problem to present a novel branch-and-cut algorithm
that incorporates concepts from concave minimization and binary integer programming. A linear
programming problem is formulated for generating concavity cuts in our case, where the polyhedra
is unbounded. We also present duality results for this problem relating the dual multipliers to util-
ity functions, without the need to impose constraint qualifications, which again is possible because
of the polyhedral nature of the problem. Numerical examples are presented showing the nature of
solutions of our model.

Key Words: Linear Programming, Stochastic Ordering, Stochastic Dominance, Utility Functions,
Convex Programming, Cutting Plane Algorithms



1 Introduction

The concept of stochastic dominance is fundamental when comparing two random variables. In
particular, this concept allows us to define preference of one random variable over another. Several
different notions of stochastic dominance exist and have been extensively studied in the literature.
For example, in the univariate case we say that a random variable ξ stochastically dominates ψ in
the first order, denoted by ξ D(1) ψ, if

F (ξ; a) ≤ F (ψ; a) (1)

for all a ∈ R, where F (ξ; ·) and F (ψ; ·) are the cumulative distribution functions of respectively ξ

and ψ. Similarly, we say that ξ stochastically dominates ψ in the second order, denoted by ξ D(2) ψ,
if

F2(ξ; a) :=
∫ a

−∞
F (ξ; t) dt ≤

∫ a

−∞
F (ψ; t) dt =: F2(ψ; a) (2)

for all a ∈ R.
The concept of stochastic dominance is also related to utility theory (von Neumann and Morgen-

stern, 1947), which hypothesizes that for each rational decision maker there exists a utility function
u such that the (random) outcome X is preferred to the (random) outcome Y if E[u(X)] ≥ E[u(Y )].
Since the utility function of a decision maker is not known to us, if we would like to ensure that X

is preferred over Y then we must impose E[u(X)] ≥ E[u(Y )] for all u. If we have more information
on the decision maker (e.g., if our decision maker is risk averse) we can restrict the set from which
u is taken (e.g., the set of increasing concave functions). Some notions of stochastic dominance
correspond to particular classes of utility functions. For example, the first order dominance cor-
responds to the set of non-decreasing functions for which the expectations exist, whereas second
order corresponds to non-decreasing concave functions.

Extensions of the concept of stochastic dominance to random vectors have been developed as
well. For example, a random vector X is said to dominate Y in positive linear second order (written
X DPlin

(2) Y ) if:

vT X D(2) vT Y for all v ∈ Rm
+ . (3)

Although the theory of stochastic dominance is well developed (see, e.g., Shaked and Shanthiku-
mar 1994 and Müller and Stoyan 2002 for comprehensive discussions), the introduction of stochastic
dominance as constraints for optimization problems is recent. Dentcheva and Ruszczyński (2003,
2004) introduced and studied optimization models with stochastic dominance constraints. The
results in those papers were obtained in the univariate context using the notion of second order
stochastic dominance, more specifically for the problem

min f(x) (UniSDC)

s. t. g(x) D(2) y, (4)

x ∈ X ⊆ Rn.

Dentcheva and Ruszczyński (2003) considered a variant of (UniSDC) in which the decision variables
are random variables, i.e., the problem takes the form min{f(ξ) : ξ D(2) ψ, ξ ∈ Ξ}. They showed
that when ξ and ψ are random variables with finite support, under mild conditions the feasible

1



region in (UniSDC) is reformulated by using a finite number of variables and linear constraints,
which are explicitly given. In a subsequent paper Dentcheva and Ruszczyński (2009) studied the
multi-variate problem:

min f(x) (MultiSDC)

s. t. G(x) D(2) Y, (5)

x ∈ X ⊆ Rn.

where Y ∈ Rm, and G(x) D Y is defined over random vectors using the concept of positive
linear second order dominance. Dentcheva and Ruszczyński (2009) developed duality results for
(MultiSDC) for vector valued mapping G. While useful, those results do not yield an algorithm
that can solve (MultiSDC).

In this paper we address the issue of developing an algorithm to solve a class of optimization
problems with multi-variate stochastic dominance constraints. Such a class is more strict than
(MultiSDC) in the sense that we consider linear problems, but on the other hand we consider a
more general notion of dominance that includes positive linear dominance as a particular case. The
precise notion of dominance we use is defined below:

Definition 1 Given a (possibly unbounded) non-empty polyhedron P, a random vector X is said
to dominate Y in polyhedral second order (written X D(P) Y and called P-dominance in short)
with respect to P if

vT X D(2) vT Y for all v ∈ P. (6)

The idea behind the definition is that one wants to impose one-dimensional stochastic dominance
between certain combinations of the components of X and the same combinations of the components
of Y . The set P represents a collection of weights used to combine the various criteria represented
by the vectors X and Y . Some particular cases of polyhedral order are listed below:

1. By taking P = Rm
+ , we have X D(P) Y ≡ X DPlin

(2) Y , i.e., the positive linear second order
dominance is a special case of polyhedral second order dominance.

2. Suppose there are two criteria (i.e., n = 2) and one wishes to consider weights for each criteria
ranging respectively from α to β and 1− α to 1− β. Then P is the line segment connecting
(α, 1− α) to (β, 1− β).

3. By taking P to be the convex hull of the vectors (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, 1, . . . , 1),
we obtain a second-order version of the partial sum stochastic ordering described in Chang
et al. (1991).

The notion of P−dominance allows us greater flexibility than the requirements imposed from the
positive linear second order dominance. In particular, by taking P to be a subset of the positive
orthant, P-dominance may provide a larger set of feasible solutions (i.e., it is less conservative).
Moreover, although obvious, it is important to point out that one can specify P either by using a
pre-defined set of vertices, or through a set of linear constraints. This has the potential to increase
wider practical applicability and use of optimization with dominance constraints.
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The following characterization shows that without loss of generality we can assume that the set
P is bounded. This property is useful in our analysis. Note also that this proposition remains valid
for a general convex set.

Proposition 1 Let P be a convex set. Then, (6) holds if and only if vT X D(2) vT Y for all v ∈
P̃ := conv(P∪{0})∩∆, where conv denotes the convex hull of a set, and ∆ := {v ∈ Rm | ‖v‖1 ≤ 1}.

Proof: First notice that, given any two random variables ξ and ψ, we have ξ D(2) ψ if and only if
αξ D(2) αψ for all α ≥ 0.

Suppose that (6) holds, and let v̄ be an arbitrary point in P̃. We want to show that v̄T X D(2)

v̄T Y . Assume that v̄ 6= 0 (the case v̄ = 0 is trivial). Since v̄ ∈ conv(P ∪ {0}), there exist
v1, . . . , vk ∈ P and coefficients λ1, . . . , λk with λj ≥ 0, 0 <

∑k
j=1 λj ≤ 1 such that v̄ =

∑k
j=1 λjv

j .
Now let α := 1/

∑k
j=1 λj . Then, convexity of P implies that αv̄ ∈ P, so from (6) we have that

αv̄T X D(2) αv̄T Y and therefore v̄T X D(2) v̄T Y .
Conversely, suppose that vT X D(2) vT Y for all v ∈ P̃. Let v̄ be an arbitrary point in P, and

again assume without loss of generality that v̄ 6= 0. Let α := min{1/‖v̄‖1, 1}. Then, αv̄ ∈ P̃, so
αv̄T X D(2) αv̄T Y and therefore v̄T X D(2) v̄T Y . ¤

In this paper we study a linear version of (MultiSDC):

min dT x (ULP)

s. t.
n∑

`=1

x`a` D(P) c, (7)

where a`, ` = 1, . . . , n and c are m−dimensional random vectors defined on a common probability
space (Ω,F , P ). The sample space Ω is assumed to be finite. We show that (ULP) can also be
reformulated as a linear program. However, this reformulation requires an exponential number of
constraints. Consequently, we develop a cut-based algorithm to solve (ULP). The cut generation
problem is a difference of convex functions (DC) optimization problem. We exploit the polyhedral
structure of this problem to present a branch-and-cut algorithm that combines concepts from con-
cave minimization and binary integer programming. A linear programming problem is formulated
for generating concavity cuts in our case, where the polyhedra is unbounded. Also, by exploit-
ing the problem structure, we present a dive-and-search method to find a local minimum of our
polyhedral-DC. We also present duality results for (ULP), and construct a “dual utility” function.
For simplicity we have omitted the deterministic constraint set X while defining (ULP). The al-
gorithm presented in this paper remains valid in the presence of these constraints provided that
the “master problems” are solved exactly. For example, these results are valid when X imposes
integral requirements on decision variables.

The remainder of the paper is organized as follows. In Section 2 we analyze the polyhedral
dominance problem, show a finite-constraint formulation for it, and illustrate the ideas with the
help of a few numerical examples. In Section 3 we discuss duality results and the connection between
dual multipliers and utility functions. In Section 4 we present our cut-based algorithm to solve
(ULP), together with a discussion on how to solve the subproblems efficiently. Some conclusions
and directions for future research are presented in Section 5.
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2 Linear Optimization with Polyhedral Second Order Dominance

Let us consider (ULP) with A = [a1, . . . , an], and write (7) as Ax D(P) c for a given polyhedron
P. We denote the realizations of the random vector c and random matrix A by c1, . . . , cr, and
A1, . . . , At, respectively. The corresponding probabilities are denoted by q1, . . . , qr and p1, . . . , pt,
respectively. Dentcheva and Ruszczyński (2003) showed the following result for dominance of
univariate random variables, which is used in our subsequent developments.

Proposition 2 Assume that a random variable ζ has a discrete distribution with realizations ζi, i =
1, . . . , r, and corresponding probabilities qi, i = 1, . . . , r. Let U be the set of all non-decreasing
concave functions u such that limt→−∞ u(t)/t < ∞. Then ξ D(2) ζ if and only if

E[u(ξ)] ≥ E[u(ζ)], for all u ∈ U . (8)

Furthermore, (8) is equivalent to

E[(ζi − ξ)+] ≤ E[(ζi − ζ)+], i = 1, . . . , r, (9)

where (·)+ indicates max{·, 0}.

By observing that in condition (3) vT X and vT Y are univariate random variables for a fixed v,
Proposition 2 gives the following two formulations of (ULP):

min dT x

s. t. E[u(vT Ax)] ≥ E[u(vT c)] for all u ∈ U and all v ∈ P̃, (10)

and

min dT x (SILP)

s. t.
t∑

j=1

pj (vT ci − vT Ajx)+ ≤
r∑

l=1

ql (vT ci − vT cl)+, i = 1, . . . , r, for all v ∈ P̃, (11)

where P̃ is the polytope defined in Proposition 1 as a function of P , i.e., P̃ = conv(P ∪ {0}) ∩∆.
The following theorem shows that in (SILP) it is sufficient to write constraints (11) for a finite

number of vectors v.

Theorem 1 Let

Pi := {(v, y) | yl ≥ vT (ci − cl), yl ≥ 0, v ∈ P̃, l = 1, . . . , r}, i = 1, . . . , r, (12)

and Pi = Ki⊕Ei, where Ki is the convex hull of the vertex solutions of Pi and Ei is the convex hull
of the extreme directions of Pi. Then, the semi-infinite constraints (11) are equivalent to

t∑

j=1

pj (vikT
ci − vikT

Ajx)+ ≤
r∑

l=1

ql (vikT
ci − vikT

cl)+, i = 1, . . . , r, k = 1, . . . , νi, (13)

where vik are the v-components of the vertex solutions of Pi.
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Proof: Obviously all x satisfying (11) also satisfy (13). Now suppose we have an x̂ which satisfies
(13) but not (11), i.e., this x̂ violates (11) for some v. Equivalently, there exists some i ∈ {1, . . . , r}
such that the problem

min
v∈ eP

r∑

l=1

ql (vT ci − vT cl)+ −
t∑

j=1

pj (vT ci − vT Aj x̂)+ (DCPi)

has a negative objective value. The objective function in the problem (DCPi) is a difference of two
piecewise linear convex functions. We can reformulate (DCPi) as a concave minimization problem
as follows.

min
v,y

f(v, y) :=
r∑

l=1

ql yl −
t∑

j=1

pj (vT ci − vT Aj x̂)+ (SepCPi)

s. t. (v, y) ∈ Pi.

We first argue that (SepCPi) has a minimizer. To see that, note that the rightmost term in the
objective function of (SepCPi) is bounded, since it is a continuous function involving only the
v-components and v is restricted to the compact set P̃. The leftmost term is always non-negative.
Thus, since this is a minimization problem, we can embed the y components into a compact set as
well, which then implies that (SepCPi) has a minimizer.

Now, since P i is a polyhedral set, by the decomposition theorem (see, e.g., Rockafellar 1970)
there exists a polytope Ki and a polyhedral cone Ei such that P i = Ki⊕Ei. We will show that at least
one of the vertex solutions of Pi is a minimizer of (SepCPi). First note that the vertex solutions of Pi

are same as the vertex solutions of Ki, and let us denote those vertices by {(vi1, yi1), . . . , (viνi , yiνi)}.
Let (v∗, y∗) ∈ P i be a minimizer of (SepCPi). Then from the decomposition theorem we have a
u∗ ∈ Ki and e∗ ∈ Ei such that (v∗, y∗) = (u∗ + e∗). Now take a solution u∗ + αe∗, α > 1. Then,
(u∗ + e∗) = λu∗ + (1 − λ)(u∗ + αe∗) for λ = (α − 1)/α. Note that u∗ + αe∗ ∈ P i. ¿From the
concavity of f , we have

f(u∗ + e∗) ≥ λf(u∗) + (1− λ)f(u∗ + αe∗). (14)

Since (u∗ + e∗) is a minimizer, the inequality in (14) can hold only if f(u∗ + e∗) = f(u∗) =
f(u∗ + αe∗). Moreover, since u∗ ∈ Ki, there exist λ1, . . . , λνi with λk ≥ 0,

∑νi
k=1 λk = 1 such that

u∗ =
∑νi

k=1 λk(vik, yik). The conclusion that f(u∗) = f(vik, yik) for some k follows from concavity
of f . Hence, for some i, (SepCPi) has a vertex solution (vik, yik) with negative objective value.
This contradicts the assumption that x̂ satisfies (13). Therefore, x̂ must satisfy (11). ¤

Theorem 1 allows us to reformulate (ULP) as (FLP):

min dT x (FLP)

s. t.
t∑

j=1

pj (vikT
ci − vikT

Ajx)+ ≤
r∑

l=1

ql (vikT
ci − vikT

cl)+, i = 1, . . . , r, k = 1, . . . , νi. (15)

However, (FLP) may have exponential number of constraints since the number of vertices in Ki

may be exponential. Nevertheless, by letting zijk := (vikT
ci−vikT

Ajx)+ we can reformulate (FLP)
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as a linear program (FullLP):

min dT x (FullLP)

s. t.
t∑

j=1

pj zijk ≤
r∑

l=1

ql (vikT
ci − vikT

cl)+, i = 1, . . . , r, k = 1, . . . , νi

zijk ≥ (vikT
ci − vikT

Ajx), i = 1, . . . , r, j = 1, . . . , r, k = 1, . . . , νi (16)

zijk ≥ 0, i = 1, . . . , r, j = 1, . . . , r, k = 1, . . . , νi.

Note that if x∗ is an optimal solution of (FLP), then obviously (x∗, zijk∗) = (x∗, (vikT
ci−vikT

Ajx∗)+)
is a feasible solution of (FullLP). Conversely, if (x∗, zijk∗) is an optimal solution of (FullLP), then
x∗ is a feasible solution of (FLP). The latter follows because pj ≥ 0. Hence, we may use either
(FLP) or (FullLP) to find x∗. In Section 4 we will discuss a cut-generation strategy that does not
require enumerating all vertices vik of Pi in advance.

As a consequence of Theorem 1, the following corollary shows that one needs to consider only
a subset of utility functions in (10).

Corollary 1 A vector x∗ is a solution of (ULP) if and only if x∗ is a solution of

min dT x

s. t. E[u(vT Ax)] ≥ E[u(vT c)], ∀u ∈ W, (17)

where W is the set of non-decreasing piecewise linear concave functions u : R 7→ R of the form
u(z) = −(vikT

ci − z)+, i = 1, . . . , r, k = 1, . . . , νi.

In the univariate case, we have the following corollary.

Corollary 2 (Dentcheva and Ruszczyński 2003) Let P ⊆ R1
+, P 6= {0}. Then we can solve (ULP)

by solving:

min dT x

s. t.
t∑

j=1

pj zij ≤
r∑

l=1

qj (ci − cl)+,

zij ≥ (ci −Ajx), zij ≥ 0, i, j = 1, . . . , r.

Proof: P ⊆ R1
+, P 6= {0} implies that P = [a, b] for some 0 ≤ a ≤ b with b > 0. By Proposition 1,

we have vX D(2) vY for all v ∈ P if and only if vX D(2) vY for all v ∈ [0, min{b, 1}]. Theorem 1
then ensures that the latter condition holds if and only if bX D(2) bY (it is easy to check that the
v-components of the vertices of the polyhedron Pi in the theorem are either 0 or b). Since b > 0,
this is also equivalent to X D(2) Y . It follows that, in (FullLP), we have νi = 1 and vik = 1 for
all i. ¤
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2.1 General Multivariate Dominance

Although in this paper we focus on a particular notion of P-dominance introduced in (6), a general
notion can be defined by extending the characterization via expected utility in (8) to the multivariate
case. Following Müller and Stoyan (2002), we say that a random vector X stochastically dominates
a random vector Y in second order (denoted X D(2) Y ) if and only if

E[u(X)] ≥ E[u(Y )] (18)

for all concave non-decreasing functions u. Note that the second order linear dominance is a special
case of second order dominance. Unfortunately, such characterization requires verifying (18) for a
large class of functions, and a simpler characterization such as (9) does not seem to be available at
the present moment. This issue in part justifies the use of alternative orders such as the polyhedral
order introduced in Definition 1.

The situation becomes much easier when the vectors X and Y have independent components.
In that case, multivariate dominance reduces to the univariate case. This result is shown in Huang
et al. (1978), but we state it and prove it here for completeness:

Theorem 2 Let X and Y be random vectors in Rn with independent components. Then,

X D(2) Y ⇐⇒ X` D(2) Y`, ` = 1, . . . , n.

Proof: The necessity part is immediate, noticing that the function u(x1, . . . , xn) := u`(x`) (where
u` is concave and increasing in R1) is concave and increasing in Rn.

To show sufficiency, we use induction in n. For n = 1 the result is trivial. Suppose it holds
for an arbitrary n. Consider a concave increasing function u in Rn+1. Given xn+1 ∈ R, define the
function uxn+1 in Rn as uxn+1(x1, . . . , xn) := u(x1, . . . , xn+1). Clearly, uxn+1 is concave increasing
in Rn. Thus, by the induction hypothesis, given two random vectors X and Y in Rn+1 we have

E[u(X1, . . . , Xn, xn+1)] = E[uxn+1(X1, . . . , Xn)] ≥ E[uxn+1(Y1, . . . , Yn)]

= E[u(Y1, . . . , Yn, xn+1)].
(19)

Let FXn+1(·) be the cumulative distribution function of Xn+1. By integrating both sides of the
above inequality we obtain

E[u(X1, . . . , Xn, Xn+1)] =
∫

R
E[u(X1, . . . , Xn, xn+1)] dFXn+1(xn+1)

≥
∫

R
E[u(Y1, . . . , Yn, xn+1)] dFXn+1(xn+1).

(20)

Next, define the function ũ in R as ũ(·) := E[u(Y1, . . . , Yn, ·)]. Notice that the right-most term
in (20) can be written as

∫

R
E[u(Y1, . . . , Yn, xn+1)] dFXn+1(xn+1) =

∫

R
ũ(xn+1) dFXn+1(xn+1) = E[ũ(Xn+1)]. (21)

Moreover, ũ is concave increasing since so is u. Thus, since Xn+1 D(2) Yn+1 by assumption, we
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have
E[ũ(Xn+1)] ≥ E[ũ(Yn+1)]

=
∫

R
ũ(yn+1) dFYn+1(yn+1)

=
∫

R
E[u(Y1, . . . , Yn, yn+1)] dFYn+1(yn+1)

= E[u(Y1, . . . , Yn, Yn+1)].

(22)

The result then follows by combining inequalities (20), (21) and (22). ¤

A consequence of Theorem 2 in the context of P-dominance defined in Definition 1 is given
below.

Corollary 3 Let X and Y be random vectors in Rm with independent components, and let P =
Rm

+ , which is the context of the positive linear second order dominance defined in (3). Then,
X D(P) Y if and only if X` D(2) Y`, ` = 1, . . . ,m.

Proof: The “if” part follows from Theorem 2 by noticing that functions of the form u(vT x), where
u is concave non-decreasing in R1 and v ∈ P, are a subset of the set of concave non-decreasing
functions in Rm. The “only if” part is immediate since e` ∈ P (where e` is the vector with the `th
component equal to one and the remaining ones equal to zero). ¤

Corollary 3 has an immediate application in the context of problem (ULP). Consider the matrix
A = [a1, . . . , an], where the a` are the column vectors in (7), and suppose that the rows of A are
mutually independent. Suppose in addition that the vector c has independent components as well.
In that case, if P = Rm

+ (i.e., positive linear second order dominance is used), then condition (7)
becomes

(a`)T x D(2) c`, ` = 1, . . . , m,

where a` is the `th row of A. In other words, the only relevant vertices given by Theorem 1
are the vertices e1, . . . , em of the simplex P̃ = {v ∈ Rm

+ |
∑

vi ≤ 1, v ≥ 0}. More vertices may
exist, but they will necessarily generate redundant constraints. We shall see an illustration of that
phenomenon in Section 2.2.

2.2 Examples

We illustrate now the result in Theorem 1 by describing an example in detail. Consider the linear
program

max 3x1 + 2x2

s. t. (Ex1-LP)

−




4 2
2 2
1 0




[
x1

x2

]
≥ −




200
160
40


 .
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Suppose there is uncertainty in some of the coefficients, which we want to model using stochastic
dominance. More specifically, consider the ULP

max 3x1 + 2x2

s. t. (Ex1-ULP)

−




4± α 2
2 2± α

1 0




[
x1

x2

]
DPlin

(2) −




200± 10β

160
40± 5β


 ,

where DPlin
(2) denotes the positive linear second order dominance defined in (3) (recall that such an

order corresponds to the polyhedral order D(P) with P defined as a normalization of the cone Rm
+ ).

In the above, we write (a± b) to indicate that the actual value is random, with two outcomes a + b

and a − b. For the values in the matrix on the left-hand side, these outcomes have probability
respectively equal to p and 1− p; for the values in the vector on the right-hand side, the outcomes
have probability respectively equal to q and 1 − q. The parameters α and β control the degree
of uncertainty on respectively the left- and right-hand sides; the bigger those values, the bigger
the degree of uncertainty (so α = β = 0 corresponds to the original LP). It is assumed that all
uncertain quantities are independent, so there are 16 scenarios in (Ex1-ULP). Let Ai and ci denote
the values of respectively the matrix on the left-hand side and the vector on the right hand-side
for the ith scenario, and let us number the scenarios in such a way that A1 = A2 = A3 = A4,
c1 = −(200− 10β, 160, 40− 5β), c2 = −(200− 10β, 160, 40 + 5β), c3 = −(200 + 10β, 160, 40− 5β),
c4 = −(200 + 10β, 160, 40 + 5β), A5 = A6 = A7 = A8, c5 = c1, c6 = c2, c7 = c3, c8 = c4, and so on.

Let us write explicitly the polyhedra Pi defined in (12). From the numbering of the scenarios, it
is clear that P1 = P5 = P9 = P13 and similarly for the other scenarios, so we only need to describe
P1, . . . ,P4. Let Q be defined as

Q ≡ {(v, y) : y ≥ 0, v ≥ 0, v1 + v2 + v3 ≤ 1}.

Then we have

P1 = {(v, y) : y2, y6, y10, y14 ≥ 10βv3, y3, y7, y11, y15 ≥ 20βv1, y4, y8, y12, y16 ≥ 20βv1 + 10βv3} ∩ Q
P2 = {(v, y) : y1, y5, y9, y13 ≥ −10βv3, y3, y7, y11, y15 ≥ 20βv1 − 10βv3, y4, y8, y12, y16 ≥ 20βv1} ∩ Q
P3 = {(v, y) : y1, y5, y9, y13 ≥ −20βv1, y2, y6, y10, y14 ≥ −20βv1 + 10βv3, y4, y8, y12, y16 ≥ 10βv3} ∩ Q
P4 = {(v, y) : y1, y5, y9, y13 ≥ −20βv1 − 10βv3, y2, y6, y10, y14 ≥ −20βv1, y3, y7, y11, y15 ≥ −10βv3} ∩ Q.

Let V (P) denote the set of points obtained by projecting the vertices of the polyhedron P onto the
space of the v variables. It is possible to show (by enumeration) that

V (P1) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}
V (P2) = V (P1) ∪ {(1/3, 0, 2/3)}
V (P3) = V (P2)

V (P4) = V (P1)

regardless of the value of β. It follows that (Ex1-ULP) can be written as the following linear
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program (the constraints that are obviously redundant have been eliminated):

max 3x1 + 2x2

s. t. (Ex1-SDLP)

(4 + α)x1 + 2x2 − s1 ≤ 200− 10β

(4− α)x1 + 2x2 − s2 ≤ 200− 10β

ps1 + (1− p)s2 ≤ 20βq

2x1 + (2 + α)x2 ≤ 160

x1 ≤ 40− 5β(1− 2q)

(6 + α)x1 + 2x2 − s3 ≤ 280 (23)

(6− α)x1 + 2x2 − s4 ≤ 280 (24)

ps3 + (1− p)s4 ≤ 20βq2 (25)

(4 + α)x1 + 2x2 ≤ 200 + 10β

x, s ≥ 0.

The optimal solution of problem (Ex1-SDLP) (with p = q = 1/2, α = β = 1) is xULP =
(28.18, 34.55) and the corresponding objective value is νULP = 153.44, whereas the optimal so-
lution and optimal value of (Ex1-LP) are respectively xLP = (20, 60), νLP = 180. We can see the
effect of taking the uncertainty into account. In particular, for any fixed α the optimal value of
(Ex1-SDLP) increases as β increases, i.e., adding uncertainty to the right-hand side improves the
optimal value as it makes the right-hand side less attractive to a risk averse decision maker because
of increased uncertainty. Increasing α for a fixed β leads to the opposite phenomenon. Figure 1
shows the optimal value of (Ex1-SDLP) as a function of α and β.
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Figure 1: Optimal value of (Ex1-SDLP), as a function of α and β.

It is interesting to study the effect of dependence among the random variables in this example.
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Since all the random variables in the example are assumed to be independent, Corollary 3 ensures
that the positive linear dominance constraint in (Ex1-ULP) is equivalent to univariate second order
dominance involving each component. This leads to an LP which is identical to (Ex1-SDLP) except
that it does not contain constraints (23)-(25) — which are generated by the non-simplex vertex
(1/3, 0, 2/3). In other words, Corollary 3 guarantees, via a probabilistic argument, that those
constraints are redundant. Indeed, in the case p = q = 1/2, α = β = 1, when we solve (Ex1-SDLP)
without constraints (23)-(25) and with the objective function replaced with 7x1+2x2, the objective
value is 290. When the objective function is replaced with 5x1 + 2x2, the objective value is 210.
That is, in (Ex1-SDLP) we have s3 ≤ 10, s4 = 0, so constraints (23)-(25) are always satisfied.

The situation changes if the dependence assumption is dropped. For example, consider the
same example as above but suppose there are only two scenarios: in scenario 1 (the probability of

which is p) we have A1 =




4 + α 2
2 2− α

1 0


, c1 = (200− 10β, 160, 40 + 5β)T , and in scenario 2 (the

probability of which is 1−p) we have A2 =




4− α 2
2 2 + α

1 0


, c2 = (200+10β, 160, 40−5β)T . Then,

by doing similar calculations as before, we obtain the following LP:

max 3x1 + 2x2

s. t. (Ex1dep-SDLP)

(4 + α)x1 + 2x2 − s1 ≤ 200− 10β

(4− α)x1 + 2x2 − s2 ≤ 200− 10β

ps1 + (1− p)s2 ≤ 20β(1− p)

2x1 + (2 + α)x2 ≤ 160

x1 ≤ 40− 5β(1− 2p)

(6 + α)x1 + 2x2 ≤ 280 (26)

(4 + α)x1 + 2x2 ≤ 200 + 10β

x, s ≥ 0.

To compare this problem and (Ex1-SDLP), consider again the case p = q = 1/2, α = β = 1.
Then, without constraint (26), the feasible region of problem (Ex1dep-SDLP) coincides with that
of (Ex1-SDLP) except that it does not contain constraints (23)-(25). However, constraint (26)
is not redundant — indeed, when we solve (Ex1dep-SDLP) without constraint (26) and with the
objective function replaced with 7x1 + 2x2, the objective value is 290, which is the same value as
that of (Ex1-SDLP) also with objective function 7x1 + 2x2. With constraint (26), of course, the
optimal value of (Ex1dep-SDLP) cannot be bigger than 280. Therefore, the feasible regions of
(Ex1-SDLP) and (Ex1dep-SDLP) are different.

3 Duality Results for the Uncertain Linear Program

Dentcheva and Ruszczyński (2009) give very general duality results for the optimization problems
with second order linear stochastic dominance constraints in the vector case. These duality results
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show the existence of certain dual functions under Slater-type constraint qualification conditions.
In the following we give analogous results in our case. As we shall see below, because of the
polyhedral nature of the problem, constraint qualification conditions are not required.

Theorem 3 A solution x∗ is an optimal solution of (FLP) if and only if there exist multipliers
πik ≥ 0, i = 1, . . . , r, k = 1, . . . , νi, such that

d +
r∑

i=1

νi∑

k=1

πikgik = 0, (27)

and

πik = 0 if
t∑

j=1

pj (vikT
ci − vikT

Ajx∗)+ <
r∑

l=1

ql (vikT
ci − vikT

cl)+. (28)

In the above, gik =
∑t

j=1 pjs
ijk, and

sijk ∈





{0} if vikT (ci −Ajx∗) < 0
{AjT

vik} if vikT (ci −Ajx∗) > 0
conv({0, AjT

vik}) if vikT (ci −Ajx∗) = 0.

(29)

Proof: (⇒) Let x∗ be an optimal solution of (FLP). Then, there exists z∗ such that (x∗, z∗) solves
(FullLP), so there exist non-negative multipliers (λik, µijk, θijk), i = 1, . . . , r, j = 1, . . . , t, k =
1, . . . , νi for constraints (16) respectively, satisfying:

(
d

0

)
=

(
−∑r

i=1

∑νi
k=1

∑t
j=1 µijkAjT

vik

∑r
i=1

∑νi
k=1

∑t
j=1(µ

ijk + θijk)eijk

)
−

(
0∑r

i=1

∑νi
k=1

(
λik

∑t
j=1 pjeijk

)
)

, (30)

i.e.,

d = −
r∑

i=1

νi∑

k=1

t∑

j=1

µijkAjT
vik (31)

pjλ
ik = µijk + θijk, (32)

and also

µijk = 0 if vikT
(ci −Ajx∗) < 0 (33a)

θijk = 0 if vikT
(ci −Ajx∗) > 0 (33b)

λik = 0 if
t∑

j=1

pj z∗ijk <
r∑

l=1

ql (vikT
ci − vikT

cl)+. (33c)

Now, define αijk := µijk

µijk+θijk , where we adopt the convention that 0/0 = 0. Note that from (33)
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we have

αijk ∈





{0} if vikT (ci −Ajx∗) < 0
{1} if vikT (ci −Ajx∗) > 0

[0, 1] otherwise,

which implies that sijk := αijkAjT
vik satisfies (29).

Next, let πik := λik. Then from (32) we have πikpjα
ijk = µijk and thus condition (31) can be

written as

d = −
r∑

i=1

νi∑

k=1

t∑

j=1

πikpjα
ijkAjT

vik = −
r∑

i=1

νi∑

k=1

πik
t∑

j=1

pjs
ijk = −

r∑

i=1

νi∑

k=1

πikgik,

which shows (27). Finally, it is easy to see that, when the condition on the right hand side of (28)
holds, we have λik = 0 from (33c) and therefore πik = 0, thus showing (28).

(⇐) Notice that sijk defined in (29) is a subgradient of the function (vikT
ci− vikT

Ajx)+ at x∗,
and consequently gik :=

∑t
j=1 pjs

ijk is a subgradient of (15) at x∗. The result follows from the
fact that (27) and (28) correspond to the KKT conditions for problem (FLP) at x∗, which in turn
implies optimality of x∗ (see, e.g., Theorem VII.2.2.4 in Hiriart-Urruty and Lemarechal 1993). ¤

It is interesting to put the result stated in Theorem 3 into the context of the general duality
results of Dentcheva and Ruszczyński (2009), which we briefly review here for ease of reference.
Consider again problem (MultiSDC), and notice that when positive linear dominance is used, the
stochastic dominance constraint can be written as

E[u(vT G(x))] ≤ E[u(vT Y )] for all v ∈ ∆ and all u ∈ U , (34)

with ∆ and U as defined in Propositions 1 and 2. Consider the class of functions Rm 7→ R of the
form

φQ,µ(w) =
∫

∆
[Q(v)](vT w) µ(dv), (35)

where Q maps a vector v ∈ ∆ into the space U — in such a way that the mapping q(v, w) :=
[Q(v)](vT w) is Lebesgue measurable — and µ is a finite non-negative measure in ∆. Define the
following functional for problem (MultiSDC):

L(x, φ) = E [f(x) + φ(G(x))− φ(Y )] , (36)

and assume that f and G are concave. Dentcheva and Ruszczyński (2009) show that, under a certain
Slater-type constraint qualification, if x∗ is an optimal solution of (MultiSDC) then there exists a
function φ∗Q,µ of the form (35) such that L(x∗, φ∗Q,µ) = maxx∈X L(x, φ∗Q,µ) and E[φ∗Q,µ(G(x∗))] =
E[φ∗Q,µ(Y )]. That is, the functional L plays the role of a Lagrangian function, and the optimal
multiplier φ∗Q,µ corresponds to a “weighted average” of the utility functions in (34) that yields
equality.

To view Theorem 3 in light of the above results, consider the Lagrangian function of problem

13



(FLP):

L(x, π) = dT x +
r∑

i=1

νi∑

k=1

πik




t∑

j=1

pj (vikT
ci − vikT

Ajx)+ −
r∑

l=1

ql (vikT
ci − vikT

cl)+


 . (37)

Suppose we represent vik as an element of Rm+1 by adding the index i as the m + 1-component.
Moreover, let us view each ci as an element of Rm+1 by adding a zero as the m + 1-component,
and each Ai as an element of Rm+1 ×Rn by adding a row of zeros as the m + 1-row. Clearly, such
representations do not change the value of L(x, π). However, this allows us to uniquely label all
vertices of P̃i, i = 1, . . . , r. Define now the mapping Q̂ : ∆× {1, . . . , r} 7→ U as

[Q̂(v)](z) :=
r∑

j=1

νj∑

`=1

I {v=vj`}(v
T cj − z)+. (38)

It is clear that the mapping q(v, w) = [Q̂(v)](vT w) is Lebesgue measurable. Define the measure µ̂

on ∆× {1, . . . , r} as the atomic measure with mass on {vik : i = 1, . . . , r, k = 1, . . . , νi} such that
µ̂(vik) = π̂ik, where π̂ is the vector of optimal multipliers given by Theorem 3. Then, the function
φQ̂,µ̂ given in (35) can be written as

φQ̂,µ̂(w) =
∫

∆×{1,...,r}
[Q̂(v)](vT w) µ̂(dv) =

r∑

i=1

νi∑

k=1

π̂ik[Q̂(vik)](vikT
w)

=
r∑

i=1

νi∑

k=1

π̂ik(vikT
ci − vikT

w)+.

Note that in the above calculation it was important to ensure that, when computing the function
Q̂(vik), exactly one term inside the sum in (38) is nonzero; this is the reason why we extended the
vectors vik to include the index i, otherwise it could happen that vik = vj` for i 6= j for some k, `.

It follows that the Lagrangian function in (37) can be written as

L(x, π̂) = dT x + E
[
φQ̂,µ̂(Ax)

]
− E

[
φQ̂,µ̂(c)

]
= L(x, φQ̂,µ̂),

whence we see that the standard Lagrangian coincides with the general functional of Dentcheva and
Ruszczyński (2009). Moreover, (27) ensures that, if x̂ solves (FLP), then L(x̂, π̂) = maxx∈Rn L(x, π̂).
Finally, from (28) we have that

r∑

i=1

νi∑

k=1

πik




t∑

j=1

pj (vikT
ci − vikT

Ajx∗)+ −
r∑

l=1

ql (vikT
ci − vikT

cl)+


 = 0,

i.e., E
[
φQ̂,µ̂(Ax)

]
= E

[
φQ̂,µ̂(c)

]
. Thus, the results in Dentcheva and Ruszczyński (2009) apply to

our case without the need to impose constraint qualifications.
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4 A Cut-Generation Algorithm for Linear Optimization Problems

with Polyhedral Second Order Dominance Constraints

We discuss now an algorithm to solve problem (FLP). The fact that the constraints in (15) are
generated using the vertices of Pi suggests the use of a cut-generation approach for solving that
problem, instead of adding all the constraints up front. In the cut-generation approach we solve
a sequence of relaxations of (FLP), over a subset of constraints (15). The relaxed problems are
solved using their linear programming reformulation as given in (FullLP). At a solution x̂ of a
relaxed problem we consider the subproblems (SepCPi) defined in the proof of Theorem 1. If all
(SepCPi) have a non-negative objective value, we have a solution of (FLP). Otherwise, we have a
vertex solution v̂ of (SepCPi) with a negative objective value. Corresponding to this vertex, the
constraint

∑t
j=1 pj (v̂T ci − v̂T Ajx)+ ≤ ∑r

l=1 ql (v̂T ci − v̂T cl)+, is a valid cut for x̂.
Algorithm 1 below outlines the basic steps. In a similar fashion to what we did when discussing

the duality results in Section 3, we store the generated vertices as elements of Rm×Rr×{1, . . . , r},
where the last component is the index i of the corresponding polyhedron Ki defined in Theorem 1.

Theorem 4 Algorithm 1 terminates after a finite number of steps with either an optimal solution
to (ULP), or a proof of infeasibility (or unboundedness) of (ULP).

Proof: First notice that, if (39) is infeasible, then the original problem is infeasible as well. Suppose
now that (39) is unbounded, so x̂ and ĥ generate a ray, and suppose there exists j0 such that (40)
has negative objective value for j = j0. Since ṽT Aj0 ĥ < 0, given any i ∈ {1, . . . , r} there exists
αi > 0 such that

t∑

j=1

pj(ṽT ci − ṽT Aj(x̂ + αiĥ))+ >

r∑

l=1

ql(ṽT ci − ṽT cl)+.

It follows that x̂ and ĥ will not generate a ray for (39) in the next iteration, so ṽ yields a new valid
cut.

Suppose next that (39) is unbounded, so x̂ and ĥ generate a ray, but (40) has non-negative
objective value for all j. That is, vT Aj ĥ ≥ 0 for all v ∈ P̃ and all j. It follows that, for any
i ∈ {1, . . . , r}, the term (vT ci − vT Aj(x̂ + αĥ))+ is a non-increasing function of α, so to check
whether a cut can be generated it suffices to check it for α = 0, which is what is done in Step 3.

Finally, if Step 3 identifies one or more vertices satisfying (41), then x̂ will not be feasible for
(39) in the next iteration, so at least one new valid cut will be generated. If no vertices satisfying
(41) can be found, then we have obtained the feasible set of (FLP), so we can either exhibit an
optimal solution x̂ to (ULP), or a solution x̂ and a direction ĥ that generate a ray, showing that
(ULP) is unbounded. Since cuts are never repeated, the algorithm terminates after a finite number
of steps. ¤

Step 2 of Algorithm 1 requires solving (SepCPi). As discussed earlier, (SepCPi) is a reformula-
tion of (DCPi), which minimizes a difference of two convex polyhedral functions over a polyhedral
set. Such problems are called polyhedral DC programming problems, and have been a subject
of theoretical and algorithmic study (see e.g., An and Tao 2005, and references therein). The
algorithm for DC programming proposed in An and Tao (2005) converges to a local minimum.
However, in order to solve (FLP) we may be required to solve (DCPi) to optimality.
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Algorithm 1 A Cutting Surface Algorithm for Linear Optimization with Polyhedral Second Order
Dominance

0. Set s := 0, v0 := an arbitrary vertex of Ki, where i ∈ {1, . . . , r} is also chosen arbitrarily. Set
V0 := (v0, 0, i).

1. Solve the problem

min dT x

s.t.
∑t

j=1 pj(vT ci − vT Ajx)+ ≤
∑r

l=1 ql(vT ci − vT cl)+, (v, y, i) ∈ Vs,
(39)

which can be done by solving a linear program. If the problem is infeasible, stop; if it is
unbounded, then let x̂ and ĥ be respectively a solution and a direction that generate a ray
and go to Step 2. Otherwise, let x̂ be an optimal solution to (39) and go to Step 3.

2. For each j = 1, . . . , t, solve the linear program

min vT Aj ĥ

s.t. v ∈ P̃.
(40)

If any of the problems (40) has negative objective value, let ṽ be a vertex optimal solution
to that problem and choose i ∈ {1, . . . , r} arbitrarily; let Vs+1 := Vs ∪ {(ṽ, 0, i)} and go to
Step 5.

Otherwise (i.e., if the problems (40) have non-negative objective values for all j), go to Step 3.

3. Solve problems (SepCPi) to find one or more vertex solution(s) (v, y) ∈ Ki, for some i ∈
{1, . . . , r}, such that

r∑

l=1

qlyl −
t∑

j=1

pj(vT ci − vT Aj x̂)+ < 0. (41)

Let (vik, yik), k = 1, . . . , ki be these identified vertices.

4. If no vertex solution is found in Step 2, stop; otherwise, let

Vs+1 := Vs ∪ {(vik, yik, i), k = 1, . . . , ki}.

5. Set s := s + 1 and go to Step 1.
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(SepCPi) is also a concave minimization problem. The problem of minimizing a concave function
over a polyhedral set has also received considerable attention and several approaches have been
developed to solve these problems. The methods for solving concave minimization fall into three
categories: enumeration methods, successive partitioning methods, and successive approximation
(cutting-plane) methods (Horst and Pardalos, 1994; Horst et al., 1995; Al-Khayyal and Sherali,
2000; Locatelli and Thoai, 2000; Porembski, 2002, 2004). Although these methods are developed
for general concave objective functions, one may adapt them to exploit the polyhedral structure of
the objective function in (SepCPi). Unfortunately, the methods for concave minimization problem
are designed to achieve an ε−optimal solution, and an exact minimum is possible only if certain
conditions are satisfied. For example, Porembski (2002) considers the problem:

min f(x)
x ∈ K,

(42)

where K is assumed to be a bounded full-dimensional polyhedral set and f(x) is a concave function.
The finite convergence of the cone adaptation cutting plane method of Porembski (2002) for (42)
is proved under a finite-convergence (FC) condition

For any x1 and 2 lying on the edges of K with f̂ ≤ min{f(x1), f(x2)}
we have conv({x1, x2}) ∩ bd(L(f̂)) ⊆ {x1, x2},

(43)

where P is a bounded polyhedron with non-empty interior (in our case Pi), f̂ is the objective value
of incumbent solutions in the cutting plane algorithm, and bd(L(f̂)) represents the boundary of
L(f̂) := {x | f(x) ≥ f̂}. This condition implies that the face of Pi that is completely contained
in bd(L(f̂)) has to be a vertex solution of Pi. Such a condition is satisfied when f(·) is a strictly
concave function. Unfortunately, the function in (SepCPi) is not strictly concave, and it is possible
to construct an example violating the FC condition (43). Hence, using the algorithm in Porembski
(2002) we can only expect to generate an ε−optimal solution. One way to overcome this problem
is to process such an ε−optimal solution to an exact optimum — indeed, later in this section we
will develop a procedure that generates a vertex solution with an improved objective value starting
from an arbitrary feasible solution of (SepCPi). Starting from an ε−optimal solution we can use
this procedure to generate a vertex solution (SepCPi) for a sufficiently small choice of ε.

In what follows we discuss an approach that simultaneously exploits the concavity of the objec-
tive function in (SepCPi) and its polyhedral structure. We first formulate (SepCPi) as an integer
program, and then present a branch-and-cut method that solves this problem to optimality by
exploiting the structural properties of the objective function in (SepCPi). The method is novel in
that it optionally generates two types of cuts. It generates “concavity cuts” in the space of Pi, and
standard integer programming based cuts in the binary reformulation of the problem. The algo-
rithm is enhanced by four subroutines: a dive-and-search method that finds a local minimizer, a
procedure to convert the local minimizer into a star vertex solution1, a routine that yield concavity
cuts, and a routine that yields cuts leading to the convex hull of the set given by mixed-integer
inequalities. Each of these subroutines will be discussed in detail.

1A vertex of a polyhedron is a star solution if its objective value is no higher that the objective values of all of its
neighboring vertices.
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4.1 A Branch and Cut Method for a Class of Polyhedral DCP

We now present a branch-and-cut method to solve (DCPi), while using its formulation as in
(SepCPi). (DCPi) belongs to the class of polyhedral DCP problems whose objective function
is given by max{0, l(x)}, where l(x) is a linear function. The branching in the algorithm exploits
the polyhedral structure of the objective functions in these problems, by considering a mixed integer
binary linear programming formulation. The cut generation exploits the concavity of the objective
function while using the cut generation methodology described in Benson (1999) and Porembski
(2002, 2004). In addition it combines the use of “convexity” cuts known from the theory of mixed
integer programming.

Let us reformulate (SepCPi) as a binary integer program as follows:

min
v,y,g,h,b

r∑

l=1

ql yl −
t∑

j=1

pj gj (SepIPi)

s. t. (v, y) ∈ Pi,

gj − hj = vT ci − vT Aj x̂, j = 1, . . . , t (44)

αjbj ≥ gj , βj(1− bj) ≥ hj , j = 1, . . . , t

gj ≥ 0, hj ≥ 0, bj ∈ {0, 1}, j = 1, . . . , t

where αj := max{max
v∈ eP vT ci − vT Aj x̂, 0}, and βj := −min{min

v∈ eP vT ci − vT Aj x̂, 0}. The coef-
ficients αj , βj together with the binary variable bj are introduced in the (SepIPi) formulation to
ensure that only one of the variables gj or hj is positive at a feasible solution of (SepIPi). Note
that both αj and βj are easily computed by solving a linear program.

Now consider a node in the branch-and-cut tree T , where a subset of the binary variables are
fixed to either zero or one. Each node N of the branch-and-cut tree corresponds to a partition of
the binary variables. Let L, G, be the set of variables fixed at zero and one respectively, and let R
be the set of variables to be relaxed. Let B := (G,L,R), and represent that node as NB. The node
corresponds to the following binary linear program (where we use (44) to substitute for variables
gj , j ∈ R):

min
v,y,h,b

r∑

l=1

qlyl −
∑

j∈G
pj(vT ci − vT Aj x̂)−

∑

j∈R
pj(vT ci − vT Aj x̂ + hj) (SepIPN )

s. t. (v, y) ∈ P̂i

vT ci − vT Aj x̂ ≥ 0, j ∈ G
vT ci − vT Aj x̂ ≤ 0, j ∈ L
α̂jbj ≥ vT ci − vT Aj x̂ + hj , β̂j(1− bj) ≥ hj , j ∈ R
vT ci − vT Aj x̂ + hj ≥ 0, hj ≥ 0, bj ∈ {0, 1}, j ∈ R,

In the above, α̂j := max{max(v,y)∈P̂i
vT ci − vT Aj x̂, 0}, β̂j := −min{min(v,y)∈P̂i

vT ci − vT Aj x̂, 0},
and

P̂i = Pi ∩ {(v, y) | DT v ≤ d}, (45)
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where {v | DT v ≤ d} represents the cuts that may have been added to Pi. Note that we may use
a bound on α̂j and β̂j in this formulation. In particular, α̂j = αj , and β̂j = βj can be used since
P̂j ⊆ Pj . However, this may result in a significantly lower value of the lower bound on the objective
value of (SepCPi) generated from the linear programming relaxation of (SepIPN ).

The branch-and-cut algorithm is presented in Algorithm 2. In the spirit of branch-and-cut
algorithms in mixed integer programming the convergence of this algorithm is ensured due to
branching on binary variables. However, the size of the branch-and-cut tree is managed by adding
cuts as necessary. As a consequence of this approach, we avoid ε−convergence arguments in the
analysis of the algorithms based on concave programming or DC- programming (An and Tao, 2005;
Porembski, 2004).

Algorithm 2 A Branch-and-Cut Algorithm for DCPi

Input (c, A, x̂, i)

0. Initialization. R := {1, . . . , t}, L := ∅, G := ∅, B := (G,L,R), T := {NB}, zU := ∞.

1. Consider a node N of T with smallest objective value (call that value zL) and let
(vN , yN , bN , hN ) be an optimal solution of the linear relaxation of (SepIPN ), call it (LPN ).
If zU ≤ zL, stop and return (vU , yU ), else go to Step 2.

2. Let R+ := {j ∈ R | vN T
ci − vN T

Aj x̂ ≥ 0}, and R− := {j ∈ R | vN T
ci − vN T

Aj x̂ ≤ 0}.
Call the routine DIVE(NB,R+,R−,L,G) described in Algorithm 3. If zDIVE ≤ zU , then
(vU , yU ) := (vDIVE, yDIVE) and zU := zDIVE.

3. If zU ≤ zL, stop and return (vU , yU ), else go to Step 4.

4. Convert the local minimum (vDIVE, yDIVE) from DIVE(NB,R+,R−,L,G) to a star vertex
solution (vVERT, yVERT) of P̂i by running VERT( ) described in Algorithm 4.

5. Call ConcaveCUTS() to generate concavity cut(s) (as described in Section 4.4) that cut away
(vVERT, yVERT).

6. Call ConvexCUTS() (as described in Section 4.5) to generate cuts that cut away
(vN , yN , bN , hN ) if it is not already done so by ConcaveCUTS().

7. Repeat Steps 1 to 6 until no more progress is achieved.

8. Choose a variable j ∈ R of node B to branch. Let B1 := (G ∪ {j},L,R \ {j}), B2 :=
(G,L ∪ {j},R \ {j}), and let N 1 := NB1

, N 2 := NB2
. Compute zN 1

and zN 2
by solving

LPN 1
and LPN 2

. Delete N 1 if zN 1 ≥ zU , or if the problem is infeasible, else set T := T ∪N 1,
and record the corresponding objective value zN 1

. Similarly for N 2. Go to Step 1.

4.2 Dive and Search Method for A Class of Polyhedral DCP

In this section we present a dive and search method for finding a local minimum of (SepCPi) at any
node of the branch-and-cut tree that exploits the structure of the objective function in that problem.
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This method is different from the method in (An and Tao, 2005) for finding a local minimum. In
particular, it exploits the polyhedral and max structure of the objective function. In this method
we start with a fixed partition R, G and L of the binary variables and consider the problem in the
space of Pi, i.e., (v, y) space. The procedure iteratively approximates the non-convex portion of the
objective function in (SepCPi) with a linear function (Step 1). As it proceeds, depending on the
value of vT ci−vT Aj x̂ at the solution in the previous iteration, it updates the objective function, and
adds constraints when vT ci − vT Aj x̂ ≤ 0 (Step 2). It allows the possibility of dropping previously
added constraints in Step 4. We note that the update of objective and addition of constraints in
Step 2 can be performed one constraint at a time, or for all the constraints at once.

Algorithm 3 A Dive and Search Method DIVE(·)
Input. NB, R+, R−, L, and G
Output. A local minimum solution (vDIVE, yDIVE), and corresponding objective zDIVE.

0. Initialization. R0
+ := R+, R0− := R−, k := 0.

1. Let (vk, yk) be the optimal solution of the following problem:

minLk(v, y) :=
r∑

l=1

qlyl −
∑

j∈G∪Rk
+

pj(vT ci − vT Aj x̂) (LPk
i )

(v, y) ∈ P̂i

vT ci − vT Aj x̂ ≥ 0, j ∈ G
vT ci − vT Aj x̂ ≤ 0, j ∈ Rk

− ∪ L. (46)

Set fk :=
∑r

l=1 qly
k
l −

∑
j∈G∪Rk

+
pj(vkT

ci−vkT
Aj x̂)+, and let λk, j ∈ Rk−, be the dual solution

(Lagrange multipliers) associated with the binding (if any) constraints in (46) at (vk, yk).

2. Rk+1
+ := Rk

+, and Rk+1
− := Rk−. For all j ∈ Rk

+, if (vkT
ci − vkT

Aj x̂) ≤ 0,
then Rk+1

+ := Rk+1
+ \ {j}, and Rk+1

− := Rk+1
− ∪ {j}.

3. If Rk+1
+ 6= Rk

+, set k := k + 1, and go to Step 1; otherwise, go to Step 4.

4. If there exists ι ∈ Rk− such that λι > 0, then set Rk+1
− := Rk− \ {j}, Rk+1

+ := Rk
+ ∪ {j},

k := k + 1, and go to Step 1. Otherwise, return (vk, yk) and fk.

Proposition 3 The function values fk at the solution in Step 1 of Algorithm 3 are non-increasing.
If the primal and dual optimal solutions (vk, yk, λk) of (LPk

i ) satisfy strict complementarity condi-
tions, then (vk, yk) is a local minimum solution for the node NB.

Proof: Note that for all k

Lk(vk, yk) =
∑r

l=1 qly
k
l −

∑
j∈G∪Rk

+
pj(vkT

ci − vkT
Aj x̂)

≥ ∑r
l=1 qjy

k
l −

∑
j∈G∪Rk

+
pj(vkT

ci − vkT
Aj x̂)+ = fk.
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Furthermore, when returning to Step 1 from Step 3, fk = Lk+1(vk, yk) ≥ Lk+1(vk+1, yk+1) ≥ fk+1,
since (vk, yk) is a feasible solution for (LPk+1

i ). Otherwise, we return to Step 1 from Step 4. In this
case, since λι > 0, and the primal-dual solutions are strictly complementary, from duality theory
we know that for some small ε > 0, the problem:

minLε(v, z) :=
r∑

l=1

qlyl −
∑

j∈G∪Rk
+

pj(vT ci − vT Aj x̂)

s. t. (v, y) ∈ P̂i

vT ci − vT Aj x̂ ≥ 0, j ∈ G
vT ci − vT Aj x̂ ≤ 0, j ∈ Rk

− ∪ L, j 6= ι

vT ci − vT Aιx̂ ≤ ε, (47)

will have constraint (47) active at an optimal solution (v∗ε , y∗ε ). Moreover, the optimal objective
value L∗ε satisfies:

L∗ε ≤ L(vk, yk) = fk,

where the last equality follows because we enter into Step 4 only when Rk+1
+ = Rk

+, i.e., when
the LP solution coincides with the corresponding DCP solution for a DCP problem defined using
G ∪ Rk

+. It follows that

fk+1 ≤ Lk+1(vk+1, yk+1) ≤
r∑

l=1

qly
∗
ε l −

∑

j∈G∪Rk
+

pj(v∗ε
T ci − v∗ε

T Aj x̂)− pι(v∗ε
T ci − v∗ε

T Aιx̂)

= L∗ε − pιε ≤ fk − pιε.

In the above, the second inequality follows from the fact that (v∗ε , y∗ε ) is a feasible solution for
(LPk+1

i ), whereas the equality follows from the fact that (47) is active at (v∗ε , y∗ε ). The claim that
(vk, yk) is a local minimum for NB follows because upon exit from Step 4 (vk, yk) is a global
minimum for the problem

min
r∑

l=1

qlyl −
∑

j∈G∪Rk
+

pj(vT ci − vT Aj x̂)+

(v, y) ∈ P̂i

s. t. vT ci − vT Aj x̂ ≥ 0, j ∈ G
vT ci − vT Aj x̂ ≤ 0, j ∈ Rk

− ∪ L,

and, moreover, vkT
ci − vkT

Aj x̂ < 0 for all j ∈ Rk− since λj = 0 for all j ∈ Rk− and strict
complementarity holds. ¤

It is worthwhile mentioning that the strict complementarity assumption made in Proposition 3
is not a strong requirement — this will be the case if (LPk

i ) is solved using interior point methods
(Mehrotra and Ye, 1993).
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4.3 Generating a Vertex Solution

We discuss now a procedure to convert a local minimum solution of problem (SepIPN ) into a star
vertex solution of P̂i defined in (45). Let us follow the notation in Theorem 1. First observe that
the set of extreme directions of P̂i is 0×Rr

+, since P̃ is bounded. Furthermore, the objective value
of (SepCPi) is non-decreasing along any direction in 0×Rr

+. Hence, without loss of generality we
may assume that any solution (v̂, ŷ) satisfies ŷj = max{0, v̂T (ci − cj)}. Now assume that (v̂, ŷ) is
non-vertex solution of P̂i, satisfying a subset of constraint in P̂i as equality constraints. Let us rep-
resent these constraints by A(v, y) = a. Let p = (pv, py) 6= 0 be a direction satisfying Ap = 0 (or any
direction if A is empty), and consider points (v̄, ȳ) = (v̂, ŷ)+ᾱ(pv, py) and (ṽ, ỹ) = (v̂, ŷ)−α̃(pv, py),
where ᾱ and α̃ are maximum step lengths that we can take along directions p and −p without vio-
lating feasibility. Note that pv 6= 0, otherwise, py = 0. Hence, such finite ᾱ and α̃ exist. Now, since
(v̂, ŷ) = α̃

α̃+ᾱ(v̄, ȳ)+ ᾱ
α̃+ᾱ(ṽ, ỹ), due to concavity of f(v, y) we have f(v̂, ŷ) ≥ α̃

α̃+ᾱf(v̄, ȳ)+ ᾱ
α̃+ᾱf(ṽ, ỹ).

We now set (v◦, y◦) := argminf(v̄,ȳ),f(ṽ,ỹ), and A :=

[
A

B1

]
, a =

(
a

a1

)
where B1(v◦, y◦) = a1

are additional binding constraints at (v◦, y◦). Because of the choice of ᾱ and α̃, at least one row
of B1 must be linearly independent of rows of A. Thus, the above procedure will terminate with a
vertex solution (v◦, y◦) of P̂i after a finite number of repetitions. After such a vertex is obtained,
simplex-type pivoting operations can be done until a vertex that is better than its neighbors is found.

Algorithm 4 An algorithm for converting an interior solution into a star vertex solution VERT()

Input (v̂, ŷ)

While (v̂, ŷ) is not a vertex solution of P̂i

{

1. Set ŷj := max{0, v̂T (ci − cj)}, j = 1, . . . , r.

2. Identify binding constraints A(v̂, ŷ) = a at (v̂, ŷ)

3. Find p = (pv, py) 6= 0 satisfying Ap = 0 (take an arbitrary p 6= 0 if A is empty).

4. Compute ᾱ, α̃ using minimum ratio tests along p and −p respectively.

5. Set (v̂, ŷ) := argminf(v̄,ȳ),f(ṽ,ỹ).

}
Starting from (v̂, ŷ), do simplex-type pivoting operations until a star vertex solution is found.

4.4 Concavity Cuts

In this section we give a basic approach to generating concavity cuts used in the concave mini-
mization problem (SepCPi). The discussion here is based on Benson (1999). However, there is an
important difference. The methodology developed in Benson (1999) assumes that the polyhedral
constraint set for the concave minimization is bounded. This assumption is not true in the case of
(SepCPi). However, we exploit the structure of the problem to give an extension of the method in
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Benson (1999) in our case. Porembski (2002) has given approaches for strengthening (deepening)
concavity cuts. We refer the reader to Porembski (2002) for a further discussion on this topic.

Consider problem (SepIPN ) defined in Section 4.1. The concavity cuts are defined on the space
of (v, y), based on a given star vertex solution (v∗, y∗) of P̂i. Let E be the set of edge directions
of P̂i available at (v∗, y∗) (note that E is finite due to the polyhedral nature of the problem). The
following theorem gives a system of inequality that may be used to generate a concavity cut at
(v∗, y∗).

Theorem 5 Assume that (v∗, y∗) is a star vertex solution of P̂i, and z∗ = f(v∗, y∗). Let {d1, . . . , ds} ⊂
E be the set of edge directions of P̂i at (v∗, y∗) such that z∗ ≤ f((v∗, y∗) + αdj), for all α > 0.

1. If E\{d1, . . . , ds} = ∅, then (v∗, y∗) is a global minimum of (SepIPN );

2. Otherwise, let {η1, . . . , ηu} := E \ {d1, . . . , ds}, αj := sup{α > 0 : f((v∗, y∗) + αηj ≥
f(v∗, y∗)}, j = 1, . . . , u (note that αj < ∞), and let π be a solution of the system of equations

πT ηj ≥ 1/αj , j = 1, . . . , u, πT dj ≥ 0, j = 1, . . . , s. (48)

Then πT (v, y) ≥ πT (v∗, y∗) + 1 is a valid cut for P̂i, i.e., f(v, y) ≥ z∗ for all (v, y) ∈ C :=
{P̂i ∩ {(v, y) | πT (v, y) ≤ πT (v∗, y∗) + 1}}. Furthermore, (48) is non-empty.

Proof: The first part of the result follows from concavity of f(·). To show the second part, let us
take a (v, y) ∈ C. Note that any (v, y) ∈ P̂i can be written as

(v, y) = (v∗, y∗) +
u∑

j=1

βjη
j +

s∑

j=1

γjd
j (49)

for some non-negative coefficients {βj} and {γj}. By multiplying the above equation by an arbitrary
vector π satisfying (48) we obtain

πT (v, y) = πT (v∗, y∗) +
u∑

j=1

βjπ
T ηj +

s∑

j=1

γjπ
T dj

≥ πT (v∗, y∗) +
u∑

j=1

βj

αj

and thus, since (v, y) ∈ C, we conclude that δ :=
∑u

j=1
βj

αj
≤ 1. Now, rewrite (49) as

(v, y) = (1− δ)


(v∗, y∗) +

1
1− δ

s∑

j=1

γjd
j


 +

u∑

j=1

[
βj

αj

(
(v∗, y∗) + αjη

j
)]

.

Concavity of f implies that

f(v, y) ≥ (1− δ) f


(v∗, y∗) +

1
1− δ

s∑

j=1

γjd
j


 +

u∑

j=1

βj

αj
f

(
(v∗, y∗) + αjη

j
)
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and since f((v∗, y∗) + γj

1−δdj) ≥ f(v∗, y∗) and f((v∗, y∗) + αjη
j) ≥ f(v∗, y∗) for all j, we have

f(v, y) ≥ (1− δ)f(v∗, y∗) +
u∑

j=1

βj

αj
f(v∗, y∗) = f(v∗, y∗) = z∗.

Now from (Benson, 1999, Theorem 2.1) we have that

πT ηj ≥ 1/αj , j = 1, . . . , u, πT dj ≥ ε, j = 1, . . . , s

is feasible for some ε > 0. Hence, the feasibility of (48) follows immediately. ¤

Remark: Note that in our context in Theorem 5 we can get a deeper valid cut by replacing z∗ with
min{zU , 0}, where zU is the best known objective value of (SepIPi) used in Algorithm 2.

4.5 Convexity Cuts

Two related approaches based on the theory of mixed binary linear programming are possible to
generate tighter relaxations of (SepIPN ). These are: (i) adding “lift-and-project” cuts generated
using the methods of Balas et al. (1993) and (ii) the relaxation linearization technique (RLT) of
Sherali and Adams (1994). For simplicity let us represent the constraint set in (SepIPN ) as

H := {(u, b) : Ru + Bb ≤ r}, (50)

where R is the coefficient matrix corresponding to the continuous variables and B is the coefficient
matrix corresponding to the binary variables in (SepIPN ), u = (v, y, h) is the vector of continuous
variables, and r is the right hand side in (SepIPN ). Level-1 hierarchy in RLT multiplies each
constraint in (50) by bj and (1 − bj) (where j ∈ R), uses the fact that b2

j = bj , and subsequently
linearizes the nonlinear terms appearing in resulting system by introducing new variables. In
particular, we obtain the inequalities

bjRu + bjBb ≤ bjr,

(1− bj)Ru + (1− bj)Bb ≤ (1− bj)r.

Now letting wj = bju and b̂j := bj(b− ej), we define

Hj(H) := {(u, b) |Rwj + B̂b̂j + Bjbj ≤ bjr, Ru + Bb−Rwj − B̂b̂j −Bjbj ≤ r − bjr}, (51)

where B̂ = B − BeT
j is the matrix B without the jth column. It is possible to show that the

constraints in (50) are implied by the constraints in (51). Furthermore, Sherali and Adams (1994)
and Balas et al. (1993) show that

Hj(H) = conv({H, bj = 0} ∪ {H, bj = 1}),

where the notation {H, bj = i} indicates the set {(u, b) : Ru + Bb ≤ r, bj = i}, i = 0, 1. More
generally, for j1 6=, . . . , 6= jk, jl ∈ R,

Hjk(Hjk−1(. . .Hj1(H))) = conv({H, bj1 = 0, . . . , bjk
= 0} ∪ . . . ∪ {H, bj1 = 1, . . . , bjk

= 1}),
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ensuring that the hierarchy of linear constraints leads to the integer hull of H after |R| steps. Un-
fortunately, the number of constrains grow exponentially when defining the RLT hierarchy. Instead
of generating linear programs with increasing hierarchy of constraints, Balas et al. (1993) find in-
equalities that consider the projection of Hj(H) in the space of original variables. In particular,
efficient methods for generating cuts in this fashion are studied in Balas and Perregaard (2002).

5 Conclusions

We have studied an uncertain linear programming problem, where the constraints are defined using
a concept of P-dominance and the data is given over a finite support. We have shown that this
uncertain linear program can be reformulated as a finite linear program. We have presented a
cutting-surface algorithm for solving this problem where the cuts are generating using a difference
of convex function minimization problem. We have given a novel algorithm for the difference of
convex function minimization problem by exploiting the polyhedral properties of this problem. The
algorithm presented in this paper remains valid if decision variables have additional restrictions,
such as integrality requirements.

A generalization of our results to the case where the problem data is defined using continuous
distributions, and extension of the proposed approach to more general problems is a topic of a
forthcoming paper Hu et al. (2009). An efficient implementation and numerical testing of the
proposed algorithms is a topic of future research.
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