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Abstract A common way to produce a convex relaxation of a Mixed Integer Quadratically Con-
strained Program (MIQCP) is to lift the problem into a higher dimensional space by introducing
variables Yij to represent each of the products xixj of variables appearing in a quadratic form. One
advantage of such extended relaxations is that they can be efficiently strengthened by using the (con-
vex) SDP constraint Y − xxT � 0 and disjunctive programming. On the other hand, their main
drawback is their huge size, even for problems of moderate size. In this paper, we study methods to
build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations.
To do so, we use projection techniques pioneered in the context of the lift-and-project methodology.
We show how the extended formulation can be algorithmically projected to the original space by solv-
ing linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving
SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based
heuristic to efficiently solve these SDPs. We also propose a new eigen reformulation for MIQCP, and a
cut generation technique to strengthen this reformulation using polarity. We present extensive compu-
tational results to illustrate the efficiency of the proposed techniques. Our computational results have
two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost
as strong as those proposed in our companion paper even though our computing times are about 100
times smaller, on average. Second, on the box QP instances, the strengthened relaxations generated
by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less
than 2 sec even for larger instances with 100 variables; the SDP+RLT relaxations of the same set of
instances can take up to a couple of hours to solve using a state-of-the-art SDP solver.
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1 Introduction

In this paper we study the mixed integer quadratically constrained program defined as follows:

(MIQCP)

min aT
0 x

s.t.
xT Akx + aT

k x + bk ≤ 0 , k = 1 . . .m ;
xj ∈ Z , j ∈ NI ;
l ≤ x ≤ u ,

where N = {1, . . . , n} denotes the set of variables, NI = {1, . . . , p} denotes the set of integer con-
strained variables, M = {1, . . . , m} denotes the index set of constraints, Ak (k = 1, . . . , m) are n × n
symmetric (usually not positive semidefinite) matrices, ak (k = 0, . . . , m), l and u are n-dimensional
vectors and bk (k = 1, . . . , m) are scalars. For ease of exposition, we assume that all variables have finite
lower and upper bounds. All results presented in this paper can be generalized easily to the case in
which only variables appearing in bilinear terms are assumed to have finite bounds. MIQCPs arise in
a wide range of practical applications such as chemical process design, optimal control problems, com-
binatorial optimization etc. Furthermore, any polynomial programming problem can be transformed
into a MIQCP by introducing additional variables making MIQCP a fairly versatile optimization
model.

From a computational standpoint, MIQCPs can be very difficult to solve in practice because they
combine two kinds of non-convexities, namely, integer variables and non-convex quadratic constraints.
One of the standard approaches for solving MIQCP entails introducing additional variables Yij =
xixj representing bilinear terms, and then working in the extended space of (x, Y ) variables. The
resulting relaxation can be strengthened by adding the so-called RLT inequalities and the positive
semidefiniteness condition Y − xxT < 0; we refer to the strengthened relaxation of MIQCP obtained
in this manner as MIQCP-SDP in the sequel. MIQCP-SDP has been extensively studied in the past
one decade and good progress, both theoretical and computational, has been made. In our companion
paper [17] we investigate further strengthening of MIQCP-SDP relaxation using disjunctive cuts and
report promising computational results. Despite these early successes, the presence of an enormous
number O(n2) of additional Yij variables continues to haunt researchers pursuing this line of research.
This problem gets even more aggravated for branch-and-bound algorithms which have to carry the
burden of these large relaxations at every node of the enumeration tree. Naturally we are interested in
relaxations that capture the strength of these extended formulations but are defined only in the space
of x variables. Systematic theoretical and computational investigation of such projected relaxations
constitutes the topic of this paper.

We employ the lift-and-project methodology developed and nurtured by Balas [2,3] over the last
three decades as the workhorse in our enterprise. There are three main ingredients to the results
presented in this paper, namely, projection cones, surrogate constraints and convexification schemes.
Projection cones were introduced by Balas [3] to characterize the class of undominated inequalities
that arise in projection of polyhedral sets. When intersected with a normalization constraint, these
projection cones readily yield a linear-programming based separation algorithm for the projected in-
equalities; our main cut generator ProjLP is derived from such a linear program. We extend the
reasoning of Balas to derive a constructive characterization of the projection of the MIQCP-SDP
relaxation. The separation program in this case turns out to be a semidefinite program (SDP). We
show that the separation SDP can be cast as a piecewise-linear convex optimization problem over the
Cartesian product of the cone of positive semidefinite matrices and the simplex. A projected subgra-
dient heuristic to solve the resulting convex program for the special case in which there is only one
constraint (i.e m = 1) is briefly discussed; our computational results demonstrate that the proposed
heuristic has promising practical performance.

The concept of a surrogate constraint, a constraint obtained by taking non-negative combination
of other problem constraints, has played a pivotal role in mixed integer linear programming (MILP).
Separation routines for various classes of MILP cutting planes such as mixed integer Gomory cuts,
intersection cuts, mixed integer rounding cuts, various kinds of cover cuts, etc., usually involve aggre-
gating original constraints to create a surrogate constraint which is subsequently used to derive cuts.
Although a well-studied concept in MILP literature, a systematic study of surrogate constraints in the
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context of MIQCP has remained an unchartered territory. We discuss techniques for detecting useful
surrogate constraints by utilizing the optimal solutions to our separation programs.

Convexification of a non-convex constraint, say xT Ax + aT x + b ≤ 0, obtained by replacing the
constituent bilinear terms Aijxixj by their McCormick estimators [13,19] has been extensively studied
in the literature. In this paper, we study an alternative convexification scheme that splits the Hessian
matrix A as a difference of a positive semidefinite (PSD) matrix B and a symmetric matrix C, i.e.
A = B −C; while the PSD matrix B is used to derive a convex term xT Bx in the cut, its non-convex
alter ego xT Cx is convexified by replacing Cijxixj terms by their McCormick estimators. As our results
show, a systematic application of this convexification scheme over all possible surrogate constraints
yields the projection of the MIQCP-SDP relaxation to the space of x variables.

We introduce an alternative reformulation of MIQCP, referred to as eigen reformulation, which
identifies directions of maximal non-convexity in each constraint and introduces additional variables
to expose them. We propose a cut-generation scheme that works with the projection of MIQCP
along a subset of these directions, computes the extreme points of the projection and embeds the
extreme points within the polarity framework to derive polarity cuts. By virtue of additional problem
constraints, the geometry of MIQCP along these directions of maximal non-convexity tend to be
highly correlated, and our cut generator identifies and exploits these correlations to generate strong
cutting planes for MIQCP. The idea of eigen reformulation has some similarities to the work of Kim
and Kojima [10] although its treatment in our paper is more central.

We demonstrate the computational value of our results through a series of experiments. These
experiments were conducted on a test bed comprising instances from GLOBALLib [9], instances from
Lee and Grossmann [11], and Box-QP instances from [22]. Besides reporting the strengths of various
relaxations examined in this paper, we also study the marginal impact of various classes of cutting
planes and compare our results with those presented in our companion paper [17]. Our computational
results have two highlights. First, on the GLOBALLib instances we are able to generate relaxations
that are almost as strong as those proposed in [17] even though our computing times are about 100
times smaller, on average. Second, on the box QP instances the strengthened relaxations generated by
our code are almost as strong as the MIQCP-SDP relaxation and can be solved in less than 2 sec
even for larger instances with 100 variables; the MIQCP-SDP relaxations of the same set of instances
can take up to a couple of hours to solve using a state-of-the-art SDP solver.

The rest of the paper is organized as follows. Sections 2 and 3 discuss the projection of the ex-
tended RLT and SDP relaxation of MIQCP, respectively. In section 4 we develop the notion of eigen
reformulation and discuss systematic techniques for deriving strong valid cutting planes for MIQCP
by computing low dimensional projections of its relaxations. We present our computational results in
section 5 and conclude with remarks on generalizations to non-convex MINLPs in section 6.

2 Projecting the Extended RLT Formulation

A standard approach to derive a convex relaxation of MIQCP is to introduce additional variables
Yij = xixj and replace the quadratic constraints by Ak.Y + aT

k x + bk ≤ 0 (k ∈ M)1. The resulting
formulation can be strengthened by adding the so-called RLT inequalities [13,19] to yield the following
lifted relaxation of MIQCP.

(MIQCP-RLT)

min aT
0 x

s.t.
Ak.Y + aT

k x + bk ≤ 0 , k ∈ M ;
lj ≤ xj ≤ uj , ∀j ∈ N ;
y−

ij(x) ≤ Yij ≤ y+
ij(x) , ∀i, j ∈ N ,

where

y−
ij(x) = max {uixj + ujxi − uiuj , lixj + ljxi − lilj} ∀i, j ,

y+
ij(x) = min {lixj + ujxi − liuj , uixj + ljxi − uilj} ∀i, j .

1 For symmetric matrices A and B of conformable dimensions, we define A.B = tr(AB).
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Let P(x,Y ) denote the set of feasible solutions to MIQCP-RLT, and let Qx = {x ∈ R
N | ∃Y s.t. (x, Y ) ∈

P(x,Y )} denote the projection of P(x,Y ) to the space of x-variables. The theorem that follows gives a
constructive characterization of the projection Qx. The proof of the theorem follows immediately from
results of Balas [3].

Theorem 1 Suppose that x̂ ∈ R
N satisfies lj ≤ x̂j ≤ uj ∀j. Then x̂ ∈ Qx if and only if the optimal

value of the following linear program is non-positive.

(ProjLP)

max
∑

i,j

(

Bijy
−
ij(x̂) − Cijy

+
ij(x̂)

)

+
∑

k∈M uk

(

aT
k x̂ + bk

)

s.t.
∑

k∈M ukAk − B + C = 0 ;
∑

k∈M uk = 1 ;
uk ≥ 0, ∀k ∈ M ;
Bij , Cij ≥ 0, ∀i, j ∈ N .

Furthermore, if (u, B, C) is a feasible solution to ProjLP having positive objective value, then

(1)
∑

i,j

(

Bijy
−
ij(x) − Cijy

+
ij(x)

)

+
∑

k∈M

uk

(

aT
k x + bk

)

≤ 0

is a valid convex inequality for Qx that cuts off x̂.
The constraint

∑

k∈M uk = 1 in ProjLP is a normalization constraint that, along with the hy-
pothesis lj ≤ x̂j ≤ uj ∀j, guarantees the boundedness of ProjLP. Consider the dual of ProjLP :

(DProjLP)

min η
s.t.
−Ak.Y + η ≥ aT

k x̂ + bk , ∀k ∈ M ;
y−

ij(x̂) ≤ Yij ≤ y+
ij(x̂) , ∀i, j ∈ N .

DProjLP is a linear program with m constraints and n2 variables; note that y−
ij(x̂) ≤ Yij ≤ y+

ij(x̂)

can be handled as (simple) bound constraints on the Yij variables. Typically m << n2, and hence from
a computational standpoint it is much more efficient to solve DProjLP than ProjLP. Furthermore,
if Ak = 0 and aT

k x̂ + bk ≤ 0, then the corresponding constraint can be dropped from DProjLP.
Alternatively, the number of non-trivial (i.e non-bound type) constraints in DProjLP is exactly equal
to the number of quadratic constraints in MIQCP. In our computational experiments, we solved
DProjLP and used the optimal dual solution associated with DProjLP to derive the projected
inequality. Several remarks are in order.

First, DProjLP handles the enormous number O(n2) of RLT inequalities as bounds on the Yij

variables. Because computationally intensive components of most linear programming algorithms (basis
update in simplex-type algorithms and solving linear systems in Interior Point Methods (IPM)) depend
only on the number of non-trivial constraints, this feature of DProjLP significantly reduces the
computational overheads associated with using RLT inequalities.

Second, DProjLP can be solved by either a simplex-type algorithm or by IPM. Preliminary com-
putational experiments suggest that IPM have an upper hand over simplex-type methods in solving
DProjLP. We suspect two reasons for this behavior. First, the bounds on the Yij variables change
radically from one iteration to the next thereby diminishing the warm-start capabilities of simplex-type
procedures. Second, IPM used without a crossover phase tend to converge faster to the optimal solution
than simplex-type algorithms. In our computational experiments, we used the Barrier Algorithm in
CPLEX 10.1 to solve DProjLP.

Third, Theorem 1 can be easily modified to handle convex quadratic constraints of the form A.Y +
xT Dx+aT x+b ≤ 0, with D < 0; the modification entails using

(

x̂T Dx̂ + aT x̂ + b
)

instead of
(

aT x̂ + b
)

in the objective function of ProjLP. Such convex quadratic cuts might arise, for instance, while
strengthening the extended formulation of MIQCP (see [16,17]).

Fourth, if the optimal value of DProjLP, or equivalently ProjLP, is non-positive and (Ŷ , η̂) is

an optimal solution of DProjLP, then (x̂, Ŷ ) ∈ P(x,Y ). In other words, Ŷ provides a certificate of
containment for x̂ (i.e., a certificate that x̂ ∈ Qx).
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Fifth, if (u, B, C) is a feasible solution to ProjLP then the convex inequality

∑

i,j

(

Bijy
−
ij(x) − Cijy

+
ij(x)

)

+
∑

k∈M

uk

(

aT
k x + bk

)

≤ 0

is equivalent to an exponentially large set of linear inequalities obtained by replacing the y−
ij(x) and

y+
ij(x) terms by one of the linear expressions used in defining them. It is easy to show that there exists

a straightforward linear time separation algorithm for this exponentially large set of linear inequalities.
In our computational experiments, we used only the most violated linear inequality among all of them.

We conclude this section by giving a reformulation of ProjLP which gives some additional insights
into the geometry of this linear program. For x ∈ R, we define x+ = max{x, 0} and x− = min{x, 0}.
Also, we denote the standard simplex in R

M by

ΣM =

{

u ∈ R
M |

∑

k∈M

uk = 1, u ≥ 0

}

.

Theorem 2 Suppose that x̂ ∈ R
N satisfies lj ≤ x̂j ≤ uj ∀j. Then ProjLP is equivalent to the

following convex piecewise linear optimization problem over the standard simplex ΣM .

(RLT-ProjCP) max {F (u) | u ∈ ΣM} ,

where

F (u) =
∑

i,j

(

∑

k∈M

ukAk
ij

)+
(

y−
ij(x̂) − x̂ix̂j

)

+
∑

i,j

(

∑

k∈M

ukAk
ij

)−
(

y+
ij(x̂) − x̂ix̂j

)

+
∑

k∈M

uk(x̂T Akx̂) +
∑

k∈M

uk

(

aT
k x̂ + bk

)

.

Proof The concavity of F (u) follows immmediately from the observation y−
ij(x̂) ≤ x̂ix̂j ≤ y+

ij(x̂). Be-
cause RLT-ProjCP entails maximizing a concave function over a convex domain, it is a convex opti-

mization problem. Suppose u ∈ ΣM , and let Bij =
(
∑

k∈M ukAk
ij

)+
and Cij = −

(
∑

k∈M ukAk
ij

)−
∀i, j.

Clearly, (u, B, C) is a feasible solution to ProjLP,
∑

k∈M ukAk = B − C, and

F (u) =
∑

i,j

(

Bijy
−
ij(x̂) − Cijy

+
ij(x̂)

)

+
∑

k∈M

uk

(

aT
k x̂ + bk

)

, which implies that the optimal objective value of ProjLP is no more than the optimal objective value
of RLT-ProjCP. Conversely, suppose that (u, B, C) is an optimal solution to ProjLP. Because lj ≤

x̂j ≤ uj ∀j, then y−
ij(x̂) ≤ y+

ij(x̂), which implies that BijCij = 0 ∀i, j. Hence, Bij =
(
∑

k∈M ukAk
ij

)+

and Cij = −
(
∑

k∈M ukAk
ij

)−
∀i, j, and the objective function value of (u, B, C) w.r.t. ProjLP is

exactly equal to F (u). ⊓⊔

Theorem 2 shows that ProjLP is essentially an unconstrained optimization problem. This is not
surprising as the process of deriving a projected inequality via ProjLP has the following simple
two-phase interpretation. The first phase uses the uk (k ∈ M) multipliers to take a non-negative
combination of the constraints and derive a surrogate constraint of the form xT Ax+ aT x+ b ≤ 0. The
second phase splits the Hessian matrix A as a difference of two non-negative matrices, say A = B−C,
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with B, C ≥ 0, and then uses Bijy
−
ij(x) and Cijy

+
ij(x) to approximate the binomial terms Bijxixj and

Cijxixj , respectively. Formally,

xT Ax + aT x + b ≤ 0 ,

xT Bx − xT Cx + aT x + b ≤ 0 ,
∑

i,j

(

Bijy
−
ij(x) − Cijy

+
ij(x)

)

+ aT x + b ≤ 0
(

because y−
ij(x) ≤ xixj ≤ y+

ij(x)
)

.

Note that the above two-phase procedure can be carried out for any set of non-negative multipliers
u. Furthermore, once the surrogate constraint has been obtained, we can use the following alternative
splitting of the Hessian matrix, A = B + C −D, with B < 0, C, D ≥ 0, and derive the following valid
convex quadratic inequality for MIQCP:

xT Bx + aT x + b +
∑

i,j

(

Cijy
−
ij(x) − Dijy

+
ij(x)

)

≤ 0 .

As the results of the following section show, the relaxation of MIQCP obtained by adding all such
convex quadratic cuts is identical to the projection of the SDP relaxation P(x,Y )∩{(x, Y ) | Y −xxT < 0}
of MIQCP to the space of x-variables.

3 Projecting the SDP Formulation

Note that MIQCP-RLT can be strengthened by adding the convex constraint Y − xxT < 0; the
resulting strengthened relaxation is referred to as MIQCP-SDP in the sequel. Let P+

(x,Y ) = P(x,Y ) ∩

{(x, Y ) | Y − xxT
< 0} denote the set of feasible solutions of the resulting strengthened formulation.

Similarly, let Q+
x = {x | ∃Y s.t. (x, Y ) ∈ P+

(x,Y )} denote the projection of P+
(x,Y ) to the space of x

variables. The theorem that follows gives a constructive characterization of Q+
x .

Theorem 3 Suppose that x̂ ∈ R
N satisfies lj ≤ x̂j ≤ uj ∀j. Then x̂ ∈ Q+

x if and only if the optimal
value of the following semidefinite program (SDP) is non-positive.

(ProjSDP)

max
∑

i,j B.x̂x̂T +
(

Cijy
−
ij(x̂) − Dijy

+
ij(x̂)

)

+
∑

k∈M uk

(

aT
k x̂ + bk

)

s.t.
∑

k∈M ukAk − B − C + D = 0 ;
∑

k∈M uk = 1 ;
uk ≥ 0, ∀k ∈ M ;
Cij , Dij ≥ 0, ∀i, j ∈ N ;
B < 0 .

Furthermore, if (u, B, C, D) is a feasible solution to ProjSDP with positive objective value, then

(2) xT Bx +
∑

i,j

(

Cijy
−
ij(x) − Dijy

+
ij(x)

)

+
∑

k∈M

uk

(

aT
k x + bk

)

≤ 0

is a valid convex inequality for Q+
x that cuts off x̂.

Proof Let ProjSDP’ denote the SDP obtained from ProjSDP by replacing the normalization con-
straint

∑

k∈M uk = 1 by
∑

k∈M uk + tr(B) = 1. Note that if (u, B, C, D) is a feasible solution to
ProjSDP’ with positive objective value then

∑

k∈M uk > 0. This implies that ProjSDP has a pos-
itive objective value if and only if ProjSDP’ has a positive objective value. Consider the dual of
ProjSDP’ :

(DProjSDP’)

min η
s.t.
−Ak.Y + η ≥ aT

k x̂ + bk, ∀k ∈ M ;
Y + ηI − x̂x̂T < 0 ;
y−

ij(x̂) ≤ Yij ≤ y+
ij(x̂), ∀i, j ∈ N .
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Clearly, DProjSDP’ is a strictly feasible SDP, the optimal value of which is non-positive if and only if
x̂ ∈ Q+

x . The result follows from SDP duality in the presence of the weak Slater qualification condition.
⊓⊔

Note that unlike ProjLP, the separation program ProjDSP of Theorem 3 is a semidefinite pro-
gram. This observation has far reaching consequences due to the differences in technology available
to solve linear programs and semidefinite programs, their membership in the class of polynomial time
solvable problems notwithstanding. For instance, ProjLP arising from problems with 100 variables
can be solved in a fraction of a second, whereas ProjSDP for the same instance may take up to a
couple of minutes to solve. Furthermore, while the presence of RLT inequalities as bound constraints
y−

ij(x̂) ≤ Yij ≤ y+
ij(x̂) significantly speeds up the linear programming algorithm used to solve ProjLP,

the same set of constraints renders ProjSDP tremendously more difficult to solve due to the inability
of current SDP solvers to efficiently handle non-trivial bound constraints on matrix entries. Prelimi-
nary experimentation with black-box SDP solvers clearly indicates the practical limitations of using
ProjSDP directly.

Similar to Theorem 2, the theorem that follows gives an alternative reformulation of ProjSDP.
The proof of the theorem is similar to that of Theorem 2.

Theorem 4 Suppose that x̂ ∈ R
N satisfies lj ≤ x̂j ≤ uj ∀j. Then ProjSDP is equivalent to the

following convex piecewise linear optimization problem over the Cartesian product of the cone of positive
semidefinite matrices and the simplex,

(SDP-ProjCP) max {F (u) | u ∈ ΣM , B < 0} ,

where

F (u, B) =
∑

i,j

(

∑

k∈M

ukAk
ij − Bij

)+
(

y−
ij(x̂) − x̂ix̂j

)

+
∑

i,j

(

∑

k∈M

ukAk
ij − Bij

)−
(

y+
ij(x̂) − x̂ix̂j

)

+
∑

k∈M

uk(x̂T Akx̂) +
∑

k∈M

uk

(

aT
k x̂ + bk

)

.

Furthermore, if u ∈ ΣM and B < 0 satisfy F (u, B) > 0, then

(SDP-Cut)

∑

i,j

(
∑

k∈M ukAk
ij − Bij

)+ (
y−

ij(x) − xixj

)

+
∑

i,j

(
∑

k∈M ukAk
ij − Bij

)− (
y+

ij(x) − xixj

)

+
∑

k∈M uk

(

xT Akx
)

+
∑

k∈M uk

(

aT
k x + bk

)

≤ 0

is a valid convex inequality for Q+
x that cuts off x̂.

The above theorem suggests that ProjSDP can probably be solved more efficiently by applying
a subgradient algorithm to SDP-ProjCP. A detailed theoretical and computational investigation of
such an algorithm requires a good understanding of interior point methods and goes beyond the scope
of the current paper. Nevertheless, for the purpose of illustration, we designed the following heuristic
to solve SDP-ProjCP for the special case when |M | = 1. The heuristic computes a subgradient of
F (u, B) with respect to B in each iteration, projects the subgradient to the cone of positive semidefinite
matrices and performs line-search along the resulting direction. While the heuristic is not guaranteed
to yield a provably optimal solution, it seems to have good practical performance (see Section 5 for
computational results on the Box-QP instances).

Projected Subgradient Heuristic for SDP-ProjCP
Input A non-convex constraint xT Ax + aT x + b ≤ 0, a positive semidefinite matrix B, and the
incumbent solution x̂ that we seek to cut off. 2

Algorithm

2 Because ΣM = {(1)} for the special case when |M | = 1, we drop u in F (u, B) to simplify the notation.
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1. Compute a subgradient B̄ of the piecewise-linear function F at B.
2. Let λ1, . . . , λn denote the eigenvalues of B̄, and let v1, . . . , vn denote the associated eigenvectors.
3. Let B+ =

∑

λk>0 λkvkvT
k denote the projection of B̄ onto the cone of positive semidefinite matrices.

4. Solve the one-dimensional convex optimization problem

(3) max
θ≥0

F (B + θB+) ,

and let θ̄ denote the optimal solution.
5. If F (B + θ̄B+) > F (B) then set B := B + θ̄B+ and goto step 1.
6. If F (B) > 0 then generate SDP-Cut.
7. Stop.

In order to improve numerical and empirical behavior of the above heuristic, we made the following
two modifications. First, we imposed an iteration limit of 200 to avoid infinite loops as well as a long
sequence of potentially small improvements. Second, instead of solving the one-dimensional problem
(3) to optimality, we solve it only approximately by performing at most K iterations of a standard
bisection-search algorithm; we chose K = 5 in our implementation.

Note that the B matrix always remains positive semidefinite and hence feasible to SDP-ProjCP
in each iteration of the above algorithm. We used the spectral decomposition of the Hessian matrix A
to initialize the B matrix. In particular, if µ1, . . . , µn are the eigenvalues of A and v1, . . . , vn are the
associated eigenvectors, we initialize B =

∑

µk>0 µkvkvT
k .

Theorems 1 and 3 propose convexification techniques which are applied to surrogate constraints
obtained by taking non-negative combination of the original constraints. Theorem 1 proposes a 2-way
splitting of the Hessian matrix, say A = B −C (B, C ≥ 0), and approximating the atomic non-convex
expressions Bijxixj and Cijxixj by their convex estimators Bijy

−
ij(x) and Cijy

+
ij(x), respectively. The-

orem 3, on the other hand, proposes a 3-way splitting of the Hessian matrix to derive (2). Both of these
theorems have a common lacunae, namely, that neither of them exploits additional problem constraints
during the convexification process except during the construction of the surrogate constraint. As the
following example shows, there is a lot to be gained by engaging these additional constraints in the
convexification process.

Consider the MIQCP shown below,

min x3

s.t.
x1x2 − x1 − x2 − x3 ≤ 0
−6x1 + 8x2 ≤ 3
3x1 − x2 ≤ 3
0 ≤ x1, x2 ≤ 1.5 .

The above MIQCP was derived from the st e23 instance in the GLOBALLib [9] repository by
strengthening bounds on x1 and x2. Suppose x̂ = (0.81107, 0.68893,−1.5) is the incumbent solution
which we want to cut off. Because the above MIQCP has a single non-linear constraint, the unique
surrogate constraint examined by Theorems 1 and 3 is given by x1x2 − x1 − x2 − x3 ≤ 0. Let P1 =
clconv {x | x1x2−x1−x2−x3 ≤ 0, 0 ≤ x1, x2 ≤ 1.5}. Note that (1.5, 0,−1.5) ∈ P1, (0, 1.5,−1.5) ∈ P1

and
0.5407 (1.5, 0,−1.5) + 0.4593 (0, 1.5,−1.5) = x̂ ,
0.5407 + 0.4593 = 1 ,

which implies that x̂ ∈ P1. Consequently, any cut generator which uses only the surrogate constraint
and bounds information cannot cut off x̂. In particular, x̂ cannot be cut off by inequalities (1) and (2).

Next consider the following reformulation of the surrogate constraint obtained by using the spectral

decomposition of its Hessian matrix

[

0 0.5
0.5 0

]

,

1

2
(x1 + x2)

2
− x1 − x2 − x3 ≤

1

2
(x1 − x2)

2
.

Note that additional problem constraints, namely −6x1 + 8x2 ≤ 3 and 3x1 − x2 ≤ 3 can be used to
derive lower and upper bounds on the linear function x1 − x2 over the feasible region; by solving a
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pair of linear programs, we determined these bounds to be −0.375 ≤ x1 − x2 ≤ 1. These bounds, in
turn, can be used to approximate (x1 − x2)

2 by its secant approximation 0.625(x1−x2)+0.375 on the
[−0.375, 1] interval and derive the cut

1

2
(x1 + x2)

2 − x1 − x2 − x3 ≤
1

2
(0.625(x1 − x2) + 0.375) ,

which cuts off x̂. In the next section, we develop this idea and embed it within the polarity framework
to derive cutting planes for MIQCP.

4 Low Dimensional Projections

In this section we describe a systematic technique for deriving strong valid cutting planes for MIQCP
by computing low dimensional projections of its relaxations.

Suppose xT Ax + aT x + b ≤ 0 is a quadratic inequality that is satisfied by all feasible solutions
to MIQCP. Let λ1, . . . , λn denote the eigenvalues of A, and let v1, . . . , vn denote the associated
eigenvectors. Consider the following reformulation of the above inequality obtained by introducing two
auxiliary variables, sk and yk, for every negative eigenvalue of A.

∑

λk>0

λk

(

vT
k x
)2

+ aT x + b +
∑

λk<0

λksk ≤ 0,

yk = vT
k x , ∀ k : λk < 0,

sk = y2
k , ∀ k : λk < 0.

Because all variables that are involved in bilinear terms of MIQCP are assumed to have non-infinite
lower/upper bounds, the same property carries over to auxiliary variables sk and yk. By introducing
such auxiliary variables for every non-convex constraint xT Akx + aT

k x + bk ≤ 0 (k ∈ M), we get the
following alternative reformulation of MIQCP, referred to as the eigen reformulation (ER) in the
sequel.

(ER)

min aT
0 x

s.t.
xT Akx + aT

k x + bk ≤ 0 , ∀k ∈ M ;
xj ∈ Z , ∀j ∈ N1 ;
∑

λkj>0 λkj

(

vT
kjx
)2

+ aT
k x + bk +

∑

λkj<0 λkjskj ≤ 0 , ∀k ∈ M ;

ykj = vT
kjx , ∀ j : λkj < 0, k ∈ M ;

skj = y2
kj , ∀ j : λkj < 0, k ∈ M ;

Lkj ≤ ykj ≤ Ukj , ∀ j : λkj < 0, k ∈ M .

For k ∈ M , λk1, . . . , λkn denote the eigenvalues of Ak and vk1, . . . , vkn denote the associated eigen-
vectors. Lkj (Ukj) are valid lower (upper) bounds on ykj = vT

kjx , which can be easily determined by

minimizing (maximizing) vT
kjx over a suitably chosen convex relaxation of MIQCP. For the sake of

brevity, we let I denote the index set of non-convex constraints of the form skj = y2
kj in ER. Thus for

k ∈ I, ER contains auxiliary variables yk and sk, and the non-convex constraint sk = y2
k. The theorem

that follows uses polarity to derive strong valid cutting planes for ER. This theorem is motivated by
a recent application of the same idea in the context of probabilistic programming [18]. For S ⊆ I, we
denote by (< yk >k∈S) the sub-vector of y having components indexed by S.

Theorem 5 Let S ⊆ I denote a non-empty subset of I, P denote a polyhedral relaxation of ER, and
let Q = {(< yk >k∈S) | ∃x, s, (< yk >k/∈S) such that (x, y, s) ∈ P} denote the projection of P to the
space of (< yk >k∈S) variables. Let V = {(< yt

k >k∈S) | t = 1 . . .K} denote the set of extreme points
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of Q. The point (x̂, ŷ, ŝ) ∈ P is a feasible solution to ER only if the optimal value of the following
linear program is non-negative.

(PolarLP)

min
∑

k∈S (αkŷk + βkŝk) − γ
s.t.
∑

k∈S

(

αkyt
k + βk (yt

k)
2
)

− γ ≥ 0, t = 1 . . .K ;

βk ≤ 0, ∀k ∈ S ;
αk − α+

k + α−
k = 0, ∀k ∈ S ;

∑

k∈S

(

α+
k + α−

k − βk

)

= 1 ;
α+

k ≥ 0, α−
k ≥ 0 .

Furthermore, if (α, β, γ, α+, α−) is a feasible solution to PolarLP having negative objective value, then
∑

k∈S (αkyk + βksk) − γ ≥ 0 is valid for ER and cuts off (x̂, ŷ, ŝ).

Proof Suppose (x, y, s) is a feasible solution to ER and (α, β, γ, α+, α−) is a feasible solution to Po-
larLP. Because (x, y, s) ∈ P , we have (< yk >k∈S) ∈ Q and there exist λt ≥ 0 (t = 1 . . .K) such that
∑K

t=1 λt = 1 and yk =
∑K

t=1 λty
t
k (k ∈ S). Consequently,

∑

k∈S

(αkyk + βksk) − γ =
∑

k∈S



αk

(

K
∑

t=1

λty
t
k

)

+ βk

(

K
∑

t=1

λty
t
k

)2


− γ

≥

N
∑

t=1

λt

(

∑

k∈S

(

αkyt
k + βk

(

yt
k

)2
)

− γ

)

(because βk ≤ 0, ∀k ∈ S)

≥ 0 .

⊓⊔

The derivation of the inequality
∑

k∈S (αkyk + βksk) − γ ≥ 0, referred to as polarity cut in the
sequel, is based on a three step procedure. The first step is a “projection” step which projects the
polyhedral relaxation P to derive Q. The second step is a “lifting” step which lifts Q to derive

Q2 = clconv (Q1 ∪ {(< yk >k∈S , < sk >k∈S) | sk ≤ 0 ∀k ∈ S}) ,

where

Q1 = clconv
(

∪K
t=1 {(< yt

k >k∈S , < sk >k∈S) | sk = (yt
k)2 ∀k ∈ S}

)

.

The third and final step constructs the polar of Q2, truncates it with a normalization constraint
∑

k∈S

(

α+
k + α−

k − βk

)

= 1 and derives the cut generating linear program PolarLP. Of these three
steps, the second “lifting” step is the most important one for two reasons.

First, it is the only step that performs a non-convex operation. To see this, recall that projection
is a linear (and hence convex) operation whereas the polar of a closed convex set Q2 cannot capture
any characteristic that is not already present in Q2. Consequently, neither the first step nor the last
step performs a non-convex operation. The second step, on the other hand, uses a convex function
(f(yk) = (yk)2) to lift the set Q to derive Q1, and then constructs the hypograph of the resulting set
to derive Q2. Because the hypograph of a convex function is a non-convex set, it is precisely this step
that captures a portion of the non-convexity of ER, and lends utility to the above theorem.

Second, generating a valid lifting of Q in the space of (< yk >k∈S) is a non-trivial task. To see
this, note that feasible solutions of ER need not necessarily project to the extreme points of the set
Q. Consequently, it is not guaranteed that every feasible solution to ER is contained in the set Q1 =

clconv
(

∪K
t=1

{

(< yt
k >k∈S , < sk >k∈S) | sk = (yt

k)
2
∀k ∈ S

})

obtained by applying the lifting opera-

tion to the extreme points of Q. We need an additional device to ensure such a valid lifting, and as The-
orem 5 demonstrates, amending Q1 with the recession cone {(< yk >k∈S , < sk >k∈S) | sk ≤ 0 ∀k ∈ S}
accomplishes exactly that.

As an illustration, consider the special case when S is a singleton, say S = {k}, and the associated
non-convex constraint is sk = (yk)2. In this case the projection step is equivalent to determining
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PolarLP Solution Polarity Cut
αk = 1, βk = 0, γ = Lk Lk ≤ −yk

αk = −1, βk = 0, γ = −Uk −Uk ≤ −yk

αk = − Lk+Uk

1+Lk+Uk
, βk = −1

1+Lk+Uk
, γ = LkUk

1+Lk+Uk

LkUk

1+Lk+Uk
≤
(

Lk+Uk

1+Lk+Uk

)

yk − sk

1+Lk+Uk

Table 1 Illustration of Theorem 5

lower/upper bounds on the yk variable. The projected set Q is given by Q = {yk | Lk ≤ yk ≤ Uk}, the
set of extreme points is given by V = {(Lk), (Uk)} and the polar program is given by,

min αkŷk + βkŝk − γ
s.t.
αkLk + βk(Lk)2 − γ ≥ 0 ;
αkUk + βk(Uk)2 − γ ≥ 0 ;
αk − α+

k + α−
k = 0 ;

α+
k + α−

k − βk = 1 ;
α+

k ≥ 0, α−
k ≥ 0, βk ≤ 0 .

The above linear program has only three non-trivial basic feasible solutions given in Table 1 along with
each of the corresponding polarity cuts. Note that the first two polarity cuts are just bound constraints,
whereas the third cut is the secant approximation of the univariate non-convex constraint sk ≤ (yk)2 on
the interval [Lk, Uk]. Consequently, Theorem 5 can be viewed as generalizing the well-known apparatus
of secant approximation based convexification techniques to higher dimensions.

One may be tempted to believe that PolarLP can be solved by a row-generation algorithm that
works with a subset of extreme points of Q and dynamically generates additional extreme points as
needed. Such an approach is unlikely to succeed because the associated separation problem is non-
convex and most likely an NP-hard problem itself (see [12]).

Theorem 5 can be generalized to the case where P is a convex (not necessarily polyhedral) relaxation
of ER provided that Q is chosen to be a polyhedral outer approximation of the projection of P to
the space of (< yk >k∈S) variables. Such an outer approximation can be generated, for instance, by
optimizing various linear functions of the form

∑

k∈S θkyk over the convex relaxation P of MIQCP.
In our implementation we chose P to be the outer approximation of ER defined by the incumbent
solution, and used all subsets of I of cardinality two to generate polarity cuts. For each one of these
subsets, we computed all of the facets of the projection of P by solving a family of parametric linear
programs over P using a standard homotopy procedure [14]. These facets were then relaxed by a small
amount to derive a numerically stable and “safe” outer approximation of the projected set, and the
extreme points of the resulting set were used to construct PolarLP.

5 Computational Results

In this section we present our computational results. Because the aim of these experiments was to
assess the relative strengths of various relaxations introduced in the previous section, we report the
duality gap closed by each one of them along with the time taken to generate the respective relaxation.

Note that all of the results presented in the previous sections pertain to cutting plane generation.
In other words, given an incumbent solution x̂ to a convex relaxation of MIQCP, these sections
discuss techniques for generating valid linear and convex quadratic cuts that cut off x̂. However, in
order to access these cut generators, we need an initial convex relaxation of MIQCP; we next address
the issue of generating such an initial relaxation. All of our experiments were conducted on the eigen
reformulation of MIQCP. We used the following convexification of ER as our initial convex relaxation
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of MIQCP.

(MIQCP-Initial)

min aT
0 x

s.t.
∑

λkj>0 λkj

(

vT
kjx
)2

+ aT
k x + bk

−
∑

Ck
ij

>0 Ck
ijy

+
ij(x) −

∑

Ck
ij

<0 Ck
ijy

−
ij(x) ≤ 0, ∀k ∈ M ;

∑

λkj>0 λkj

(

vT
kjx
)2

+ aT
k x + bk +

∑

λkj<0 λkjskj ≤ 0, ∀k ∈ M ;

ykj = vT
kjx , ∀ j : λkj < 0, k ∈ M ;

skj ≥ y2
kj , ∀ j : λkj < 0, k ∈ M ;

skj − (Lkj + Ukj) ykj + LkjUkj ≤ 0, ∀ j : λkj < 0, k ∈ M ;
Lkj ≤ ykj ≤ Ukj , ∀ j : λkj < 0, k ∈ M ,

where Ck =
∑

λkj<0(−λkj)
(

vT
kjx
)2

for k ∈ M .

In addition to the cut generators described in the previous sections, we also used the Cut Generating
Linear Programming (CGLP) framework described in our companion paper [17] (also see [2]) to derive
disjunctive cuts. Recall that the CGLP framework requires a polyhedral relaxation of MIQCP and
a class of disjunctions that is satisfied by every feasible solution to the problem. Similar to [17], we
used the outer approximation of MIQCP defined by the incumbent solution to derive a polyhedral
relaxation of MIQCP. As for the choice of disjunctions, we used the following spatial disjunctions
associated with variables xk appearing in bilinear terms,

{

x ∈ R
n : xk ≤

lk + uk

2

}

∨

{

x ∈ R
n : xk ≥

lk + uk

2

}

.

Furthermore, we strengthened the above disjunction by deriving convex quadratic cuts for each term
of the disjunction using the constraints,

∑

λkj>0

λkj

(

vT
kjx
)2

+ aT
k x + bk −

∑

Ck
ij

>0

Ck
ijy

+
ij(x) −

∑

Ck
ij

<0

Ck
ijy

−
ij(x) ≤ 0, ∀k ∈ M,

and the modified bound on the xk variable as dictated by the respective term of the disjunction.
We implemented our cut generators using the open source framework Bonmin [6] from COIN-OR.

The convex quadratic relaxations were solved using Ipopt [24], eigenvalue problems were solved using
Lapack, and all of the linear programs were solved using CPLEX 10.1 . We define the duality gap

closed by a relaxation R of MIQCP as opt(R)−RLT
opt−RLT ×100 where opt(R), RLT and opt are the optimal

values of R, MIQCP-RLT and MIQCP, respectively. Note that MIQCP-RLT refers to the RLT
relaxation of MIQCP obtained without using the eigen reformulation technique.

Next we describe our computational results on the following three test-beds: GLOBALLib [9],
instances from Lee and Grossmann [11], and Box-QP instances from [22].

GLOBALLib is a repository of 413 global optimization instances of widely varying types and sizes.
Of these 413 instances, we selected all problems with at most 50 variables that can be easily con-
verted into instances of MIQCP. For instance, some of the problems have product-of-powers terms
(x1x2x3x4x5, x3

1, x0.75, etc.) which can be converted into quadratic expressions by introducing addi-
tional variables. Additionally, some of the problems do not have explicit upper bounds on the variables;
for such problems we used linear programming to determine valid upper bounds thereby making them
amenable to techniques discussed in this paper. The final set of selected problems comprised 151
instances.3

We implemented the following two variants of our code for the GLOBALLib instances. Both of
these variants are cutting planes frameworks that differ in the specific kinds of cutting planes that are
used. The first variant uses the disjunctive cut generator described above and the ProjLP framework
(Section 2) to derive valid inequalities for MIQCP. The second variant is identical to the first one,
except that it also uses the PolarLP framework (Section 4) to derive polarity cuts.

3 These instances are available in AMPL .mod format from www.andrew.cmu.edu/user/anureets/MIQCP
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W1 W2 V1 V2
>99.99 % gap closed 19 23 16 23
98-99.99 % gap closed 22 31 1 44
75-98 % gap closed 35 33 10 23
25-75 % gap closed 34 23 11 22
0-25 % gap closed 14 14 87 13
0-(-0.22) % gap closed 4 4 0 0
Total Number of Instances 128 128 126 126
Average Gap Closed 70.65% 76.06% 25.59% 79.34%
Average Time taken (sec) 4.616 19.462 198.043 978.140

Table 2 Summary Results: GLOBALLib instances with non-zero Duality Gap

Tables 10–13 describe the computational results. Among the 151 GLOBALLib instances in our
test-bed, 23 instances have zero duality gap. Tables 10–12 report the computational results on the
remaining 128 instances while Table 2 reports the same in a summarized form. The second column of
Tables 10–12 reports the optimal value of MIQCP-RLT while the third column reports the value of
the best known solution. The next two columns report the duality gap closed by variants 1 and 2 of our
code. In our companion paper [17], we proposed various techniques for strengthening the relaxation of
MIQCP in the extended space obtained by introducing the Yij = xixj variables. For comparison, we
report the duality gaps closed by variants 1 and 2 of the algorithm presented in [17] in the next two
columns of the tables, titled V1 and V2, respectively. Variant V1 solves the SDP relaxation MIQCP-
SDP of MIQCP in a cutting plane fashion by using convex quadratic cuts. Variant V2 is identical to
V1 except that it also uses disjunctive cuts derived from the non-convex expression xxT −Y < 0. The
next four columns report the computing times for each one of these four variants. Several comments
are in order.

First, both variants 1 and 2 of our code close substantially more gap than variant V1 which
corresponds to the SDP relaxation of MIQCP. Second, while V2 closes more gap than W1 and
W2 it is also computationally more expensive; the average computing times of V2, W1 and W2 are
978.14 sec, 4.616 sec and 19.462 sec, respectively. Third, the strengthened relaxations constructed
by V2 are defined in the space of (x, Y ) variables and are encumbered with a large number of Yij

variables. Consequently, a branch-and-bound algorithm that uses these relaxations has to bear the
computational overhead arising from additional Yij variables at every node of the branch-and-bound
tree. The strengthened relaxations constructed by variants W1 and W2, on the other hand, are defined
only in the space of x variables and are hence much more desirable for a branch-and-bound algorithm.
Fourth, variant W2 closes at least 10% more duality gap than variant W1 on 19 instances (ex2 1 5,
ex3 1 2, himmel11, st glmp kky, st kr, st ph15, etc.) thereby demonstrating the marginal importance
of polarity cuts.

In order to assess the performance of our code on 23 instances with no duality gap, we report the
maximum infeasibility maxk∈I

(

ŝk − ŷ2
k

)

in Table 10 for these instances, where (x̂, ŷ, ŝ) denotes the
solution of the convex relaxation at the last iteration of the respective variant. It is interesting to note
that both variants of our code were able to produce almost feasible solutions to 14 out of 23 instances.

The ex9⋆ instances in the GLOBALLib repository contain the linear-complementarity constraints
(LCC) xixj = 0 on a subset of variables. These constraints give rise to the following disjunction,
(xi = 0) ∨ (xj = 0), which in turn can be embedded within the CGLP framework to generate
disjunctive cuts. In order to test the effectiveness of these cuts, we modified our code to automatically
detect linear-complementarity constraints and used the corresponding disjunctions along with the
default medley of disjunctions to generate disjunctive cuts. Table 13 reports our computational results.
We observe that while the default version of our code is unable to close any significant gap on the
ex9 1 4 instance, when augmented with disjunctive cuts from the linear-complementarity constraints,
it closes 100% of the duality gap.

Note that among the three cut generators used by variants W1 and W2, namely ProjLP, PolarLP
(only W2) and CGLP, the disjunctive cut generator CGLP is computationally most expensive because it
requires solving large highly degenerate linear programs. In order to evaluate the marginal contribution
of disjunctive cuts, we conducted the following experiment on 128 GLOBALLib instances with non-
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W1 W2 W1-Dsj W2-Dsj
>99.99 % gap closed 19 23 19 23
98-99.99 % gap closed 22 31 5 21
75-98 % gap closed 35 33 17 18
25-75 % gap closed 34 23 26 32
0-25 % gap closed 14 14 57 30
0- (-0.22) % gap closed 4 4 4 4
Total Number of Instances 128 128 128 128
Average Gap Closed 70.65% 76.06% 40.92% 60.48%
Average Time taken (sec) 4.616 19.462 0.893 0.814

Table 3 Marginal Value of Disjunctive Cuts

zero duality gap. We modified our code so that the disjunctive cut generator was turned off for each
one of the variants W1 and W2. Tables 15-17 report the resulting computational results while Table
3 reports the same in summarized form. A suffix of “-Dsj” indicates that the corresponding version of
our code was modified to not use the disjunctive cut generator. Three remarks are in order.

First, switching off the disjunctive cut generator adversely affects the performance of both the
variants, as expected. However, the degradation in average duality gap closed is much higher for W1
(around 30%) than for W2 (around 16%), suggesting that polarity cuts are able to capture a certain
portion of the strengthening that is derived from disjunctive cuts. Second, the average computing times
for variants W1 and W2 without disjunctive cuts are less than 1 sec, thus demonstrating their practical
utility as computationally efficient strengthening techniques. Third, it is interesting to examine the
source of strengthening for the W1-Dsj variant. Note that the only cut generator used by W1-Dsj
is ProjLP which in turn is a device to project the MIQCP-RLT formulation to the space of x-
variables. In the absence of any other cut generator, what is aiding W1-Dsj to the extent that it closes
40% of the duality gap on average? The answer to this question lies in our use of eigen reformulation.
Recall that eigen reformulation entails introducing additional variables yj , sj (j ∈ I) which are
derived from eigenvectors of Ak (k ∈ M) matrices with negative eigenvalues, and keeping the convex
quadratic terms corresponding to positive eigenvalues. Alternatively, our initial formulation MIQCP-
Initial identifies directions of maximal non-convexity in each constraint, introduces additional variables
to expose them and then relaxes the non-convex constraint sk ≤ (yk)2 to its secant approximation
sk ≤ (Lk + Uk)yk − LkUk to create a convex relaxation. For the convex side of the constraints,
MIQCP-Initial identifies the directions of convexity of each constraint and preserves them thereby
capturing a portion of strengthening derivable from MIQCP-SDP. It is precisely this specific way of
lifting the MIQCP formulation that explains the 40% duality gap closed by W1-Dsj variant of our
code.

Next we present our computational results on the MIQCP instances proposed in [11]. These
problems have both continuous and integer variables and quadratic constraints. They are of relatively
small size with between 10 and 54 variables. All of these problems contain the so-called SOS1 constraint
of the form x1 + x2 + x3 = 1, where x1, x2, x3 are binary variables. These SOS1 constraints imply
the following disjunction, (x1 = 1) ∨ (x2 = 1) ∨ (x3 = 1) which in turn can be used within the CGLP
framework to generate disjunctive cuts. We modified our code to automatically detect such SOS1
constraints, and use the corresponding disjunctions along with the default medley of disjunctions to
generate disjunctive cuts. Table 4 summarizes the experiment. Note that both variants of our code
out-perform V1. However, unlike the case of GlobalLib instances, the V2 variant of the algorithm
presented in [17] perform significantly better on these instances than W1 or W2.

Next we present our results on the box-constrained Quadratic Programs (QPs). This test bed
consists of test problems used in [22]. These problems are randomly generated box QPs with A0

of various densities. Similar to GLOBALLib instances, we ran both variants of our code on all of
these instances, and we also performed additional experiments to determine the marginal impact of
disjunctive and polarity cuts. Based on our computational results, we conclude that disjunctive and
polarity cuts have inconsequential effect on the fraction of the duality gap closed for these instances.
Alternatively, all four variants of our code, W1, W2, W1-Dsj and W2-Dsj, close more or less the same
duality gap.
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Relaxation Values
Instance RLT OPT W1 W2 V1 V2
Example 1 -58.70 -11.00 -37.44 -37.44 -58.70 -37.44
Example 2 -414.94 -14.00 -57.74 -57.74 -93.18 -14.26
Example 3 -819.66 -510.08 -603.38 -601.32 -793.15 -513.61
Example 4 -499282.59 -116575.00 -467386.78 -461639.29 -472727.49 -363487.69

Table 4 Summary of results on the Lee-Grossmann examples.

Note that box constrained QPs can be cast as MIQCPs with a single non-convex quadratic con-
straint thereby making them amenable to the projected subgradient heuristic discussed in Section 3.
Based on this observation, we designed a third variant W3 of our code which uses the ProjLP frame-
work and the projected subgradient heuristic to generate linear and convex quadratic cuts. We ran this
variant on all the box QP instances described in [22]; Tables 18 and 19 report the computational results
while Table 5 reports the same in summarized form. In order to evaluate the marginal contribution of
convex quadratic cuts derived via the projected subgradient heuristic, we ran a modified version of W3
wherein the cut generator for these cuts was switched off; Tables 18, 19 and 5 report the computational
results of this experiment in columns titled W3-SDP.

%Time spent on Time (sec) to solve
% Duality Gap Closed Time Taken (sec) Cut Generation last relaxation

Instance W3 W3-SDP W3 W3-SDP W3 (Adj) W3 W3-SDP W3 W3-SDP
spar20* 94.60 - 99.97 91.54 - 99.91 2.49 - 408.36 0.84 - 2.46 0.51 - 1.60 26.28 - 95.77 0.12 - 0.24 0.05 - 0.33 0.01 - 0.09
spar30* 89.87 - 99.99 51.41 - 98.79 12.33 - 565.88 1.74 - 14.38 3.32 - 14.49 17.78 - 91.48 0.00 - 0.21 0.07 - 0.9 0.01 - 0.23
spar40* 87.85 - 99.60 21.78 - 89.63 35.77 - 134.8 4.16 - 65.28 13.75 - 49.76 27.5 - 78.37 0.01 - 0.13 0.16 - 1.19 0.02 - 0.75
spar50* 87.88 - 97.53 11.38 - 50.15 50.22 - 180.96 8.76 - 99.13 28.95 - 76.19 51.02 - 79.73 0.01 - 0.11 0.13 - 0.87 0.04 - 1.01
spar60* 85.78 - 90.99 0.00 - 0.00 121.83 - 226.11 111.07 - 127.47 86.28 - 141.77 46.29 - 56.61 0.10 - 0.12 0.54 - 1.55 1.65 - 2.17
spar70* 89.78 - 99.36 0.00 - 53.67 191.12 - 693.28 22.02 - 202.98 92.63 - 143.35 71.13 - 87.7 0.01 - 0.11 0.48 - 1.1 0.08 - 2.42
spar80* 88.13 - 97.49 2.94 - 56.23 257.62 - 892.96 34.77 - 67.66 121.62 - 230.53 76.37 - 84.44 0.01 - 0.02 0.57 - 2.03 0.1 - 0.82
spar90* 89.44 - 96.60 5.73 - 50.13 408.73 - 991.04 46.98 - 95.66 184.63 - 294.92 73.44 - 88.25 0.01 - 0.02 0.78 - 1.51 0.12 - 2.11

spar100* 92.15 - 96.46 8.17 - 51.79 538.03 - 1509.96 75.49 - 112.69 279.41 - 385.64 77.49 - 92.3 0.01 - 0.23 0.82 - 2.01 0.13 - 2.5
Average 95.19% 50.01% 280.50 37.89 101.57 66.05% 0.04% 0.67 0.33

Table 5 Summary Results: Box Constrained QPs from [22]

The second column of Tables 18 and 19 reports the optimal value of the MIQCP-RLT relaxation
while the third column reports the optimal value of each instance. The next two columns report the
duality gap closed by W3 and W3-SDP, respectively, while the following two columns report the total
computing time for each variant. Like most cutting plane algorithms, variant W3 exhibits a strong
tailing off behavior (i.e., most of the duality gap is closed in the first few iterations whereas the
ensuing iterations contribute very little). In order to quantitatively assess the impact of this tailing off
phenomenon on the total computing time, we computed the time it takes for the W3 variant to close
a fraction of the duality gap that is 1% less than the duality gap closed in its entire run. The eighth
column of Tables 18 and 19 titled “W1 (Adj)” reports the resulting computing times. For the sake of
illustration consider the spar100-075-1 instance. Variant W3 closes 95.84% of the duality gap on this
instance in 1509.36 sec; however it takes only 366.24 sec to close 94.84% of the gap. In other words, the
code was able to close a significant proportion of the duality gap in the first 6 min. of the experiment,
while the last 19 min. was spent on generating cuts that closed just 1% more duality gap.

The next two columns of the tables report the fraction of the total computing time that was spent
on cut generation. Two remarks are in order. First, the fraction of time spent on cut generation in
variant W3 increases as the problem size increases. For larger instances with more than 85 variables,
almost 75% of the computational effort was spent on cut generation. Second, the same statistic for
variant W3-SDP is significantly smaller and never goes beyond 0.25%. This can be attributed to the
fact that the only cut generator used by W3-SDP is ProjLP which involves solving linear programs
(DProjLP) with a lot of variables but very few constraints (also see discussion in Section 2). These
statistics attest the practical usefulness of the ProjLP framework.

The last column of Tables 18 and 19 reports the time taken by Ipopt to solve the final strengthened
relaxation for each instance. Note that the strengthened relaxations of even the larger instances with
100 variables can be solved in less than 3 sec. This observation has an interesting consequence which we
discuss next. Recall that there are two critical issues that are involved in engineering an efficient branch-
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and-bound algorithm, namely, the strength of the relaxation used and the computational effort spent
on solving it at every node of the branch-and-bound tree. Naturally we are interested in relaxations
that are a good representation of the convex hull of all feasible solutions (i.e., have small duality gaps),
and which can be solved efficiently. Tables 18 and 19 show that the strengthened relaxations obtained
by our algorithm have both of these desirable properties. These relaxations close around 95% (average)
of the duality gap and can be solved in less than a second on average. To give a better appreciation of
this phenomenon to the reader, we conducted the following experiment. We chose two state-of-the-art
SDP solvers, SDPLR [7] and SDPA [25], and solved the SDP relaxation MIQCP-SDP of these box
QP instances using them. Tables 20 and 21 report the computational results, while Table 6 reports
the same in summarized form. Four remarks are in order.

First, the amount of computational effort required to solve the strengthened relaxations (last column
of Tables 20 and 21) is several orders of magnitude smaller than the one required to solve the SDP
relaxation using a black box SDP solver. This observation naturally accrues significance in view of the
fact that such a relaxation has to be solved hundreds or thousands of times in a branch-and-bound
procedure. Second, the time spent on generating the strengthened relaxation is comparable and in most
cases less than the time required to solve the SDP relaxation. Note that most contemporary branch-
and-bound procedures generate cutting planes primarily at the root node and only sparingly at other
nodes of the branch-and-bound tree. Consequently, the amortized cost of generating the strengthened
relaxation decreases as the number of branch-and-bound nodes increases. Third, the convex quadratic
cuts generated using the projected subgradient heuristic come close to capturing the strength of the
SDP relaxation, the heuristic nature of their separation routine notwithstanding. Of course, for larger
instances the gap between the strength of the projected relaxation and the extended SDP relaxation
widens, highlighting the heuristic nature of our approach. Fourth, the convex quadratic constraints in
the strengthened relaxations generated by our code can be approximated by polyhedral relaxations
introduced by Ben-Tal and Nemirovski [5] (also see [23]) yielding linear programming (LP) relaxations
of these problems. Such LP relaxations are extremely desirable for branch-and-bound algorithms for two
reasons. One, they can be efficiently re-optimized using warm-starting capabilities of LP solvers thereby
reducing the computational overheads at nodes of the enumeration tree. Two, these LP relxations can
easily avail techniques, such as branching strategies, cutting planes, heuristics, etc., which have been
developed by the MILP community in the past five decades (see [1] for application of these techniques
in the context of convex MINLPs).

Indeed, one could argue that the SDP solvers can be engineered to efficiently handle the large
number of RLT inequalities (for example [15]) thereby improving the rather grim picture presented in
Tables 20 and 21. Furthermore, instead of solving the SDP relaxation to optimality, the optimization
process can be pre-empted to improve the overall computing times. Despite these engineering improve-
ments, its unlikely that one can obtain relaxations of MIQCP in the space of (x, Y ) variables that are
at least as strong as the relaxations proposed in this paper and can be solved with as little computing
effort as documented in the last column of Tables 18 and 19. Table 7 gives detailed statistics on some of
the larger instances to demonstrate this computational chasm between the extended SDP relaxations
and those proposed in this paper (labelled “Proj” in the table).

Time to solve
% Duality Gap Closed Time Taken (sec) last relaxation (sec)

Instance SDPLR SDPA W3 SDPLR SDPA W3 W3
spar20* 99.67 - 100 99.67 - 99.99 94.6 - 99.97 0.97 - 56.37 1.98 - 3.39 2.48 - 408.35 0.05 - 0.32
spar30* 97.81 - 100 97.81 - 99.99 89.87 - 99.99 3.57 - 243.3 16.66 - 29.33 12.33 - 565.88 0.06 - 0.89
spar40* 96.6 - 100 96.6 - 99.99 87.85 - 99.6 10.3 - 515.73 105.68 - 157.83 35.77 - 134.8 0.16 - 1.18
spar50* 95.55 - 100 95.55 - 99.99 87.88 - 97.53 41.72 - 926.15 438.77 - 589.17 50.21 - 180.95 0.13 - 0.86
spar60* 98.69 - 100 98.69 - 99.99 85.78 - 90.99 88.05 - 532.45 1150.06 - 1408.32 121.83 - 226.1 0.53 - 1.55
spar70* 98.46 - 100 98.46 - 99.99 89.78 - 99.36 133.07 - 3600.75 2769.98 - 3721.34 191.11 - 693.27 0.48 - 1.1
spar80* 97.85 - 100 97.84 - 99.99 88.13 - 97.49 965.18 - 5413.02 6618.79 - 8285.12 257.61 - 892.95 0.56 - 2.02
spar90* 97.83 - 99.99 97.83 - 99.99 89.44 - 96.6 2403.62 - 7049.49 12838.46 - 17048.98 408.73 - 991.04 0.77 - 1.51

spar100* 98.17 - 99.38 98.17 - 99.38 92.15 - 96.46 5355.2 - 10295.88 23509.13 - 28604.12 538.02 - 1509.96 0.82 - 2
Average 99.40% 99.40% 95.19% 1741.20 5247.04 280.50 0.67

Table 6 Summary Results: Comparison with SDP Solvers
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No. Constraints
No. Variables Linear Convex (Non-Linear) Computing Time (sec) % Duality Gap Closed

Instances SDP Proj SDP Proj SDP Proj SDP Proj SDP Proj

(Y − xxT
< 0) (Quadratic)

spar100-025-1 5151 203 20201 156 1 119 5719.42 1.14 98.93% 92.36%
spar100-025-2 5151 201 20201 151 1 95 10185.65 1.52 99.09% 92.16%
spar100-025-3 5151 201 20201 150 1 114 5407.09 1.24 99.33% 93.26%
spar100-050-1 5151 201 20201 150 1 98 10139.57 1.07 98.17% 93.62%
spar100-050-2 5151 201 20201 150 1 113 5355.20 1.26 98.57% 94.13%
spar100-050-3 5151 201 20201 150 1 97 7281.26 0.82 99.39% 95.81%
spar100-075-1 5151 201 20201 150 1 131 9660.79 2.00 99.19% 95.84%
spar100-075-2 5151 201 20201 150 1 109 6576.10 1.23 99.18% 96.47%
spar100-075-3 5151 199 20201 147 1 90 10295.88 0.87 99.19% 96.06%

Table 7 Comparison with SDP Solvers (spar100 Instances)

Eigen Vector Eigen Values
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2
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2
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2
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2

)
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2

Table 8 Eigenvectors and Eigenvalues of A matrix (Theorem 5 Illustration)

We conclude this section by illustrating Theorem 5 on the st glmp kky instance from GLOBALLib
shown below.

(st glmp kky)

min z
s.t.

x5x4 + x7x6 + x3 + −z ≤ 0
−5x1 + 8x2 ≤ 24
−5x1 − 8x2 ≤ 100
−6x1 + 3x2 ≤ 100
−4x1 − 5x2 ≤ −10
5x1 − 8x2 ≤ 100
5x1 + 8x2 ≤ 44
6x1 − 3x2 ≤ 15
4x1 + 5x2 ≤ 100
3x1 − 4x2 − x3 = 0
x1 + 2x2 − x4 = 1.5
2x1 − x2 − x5 = −4
x1 − 2x2 − x6 = −8.5
2x1 + x2 − x7 = 1
0 ≤ x1 ≤ 10.0
0 ≤ x2 ≤ 10.0
−12 ≤ x3 ≤ 7.5
1 ≤ x4 ≤ 9
1 ≤ x5 ≤ 9
2 ≤ x6 ≤ 11
1 ≤ x7 ≤ 10 .

st glmp kky has exactly one non-convex constraint, x4x5 + x6x7 + x3 − z ≤ 0 with Hessian matrix

A =









0 1
2 0 0

1
2 0 0 0
0 0 0 1

2
0 0 1

2 0









.

Note that for the sake of brevity we show only the rows and columns of the Hessian matrix corre-
sponding to the nonlinear variables x4, x5, x6 and x7. Table 8 gives the eigenvectors and eigenvalues
of the A matrix.

Clearly, A has two negative eigenvalues, and we can derive the eigen reformulation of st glmp kky
by introducing four additional variables, say y1, y2, s1 and s2, and augmenting the original formulation
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with the constraints:

1
2

(

1√
2
x4 + 1√

2
x5

)2

+ 1
2

(

1√
2
x6 + 1√

2
x7

)2

+ x3 − z − 1
2s1 −

1
2s2 ≤ 0

1√
2
x4 −

1√
2
x5 − y1 = 0

1√
2
x6 −

1√
2
x7 − y2 = 0

s1 = y2
1

s2 = y2
2

−5.6569 ≤ y1 ≤ 3.7123

−3.7123 ≤ y2 ≤ 4.9497 .

The bounds on y1 and y2 variables were determined by maximizing and minimizing y1 and y2,
respectively, over a suitably chosen outer approximation of st glmp kky, referred to as OA in the
sequel. We can derive the projection of OA to the space of (y1, y2) variables by optimizing parametric
functions of the form θ1y1 + θ2y2 over OA; Table 5 reports the facial characteristics of the projected
set, say Q.

Facets
y2 + 0.4117y1 ≤ 2.6205
y2 + 1.0009y1 ≤ 2.8310
y2 + 3.2867y1 ≤ 8.4890

y2 + 0.3043y1 ≥ −2.5826
y2 + 1.4009y1 ≥ −2.9757

Extreme Points
y1 = 3.7123 y2 = −3.7125

y1 = −0.3584 y2 = −2.4735
y1 = −5.657 y2 = 4.9498
y1 = 0.3571 y2 = 2.4734
y1 = 2.4754 y2 = 0.3531

Table 9 Facial Characterization of the Projected Set (Theorem 5 Illustration)

The extreme points of Q can be used to derive polarity cuts as explained in Section 4. Variants of
our code that use these polarity cuts, namely W2 and W2-Dsj, close 99.62% of the duality gap on the
st glmp kky instance. On the other hand, variants W1 and W1-Dsj, which do not use polarity cuts are
unable to close any gap. Figure 5 provides an explanation for this disparate behavior. The solid lines
in the figure plot the facets of the projected set Q, whereas the dotted lines denote the box determined
by the lower/upper bounds on y1 and y2.

The key to understanding this disparity lies in recognizing the interdependent nature of y1 and
y2 variables which arises by virtue of constraints that are present in st glmp kky. These constraints
restrict the set of values that y1 and y2 can take simultaneously. For instance, even though both y1

and y2 can attain their maximum values of 3.7123 and 4.9497 over different feasible solutions, Figure
5 shows that they can never attain these values simultaneously at any feasible solution. It is precisely
this global information that is captured by the projection mechanism, and effectively utilized by the
PolarLP framework to generate strong convex relaxations via polarity cuts from the pair of non-convex
constraints s1 ≤ y2

1 and s2 ≤ y2
2 .

6 Generalization to non-convex MINLPs

Interestingly, many of the ideas presented in this paper can be used to generate strong convex re-
laxations of non-convex Mixed Integer Non-Linear Programs (MINLP). For the sake of illustration
consider the following MINLP,

min x + y − z
s.t.
xy cos(x − y) + zex + log(x) ≤ 3
y2 + zx ≤ 2
1 ≤ y ≤ 10
0.2 ≤ x ≤ 2
−10 ≤ z ≤ 10
z ∈ Z .
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Figure 1 2-Dimensional Projection (Theorem 5 Illustration)

By introducing additional variables we can reformulate the above MINLP as,

min x + y − z

s.t.

VxyCxy + zEx + Lx ≤ 3

y2 + zx ≤ 2

Vxy − xy = 0

0.2 ≤ x ≤ 2, 1 ≤ y ≤ 10, −10 ≤ z ≤ 10

0.2 ≤ Vxy ≤ 20, −1 ≤ Cxy ≤ 1, e0.2 ≤ Ex ≤ e2

z ∈ Z

Cxy − cos(x − y) = 0

Lx − log(x) ≥ 0

Ex − ex = 0 .

The first six constraints of this reformulation give a MIQCP relaxation of the original MINLP
which is readily amenable to techniques discussed in this paper. For example, we can use the projected
subgradient heuristic to approximate the SDP relaxation of the constraint VxyCxy + zEx + Lx ≤ 3.
Similarly, given a convex relaxation, say R, of the above reformulation we can determine a polyhedral
outer approximation, say OA, of the projection of R to the space of (Lx, Ex) variables by optimizing
parametric linear functions of the form θ1Lx + θ2Ex over R. The extreme points of OA can be used
to derive polarity cuts using a straightforward generalization of Theorem 5.

To summarize, even though the results presented in this paper focussed on MIQCPs, they are
equally applicable to a much wider class of non-convex MINLPs. All we need is an automatic system
that can take a non-convex MINLP and extract a corresponding MIQCP relaxation. Development
of software such as Couenne [4,8] is a step in this direction.
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Appendix

% Duality Gap Closed Time Taken (sec)
Instance RLT OPT W1 W2 V1 V2 W1 W2 V1 V2

alkyl -2.76 -1.77 81.87% 83.42% 0.00% 55.83% 3.766 5.708 10.621 3619.874
circle 0.00 4.57 91.48% 91.48% 45.74% 99.89% 0.228 0.254 0.218 0.456

dispatch 3101.28 3155.29 100.00% 100.00% 100.00% 100.00% 0.021 0.052 0.044 0.052
ex2 1 1 -18.90 -17.00 99.96% 99.96% 0.00% 72.62% 1.265 1.249 0.009 704.400

ex2 1 10 39668.06 49318.02 89.23% 89.23% 22.05% 99.37% 0.071 0.142 6.719 29.980
ex2 1 5 -269.45 -268.01 77.09% 99.95% 0.00% 99.98% 0.049 0.097 0.020 0.173
ex2 1 6 -44.40 -39.00 99.97% 99.96% 0.00% 99.95% 0.385 0.265 0.023 3397.650
ex2 1 7 -6031.90 -4150.41 69.74% 88.09% 0.00% 41.17% 11.179 221.363 0.188 3607.439
ex2 1 8 -82460.00 15639.00 99.64% 99.90% 0.00% 84.70% 0.645 1.692 0.491 3632.275
ex2 1 9 -2.20 -0.38 93.33% 93.96% 0.00% 98.79% 1.094 0.985 0.140 1587.940
ex3 1 1 2533.20 7049.25 0.35% 0.35% 0.00% 15.94% 0.186 0.176 1.391 3600.268
ex3 1 2 -30802.76 -30665.54 36.44% 65.03% 49.74% 99.99% 1.719 1.853 0.035 0.083
ex3 1 3 -440.00 -310.00 99.23% 100.00% 0.00% 99.99% 0.042 0.084 0.013 0.064
ex3 1 4 -6.00 -4.00 26.98% 30.22% 0.00% 86.31% 0.403 0.121 0.009 21.261
ex4 1 1 -173688.80 -7.49 99.71% 99.88% 100.00% 100.00% 0.577 0.452 0.287 0.310
ex4 1 3 -7999.46 -443.67 84.32% 85.89% 56.40% 93.54% 1.318 0.968 0.080 0.285
ex4 1 4 -200.00 0.00 50.00% 50.00% 100.00% 100.00% 0.326 0.425 0.247 0.243
ex4 1 6 -24075.00 7.00 62.08% 62.08% 100.00% 100.00% 0.187 0.177 0.185 0.308
ex4 1 7 -206.25 -7.50 94.86% 94.72% 100.00% 100.00% 1.391 0.832 0.128 0.114
ex4 1 8 -29.00 -16.74 100.00% 100.00% 100.00% 100.00% 0.042 0.036 0.043 0.059
ex4 1 9 -6.99 -5.51 0.15% 6.27% 0.00% 43.59% 0.085 0.121 0.008 1.307

ex5 2 2 case1 -599.90 -400.00 -0.22% -0.22% 0.00% 0.00% 0.150 0.209 0.011 0.016
ex5 2 2 case2 -1200.00 -600.00 -0.05% -0.05% 0.00% 0.00% 0.153 0.179 0.021 0.047
ex5 2 2 case3 -875.00 -750.00 -0.02% -0.01% 0.00% 0.36% 0.071 0.155 0.016 0.358

ex5 2 4 -2933.33 -450.00 67.42% 73.30% 0.00% 79.31% 1.345 1.448 0.046 68.927
ex5 3 2 1.00 1.86 0.00% 0.00% 0.00% 7.27% 1.754 2.665 0.355 245.821
ex5 4 2 2598.25 7512.23 0.52% 0.52% 0.00% 27.57% 0.209 0.177 1.141 3614.376
ex7 3 2 0.00 1.09 52.16% 52.16% 0.00% 59.51% 0.478 0.569 0.788 3609.704
ex8 1 4 -13.00 0.00 51.54% 51.54% 100.00% 100.00% 0.186 0.175 0.020 0.038
ex8 1 5 -3.33 0.00 25.72% 24.41% 68.30% 68.97% 23.192 8.681 0.839 1.246
ex8 1 7 -757.58 0.03 86.11% 87.69% 77.43% 77.43% 11.749 5.521 75.203 75.203
ex8 1 8 -0.85 -0.39 66.29% 65.42% 0.00% 76.49% 7.411 9.191 7.722 3607.682
ex8 4 1 -5.00 0.62 89.05% 89.24% 91.84% 91.09% 3.050 4.913 3659.232 3642.131
ex8 4 2 -5.00 0.49 91.21% 91.41% 94.07% 93.04% 3.100 6.547 3641.875 3606.071
ex9 1 4 -63.00 -37.00 0.00% 0.00% 0.00% 0.00% 0.057 0.256 0.077 0.603
ex9 2 1 -16.00 17.00 68.14% 68.74% 54.54% 60.04% 1.107 0.563 3603.428 2372.638
ex9 2 2 -50.00 100.00 89.62% 93.95% 70.37% 88.29% 0.180 0.276 1227.898 3606.357
ex9 2 3 -30.00 0.00 0.00% 0.00% 0.00% 0.00% 0.237 0.451 0.125 3.819
ex9 2 4 -396.00 0.50 99.87% 99.87% 99.87% 99.87% 0.062 0.076 2.801 8.897
ex9 2 6 -406.00 -1.00 99.88% 99.88% 87.23% 87.93% 0.279 0.436 851.127 2619.018
ex9 2 7 -9.00 17.00 59.30% 61.34% 42.31% 51.47% 0.468 0.899 3602.364 3628.249
ex9 2 8 0.50 1.50 100.00% 100.00% - - 0.019 0.037 - -

himmel11 -30802.76 -30665.54 26.51% 59.00% 49.74% 99.99% 1.703 1.948 0.053 0.082

Table 10 GLOBALLib Instances with non-zero Duality Gap (Part 1)
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% Duality Gap Closed Time Taken (sec)
Instance RLT OPT W1 W2 V1 V2 W1 W2 V1 V2

house -5230.54 -4500.00 77.96% 80.33% 0.00% 86.93% 0.726 0.974 0.435 12.873
hydro 4019717.93 4366944.16 100.00% 100.00% 100.00% 100.00% 0.211 0.252 8.354 20.668

mathopt1 -912909.01 1.00 100.00% 100.00% 100.00% 100.00% 0.015 0.023 1.727 2.448
mathopt2 -11289.00 0.00 100.00% 100.00% 100.00% 100.00% 0.039 0.033 0.351 0.229
meanvar 0.00 5.24 100.00% 100.00% 100.00% 100.00% 0.009 0.008 0.179 0.276
nemhaus 0.00 31.00 100.00% 100.00% 53.97% 100.00% 0.025 0.025 0.836 0.198

prob05 0.32 0.74 61.73% 61.79% 0.00% 99.78% 0.134 0.099 0.007 0.165
prob06 1.00 1.18 100.00% 100.00% 100.00% 100.00% 0.036 0.038 0.023 0.024
prob09 -100.00 0.00 100.00% 100.00% 100.00% 99.99% 0.070 0.079 0.582 0.885
process -2756.59 -1161.34 85.00% 84.88% 7.68% 88.05% 13.965 11.318 6.379 3620.085

qp1 -1.43 0.00 100.00% 100.00% 85.76% 89.12% 0.034 0.035 3659.085 3897.521
qp2 -1.43 0.00 100.00% 100.00% 86.13% 89.15% 0.035 0.034 3643.188 4047.592

rbrock -659984.01 -5.67 100.00% 100.00% 100.00% 100.00% 0.012 0.010 0.353 3.194
st bpaf1a -46.01 -45.38 0.00% 0.00% 0.00% 81.73% 0.080 0.114 0.049 0.894
st bpaf1b -43.13 -42.96 -0.01% -0.01% 0.00% 90.73% 0.075 0.114 0.047 3.299

st bpv2 -11.25 -8.00 99.97% 99.97% 0.00% 99.99% 0.022 0.025 0.033 0.029
st bsj2 -0.63 1.00 95.76% 99.95% 0.00% 99.98% 0.207 0.083 0.009 1.974
st bsj3 -86768.55 -86768.55 -0.03% -0.03% 0.00% 0.00% 5.533 5.136 0.012 0.011
st bsj4 -72700.05 -70262.05 93.34% 93.34% 0.00% 99.86% 1.570 1.579 0.014 1.715
st e02 171.42 201.16 91.82% 95.88% 0.00% 99.88% 0.053 0.088 0.008 0.095
st e03 -2381.89 -1161.34 82.12% 91.95% 29.58% 91.63% 15.687 1326.453 715.006 3639.297
st e05 3826.39 7049.25 9.80% 9.80% 0.00% 50.43% 0.209 0.133 0.194 16.217
st e06 0.00 0.16 0.00% 0.00% 0.00% 0.00% 0.117 0.260 0.215 0.726
st e07 -500.00 -400.00 85.66% 85.67% 0.00% 99.97% 0.319 0.809 0.042 0.350
st e08 0.31 0.74 61.76% 61.82% 0.00% 99.81% 0.134 0.095 0.008 0.208
st e09 -0.75 -0.50 91.77% 91.77% 0.00% 92.58% 0.048 0.067 0.012 0.014
st e10 -29.00 -16.74 100.00% 100.00% 100.00% 100.00% 0.028 0.030 0.036 0.045
st e18 -3.00 -2.83 100.00% 100.00% 100.00% 100.00% 0.015 0.028 0.015 0.018
st e19 -879.75 -86.42 93.51% 93.51% 93.50% 95.21% 0.118 0.146 0.373 0.613
st e20 -0.85 -0.39 66.29% 65.42% 0.00% 76.38% 7.402 9.537 7.409 3610.271
st e23 -3.00 -1.08 96.42% 96.42% 0.00% 98.40% 0.924 0.943 0.011 0.087
st e24 0.00 3.00 66.58% 66.58% 0.00% 99.81% 0.022 0.024 0.007 0.501
st e25 0.25 0.89 100.00% 100.00% 87.20% 100.00% 0.017 0.015 0.312 0.161
st e26 -513.00 -185.78 99.99% 99.99% 0.00% 99.96% 0.032 0.034 0.006 0.036
st e28 -30802.76 -30665.54 26.51% 59.00% 49.74% 99.99% 1.721 1.934 0.051 0.088
st e30 -3.00 -1.58 0.00% 0.00% 0.00% 0.00% 0.286 0.981 0.014 0.035
st e33 -500.00 -400.00 85.79% 85.78% 0.00% 99.94% 0.172 0.269 0.047 0.457
st fp1 -18.90 -17.00 99.96% 99.96% 0.00% 72.62% 1.263 1.315 0.009 658.824
st fp5 -269.45 -268.01 77.09% 99.95% 0.00% 99.98% 0.052 0.104 0.018 0.175
st fp6 -44.40 -39.00 99.97% 99.96% 0.00% 99.92% 0.376 0.286 0.025 3603.767

st fp7a -435.52 -354.75 63.32% 98.55% 0.00% 45.13% 1.329 49.026 0.151 806.493
st fp7b -715.52 -634.75 63.32% 98.59% 0.00% 22.06% 1.285 45.861 0.153 11.941
st fp7c -10310.47 -8695.01 63.32% 98.35% 0.00% 44.26% 1.317 44.759 0.181 3621.180

Table 11 GLOBALLib Instances with non-zero Duality Gap (Part 2)
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% Duality Gap Closed Time Taken (sec)
Instance RLT OPT W1 W2 V1 V2 W1 W2 V1 V2

st fp7d -195.52 -114.75 63.32% 96.95% 0.00% 50.03% 1.378 24.630 0.111 3627.749
st fp8 7219.50 15639.00 5.06% 6.85% 0.00% 0.83% 5.516 6.583 0.331 4.911

st glmp fp2 7.07 7.34 0.00% 0.00% 0.00% 45.70% 0.028 0.028 0.009 0.732
st glmp kk92 -13.35 -12.00 100.00% 100.00% 0.00% 99.98% 0.027 0.027 0.023 0.038
st glmp kky -3.00 -2.50 0.00% 99.62% 0.00% 99.80% 0.052 0.049 0.011 0.133
st glmp ss1 -38.67 -24.57 73.96% 73.96% 0.00% 89.30% 0.042 0.036 0.031 0.556

st ht -2.80 -1.60 91.58% 99.88% 0.00% 99.81% 0.083 0.066 0.006 0.142
st iqpbk1 -1722.38 -621.49 99.13% 99.97% 97.99% 99.86% 0.263 0.179 3.825 5.086
st iqpbk2 -3441.95 -1195.23 99.16% 99.99% 97.93% 100.00% 0.303 0.178 2.515 31.614
st jcbpaf2 -945.45 -794.86 75.21% 85.77% 0.00% 99.47% 0.391 0.453 2.650 3622.733

st jcbpafex -3.00 -1.08 96.42% 96.42% 0.00% 98.40% 0.929 0.859 0.012 0.085
st kr -104.00 -85.00 63.09% 99.95% 0.00% 99.93% 0.030 0.047 0.008 0.090

st m1 -505191.34 -461356.94 83.08% 87.36% 0.00% 99.96% 0.300 1.365 0.222 368.618
st m2 -938513.68 -856648.82 66.40% 66.40% 0.00% 70.19% 16.190 21.288 1.226 3641.449

st pan1 -5.69 -5.28 99.89% 99.86% 0.00% 99.72% 0.098 0.090 0.007 0.926
st pan2 -19.40 -17.00 99.96% 99.96% 0.00% 68.54% 9.898 9.683 0.009 3038.430
st ph1 -243.81 -230.12 99.92% 99.93% 0.00% 99.98% 0.039 0.063 0.011 0.225

st ph11 -11.75 -11.28 53.14% 53.14% 0.00% 99.46% 0.044 0.052 0.007 0.910
st ph12 -23.50 -22.63 56.90% 56.90% 0.00% 99.49% 0.093 0.088 0.006 0.353
st ph13 -11.75 -11.28 53.17% 53.17% 0.00% 99.38% 0.050 0.051 0.009 0.751
st ph14 -231.00 -229.72 78.04% 78.04% 0.00% 99.85% 0.042 0.044 0.010 0.051
st ph15 -434.73 -392.70 58.20% 99.90% 0.00% 99.83% 0.040 0.050 0.009 0.476
st ph2 -1064.50 -1028.12 99.94% 99.94% 0.00% 99.98% 0.039 0.062 0.014 0.159

st ph20 -178.00 -158.00 89.96% 99.97% 0.00% 99.98% 0.029 0.046 0.007 0.036
st ph3 -447.85 -420.23 59.08% 99.97% 0.00% 99.98% 0.033 0.042 0.011 0.031

st phex -104.00 -85.00 63.09% 99.95% 0.00% 99.96% 0.028 0.052 0.007 0.088
st qpc-m0 -6.00 -5.00 99.91% 99.94% 0.00% 99.96% 0.020 0.024 0.007 0.015
st qpc-m1 -612.27 -473.78 98.52% 100.00% 0.00% 99.99% 0.063 0.095 0.009 0.223

st qpc-m3a -725.05 -382.70 99.69% 99.99% 0.00% 98.10% 0.069 0.119 0.025 3615.442
st qpc-m3b -24.68 0.00 99.06% 99.99% 0.00% 100.00% 0.805 0.231 0.021 0.566

st cqpf -5002.00 -2.75 100.00% 100.00% - - 0.011 0.011 - -
st cqpjk2 -18.00 -12.50 100.00% 100.00% - - 0.014 0.010 - -

st qpk1 -11.00 -3.00 99.97% 99.99% 0.00% 99.98% 0.062 0.032 0.007 0.110
st qpk2 -21.00 -12.25 60.03% 68.03% 0.00% 71.34% 63.905 116.628 0.025 3599.788
st qpk3 -66.00 -36.00 32.24% 32.64% 0.00% 33.53% 258.712 399.522 0.077 3621.930

st rv1 -64.24 -59.94 57.84% 76.36% 0.00% 96.19% 0.178 0.247 0.023 3607.723
st rv2 -73.00 -64.48 85.50% 85.50% 0.00% 88.79% 1.067 1.473 0.079 3601.528
st rv3 -38.52 -35.76 80.88% 81.43% 0.00% 40.40% 1.219 1.254 0.108 112.028
st rv7 -148.98 -138.19 77.33% 90.38% 0.00% 45.43% 1.615 5.018 0.269 3640.861
st rv8 -143.58 -132.66 81.02% 86.31% 0.00% 29.90% 4.999 11.664 0.663 3696.452
st rv9 -134.91 -120.12 83.94% 85.90% 0.00% 20.56% 84.413 102.962 1.019 3920.213

st z -0.97 0.00 91.14% 99.93% 0.00% 99.96% 0.122 0.102 0.009 2.749

Table 12 GLOBALLib Instances with non-zero Duality Gap (Part 3)

Time Taken (sec) Max Infeasibility
Instance OPT W1 W2 W1 W2
ex14 1 2 0.00 5.016 87.542 0.163 0.333
ex14 1 6 0.00 0.571 0.819 0.306 0.266
ex2 1 2 -213.00 0.012 0.026 0.000 0.000
ex2 1 3 -15.00 0.037 0.048 0.000 0.000
ex2 1 4 -11.00 0.008 0.010 0.000 0.000
st bpk1 -13.00 0.015 0.017 0.000 0.000
st bpk2 -13.00 0.013 0.016 0.000 0.000
st bpv1 10.00 0.010 0.015 0.000 0.000
st e01 -6.67 0.025 0.027 0.049 0.049
st e17 0.00 0.010 0.010 0.000 0.000
st e34 0.02 0.059 0.105 0.094 0.058
st e42 18.78 0.061 0.079 0.069 0.000
st fp2 -213.00 0.011 0.026 0.000 0.000
st fp3 -15.00 0.039 0.051 0.000 0.000
st fp4 -11.00 0.013 0.010 0.000 0.000

st glmp fp1 10.00 0.011 0.011 0.000 0.000
st glmp fp3 -12.00 0.013 0.015 0.000 0.000

st glmp kk90 3.00 0.024 0.027 0.005 0.005
st glmp ss2 3.00 0.029 0.029 0.041 0.041

st ph10 -10.50 0.008 0.013 0.000 0.000
st qpc-m3c 0.00 0.049 0.077 0.038 0.000
st qpc-m4 0.00 0.090 0.229 0.056 0.034

st robot 0.00 0.371 0.752 0.335 0.247

Table 13 GLOBALLib Instances with zero Duality Gap
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% Duality Gap Closed Time Taken (sec)
Instance RLT OPT W1 W2 W1+LCD W2+LCD W1+LCD W2+LCD

ex9 1 4 -63.00 -37.00 0.00% 0.00% 100.00% 99.99% 0.749 0.729
ex9 2 1 -16.00 17.00 68.14% 68.74% 86.36% 86.36% 0.961 0.897
ex9 2 2 -50.00 100.00 89.62% 93.95% 100.00% 100.00% 1.656 0.802
ex9 2 3 -30.00 0.00 0.00% 0.00% 99.96% 99.97% 0.265 1.835
ex9 2 4 -396.00 0.50 99.87% 99.87% 100.00% 100.00% 0.116 0.140
ex9 2 6 -406.00 -1.00 99.88% 99.88% 99.88% 99.88% 0.519 0.382
ex9 2 7 -9.00 17.00 59.30% 61.34% 82.68% 82.67% 0.965 0.938
ex9 2 8 0.50 1.50 100.00% 100.00% 100.00% 100.00% 0.070 0.087

Table 14 GLOBALLib Instances with Linear Complementarity Constraints

% Duality Gap Closed Time Taken (sec)
Instance RLT OPT W1-Dsj W2-Dsj W1-Dsj W2-Dsj

alkyl -2.76 -1.77 41.82% 63.77% 0.206 1.554
circle 0.00 4.57 75.66% 90.17% 0.029 0.172

dispatch 3101.28 3155.29 100.00% 100.00% 0.010 0.026
ex2 1 1 -18.90 -17.00 0.00% 0.00% 0.012 0.024

ex2 1 10 39668.06 49318.02 40.60% 62.93% 0.029 0.131
ex2 1 5 -269.45 -268.01 26.00% 99.95% 0.022 0.086
ex2 1 6 -44.40 -39.00 64.08% 99.34% 0.020 0.165
ex2 1 7 -6031.90 -4150.41 11.26% 48.58% 0.041 1.022
ex2 1 8 -82460.00 15639.00 98.78% 99.47% 0.096 1.096
ex2 1 9 -2.20 -0.38 84.39% 92.96% 0.015 0.060
ex3 1 1 2533.20 7049.25 0.10% 0.11% 0.089 0.176
ex3 1 2 -30802.76 -30665.54 11.19% 47.06% 5.723 7.181
ex3 1 3 -440.00 -310.00 97.69% 100.00% 0.017 0.078
ex3 1 4 -6.00 -4.00 0.00% 15.33% 0.011 0.041
ex4 1 1 -173688.80 -7.49 99.41% 99.88% 0.074 0.152
ex4 1 3 -7999.46 -443.67 71.40% 77.14% 0.047 0.181
ex4 1 4 -200.00 0.00 50.00% 50.00% 0.035 0.105
ex4 1 6 -24075.00 7.00 62.08% 62.08% 0.022 0.108
ex4 1 7 -206.25 -7.50 68.90% 85.46% 0.041 0.094
ex4 1 8 -29.00 -16.74 100.00% 100.00% 0.010 0.019
ex4 1 9 -6.99 -5.51 0.00% 3.68% 0.035 0.057

ex5 2 2 case1 -599.90 -400.00 -0.22% -0.22% 0.166 0.116
ex5 2 2 case2 -1200.00 -600.00 -0.05% -0.05% 0.049 0.126
ex5 2 2 case3 -875.00 -750.00 -0.02% -0.01% 0.036 0.104

ex5 2 4 -2933.33 -450.00 39.28% 67.60% 0.043 0.083
ex5 3 2 1.00 1.86 0.00% 0.00% 0.116 1.549
ex5 4 2 2598.25 7512.23 0.11% 0.26% 0.070 0.068
ex7 3 2 0.00 1.09 0.00% 0.00% 0.020 0.130
ex8 1 4 -13.00 0.00 51.54% 51.54% 0.019 0.100
ex8 1 5 -3.33 0.00 0.00% 0.00% 0.084 0.226
ex8 1 7 -757.58 0.03 48.54% 85.58% 0.056 0.240
ex8 1 8 -0.85 -0.39 30.01% 55.36% 0.034 0.219
ex8 4 1 -5.00 0.62 88.99% 89.18% 0.041 1.022
ex8 4 2 -5.00 0.49 91.16% 91.35% 0.039 1.052
ex9 1 4 -63.00 -37.00 0.00% 0.00% 0.021 0.128
ex9 2 1 -16.00 17.00 54.55% 64.97% 0.022 0.122
ex9 2 2 -50.00 100.00 81.09% 93.95% 0.022 0.166
ex9 2 3 -30.00 0.00 0.00% 0.00% 0.018 0.272
ex9 2 4 -396.00 0.50 99.87% 99.87% 0.013 0.038
ex9 2 6 -406.00 -1.00 99.88% 99.88% 0.022 0.188
ex9 2 7 -9.00 17.00 42.31% 55.54% 0.023 0.109
ex9 2 8 0.50 1.50 100.00% 100.00% 0.013 0.032

himmel11 -30802.76 -30665.54 11.19% 44.77% 5.330 8.874

Table 15 Marginal Value of Disjunctive Cuts (Part 1)
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% Duality Gap Closed Time Taken (sec)
Instance RLT OPT W1-Dsj W2-Dsj W1-Dsj W2-Dsj

house -5230.54 -4500.00 56.07% 79.63% 0.023 0.164
hydro 4019717.93 4366944.16 100.00% 100.00% 0.029 0.061

mathopt1 -912909.01 1.00 100.00% 100.00% 0.009 0.014
mathopt2 -11289.00 0.00 100.00% 100.00% 0.014 0.028
meanvar 0.00 5.24 100.00% 100.00% 0.007 0.008
nemhaus 0.00 31.00 100.00% 100.00% 0.015 0.015

prob05 0.32 0.74 32.40% 52.66% 0.020 0.030
prob06 1.00 1.18 100.00% 100.00% 0.018 0.021
prob09 -100.00 0.00 100.00% 100.00% 0.022 0.043
process -2756.59 -1161.34 52.33% 73.56% 2.764 3.288

qp1 -1.43 0.00 100.00% 100.00% 0.035 0.034
qp2 -1.43 0.00 100.00% 100.00% 0.036 0.036

rbrock -659984.01 -5.67 100.00% 100.00% 0.009 0.007
st bpaf1a -46.01 -45.38 0.00% 0.00% 0.037 0.064
st bpaf1b -43.13 -42.96 -0.01% -0.01% 0.025 0.066

st bpv2 -11.25 -8.00 89.16% 89.16% 0.008 0.011
st bsj2 -0.63 1.00 40.50% 83.30% 0.012 0.042
st bsj3 -86768.55 -86768.55 -0.03% -0.03% 5.429 5.564
st bsj4 -72700.05 -70262.05 0.00% 0.00% 4.387 4.613
st e02 171.42 201.16 41.79% 95.88% 0.013 0.053
st e03 -2381.89 -1161.34 50.18% 72.27% 3.704 6.350
st e05 3826.39 7049.25 2.70% 8.25% 0.089 0.118
st e06 0.00 0.16 0.00% 0.00% 0.032 0.193
st e07 -500.00 -400.00 0.00% 0.00% 0.086 0.564
st e08 0.31 0.74 32.35% 52.61% 0.023 0.031
st e09 -0.75 -0.50 75.87% 75.87% 0.017 0.021
st e10 -29.00 -16.74 100.00% 100.00% 0.010 0.019
st e18 -3.00 -2.83 100.00% 100.00% 0.008 0.018
st e19 -879.75 -86.42 93.51% 93.51% 0.045 0.080
st e20 -0.85 -0.39 30.01% 55.36% 0.037 0.228
st e23 -3.00 -1.08 95.06% 95.06% 0.008 0.011
st e24 0.00 3.00 0.00% 0.00% 0.009 0.010
st e25 0.25 0.89 100.00% 100.00% 0.011 0.012
st e26 -513.00 -185.78 96.14% 99.99% 0.013 0.022
st e28 -30802.76 -30665.54 11.19% 44.77% 5.433 8.741
st e30 -3.00 -1.58 0.00% 0.00% 0.076 0.411
st e33 -500.00 -400.00 0.00% 0.00% 0.368 0.290
st fp1 -18.90 -17.00 0.00% 0.00% 0.010 0.025
st fp5 -269.45 -268.01 26.00% 99.95% 0.023 0.086
st fp6 -44.40 -39.00 64.08% 99.34% 0.021 0.166

st fp7a -435.52 -354.75 0.00% 50.72% 0.043 1.021
st fp7b -715.52 -634.75 0.00% 50.72% 0.045 1.015
st fp7c -10310.47 -8695.01 0.00% 50.72% 0.040 1.031

Table 16 Marginal Value of Disjunctive Cuts (Part 2)
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% Duality Gap Closed Time Taken (sec)
Instance RLT OPT W1-Dsj W2-Dsj W1-Dsj W2-Dsj

st fp7d -195.52 -114.75 0.00% 50.72% 0.037 1.032
st fp8 7219.50 15639.00 0.00% 4.04% 18.493 6.371

st glmp fp2 7.07 7.34 0.00% 0.00% 0.018 0.020
st glmp kk92 -13.35 -12.00 100.00% 100.00% 0.019 0.021
st glmp kky -3.00 -2.50 0.00% 99.62% 0.024 0.038
st glmp ss1 -38.67 -24.57 54.28% 54.28% 0.016 0.017

st ht -2.80 -1.60 0.00% 99.88% 0.009 0.045
st iqpbk1 -1722.38 -621.49 97.52% 99.92% 0.072 0.139
st iqpbk2 -3441.95 -1195.23 97.41% 99.91% 0.083 0.147
st jcbpaf2 -945.45 -794.86 18.93% 67.56% 0.029 0.106

st jcbpafex -3.00 -1.08 95.06% 95.06% 0.011 0.010
st kr -104.00 -85.00 0.00% 99.95% 0.008 0.034

st m1 -505191.34 -461356.94 6.46% 86.08% 0.049 1.234
st m2 -938513.68 -856648.82 0.00% 28.80% 58.782 21.975

st pan1 -5.69 -5.28 0.00% 40.11% 0.010 0.053
st pan2 -19.40 -17.00 0.00% 0.00% 0.010 0.029
st ph1 -243.81 -230.12 0.00% 99.91% 0.017 0.051

st ph11 -11.75 -11.28 0.00% 0.00% 0.012 0.017
st ph12 -23.50 -22.63 0.00% 0.00% 0.013 0.017
st ph13 -11.75 -11.28 0.00% 0.00% 0.012 0.017
st ph14 -231.00 -229.72 0.00% 0.00% 0.010 0.018
st ph15 -434.73 -392.70 0.00% 99.90% 0.017 0.035
st ph2 -1064.50 -1028.12 0.00% 99.91% 0.019 0.059

st ph20 -178.00 -158.00 75.00% 99.97% 0.014 0.034
st ph3 -447.85 -420.23 0.00% 99.97% 0.017 0.037

st phex -104.00 -85.00 0.00% 99.95% 0.010 0.037
st qpc-m0 -6.00 -5.00 0.00% 99.94% 0.011 0.019
st qpc-m1 -612.27 -473.78 95.68% 100.00% 0.018 0.068

st qpc-m3a -725.05 -382.70 98.60% 99.99% 0.023 0.084
st qpc-m3b -24.68 0.00 84.21% 99.99% 0.097 0.156

st cqpf -5002.00 -2.75 100.00% 100.00% 0.009 0.012
st cqpjk2 -18.00 -12.50 100.00% 100.00% 0.013 0.014

st qpk1 -11.00 -3.00 83.33% 99.99% 0.016 0.033
st qpk2 -21.00 -12.25 0.00% 44.15% 0.015 0.110
st qpk3 -66.00 -36.00 0.00% 2.16% 0.017 0.331

st rv1 -64.24 -59.94 0.00% 42.18% 0.023 0.133
st rv2 -73.00 -64.48 0.00% 4.03% 0.034 0.453
st rv3 -38.52 -35.76 0.00% 46.56% 0.035 0.528
st rv7 -148.98 -138.19 0.00% 31.69% 0.058 1.338
st rv8 -143.58 -132.66 0.00% 39.37% 0.081 2.607
st rv9 -134.91 -120.12 0.00% 15.07% 0.114 4.527

st z -0.97 0.00 0.00% 71.94% 0.013 0.051

Table 17 Marginal Value of Disjunctive Cuts (Part 3)
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%Time spent on Time (sec) to solve
% Duality Gap Closed Time Taken (sec) Cut Generation last relaxation

Instance RLT OPT W3 W3-SDP W3 W3-SDP W3 (Adj) W3 W3-SDP W3 W3-SDP
spar020-100-1 -1066.00 -706.50 98.28% 96.83% 43.06 1.25 1.60 48.39% 0.16% 0.33 0.01
spar020-100-2 -1289.00 -856.50 94.61% 91.54% 2.49 0.84 1.27 26.28% 0.12% 0.05 0.01
spar020-100-3 -1168.50 -772.00 99.98% 99.92% 408.36 2.46 0.51 95.77% 0.24% 0.30 0.09
spar030-060-1 -1454.75 -706.00 93.84% 59.05% 13.40 2.09 8.39 61.99% 0.00% 0.09 0.01
spar030-060-2 -1699.50 -1377.17 97.35% 96.86% 50.79 7.29 7.54 25.01% 0.01% 0.62 0.18
spar030-060-3 -2047.00 -1293.50 95.62% 82.13% 33.92 14.38 13.46 26.09% 0.13% 0.30 0.22
spar030-070-1 -1569.00 -654.00 89.88% 51.41% 12.33 1.74 6.90 68.98% 0.06% 0.07 0.01
spar030-070-2 -1940.25 -1313.00 98.51% 89.02% 188.12 7.97 14.49 72.26% 0.03% 0.71 0.02
spar030-070-3 -2302.75 -1657.40 96.07% 95.14% 31.57 8.23 10.04 17.78% 0.00% 0.38 0.02
spar030-080-1 -2107.50 -952.73 95.04% 61.27% 23.57 2.29 11.45 64.55% 0.04% 0.16 0.02
spar030-080-2 -2178.25 -1597.00 100.00% 94.54% 226.60 7.82 9.87 81.04% 0.01% 0.90 0.02
spar030-080-3 -2403.50 -1809.78 99.20% 98.80% 339.41 8.40 3.32 85.13% 0.21% 0.87 0.23
spar030-090-1 -2423.50 -1296.50 99.21% 76.19% 53.39 2.52 11.33 50.27% 0.08% 0.37 0.01
spar030-090-2 -2667.00 -1466.84 98.56% 77.88% 56.98 4.45 11.20 50.28% 0.02% 0.38 0.01
spar030-090-3 -2538.25 -1494.00 99.88% 84.76% 565.88 4.59 8.09 91.48% 0.02% 0.82 0.01
spar030-100-1 -2602.00 -1227.13 98.38% 77.42% 30.28 5.74 10.52 52.81% 0.00% 0.23 0.02
spar030-100-2 -2729.25 -1260.50 96.93% 67.57% 18.85 3.81 9.76 58.86% 0.05% 0.12 0.05
spar030-100-3 -2751.75 -1511.05 97.16% 84.89% 56.21 13.70 13.62 30.33% 0.11% 0.41 0.22
spar040-030-1 -1088.00 -839.50 97.64% 46.83% 117.60 39.28 49.76 30.31% 0.13% 1.07 0.63
spar040-030-2 -1635.00 -1429.00 91.60% 28.62% 68.46 30.06 41.16 31.84% 0.08% 0.57 0.54
spar040-030-3 -1303.25 -1086.00 93.04% 21.79% 104.80 32.99 48.74 27.50% 0.11% 1.01 0.47
spar040-040-1 -1606.25 -837.00 87.85% 37.96% 43.71 11.69 28.13 56.95% 0.02% 0.24 0.02
spar040-040-2 -1920.75 -1428.00 99.61% 65.44% 114.57 14.68 33.10 57.04% 0.01% 0.50 0.03
spar040-040-3 -2039.75 -1173.50 92.94% 40.16% 35.77 5.81 20.40 69.33% 0.03% 0.19 0.03
spar040-050-1 -2146.25 -1154.50 93.71% 51.37% 43.86 15.28 30.26 56.57% 0.01% 0.17 0.03
spar040-050-2 -2357.25 -1430.98 95.17% 58.51% 54.14 30.01 28.08 48.71% 0.08% 0.27 0.52
spar040-050-3 -2616.00 -1653.63 94.81% 45.59% 44.05 6.83 23.83 64.04% 0.03% 0.26 0.03
spar040-060-1 -2872.00 -1322.67 93.47% 53.73% 46.67 16.47 28.01 59.90% 0.01% 0.16 0.03
spar040-060-2 -2917.50 -2004.23 96.20% 74.75% 80.14 17.98 32.18 32.45% 0.01% 0.55 0.03
spar040-060-3 -3434.00 -2454.50 99.18% 89.64% 134.80 65.28 25.19 34.00% 0.13% 1.19 0.75
spar040-070-1 -3144.00 -1605.00 98.85% 75.26% 101.61 38.09 29.88 58.41% 0.12% 0.42 0.57
spar040-070-2 -3369.25 -1867.50 98.56% 68.15% 94.96 10.26 28.65 52.82% 0.02% 0.48 0.03
spar040-070-3 -3760.25 -2436.50 97.83% 75.76% 112.96 28.45 33.15 53.72% 0.10% 0.49 0.48
spar040-080-1 -3846.50 -1838.50 98.43% 59.27% 134.03 5.18 27.67 76.06% 0.04% 0.46 0.02
spar040-080-2 -3833.00 -1952.50 98.26% 69.92% 47.06 8.05 22.08 59.83% 0.02% 0.32 0.02
spar040-080-3 -4361.50 -2545.50 97.98% 79.89% 83.80 7.88 20.05 41.85% 0.03% 0.50 0.03
spar040-090-1 -4376.75 -2135.50 98.22% 69.95% 103.96 6.00 22.36 64.65% 0.03% 0.49 0.02
spar040-090-2 -4357.75 -2113.00 98.04% 72.71% 83.69 12.91 29.92 61.39% 0.02% 0.37 0.03
spar040-090-3 -4516.75 -2535.00 99.00% 77.84% 81.20 8.78 22.64 47.57% 0.02% 0.51 0.02
spar040-100-1 -5009.75 -2476.38 98.72% 78.01% 81.56 4.64 13.75 53.00% 0.04% 0.50 0.03
spar040-100-2 -4902.75 -2102.50 97.93% 66.22% 121.76 4.87 24.09 74.29% 0.04% 0.42 0.02
spar040-100-3 -5075.75 -1866.07 95.87% 62.91% 40.16 4.16 18.58 78.37% 0.05% 0.18 0.02
spar050-030-1 -1858.25 -1324.50 96.40% 26.47% 165.74 99.13 76.19 51.02% 0.11% 0.87 1.01
spar050-030-2 -2334.00 -1668.00 90.74% 19.51% 79.42 17.41 48.81 58.12% 0.02% 0.34 0.08
spar050-030-3 -2107.25 -1453.61 91.45% 11.38% 121.65 14.01 61.02 65.49% 0.01% 0.53 0.04

Table 18 Box Constrained QPs from [22] (Part 1)



Convex Relaxations of Non-Convex MIQCP 27

%Time spent on Time (sec) to solve
% Duality Gap Closed Time Taken (sec) Cut Generation last relaxation

Instance RLT OPT W3 W3-SDP W3 W3-SDP W3 (Adj) W3 W3-SDP W3 W3-SDP
spar050-040-1 -2632.00 -1411.00 97.23% 46.45% 177.96 21.67 56.43 68.17% 0.01% 0.59 0.04
spar050-040-2 -2923.25 -1745.76 94.06% 41.74% 85.63 36.51 55.35 54.18% 0.04% 0.31 0.75
spar050-040-3 -3273.50 -2094.50 97.53% 46.70% 180.96 28.88 56.47 63.83% 0.02% 0.58 0.56
spar050-050-1 -3536.00 -1198.41 87.88% 32.46% 50.22 8.76 28.95 77.51% 0.05% 0.13 0.18
spar050-050-2 -3500.50 -1776.00 93.13% 44.26% 67.20 25.35 51.30 56.62% 0.02% 0.25 0.05
spar050-050-3 -4119.75 -2106.10 95.01% 50.16% 93.62 8.80 39.93 79.73% 0.03% 0.31 0.05
spar060-020-1 -1757.25 -1212.00 91.00% 0.00% 163.42 122.87 100.74 56.61% 0.10% 0.72 2.17
spar060-020-2 -2238.25 -1925.50 90.22% 0.00% 226.11 127.47 141.77 46.29% 0.11% 1.55 1.88
spar060-020-3 -2098.75 -1483.00 85.78% 0.00% 121.83 111.07 86.28 53.51% 0.12% 0.54 1.65
spar070-025-1 -3832.75 -2538.91 92.61% 9.73% 249.97 36.42 143.35 74.29% 0.01% 0.77 0.13
spar070-025-2 -3248.00 -1888.00 89.79% 0.00% 191.12 202.98 107.47 71.13% 0.11% 0.81 2.42
spar070-025-3 -4167.25 -2812.28 90.68% 8.63% 214.40 26.02 123.93 72.44% 0.02% 0.70 0.40
spar070-050-1 -7210.75 -3252.50 94.40% 42.80% 240.93 35.55 131.39 75.21% 0.01% 0.48 0.12
spar070-050-2 -6620.00 -3296.00 95.77% 40.78% 283.03 28.63 130.32 80.06% 0.02% 0.57 0.08
spar070-050-3 -7522.00 -4306.50 99.36% 53.54% 693.28 33.70 125.71 83.82% 0.01% 1.10 0.08
spar070-075-1 -11647.75 -4655.50 96.90% 53.67% 365.50 23.91 109.01 85.42% 0.02% 0.60 0.12
spar070-075-2 -10884.75 -3865.15 95.57% 52.30% 293.31 23.71 92.63 84.77% 0.03% 0.49 0.12
spar070-075-3 -11262.25 -4329.40 96.18% 53.10% 342.92 22.02 104.20 87.70% 0.02% 0.62 0.10
spar080-025-1 -4840.75 -3157.00 93.91% 3.57% 524.07 45.61 230.53 77.38% 0.01% 1.34 0.13
spar080-025-2 -4378.50 -2312.34 88.14% 2.95% 257.62 42.15 151.85 77.35% 0.01% 0.57 0.17
spar080-025-3 -5130.25 -3090.88 91.59% 8.99% 420.61 43.34 159.31 76.37% 0.02% 1.08 0.82
spar080-050-1 -9783.25 -3448.10 92.65% 38.88% 355.97 36.43 121.62 82.84% 0.02% 0.67 0.16
spar080-050-2 -9270.00 -4449.20 97.50% 44.21% 892.96 50.13 202.59 83.53% 0.01% 2.03 0.10
spar080-050-3 -10029.75 -4886.00 95.58% 43.70% 435.41 34.77 152.68 84.02% 0.01% 0.80 0.16
spar080-075-1 -15250.75 -5896.00 96.93% 54.91% 387.48 37.72 136.06 84.44% 0.02% 0.64 0.16
spar080-075-2 -14246.50 -5341.00 96.95% 56.24% 450.96 67.66 179.97 79.45% 0.01% 0.65 0.13
spar080-075-3 -14961.50 -5980.50 96.11% 54.74% 416.32 54.59 145.80 81.23% 0.01% 0.83 0.15
spar090-025-1 -6171.50 -3372.50 90.12% 10.54% 408.73 65.24 237.60 77.36% 0.01% 0.78 0.28
spar090-025-2 -6015.00 -3500.29 89.45% 7.01% 444.30 85.72 244.73 73.94% 0.01% 0.85 0.16
spar090-025-3 -6698.25 -4299.00 90.57% 5.73% 446.74 95.33 255.53 73.44% 0.02% 0.85 2.11
spar090-050-1 -12584.00 -5152.00 95.02% 42.95% 506.72 95.66 233.44 76.98% 0.01% 0.78 1.96
spar090-050-2 -11920.50 -5386.50 96.61% 44.48% 514.05 64.69 184.63 79.57% 0.01% 1.47 0.17
spar090-050-3 -12514.00 -6151.00 95.90% 42.69% 991.04 60.29 294.92 83.28% 0.01% 1.51 0.12
spar090-075-1 -19054.25 -6267.45 95.66% 49.15% 462.16 51.91 214.79 83.63% 0.01% 0.87 0.28
spar090-075-2 -18245.50 -5647.50 95.92% 49.61% 784.59 46.98 207.58 88.25% 0.01% 1.02 0.16
spar090-075-3 -18929.50 -6450.00 96.11% 50.13% 602.44 56.31 220.36 85.24% 0.01% 0.78 0.20
spar100-025-1 -7660.75 -4027.50 92.36% 12.27% 670.15 93.72 385.64 78.64% 0.01% 1.14 0.22
spar100-025-2 -7338.50 -3892.56 92.16% 8.17% 538.03 77.98 321.79 77.49% 0.01% 1.52 0.32
spar100-025-3 -7942.25 -4453.50 93.26% 9.83% 656.59 75.49 299.23 80.93% 0.01% 1.25 0.13
spar100-050-1 -15415.75 -5490.00 93.62% 38.34% 757.14 88.35 286.59 83.57% 0.01% 1.07 0.26
spar100-050-2 -14920.50 -5866.00 94.13% 39.65% 929.91 89.45 288.09 83.81% 0.01% 1.26 0.19
spar100-050-3 -15564.25 -6485.00 95.81% 39.88% 747.46 99.90 279.41 84.99% 0.01% 0.82 0.28
spar100-075-1 -23387.50 -7384.20 95.84% 49.95% 1509.96 112.69 366.24 92.30% 0.23% 2.01 2.50
spar100-075-2 -22440.00 -6755.50 96.47% 51.80% 936.61 81.78 330.70 86.75% 0.01% 1.24 0.38
spar100-075-3 -23243.50 -7554.00 96.06% 51.71% 657.84 75.81 303.30 84.22% 0.01% 0.88 0.31

Table 19 Box Constrained QPs from [22] (Part 2)
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Time to solve
% Duality Gap Closed Time Taken (sec) last relaxation (sec)

Instance SDPLR SDPA W3 SDPLR SDPA W3 W3
spar020-100-1 100.00% 100.00% 98.28% 5.33 3.04 43.06 0.33
spar020-100-2 99.67% 99.67% 94.61% 56.37 3.39 2.49 0.05
spar020-100-3 100.00% 100.00% 99.98% 0.97 1.98 408.36 0.30
spar030-060-1 98.84% 98.84% 93.84% 39.61 22.39 13.40 0.09
spar030-060-2 100.00% 100.00% 97.35% 3.76 18.32 50.79 0.62
spar030-060-3 99.38% 99.38% 95.62% 115.31 26.04 33.92 0.30
spar030-070-1 97.81% 97.81% 89.88% 21.39 22.35 12.33 0.07
spar030-070-2 100.00% 100.00% 98.51% 5.39 20.21 188.12 0.71
spar030-070-3 99.98% 99.98% 96.07% 234.24 29.33 31.57 0.38
spar030-080-1 98.92% 98.92% 95.04% 17.92 23.21 23.57 0.16
spar030-080-2 100.00% 100.00% 100.00% 4.02 16.66 226.60 0.90
spar030-080-3 100.00% 100.00% 99.20% 3.57 17.82 339.41 0.87
spar030-090-1 100.00% 100.00% 99.21% 6.50 19.88 53.39 0.37
spar030-090-2 100.00% 100.00% 98.56% 6.33 19.84 56.98 0.38
spar030-090-3 100.00% 100.00% 99.88% 4.40 17.34 565.88 0.82
spar030-100-1 100.00% 100.00% 98.38% 7.51 21.68 30.28 0.23
spar030-100-2 99.96% 99.96% 96.93% 59.94 26.46 18.85 0.12
spar030-100-3 99.84% 99.84% 97.16% 243.30 28.16 56.21 0.41
spar040-030-1 100.00% 100.00% 97.64% 13.46 115.06 117.60 1.07
spar040-030-2 100.00% 100.00% 91.60% 30.20 123.14 68.46 0.57
spar040-030-3 100.00% 100.00% 93.04% 16.85 120.88 104.80 1.01
spar040-040-1 96.61% 96.61% 87.85% 114.75 138.58 43.71 0.24
spar040-040-2 100.00% 100.00% 99.61% 12.08 105.68 114.57 0.50
spar040-040-3 99.15% 99.15% 92.94% 110.19 133.30 35.77 0.19
spar040-050-1 99.40% 99.40% 93.71% 68.94 152.34 43.86 0.17
spar040-050-2 99.46% 99.46% 95.17% 452.93 157.83 54.14 0.27
spar040-050-3 100.00% 100.00% 94.81% 51.68 141.97 44.05 0.26
spar040-060-1 98.05% 98.05% 93.47% 179.84 132.21 46.67 0.16
spar040-060-2 100.00% 100.00% 96.20% 22.91 127.96 80.14 0.55
spar040-060-3 100.00% 100.00% 99.18% 10.30 106.97 134.80 1.19
spar040-070-1 100.00% 100.00% 98.85% 24.00 143.54 101.61 0.42
spar040-070-2 100.00% 100.00% 98.56% 15.24 116.59 94.96 0.48
spar040-070-3 100.00% 100.00% 97.83% 81.80 138.93 112.96 0.49
spar040-080-1 100.00% 100.00% 98.43% 27.91 124.43 134.03 0.46
spar040-080-2 100.00% 100.00% 98.26% 19.78 119.97 47.06 0.32
spar040-080-3 99.99% 99.99% 97.98% 433.29 150.91 83.80 0.50
spar040-090-1 100.00% 100.00% 98.22% 52.66 153.75 103.96 0.49
spar040-090-2 99.97% 99.97% 98.04% 515.73 155.39 83.69 0.37
spar040-090-3 100.00% 100.00% 99.00% 17.56 114.04 81.20 0.51
spar040-100-1 100.00% 100.00% 98.72% 20.90 124.44 81.56 0.50
spar040-100-2 99.86% 99.86% 97.93% 131.30 147.47 121.76 0.42
spar040-100-3 98.69% 98.69% 95.87% 65.99 124.30 40.16 0.18
spar050-030-1 100.00% 100.00% 96.40% 41.72 458.44 165.74 0.87
spar050-030-2 99.50% 99.50% 90.74% 612.74 560.64 79.42 0.34

Table 20 Comparison with SDP Solvers (Part 1)
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Time to solve
% Duality Gap Closed Time Taken (sec) last relaxation (sec)

Instance SDPLR SDPA W3 SDPLR SDPA W3 W3
spar050-030-3 99.81% 99.81% 91.45% 477.50 589.17 121.65 0.53
spar050-040-1 100.00% 100.00% 97.23% 85.40 489.70 177.96 0.59
spar050-040-2 99.69% 99.69% 94.06% 416.80 572.74 85.63 0.31
spar050-040-3 100.00% 100.00% 97.53% 75.24 469.31 180.96 0.58
spar050-050-1 95.56% 95.56% 87.88% 170.32 438.77 50.22 0.13
spar050-050-2 99.21% 99.21% 93.13% 926.15 535.88 67.20 0.25
spar050-050-3 99.21% 99.21% 95.01% 404.45 524.92 93.62 0.31
spar060-020-1 100.00% 100.00% 91.00% 141.85 1400.78 163.42 0.72
spar060-020-2 100.00% 100.00% 90.22% 88.05 1150.06 226.11 1.55
spar060-020-3 98.69% 98.69% 85.78% 532.45 1408.32 121.83 0.54
spar070-025-1 99.54% 99.54% 92.61% 3600.75 3721.34 249.97 0.77
spar070-025-2 98.47% 98.46% 89.79% 1234.89 3420.19 191.12 0.81
spar070-025-3 98.97% 98.96% 90.68% 1646.93 3453.45 214.40 0.70
spar070-050-1 99.35% 99.35% 94.40% 2030.95 3465.12 240.93 0.48
spar070-050-2 99.87% 99.87% 95.77% 2193.35 3606.39 283.03 0.57
spar070-050-3 100.00% 100.00% 99.36% 133.07 2769.98 693.28 1.10
spar070-075-1 99.79% 99.79% 96.90% 1698.81 3531.73 365.50 0.60
spar070-075-2 98.85% 98.85% 95.57% 1164.56 3141.29 293.31 0.49
spar070-075-3 99.29% 99.29% 96.18% 1138.29 3180.22 342.92 0.62
spar080-025-1 100.00% 100.00% 93.91% 1020.64 8084.12 524.07 1.34
spar080-025-2 98.45% 98.44% 88.14% 1313.19 6618.79 257.62 0.57
spar080-025-3 99.36% 99.36% 91.59% 2341.98 7321.55 420.61 1.08
spar080-050-1 97.85% 97.85% 92.65% 965.18 6655.71 355.97 0.67
spar080-050-2 99.96% 99.96% 97.50% 3130.57 8285.12 892.96 2.03
spar080-050-3 99.33% 99.33% 95.58% 3839.60 8228.93 435.41 0.80
spar080-075-1 99.70% 99.70% 96.93% 1948.99 8200.16 387.48 0.64
spar080-075-2 99.46% 99.46% 96.95% 2537.80 7550.58 450.96 0.65
spar080-075-3 99.35% 99.35% 96.11% 5413.02 7333.87 416.32 0.83
spar090-025-1 97.83% 97.83% 90.12% 6793.35 13392.41 408.73 0.78
spar090-025-2 98.05% 98.05% 89.45% 2913.19 13823.48 444.30 0.85
spar090-025-3 98.23% 98.23% 90.57% 4514.18 14617.19 446.74 0.85
spar090-050-1 99.03% 99.03% 95.02% 4724.79 13657.86 506.72 0.78
spar090-050-2 100.00% 100.00% 96.61% 7049.49 17048.98 514.05 1.47
spar090-050-3 99.35% 99.35% 95.90% 5370.08 14548.34 991.04 1.51
spar090-075-1 98.94% 98.93% 95.66% 5166.41 13655.00 462.16 0.87
spar090-075-2 98.96% 98.96% 95.92% 2500.97 12838.46 784.59 1.02
spar090-075-3 99.35% 99.35% 96.11% 2403.62 12936.33 602.44 0.78
spar100-025-1 98.93% 98.93% 92.36% 5719.42 25368.87 670.15 1.14
spar100-025-2 99.09% 99.09% 92.16% 10185.65 26162.08 538.03 1.52
spar100-025-3 99.33% 99.33% 93.26% 5407.09 26139.26 656.59 1.25
spar100-050-1 98.17% 98.17% 93.62% 10139.57 23509.13 757.14 1.07
spar100-050-2 98.57% 98.57% 94.13% 5355.20 24356.26 929.91 1.26
spar100-050-3 99.39% 99.39% 95.81% 7281.26 26223.00 747.46 0.82
spar100-075-1 99.19% 99.19% 95.84% 9660.79 28604.12 1509.96 2.01
spar100-075-2 99.18% 99.18% 96.47% 6576.10 27198.30 936.61 1.24
spar100-075-3 99.19% 99.19% 96.06% 10295.88 27479.68 657.84 0.88

Table 21 Comparison with SDP Solvers (Part 2)


