COUNTER EXAMPLE TO A CONJECTURE ON INFEASIBLE INTERIOR-POINT METHODS

G. GU * AND C. ROOS †

Abstract. Based on extensive computational evidence (hundreds of thousands of randomly generated problems) the second author conjectured that $\bar{\kappa}(\zeta) = 1$ (Conjecture 5.1 in [1]), which is a factor of $\sqrt{2n}$ better than has been proved in [1], and which would yield an $O(\sqrt{n})$ iteration full-Newton step infeasible interior-point algorithm. In this paper we present an example showing that $\bar{\kappa}(\zeta)$ is in the order of \sqrt{n} , the same order as has been proved in [1]. In other words, the current best iteration bound for infeasible interior-point algorithms cannot be improved.

Key words. linear optimization, infeasible interior-point algorithm, full-Newton step method, conjecture

AMS subject classifications. 90C05, 90C51

1. Introduction. We consider the LO (Linear Optimization) problem in the standard form

$$\min\{c^T x: Ax = b, \ x \ge 0\},\tag{P}$$

with its dual problem

$$\max\{b^T y: A^T y + s = c, \ s > 0\}.$$
 (D)

Here $A \in \mathbb{R}^{m \times n}$, $b, y \in \mathbb{R}^m$, and $c, x, s \in \mathbb{R}^n$. Without loss of generality we assume that rank(A) = m. The vectors x, y, and s are the vectors of variables.

We assume throughout that there exists an optimal solution (x^*, y^*, s^*) and a positive number ζ such that

$$0 \le x^* \le \zeta e, \ 0 \le s^* \le \zeta e, \ x^* s^* = 0.1$$

For any ν with $0 < \nu < 1$ we consider the perturbed problem (P_{ν}) , defined by

$$\min\{(c - \nu(c - \zeta e))^T x : Ax = b - \nu(b - A\zeta e), \ x \ge 0\},$$
 (P_{\nu})

and its dual problem (D_{ν}) , which is given by

$$\max\{(b - \nu(b - A\zeta e))^T y : A^T y + s = c - \nu(c - \zeta e), \ s \ge 0\}.$$
 (D_{\nu})

Note that if $\nu = 1$, then $x = \zeta e$ yields a strictly feasible solution of (P_{ν}) and $(y, s) = (0, \zeta e)$ a strictly feasible solution of (D_{ν}) . We conclude that if $\nu = 1$, then (P_{ν}) and (D_{ν}) satisfy the IPC (interior-point condition).

Let (P) and (D) be feasible and $0 < \nu \le 1$. Then problems (P_{ν}) and (D_{ν}) satisfy the IPC (Theorem 5.13 in [2], see also Lemma 3.1 in [1]), and hence their central paths exists. This means that the system

$$b - Ax = \nu(b - A\zeta e), \qquad x > 0,$$

$$c - A^{T}y - s = \nu(c - \zeta e), \qquad s > 0,$$

$$xs = \nu \zeta^{2}e$$

^{*}Faculty EEMCS, Delft University of Technology. E-mail: g.gu@tudelft.nl

[†]Faculty EEMCS, Delft University of Technology. E-mail: c.roos@tudelft.nl

¹Here and follows, e denotes the all-one vector of length n, and if $x, s \in \mathbb{R}^n$, then xs denotes the componentwise (or Hadamard) product of the vectors x and s.

has a unique solution for every $\nu > 0$. In what follows this unique solution is denoted by $(x(\mu,\nu),y(\mu,\nu),s(\mu,\nu))$. These are the μ -centers $(\mu = \nu\zeta^2)$ of the perturbed problems (P_{ν}) and (D_{ν}) . We define

$$\kappa(\zeta, \nu) := \frac{\sqrt{\|x(\mu, \nu)\|^2 + \|s(\mu, \nu)\|^2}}{\zeta \sqrt{2n}}, \ 0 < \nu \le 1, \ \mu = \nu \zeta^2,$$

and

$$\bar{\kappa}(\zeta) = \max_{0 < \nu \le 1} \kappa(\zeta, \nu).$$

Then the total number of inner iterations (Section 4.7 in [1]) is bounded above by

$$16\bar{\kappa}(\zeta)\sqrt{n}\log\frac{\max\{n\zeta^2, \|b-A\zeta e\|, \|c-\zeta e\|\}}{\epsilon}.$$

In [1], the second author proved that $\bar{\kappa}(\zeta) \leq \sqrt{2n}$, and based on extensive computational evidence (hundreds of thousands of randomly generated problems), he made the following conjecture.

Conjecture 1.1 (Conjecture 5.1 in [1]). If (P) and (D) are feasible and $\zeta \ge \|x^* + s^*\|_{\infty}$ for some pair of optimal solutions x^* and (y^*, s^*) , then $\bar{\kappa}(\zeta) = 1$.

2. Counter example. Due to the choice of the optimal solution (x^*, y^*, s^*) , we have

$$Ax^* = b, \quad 0 \le x^* \le \zeta e,$$

 $A^T y^* + s^* = c, \quad 0 \le s^* \le \zeta e,$
 $x^* s^* = 0.$ (2.1)

To simplify notation in the rest of this section, we denote $x := x(\nu)$, $y := y(\nu)$ and $s := s(\nu)$. Then x, y and s are uniquely determined by the system

$$b - Ax = \nu(b - A\zeta e), \quad x > 0,$$

$$c - A^{T}y - s = \nu(c - \zeta e), \quad s > 0,$$

$$xs = \nu\zeta^{2}e.$$

Using (2.1) we get the equivalent system

$$Ax^* - Ax = \nu(Ax^* - A\zeta e), \qquad x > 0,$$

$$A^Ty^* + s^* - A^Ty - s = \nu(A^Ty^* + s^* - \zeta e), \quad s > 0,$$

$$xs = \nu\zeta^2 e.$$

We rewrite this system as

$$A(x^* - x - \nu x^* + \nu \zeta e) = 0, x > 0,$$

$$A^T(y^* - y - \nu y^*) = s - s^* + \nu s^* - \nu \zeta e, s > 0,$$

$$xs = \nu \zeta^2 e.$$
 (2.2)

Hence the maximal value that $\bar{\kappa}(\zeta)$ can attain is obtained by solving the problem

$$\max \left\{ \frac{\sqrt{\|x\|^2 + \|s\|^2}}{\zeta \sqrt{2n}} : (2.1) \text{ and } (2.2) \right\}.$$
 (2.3)

In this problem we maximize over all possible values of A, b, c, ζ , ν , x^* , y^* , s^* , x, y, and s satisfying (2.1) and (2.2). Note that if (2.1) and (2.2) are satisfied, then after replacing x^* , y^* , s^* , x, y, s, b, and c by x^*/ζ , y^*/ζ , s^*/ζ , x/ζ , y/ζ , s/ζ , b/ζ , and c/ζ , respectively, we get a solution of (2.1) and (2.2) with $\zeta = 1$, and in that case the value of the objective function in (2.3) does not change. Hence, without loss of generality we may assume below that $\zeta = 1$.

Our aim is to construct a feasible solution for (2.1) and (2.2) whose objective value $\frac{\sqrt{\|x\|^2 + \|s\|^2}}{\sqrt{2n}}$ is of the same order as \sqrt{n} , thus showing that the order of the theoretical bound for $\bar{\kappa}(\zeta)$ in [1] is sharp. This will be done by first constructing suitable vectors x^* , y^* , s^* , x, y, s such that, for some fixed value of $\nu \in (0, 1)$,

$$0 \le x^* \le e, \quad 0 \le s^* \le e, \quad x^* s^* = 0, \quad x > 0, \quad s > 0, \quad xs = \nu e,$$
 (2.4)

and such that the objective value in (2.3) is of the same order as \sqrt{n} . After this we will construct A, b and c such that (2.1) and (2.2) are satisfied (for $\zeta = 1$). It follows that the constructed (x, y, s) is just the μ -center of the perturbed problem pair (P_{ν}) and (D_{ν}) with $\mu = \nu \mu^0 = \nu \zeta^2 = \nu$. Hence will suffice to falsify the conjecture.

Using that the row space of a matrix and its null space are orthogonal, we relax for the moment the first two equations in the system (2.2) to

$$(x^* - x - \nu x^* + \nu e)^T (s - s^* + \nu s^* - \nu e) = 0, \quad x > 0, \quad s > 0.$$
 (2.5)

Since x^* and s^* are orthogonal, we may rewrite the above equation as follows.

$$x^{T} \left[\frac{1-\nu}{\nu} s^{*} + e \right] + s^{T} \left[\frac{1-\nu}{\nu} x^{*} + e \right] = (1-\nu)e^{T} (x^{*} + s^{*}) + n(1+\nu).$$
 (2.6)

At this stage we choose a fixed value of $\nu \in (0,1)$ and x^* and s^* such that their positive entries are small enough to have

$$\frac{1-\nu}{\nu}s^* + e \approx e, \quad \frac{1-\nu}{\nu}x^* + e \approx e, \quad (1-\nu)e^T(x^* + s^*) + n(1+\nu) \approx n(1+\nu).$$

Then it follows from (2.6) that

$$x^T e + s^T e \approx n(1 + \nu).$$

Yet we choose

$$x_i = s_i = \sqrt{\nu}, \quad \text{for } i > 1, \tag{2.7}$$

leaving x_1 and s_1 free for the moment. This gives

$$x_1 + s_1 + 2(n-1)\sqrt{\nu} \approx n(1+\nu),$$

or, equivalently,

$$x_1 + s_1 \approx (n-1) \left(1 - \sqrt{\nu}\right)^2 + (1+\nu).$$
 (2.8)

Our aim is to make x and s be the μ -centers of the perturbed problems corresponding to $\mu = \nu \mu^0 = \nu \zeta^2$, and then to compute $\kappa(\zeta, \nu)$. This holds if $xs = \mu e$. Since $\zeta = 1$,

and because of (2.7), this holds if $x_1s_1 = \nu$. We may easily check that there exists x_1 and s_1 which satisfy (2.8) and $x_1s_1 = \nu$. Hence

$$x_1^2 + s_1^2 = (x_1 + s_1)^2 - 2x_1 s_1 \approx \left[(n-1) \left(1 - \sqrt{\nu} \right)^2 + (1+\nu) \right]^2 - 2\nu,$$

Thus we obtain

$$||x||^2 + ||s||^2 \approx \left[(n-1) \left(1 - \sqrt{\nu} \right)^2 + (1+\nu) \right]^2 - 2\nu + 2(n-1)\nu,$$

whence

$$\kappa(1,\nu) = \frac{\sqrt{\|x\|^2 + \|s\|^2}}{\sqrt{2n}} \approx \frac{\sqrt{\left[(n-1)\left(1 - \sqrt{\nu}\right)^2 + (1+\nu)\right]^2 + 2(n-2)\nu}}{\sqrt{2n}}.$$
 (2.9)

Note that for fixed ν (0 < ν < 1) the last expression is of the same order as \sqrt{n} . E.g., for $\nu = \frac{1}{4}$ it equals $\sqrt{\frac{n+16}{32}}$, and if ν approaches zero then it becomes $\sqrt{\frac{n}{2}}$.

Until now the vectors x^* , y^* , s^* , x, y, s only satisfy (2.4) and (2.5). It remains to show that there exist A, b and c such that (2.1) and (2.2) are satisfied. This is easy. We take for A any matrix whose row space is equal to the orthogonal complement of the linear space generated by the vector $x^* - x - \nu x^* + \nu e$. Then the vector $s^* - s - \nu s^* + \nu e$ belongs to the row space of A, and hence there exists a vector y such that $A^Ty = s^* - s - \nu s^* + \nu e$. Taking $y^* = 0$ it follows that (2.2) holds. Finally, taking $b = Ax^*$ and $c = A^Ty^* + s^*$, also (2.1) holds. Thus we have shown the existence of a feasible solution of (2.3) for which the $\kappa(\zeta, \nu)$ has the order of \sqrt{n} , and hence $\bar{\kappa}(\zeta)$ will be at least of this order.

Just to add some numerical evidence to the above analysis we applied the above described construction for several values of n and ν . We took for x^* and s^* randomly generated nonnegative and orthogonal vectors, whose positive entries are uniformly distributed in (0, 1/1000). For the computation of x_1 and s_1 we used (2.6), instead of its approximation (2.8). As a consequence x and s are the μ -centers of the perturbed problems (P_{ν}) and (D_{ν}) with $\mu = \nu \zeta^2 = \nu$, and $\kappa(1, \nu)$ is well-approximated by (2.9). The resulting values of $\kappa(\zeta, \nu)$ and $\bar{\kappa}(\zeta)$ with $\zeta = 1$ are listed in Table 2.1.

	n = 40		n = 160		n = 640	
	$\kappa(1,\nu)$	$\bar{\kappa}(1)$	$\kappa(1,\nu)$	$\bar{\kappa}(1)$	$\kappa(1,\nu)$	$\bar{\kappa}(1)$
$\nu = 1/4$	1.3214	2.2956	2.3419	4.4009	4.521	8.6913
$\nu = 1/400$	4.0048	4.1137	7.9881	8.1898	15.975	16.363
$\nu = 1/40000$	3.9883	4.1027	7.9373	8.2063	15.898	16.389

Table 2.1

Typical values of $\kappa(1,\nu)$ and $\bar{\kappa}(1)$ for some values of n and ν .

It is clear from Table 2.1 that Conjecture 1.1 ([1, Conjecture 5.1]) is false.

REFERENCES

- [1] C. Roos. A full-Newton step O(n) infeasible interior-point algorithm for linear optimization. SIAM J. Optim., 16(4):1110-1136 (electronic), 2006.
- [2] Yinyu Ye. Interior point algorithms. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1997. Theory and analysis, A Wiley-Interscience Publication.