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Abstract. In this paper we study the optimal control problem of the heat equation by a
distributed control over a subset of the domain, in the presence of a state constraint. The latter is
integral over the space and has to be satisfied at each time. Using for the first time the technique
of alternative optimality systems in the context of optimal control of partial differential equations,
we show that both the control and multiplier are continuous in time. Under some natural geometric
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equation.
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Résumé pour rapport INRIA

Cet article étudie le problème de la commande optimale de l’équation de la chaleur par un

contrôle distribué sur une partie du domaine, en présence d’une contrainte sur l’état. Cette

dernière est intégrale en espace et doit être respectée à chaque instant. Utilisant pour la

première fois la technique des multiplicateurs alternatifs dans le contexte de la commande

optimale des équations aux dérivées partielles, nous montrons la continuité en temps de la

commande et du multiplicateur. Sous des hypothèses naturelles, la condition de polyédricité

étendue est satisfaite, ce qui permet d’obtenir des conditions d’optimalité du second or-

dre sans écart, qui caractérisent la croissance quadratique. On en déduit également un

développement de la valeur et des solutions approchées pour une perturbation directionnelle

du second membre de l’équation d’état.

Mots clés Commande optimale, équations paraboliques, contraintes sur l’état, systè-
me d’optimalité alternatif, croissance quadratique, conditions d’optimalité du second
ordre, sensibilité, développement de la valeur et de la solution.

1. Introduction. Optimal control problems of PDE (partial differential equa-
tions) with state constraints have been intensively studied since the eighties, starting
with the work by Bonnans and Casas [8, 11, 12] and then Abergel and Temam [1].
More specifically, problems with mixed control and state constraints, or with “pure”
state constraints, for parabolic systems have been studied in Casas [20], where a reg-
ularity result for the costate equation with r.h.s. measure was obtained, and Casas,
Raymond and Zidani [32, 19]. The Stone-Čech compactification theorem has been in-
troduced for deriving optimality conditionsfor parabolic problems with pure or mixed
state constraints by Arada and Raymond [6, 5, 3, 4]. We note the recent study by
Casas, De los Reyes and Tröltzsch [21] on sufficient conditions.
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des Etats Unis 78035 Versailles, France.

0E-mails: Frederic.Bonnans@inria.fr, pascal.jaisson@math.uvsq.fr.

1



2 J.F. Bonnans, P. Jaisson

In this paper the system is described by a nonlinear parabolic equation whose
properties are recalled in section 2. We consider the case of a standard quadratic
control and of a finite number of state constraints for each time; our model example
is the one of a unique state constraint which is the L2 norm (integration w.r.t. space
only). This allows us in section 3 to fully characterize qualification and to use the
alternative formulation of the optimality conditions, introduced in Jacobson, Lele
and Speyer [25], rigorously obtained in Maurer [31] and generalized in Bonnans and
Hermant [14] to the case of an arbitrary number of state constraints; see also Hager
[24] in the case of first-order state constraints. Thanks to this alternative formulation,
we are able to prove that both the multiplier associated with the state constraint and
the optimal control are time-continuous, and to obtain the expression of these two
“algebraic variables” as fonctions of the state and alternative costate. Then, under
some geometric hypotheses (finitely many junction points and growth condition for the
state constraint), we obtain in section 4 no-gap second-order optimality conditions.
Finally in section 5 we perform a sensitivity analysis w.r.t. the r.h.s. of the state
equation. We obtain under weak assumptions the second-order expansion of the value
function as well as the first-order expansion of the soltion path.

2. Framework. Consider the heat equation with distributed control over a sub-
set of the domain:

yt − ∆y + γy3 = iωu in Q, (2.1)

y = 0 over Σ, (2.2)

y(·, 0) = y0 over Ω, (2.3)

where γ ∈ R, Ω is an open set of R
n, n ∈ {2, 3} with C2-smooth boundary ∂Ω,

Q := Ω × [0, T ], Σ := ∂Ω × [0, T ], ω is an open subset of Ω, Qω = ω × [0, T ],
u ∈ L2(Qω) is the control and T > 0 is the horizon. The function iω is the injection
from L2(Qω) into L2(Q) and the given initial state y0 belongs to H1(Ω). Let

{

H2,1(Q) := {y ∈ L2(0, T, H2(Ω)); yt ∈ L2(Q)},

H2,1
Σ (Q) := {y ∈ H2,1(Q); y = 0 over Σ}.

(2.4)

Norms for functions depending on space variables, or depending only on time, will be
denoted by simple bars, and the Ls norms will be, if there is no ambiguity, denoted
by subscript s. We recall the following inclusions (see Lions and Magenes [30] and
Adams [2], resp.)

H2,1(Q) ⊂ C([0, T ], H1
0 (Ω)) with compact inclusion, (2.5)

H1(Ω) ⊂ L6(Ω) and |z|6 ≤ c2|∇z|2, for all z ∈ H1
0 (Ω), when n ≤ 3. (2.6)

We say that y ∈ H2,1(Q) is a state associated with u ∈ L2(Q) if (y, u) satisfies the
state equation (2.1)-(2.3). The following is known (see [29, Chapter 2] and for a
similar result in the case of boundary control [10]).

Lemma 2.1. For any given q ∈ L∞(0, T, L3(Ω)), f ∈ L2(Ω), and f0 ∈ H1
0 (Ω),

the following equation has a unique solution z in H2,1
Σ (Q):

zt − ∆z + qz = f in Q, (2.7)

y(·, 0) = f0 over Ω, (2.8)
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Proof. Set c1 := |q|L∞(0,T,L3). Multiplying (2.7) by z, integrating over space,
and adopting the convention to eliminate the space argument when no confusion can
occur, get

1
2

d
dt
|z(t)|22 + |∇z(t)|2 =

∫

Ω

(f(x, t)z(x, t) − q(x, t)z2(x, t))dxdt

≤ (|f(t)|2 + c1|z(t)|6)|z(t)|2.
(2.9)

By (2.6) and Hölder’s inequality, for all ε > 0, we have that

2|z(t)|6|z(t)|2 ≤ ε|z(t)|26 +
1

ε
|z(t)|22 ≤ εc2

2|∇z(t)|22 +
1

ε
|z(t)|22. (2.10)

Taking ε such that εc1c
2
2 = 1, obtain with (2.9)

d

dt
|z(t)|22 + |∇z(t)|2 ≤ 2|f(t)|2|z(t)|2 +

c1

ε
|z(t)|22 ≤ |f(t)|22 +

(

1 +
c1

ε

)

|z(t)|22. (2.11)

By Gronwall’s lemma, we have that for some c3 > 0:

‖z‖2
L∞(0,T,L2(Ω) + ‖∇z‖2

2 ≤ c3

(

|f0|
2
2 + ‖f‖2

L2(Q)

)

. (2.12)

In particular when f = 0 and f0 = 0, this proves the uniqueness property. Integrating
(2.11) over time and taking (2.11) into account, we obtain an apriori estimate of z in
the space

W (0, T ) := {z ∈ L∞(0, T, L2(Ω)); ∇z ∈ L2(0, T, L2(Ω))}, (2.13)

therefore also with (2.6) of z in L2(0, T, L6(Ω)), and finally of qz in L2(Ω). By (2.7)
we get an apriori estimate of z in H2,1

Σ (Q). The construction of the solution is then
easily obtained by a Galerkin approximation.

Lemma 2.2. For given u ∈ L2(Qω), either the state equation has a unique
solution, or there exists a maximal time τ ∈ (0, T ] such that the state equation with
time restricted to [0, τ − ε] has, for all ε > 0, a unique solution, and |y(t)|6 is not
bounded over [0, τ).

Proof. a) Existence of a solution of the state equation for small time. Let a0 :=
|y0|6 and, for b > a0, let ϕb : R+ → R+ be defined by

ϕ(s) =

{

1 when s ≤ b,
max(1 + b − s, 0) when s > b.

(2.14)

Consider the perturbed state equation

yt − ∆y + γϕ(|y|6)y
3 = iωu in Q, (2.15)

y(·, 0) = y0 over Ω, (2.16)

with possible solution in H2,1
Σ (Q). Since ϕ has value in [0, 1] and ϕ(a) = 0 when

a ≥ b + 1, we have that ϕ(|y|6)y
3 ∈ L∞(0, T, L2(Ω)). It is therefore easy to obtain an

a priori estimate of the solution in H2,1
Σ (Q) and to construct a solution by Galerkin’s

method; when passing to the limit in the nonlinear term, we use the compact inclusion
(2.5) and the continuity of ϕ. Since |y|6 is a continuous function of time, we have
that |y|6 ≤ b when t ≤ t1, for some t1 > 0. This proves that the state equation has a
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solution for t ≤ t1.
b) Continuation. Let y be a solution of the state equation for time t ≤ t0. If the
continuous function |y(t)|6 is bounded, then y has a limit y(t0). Applying the con-
struction of step a with b > max0≤t≤t0 |y(t)|6, we can construct a solution for t > t0,
close to t0. This proves that either the solution is defined over [0, T ], or there exists
τ such that the solution is defined over [0, τ), and lim supt↑τ |y(t)|6 = +∞.
c) Uniqueness of the solution. If y1 and y2 are two solution over (0, t0), setting
z := y2−y1 and q = γ(3y2 +3yz+z2), we obtain that q ∈ L∞(0, t0, L

3(Ω)). Applying
lemma 2.1 with f = 0 and f0 = 0, and T = t0, obtain z = 0, which is the desired
uniqueness property. In particular, let yi be solutions of the state equation for maxi-
mal time t ≤ ti, i = 1, 2. Then y1 and y2 coincide over (0, min(t1, t2)). If say t1 < t2
if follows that |y1(t)|6 remains bounded for t ≤ t1 which is impossible. Hence there is
a unique solution defined up to its maximal time.

In view of the estimate

1
2

d

dt
|yu(t)|2 + |∇yu(t)|2 + γ|yu(t)|44 =

∫

ω

yu(x, t)u(x, t) dxdt, (2.17)

we have, when γ ≥ 0, given u ∈ L2(Q), an apriori estimate of yu in W (0, T ); using
a Galerkin approximation argument, one easily deduces that when γ ≥ 0 the state
equation has a unique solution yu, and that there exists c > 0 not depending on γ such
that ‖y‖H2,1(Q) ≤ c‖u‖2. When γ < 0, the state equation has at most one solution.
The strong solution, always defined for small time, can explode in a finite time, see
for similar results Bebernes and Kassoy [7] and Tartar [35]. In any case we denote by
yu the solution. The implicit function theorem can be applied to the state equation
(see [9, 29]), and since the latter is of class C∞, we obtain that the mapping u → yu

is of class C∞.

The associated cost function is, for some N > 0:

J(u, y) = 1
2

∫

Q

(y(x, t) − yd(x, t))2dxdt +
N

2

∫

Qω

u2(x, t)dxdt. (2.18)

For some C > 1
2

∫

Ω
|y0(x)|2dx, define g : L2(Ω) → R by g(z) := 1

2

∫

Ω
|z(x)|2dx − C.

Consider the state constraint

g(y(·, t)) ≤ 0. (2.19)

The paper is concerned with the discussion of optimality conditions of the follow-
ing optimal control problem:

Min
(u,y)∈L2(Qω)×H2,1(Q)

J(u, y) subject to (2.1)-(2.3) and (2.19). (P )

Remark 2.3. When γ ≥ 0, problem (P ) is always feasible and has a nonempty
set of solutions. Indeed, it follows from (2.17) that t 7→ g(yu)(t) is nonincreasing
when γ ≥ 0 and u = 0. In particular, u = 0 is feasible when γ ≥ 0. The existence of a
solution to (P ) can be easily proved by passing to the limit in a minimizing sequence,
since when γ ≥ 0, by (2.17), a minimizing sequence of ocontrols is bounded in L2(Qω)
and hence the corresponding sequence of states is bounded in y in H2,1(Q) When γ < 0
the existence of a solution is unclear. Of course it makes sense to study optimality
conditions even if we cannot prove the existence of a solution.
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A trajectory of (P ) is an element (u, y) ∈ L2(Qω) × H2,1(Q) satisfying the state
equation (2.1)-(2.3). A feasible trajectory is one satisfying the state constraint (2.19).
The set of feasible trajectories is denoted F (P ).

We say that (ū, ȳ) is a local solution of (P ) that satisfies the quadratic growth
condition with parameter θ ∈ R, if it belongs to F (P ) and there exists ρ > 0 such
that

J(ū, ȳ) ≥ J(u, y) + θ|ū − u|2L2(Qω) if (u, y) ∈ F (P ) and |u − ū|L2(Qω) ≤ ρ. (2.20)

If this holds for θ = 0, we say that (ū, ȳ) is a local solution of (P ). We say that
(ū, ȳ) ∈ F (P ) satisfies the quadratic growth condition if (2.20) holds for some θ > 0
and ρ > 0. For (u, y) ∈ F (P ), define the contact set by

I(g(y)) = {t ∈ [0, T ]; g(y)(t) = 0} . (2.21)

For t ∈ [0, T ], if g(y)(t) = 0 (resp. g(y)(t) < 0), we say that the constraint is active
(resp. inactive) at time t. Finally we denote by χω the restriction L2(Ω) → L2(ω)
(which is nothing else than the transposition of iω).

3. First-order analysis.

3.1. The unqualified optimality system. We first put problem (P ) under a
compact format by defining











G : L2(Qω) ×
{

y ∈ H2,1(Q) s.t. y|Σ = 0
}

→ L2(Q) × H1
0 (Ω),

G(u, y) :=

(

yt − ∆y + γy3 − iωu
y(·, 0) − y0

)

.
(3.1)

The linearized state equation at point (u, y) is defined as

zt − ∆z + 3γy2
u = iωv in Q; z = 0 on Σ, z(·, 0) = 0. (3.2)

This linearized state equation is well-posed in the sense that, with each v ∈ L2(Qω) is
associated a unique solution z ∈ H2,1(Q). Since G is a C∞ mapping, it follows from
the Implicit Function Theorem that the mapping u → yu is of class C∞: L2(Qω) →
H2,1(Q), and the directional derivative of the state at point u in direction v is the
solution z of the linearized state equation. Next define J : L2(Qω) → R and G :
L2(Qω) → C([0, T ]) by

J (u) := J(u, yu); G(u)(t) := g(yu(t)) = 1
2 |yu(t)|2 − C. (3.3)

We can rewrite problem (P ) under the form of an “abstract problem”:

Min
u

J (u); G(u) ∈ K, (AP )

where K = C([0, T ])− is the cone of continuous nonpositive functions over [0, T ].
We recall that the topological dual of C([0, T ]) is the set M(0, T ) of regular Borel
measures over [0, 1]. Therefore the (negative) polar cone of K is K− = M([0, T ])+.
We know (see e.g. [18, Example 2.62 and 2.63]) that since K is a cone, its normal
cone at a point h ∈ K is NK(h) = K− ∩ h⊥ and that for h ∈ K, denoting by supp(µ)
the support of a measure µ:

NK(h) = {µ ∈ M(0, T )+; supp(µ) ⊂ h−1(0)}. (3.4)
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Define (see e.g. [18, Section 3.1.2]) the generalized Lagrangian of problem (AP ) as
L : L2(Qω) × R × M([0, T ]) such that

L(u, α, µ) := αJ (u) + 〈µ,G(u)〉, (3.5)

and the set of generalized Lagrange multipliers associated with u ∈ F (AP ) as

Λg(u) := {(α, µ) ∈ R+ × NK(G(u)); (α, µ) 6= 0; DuL(u, α, µ) = 0}. (3.6)

This set is a (possibly empty) convex cone.
Theorem 3.1. With a local solution (u, y) of (P ) is associated a non empty set

of generalized Lagrange multipliers.
Proof. This results from [18, Prop. 3.18]. For applying this result it suffices to

verify that the cone defined in equation (3.24) of [18] has a nonempty relative interior,
which trivially holds since K has a nonempty interior.

We next give a more explicit form to the optimality conditions. The condition
µ ∈ NK(G(u) is equivalent in view of (3.4) to

g(y) ≤ 0, µ ≥ 0,

∫ T

0

g(y(t))dµ(t) = 0. (3.7)

By (3.5), DuL(u, α, µ) = 0 iff, for y = yu:

αN

∫

Qω

uv + α

∫

Q

(y − yd)zv +

∫ T

0

∫

Ω

yzvdµ = 0, for all v ∈ L2(Qω), (3.8)

where zv is the solution of the linearized state equation (3.2). For the sake of simplicity
we will assume in the sequel of this paper that the state constraint is not active at the
final time. Define the costate p as the solution in L2(Q) of the linear equations

{

∫

Q
[α(y − yd)z + p(∆z − 3γy2z − zt)]dxdt +

∫

Q
y(x, t)z(x, t)dxdµ(t) = 0,

for all z ∈ Z := {H2,1
Σ (Q); z(·, 0) = 0}.

(3.9)

Setting f = zt − ∆z + 3γy2z, this is equivalent to
∫

Q

pf = α

∫

Q

(y − yd)z +

∫

Q

y(x, t)z(x, t)dxdµ(t). (3.10)

For given f ∈ L2(Q), in view of lemma 2.1, there exists a unique z ∈ Z such that
zt−∆z+3γy2z = f . Therefore the r.h.s. of (3.10) may be interpreted as a continuous
linear form over L2(Q). By the Riesz theorem there exists a unique p ∈ L2(Q) such
that (3.10) holds for all f ∈ L2(Q), or equivalently, (3.9) has a unique solution
p ∈ L2(Q). Let D(Q) denote the set of C∞ functions in Q with compact support, and
let D′(Q) be the associated dual set of distributions. We see that (3.9) is (formally
for the two last equations) equivalent to

−pt − ∆p + 3γy2p = α(y − yd) + ydµ(t) in D′(Q), (3.11)

p(·, T ) = 0, (3.12)

p = 0 on Σ. (3.13)

We can justify (3.12) and (3.13) by observing that, since p is solution of a backwards
heat equation with r.h.s. measure, by [20], it belongs to the space Lr(0, T, W 1,q(Ω)),
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for all r, q in [1, 2) such that 2/r+n/p > n+1, and hence, its traces at time T and on
Σ are well-defined. Actually we will derive in a direct manner a stronger regularity
result in section 3.3.

When f = iωv, for some v ∈ L2(Qω), substracting (3.9) from (3.8), and taking
(3.2) into account, obtain

∫

Qω
(αNuv + pv) = 0, for all v ∈ L2(Qω), or equivalently

αNu + χωp = 0 a.e. over Qω. (3.14)

Finally we have proved that

Λg(u) :=

{

(α, µ) ∈ R+ × NK(G(u)); (α, µ) 6= 0;
χωp = −αNu, where p is solution of (3.9)

}

. (3.15)

Denote the set of singular multipliers and Lagrange multipliers, resp., by

Λs(u) := {µ ∈ NK(G(u)); µ 6= 0; DuL(u, 0, µ) = 0}, (3.16)

Λℓ(u) := {µ ∈ NK(G(u)); DuL(u, 1, µ) = 0}. (3.17)

A nonsingular multiplier is of the form α(1, µ′) where µ′ := µ/α is a Lagrange multi-
plier. Denote by supp(µ) ⊂ [0, T ] the support of the measure µ, and let the singular
contact set be defined by

Is(u) = {t ∈ I(g(yu)); yu(·, t) = 0 a.e. on ω}. (3.18)

In view of (2.17), we see that the singular contact set is the set of times for which the
constraint is active and the control has no influence on its time derivative. We next
characterize the absence of singular mulitpliers using the following concept. We will
say that the state constraint is nondegenerate at point u if Is(u) = ∅; otherwise we
say that the state constraint is degenerate.

Theorem 3.2. Let (u, y) be a feasible point of (P ). Then Λs(u) is empty iff the
state constraint is nondegenerate at point u.

Proof. Let µ ∈ Λs(u). By (3.14), p = 0 over Qω. Then by (3.11), ydµ = 0
over Qω, which means that supp(µ) ⊂ Is(u). Since µ 6= 0, the state constraint is
degenerate.
Conversely, if the state constraint is degenerate, there exists τ ∈ Is(u). Let µ be the
Dirac measure at time τ . Then the costate equation is satisfied, as well as (3.14), by
p = 0. Therefore µ is a singular multiplier.

3.2. Constraint qualification condition. By a constraint qualification con-
dition one usually understands a condition implying that Lagrange multipliers as-
sociated to a local solution exist. Combining theorems 3.1 and 3.2 we obtain that
nondegeneracy of the constraint is a qualification condition. Yet it is of interest
to relate it to the standard Robinson constraint qualification (see [33],[34]). Since
C([0, T ])− has a non empty interior, the latter writes for a given (u, y) ∈ F (P ):

{

There exists (v, z) ∈ L2(Qω) × H2,1(Q), solution of (3.2),
such that g′(y(t))z(t) =

∫

ω
y(x, t)z(x, t)dx < 0, for all t ∈ I(g(y)).

(3.19)

Remark 3.3. (i) It is know that the constraint qualification implies that the set
of Lagrange multipliers associated with a local solution is non empty and bounded.
(ii) In addition, in the case of a constraint to belong to a convex set with a nonempty
interior, then by [36] (see also [18, Prop. 3.17]), constraint qualification holds at a
local solution iff the set of Lagrange multipliers is non empty and bounded.
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Theorem 3.4. Let (u, y) ∈ F (P ). Then the state constraint is not degenerate iff
the constraint qualification condition (3.19) holds.

The proof is based on the following lemma, where we show how to control the
time derivative of the linearized state constraint. We first need to set (here C is the
constant used in the definition of the state constraint):

T (y) := {t ∈ [0, T ];

∫

ω

y2(x, t)dx ≥ C, (3.20)

κ(t) :=

{
(∫

ω
y2(x, t)dx

)−1
if t ∈ T (y),

0 otherwise,
(3.21)

and for z ∈ H2,1(Q)

η(z, t) := −κ(t)

(
∫

ω

z(x, t)u(x, t)dt − 2

∫

Ω

∇y(x, t)∇z(x, t)dt

+4γ

∫

Ω

y3(x, t)z(x, t)dt

)

.
(3.22)

Lemma 3.5. Let (u, y) ∈ L2(Q) × H2,1(Q). Then (i) For all f ∈ L2(Q), the
problem

zt − ∆z + 3γy2z = η(z, t)χωy(x, t) + f(x, t) (3.23)

z(x, t1) = z0, ∀x ∈ Ω, (3.24)

has a unique solution in H2,1
Σ (Q), the mapping f 7→ z is continuous, and

d

dt
g′(y)z =

∫

Ω

fy over T (y). (3.25)

(ii) In particular, given ν ∈ L2(0, T ), when f = ν(t)κ(t)χωy(x, t), we have that f ∈
L2(Q) and

d

dt
g′(y)z = ν(t) over T (y). (3.26)

Proof. (i) For a ∈ H1(0, T ), nonnegative and nondecreasing, and z in H2,1(Q),
set w = e−a(t)z. Then w ∈ H2,1(Q), and since zt = ea(t)(wt + ȧw), z is solution of
(3.24) iff w is solution of

wt + ȧw − ∆w + 3γy2w = η(w, t)χωy + e−a(t)f, (3.27)

w(x, 0) = e−a(t)z0, ∀x ∈ Ω. (3.28)

Multiplying both sides of (3.27) by w and integrating over space, obtain (skipping
arguments of functions)

1
2

d

dt
|w|22 +

∫

Ω

(

ȧ(t)w2 + |∇w|2 + 3γy2w2
)

=

+ κ(t)

(
∫

ω

wu − 2

∫

Ω

∇y∇w + 2γ

∫

Ω

y3w

)
∫

ω

yw + e−a(t)

∫

Ω

fw.

(3.29)
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Using a ≥ 0, y ∈ H2,1(Q) ⊂ C([0, T ], H1(Ω)) ⊂ C([0, T ], L6(Ω)), κ(t) ≤ 2C, and the
Cauchy-Schwartz inequality, obtain that for some c1 > 0:

1
2

d

dt
|w|22 + ȧ(t)|w|22 + |∇w|22 ≤ c1

(

|w|22|u|2 + α|∇w|22 +
1

α
|w|22 + |w|22

)

+ 1
2

(

|f |22 + |w|22
)

.

(3.30)

Setting α := 1
2c1

, obtain, for some c2 > 0:

d

dt
|w|22 + 1

2 |∇w|22 ≤ |w|22
(

c1|u|L2(ω) + c2 − ȧ(t)
)

+ |f |22. (3.31)

Choosing a(t) = c1

∫ t

t1
|u|2 + c2(t − t1), for all t ∈ (0, T ), (this is indeed in H1(0, T ),

nonnegative and nondecreasing), obtain after a time integration

|w(t2)|
2
2 + ‖∇w(t2)‖

2
L2(Ω×(t1,t2))

≤ |z0|22 + ‖f‖2
L2(Ω×(t1,t2)). (3.32)

So we have an a-priori estimate of w in L2([0, T ], H1
0 (Ω))

⋂

L∞([0, T ], L2(Ω)). Let us
show that (3.27) gives an a-priori estimate of wt−∆w in L2(Q). The a-priori estimate
of w, and hence, of z, in H2,1(Q) will follow as well as the conclusion of the lemma.
Indeed, since

‖η(w, t)χωy‖2
L2(Q) ≤ ‖y‖2

L∞(0,T,L2(Ω))

∫ T

0

η(w, t)2dt, (3.33)

it suffices to prove that η ∈ L2(0, T ). And this follows from

η(w, t)2 ≤ C
(

‖w‖2
L∞(0,T,L2(Ω))|u(t)‖2

2+

‖∇y‖2
L∞(0,T,L2(Ω))|∇w|22 + ‖y‖6

L∞(0,T,L6(Ω))|w|22.
)

.
(3.34)

Finally (3.25) follows from the fact that d
dt

g′(y)z =
∫

Ω
(ytz+yzt), using the expressions

of yt and zt, and (ii) is an easy consequence of (i).
Proof. [Proof of theorem 3.4] If the state constraint is degenerate, the constraint

qualification (3.19) obviously cannot hold. Assume now that the state constraint is
nondegenerate. Set

Iε := {t ∈ [0, T ]; dist(t, I(g(y))) ≤ ε}; Jε := [0, T ] \ Iε. (3.35)

Since g(y(t)) is continuous over [0, T ], we may take ε > 0 so small that Iε ⊂ T , The
set Jε is a finite union of relatively open subsets. Therefore Iε is the union finitely
many closed intervals of the form [ai − ε, bi + ε] ∩ [0, T ], i = 1, . . . , N , and we have
that I(g(y)) ⊂ ∪N

i=1[ai, bi]. We next construct the perturbation v as follows. Take
v = 0 over Jε. Next, given v and z over [0, (ai − ε)+], fix v over [ai − ε, bi + ε]
such that , setting ξ(t) := g′(y(t))z(t) is affine over [ai − ε, ai] and has value -1 over
[ai, bi +ε]. In view of lemma 3.5(ii), it suffices to take z solution of (3.23)-(3.24), with
f = ν(t)κ(t)χωy(x, t), and with

ν(t) :=

{

−(1 + ξ(ai − ε))/ε, t ∈ (ai − ε, ai),
0, t ∈ (ai, bi + ε).

(3.36)

The related control is v = η(z, t)χωy + f .
In the sequel, we will say that (u, y) is a qualified feasible point of (P ) if it satisfies

(3.19), and a regular extremal if in addition it has an associated Lagrange multiplier.
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3.3. Alternative formulation of optimality conditions. In this section we
will assume that the state constraint is nondegenerate.

We recall the following integration by parts formula, see [23, Vol. I, p. 154]:
Lemma 3.6. Let a and b be two functions of bounded variations in [0, T ]. Suppose

that one is continuous, and the other is right-continuous. Then

a(T−)b(T−) − a(0+)b(0+) =

∫ T

0

a(t)db(t) +

∫ T

0

b(t)da(t). (3.37)

We apply this lemma to the expression
∫

Q
y(x, t)z(x, t)dxdµ(t) appearing in the

costate equation (3.9). The function a(t) :=
∫

Ω
y(x, t)z(x, t)dx, with z ∈ H2,1(Q), is

absolutely continuous; its derivative is

ȧ(t) =

∫

Ω

[yt(x, t)z(x, t) + y(x, t)zt(x, t)]dx. (3.38)

Since z(0) = 0 and taking the convention that µ(T ) = 0, we see that the l.h.s. in
(3.37) is zero, and hence,

∫ T

0

∫

Ω

y(x, t)z(x, t)dxdµ(t) = −

∫ T

0

∫

Ω

[yt(x, t)z(x, t)) + y(x, t)zt(x, t)]µ(t)dxdt

(3.39)
We now introduce the (first) alternative costate defined as the sum of the costate
and of the product of the measure by the derivative (w.r.t. the state) of the state
constraint; in other words

p1 := p + g′(y)µ = p + yµ in L2(Q). (3.40)

Substracting (3.39) from (3.9), obtain

∫

Q
p1ztdxdt =

∫

Q
[(y − yd) − 3γy2p − µyt]zdxdt +

∫

Q
p∆zdxdt

for all z ∈ Z := {z ∈ H2,1(Q); z(·, 0) = 0; z(x, t) = 0 on Σ}.
(3.41)

Eliminating p = p1 − yµ and using
∫

Q
y∆zdxdt =

∫

Q
z∆ydxdt, we get

∫

Q

p1
(

zt − ∆z + 3γy2z
)

dxdt =

∫

Q

[(y − yd) + µ(3γy3 − ∆y − yt)]zdxdt,

for all z ∈ Z := {z ∈ H2,1(Q); z(·, 0) = 0; z(x, t) = 0 on Σ}.
(3.42)

This is a classical adjoint equation with L2 r.h.s.; using the expression of yt, obtain
the following result.

Lemma 3.7. Let (u, y) be a regular extremal of (P ). The alternative multiplier
p1 = p + yµ is the unique solution in H2,1(Q) of the equation

−p1
t − ∆p1 + 3γy2p1 = y − yd − (2∆y − 6γy3 + iωu)µ in Q, (3.43)

p1(·, T ) = 0, (3.44)

p1(·, t) = 0 on Σ. (3.45)

Then, we have the following proposition stating the alternative formulation of the
optimality conditions:
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Proposition 3.8. Let (u, y) ∈ F (P ) be qualified. Then with (u, y) is associated
a Lagrange multiplier iff there exists a pair (p1, µ) ∈ H2,1(Q) × M+([0, T ]), satisfy-
ing the state equation (2.1)-(2.3), the alternative costate equation (3.43)-(3.45), the
complementarity conditions (3.7) for the state constraint, and the relation

Nu + χω(p1 − µy) = 0 a.e. on ω × [0, T ]. (3.46)

Proof. The necessity of the alternative costate equation (3.43)-(3.45) has been
obtained in the above discussion. Eliminating p = p1 − yµ from (3.14), we obtain
(3.46). Conversely, substituting p1 = p + yµ in the alternative optimality system,
and using (3.39), we recover the “classical” adjoint equation (3.11)-(3.13) as well as
(3.14).

We now prove the following regularity result.
Lemma 3.9. Let (u, y) be a regular extremal of (P ) and (p, p1, µ) the classical

and alternative costate and the multiplier associated with the state constraint. Then
(i) µ is a continuous function of time and u ∈ C([0, T ]; H1(ω)), (ii) if at time t the
state constraint is active and

∫

ω
y2(x, t) dx 6= 0, then

0 =
d

dt
(g(y))(t) = −|∇y(t)|2 +

∫

ω

u(x, t)y(x, t)dx − γ|y(t)|44, (3.47)

µ(t) =
N |∇y(t)|2 + γN |y(t)|44 +

∫

ω
y(x, t)p1(x, t)dx

|χωy(t)|22
(3.48)

u =
1

N
χω

(

N |∇y(t)|2 + γN |y(t)|44 +
∫

ω
y(x, t)p1(x, t)dx

|χωy(t)|22
y − p1

)

. (3.49)

Proof. [Proof of lemma 3.9] (i) By (3.46), and since both y and p1 belong to
H2,1(Q) ⊂ C([0, T ]; H1(Ω)), it suffices to prove that µ is continuous to obtain the con-
clusion. Since µ has left and right limits, and p1 as well as y belong to C(0, T, H1

0 (Ω)),
the same holds for u by (3.46); the latter implies also, denoting by [·] the jump func-
tion (e.g., [u](t) := u(t+) − u(t−)), that N [u] = [µ]χωy. Taking the scalar product of
both sides by [u], get

N |[u]|2L2(ω) = [µ]

∫

ω

[u]ydx. (3.50)

If [µ](t) 6= 0 for some time t, then the constraint is active and attains its maximum
at time t. The formal expression of the derivative of g(y) is

d

dt
(g(y))(t) =

∫

Ω

y∆y +

∫

ω

uy − γ

∫

Ω

y4 = −

∫

Ω

|∇y|2 +

∫

ω

uy − γ

∫

Ω

y4. (3.51)

Since y ∈ C(0, T, H1(Ω)) the first and the last terms in the r.h.s. are continuous (we
recall that H1(Ω) ⊂ L6(Ω) with continuous embedding in dimension 2 or 3); since u
has left and right limits, so has d

dt
g(y) and they are given by (3.51), where u is the

left or right limit, so that the jump is

[

d

dt
g(y)(t)

]

=

∫

ω

[u]y =
N

[µ]
|[u]|2L2(ω). (3.52)
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Since g(y) attains a maximum, [ d
dt

(g(y))(t)] ≤ 0, and hence, [u] = 0, contradicting
[µ] 6= 0. We have proved point (i) as well as (3.47).
(ii) Elimining the control variable from (3.46) and using (3.47), get (3.48). Eliminating
then µ thanks to (3.48) in (3.46), obtain (3.49).

Lemma 3.10. Let (u, y) be a regular extremal of (P ). Then (p, p1, µ) the classi-
cal and alternative costate and the multiplier associated with the state constraint are
unique.

Proof. Let (p1, p
1
1, µ1) and (p2, p

1
2, µ2) two triples of classical and alternative

costates and multipliers associated with the state constraint. Set

(p̃, p̃1, µ̃) = (p1 − p2, p
1
1 − p1

2, µ1 − µ2). (3.53)

Then p̃1 is solution of:

−p̃1
t − ∆p̃1 + 3γy2p̃1 = −(2∆y − 6γy3 + iωu)µ̃ in Q, (3.54)

p̃(·, T ) = 0, (3.55)

p̃(·, t) = 0 on Σ. (3.56)

So if µ̃ = 0 it follows that p̃1 = 0 and these two relations imply p̃ = 0. Therefore it
suffices to prove that µ̃ = 0. In view of the abstract form of the optimality system,
we have that 〈µ̃,G′(u)v〉 = 0 for all v ∈ L2(Qω). Take ε > 0 such that the state
constraint is not active for time t ≤ ε. The support of µ̃ is concentrated over [ε, T ].
By lemma 3.5 we can make G′(u)v equal to an arbitrary function of H1(ε, T )), and
since the inclusion of H1(ε, T ) in C([ε, T ]) is dense, 〈µ̃,G′(u)v〉 = 0 for all v ∈ L2(Qω)
implies µ̃ = 0.

We next prove that when state constraint is active over an interval, the Cantor
part of the measure is also null.

Lemma 3.11. Let (u, y) be a regular extremal of (P ). Assume that the state
constraint is active over an interval [t1, t2], where 0 ≤ t1 < t2 ≤ T . Then µ is
absolutely continuous over [t1, t2].

Proof. It suffices to prove that the expression in the r.h.s. of (3.48) belongs to
W 1,1(t1, t2). Since by assumption the denominator is far from zero and belongs to
W 1,1(t1, t2), it suffices to check it for each term of the numerator. This is obviously
true for the last two terms, and for the first one we observe that for t ∈ (t1, t2):

|∇y(t)|2 = |∇y(t1)|
2 −

∫ t

t1

∫

Ω

∆y(x, s)yt(x, s)dxdt (3.57)

Indeed this holds when y is smooth enough, and since each side of the equality is a
continuous function in H2,1(Q), and the latter is the closure (for its norm) of the set
of C∞ functions over Q, (3.57) holds. The conclusion follows.

3.4. Arc based alternative formulation. We next present a variant of the
alternative formulation that is useful when formulating shooting algorithms; see Bon-
nans and Hermant [15] for related results in a finite dimensional setting. Let us start
with some definitions. A boundary arc (resp. interior arc) is a maximal interval of
positive measure I such that g(y)(t) = 0 (resp. g(y)(t) < 0), for all t ∈ I. Left and
right endpoints of a boundary arc [τen, τex] are called entry and exit point, respec-
tively. A touch point τto is an isolated contact point, satisfying g(y)(τto) = 0 and
g(y)(t) < 0 for t 6= τto in the neighborhood of τto. The endpoints of interior arcs
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belonging to (0, T ) are called junction points (or times). If the set of junction points
of a trajectory is finite, then it is of the form

T = Ten ∪ Tex ∪ Tto, (3.58)

with Ten, Tex, Tto the disjoint (and possible empty) subsets of respectively entry, exit

and touch points. We denote by Ib the union of boundary arcs, i.e. Ib =
⋃Nb

i=1[τ
en
i , τex

i ]
for Ten :=

{

τen
1 < · · · < τen

Nb

}

and similar definition of Tex, and we have I(g(y)) =
Tto ∪ Ib.

Definition 3.12. We say that a trajectory (u, y) is solution of the alternative
formulation, if there exist p1 ∈ L2(Q), µ1 ∈ BV (0, T ) and alternative jump parame-
ters ν1

Ten
such that, setting Q−T := Ω × ([0, T ]\T ):

yt − ∆y + γy3 = iωu a.e. (x, t) ∈ Q, (3.59)

y(0, ·) = y0, (3.60)

y = 0 on Σ (3.61)

−p1,t − ∆p1 + 3γy2p1 = y − yd + (2∆y − 6γy3 + iωu)µ1(t) on Q−T (3.62)

p1(·, T ) = 0 (3.63)

p1(·, t)|Σ = 0 (3.64)

Nu + χ∗
ω(p1 + µ1y) = 0 a.e. on [0, T ]× Ω, (3.65)

g(y)(τen) = 0, τen ∈ Ten,
d

dt
g(u, y) = 0, on Ib (3.66)

µ1(t) = 0 on [0, T ]\Ib (3.67)

[p1(·, τ)] = −ν1
τy(τ) for all τ ∈ Ten. (3.68)

[p1(·, τ)] = 0 for all τ ∈ Tex. (3.69)

A solution of the alternative formulation is said to satisfy the additional condi-
tions, if the conditions below hold:

g(y)(t) < 0 a.e. on [0, T ]\Ib (3.70)

µ1 is nonincreasing on int(Ib) (3.71)

ν1
τen

= µ1(τ
+
en), τen ∈ Ten, µ1(τ

−
ex) = 0, τex ∈ Tex. (3.72)

Consider the following relations:

ντen
= −µ(τex) − µ(τen) = µ([τen, τex]), (3.73)

µ1(t) = −µ(t) − Στ∈Ten
ν1

τ1[0,τ)(t), (3.74)

p1 = p1 + Στ∈Ten
ν1

τ1[0,τ)(t)y(t). (3.75)

We have the following propositions.
Proposition 3.13. Let (u, y) ∈ F (P ) satisfy the qualification condition. Then

(u, y) is a extremal iff it satisfies both the alternative formulation (3.59)-(3.69) and
the additional conditions (3.70)-(3.72), the relations between the adjoint states and
multiplier being given by (3.73)-(3.75).

For the proof it suffices to substitute in the alternative formulation the expressions
of (p1, µ1) in (3.73)-(3.75). Details are left to the reader. The derivation is analogous
to the one in e.g. [16]. The above formulation opens the way to the resolution of the
optimality system by shooting methods. This extension is not obvious, however, in
view of the ill-posedness of the backward heat equation.



14 J.F. Bonnans, P. Jaisson

4. Second-order optimality condition.

4.1. Second-order necessary optimality condition. Since the seminal work
by Kawasaki [26, 27, 28], we know that second-order necessary optimality conditions
involve the difference of th Hessian of Lagragian with a “sigma-term” taking into
account the curvature of the convex set involved in the constraint statement (in the
context of our state constrained optimal control problems, the cone C([0, T ])− of
nonpositive continuous functions over [0, T ]). This was set in a general setting by
Cominetti [22], and examples of computations of the sigma-term for various function
spaces, including those of continuous functions over a compact set, are provided in
Cominetti and Penot [22].

The main result of Bonnans and Hermant [17] is that, under weak conditions, for
the optimal control of o.d.e.’s, this sigma-term reduces to the contribution of isolated
contact points (called touch points), that are equal to the product of the jump of
the multiplier times a quadratic form of the critical direction at the touch point. In
addition, for first-order state constraints, the contribution of “regular” touch points
is also zero. We will obtain a similar result in our context. In fact we improve here
the method of [17] by avoiding any hypothesis on the second-derivative of the state
constraint at junction points.

Th Lagrangian of problem (P ) (in the formalism where both the state and control
variables appear) in qualified form is the function L : L2(Qω) × H2,1

Σ (Q) × L2(Q) ×
H1

0 (Ω) × M([0, T ]) defined by

L(u, y, p, q, µ) := J(u, y) +

∫

Q

p
(

∆y − γy3 + iωu − yt

)

dxdt

+

∫ T

0

g(y(t))dµ(t) +

∫

Ω

q(x)(y(x, 0) − y0(x))dx.

(4.1)

Its second-order directional derivative in direction (v, z) is

∆(v, z) := N‖v‖2
2 +

∫

Q

(1 − 6γp(x, t)y(x, t)) z(x, t)2dxdt +

∫ T

0

|z(t)|22dµ(t). (4.2)

We say that (v, z) ∈ L2(Q) × H2,1
Σ (Q) is a critical direction if (i) it satisfies the

linearized state equation (3.2) and (ii) it is tangent to the state constraints and satisfies
the complementarity condition with the multiplier µ, i.e.,

g′(y(t))z(t) ≤ 0 over I(g(y)) , (4.3)

g′(y(t))z(t) = 0 over supp(µ). (4.4)

Denote by C(u, y) the set of critical directions associated with (u, y) ∈ F (P ). We
say that the contact set has a finite structure if it is a finite union of touch points and
boundary arcs. In that case, we will say that the hypothesis of strict complementarity
holds if the support of the measure dµ is the union of the boundary arcs. In that
case, a direction (v, z) satisfying (3.2) is critical iff it satisfies

{

g′(y(t))z(t) = 0 over boundary arcs,
g′(y(τ))z(τ)) ≤ 0 for each touch point τ .

(4.5)

Theorem 4.1. Let (u, y) be a qualified local solution of (P ), with associated
multiplier µ and costate p. If the contact set has a finite structure and the hypothesis
of strict complementarity holds, then

∆(v, z) ≥ 0, for all (v, z) ∈ C(u, y). (4.6)
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The proof will use the following corollary of lemma 3.5.
Corollary 4.2. Let (v̄, z̄) be solution of the linearized equation. Consider the

linearized equation with r.h.s. in feedback form:

v = v̄ + (η(z, t) − η(z̄, t) + ν(t)κ(t))χωy. (4.7)

When ν → 0 in L2(0, T ), we have that v → v̄ in L2(Qω), and in addition

d

dt
(g′(y)z) = ν1(t) := ν(t) +

d

dt
(g′(y)z̄) over T . (4.8)

Proof. By lemma 3.5, where here f = v̄ + (ν1κ(t) − ηz̄)χωy, the equation is
well-posed. Since

d

dt
(g′(y)z̄) =

∫

ω

v̄ydx − η(z̄, t), (4.9)

relation (4.8) follows from (3.25). In addition, the mapping ν 7→ (v, z) is continuous
L2(0, T ) → L2(Qω)×H2,1

Σ (Q) (as being a composition of continuous mappings), and
(v, z) = (v̄, z̄) when ν = 0. The conclusion follows.

Proof. [Proof of theorem 4.1] We apply the extended polyhedricity theory of [18,
Section 3.2.3]). Denote by CR(u, y) the set of radial critical direction, i.e., of critical
directions (v, z) such that g(y) + σg′(y)z ∈ K for some σ > 0. It is known that
∆(v, z) ≥ 0, for all (v, z) ∈ CR(u, y), and since ∆(v, z) is a continuous function, this
still holds over the closure C̄R(u, y). We will next check the extended polyhedricity
assumption C̄R(u, y) = C(u, y) under which, by the above arguments, the conclusion
holds.

Let us check this hypothesis by induction on Ntot := Ntc +Nb, where Ntc and Nb

are the number of touch points and boundary arcs, respectively. The result obviously
holds when Ntot = 0; assuming that it holds for Ntot − 1, let t0 ∈ (0, T ) be such that
g(y(t0)) < 0 and that I(g(y)) ∩ (t0, T ] is the last connected component of I(g(y)).

Give a critical direction (v, z), consider the restriction of (y, u, z, v) to [0, t0]. Then
(v, z) is critical over [0, t0] in the sense that it satisfies the linearized state constraint
over the active set while being complementary to the multiplier. Since I(g(y)) has
Ntot − 1 connected components on [0, t0], by our induction argument, for any ε > 0,
there exists a “radial critical direction over (0, t0)”, i.e., vε ∈ L2(ω × (0, t0)) and
zε ∈ H2,1

Σ (Ω × (0, t0)) such that, for some σε > 0, g(y) + σεg
′(y)zε ≤ 0 over [0, t0],

(v, z) satisfy the linearized state equation over (0, t0), and ‖vε − v‖2 +‖zε − z‖2,1 ≤ ε.

Since the trace at time t0 is a continuous mapping H2,1
Σ (Ω × (0, t0)) → H1

0 (Ω), there
exists c1 > 0 such that ‖zε(·, t0) − z(·, t0)‖H1

0
(Ω) ≤ c1ε. Therefore, for some c2 > 0

not depending on (v, z), we have that

|(g′(y)(z̄ − zε)) (t0)| ≤ c2ε. (4.10)

Let τ be the smallest point of the last connected component of I(g(y)); we can increase
t0 if necessary in order to be sure that κ(t) > 0 over [t0, τ ]. Integrating (4.8) over
(t0, τ), obtain

(g′(y)zε) (τ) = (g′(y)zε) (t0) +

∫ τ

t0

ν(t)dt + [g′(y)z̄]
τ

t0
. (4.11)
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Using (4.10), get

∣

∣

∣

∣

(g′(y)(zε − z̄)) (τ) −

∫ τ

t0

ν(t)dt

∣

∣

∣

∣

≤ c2ε. (4.12)

We next have to distinguish two cases.
(i) The last connected subset of I(g(y)) is the touch point τ . Take

ν(t) :=

{

−2ε(c2 + 1)/(τ − t0) when t < τ ,
0 when t ∈ [τ, T ].

(4.13)

Since (g′(y)z̄) (τ) = 0, we have then (g′(y)zε) (τ) ≤ −ε, so that for small σ > 0,
g(y)+ g′(y)zε ≤ 0 over [t0, T ], and at the same time we have constructed vε such that
‖vε − v̄‖2 + ‖zε − z̄‖2,1 = O(ε). So we have constructed a radial direction (vε, zε)
converging to (v, z).
(ii) The last connected subset of I(g(y)) is the boundary arc [τ, τ ′]. As a first step,
take ν(t) equal to some constant c3 so that (g′(y)z) (τ − ε) = 0. Using the relation
similar to (4.11) but at time τ − ε, get

0 = (g′(y)zε) (τ − ε) = c3(τ − ε − t0) + (g′(y)(zε − z̄)) (t0) + (g′(y)z̄) (τ − ε). (4.14)

Since g′(y)z̄ is a continuous fonction, we have that |(g′(y)z) (τ − ε)| = o(1), and hence
for ε ≤ 1

2 (τ − t0), it suffices to take c3 = o(1).

The second step is to set (g′(y)z) (t) = 0, for all t ∈ [τ − ε, τ ], i.e., ν(t) =
− d

dt
(g′(y)z̄) (t), and hence, ‖ν‖L2(τ−ε,τ) = o(1). On [τ, τ ′] we take of course ν = 0,

and if τ ′ < T , we set ν so that (g′(y)z) (t) = 0, for all t ∈ [τ ′, τ ′ + ε], which similarly
implies ‖ν‖L2(τ ′,τ+ε) = o(1). So again we have constructed a radial critical direction
converging to (v, z).

4.2. Second-order sufficient optimality condition. We obtain in this sec-
tion no-gap second-order optimality conditions.

Theorem 4.3. Let (u, y) be a regular extremal of (P ). Then a sufficient condition
for the quadratic growth condition (2.20) is

∆(v, z) > 0, for all (v, z) ∈ C(u, y) \ {0}. (4.15)

If, in addition, the contact set has a finite structure, then (4.15) is a necessary con-
dition for quadratic growth.

Proof. a) The sufficiency condition follows from [18, Section 3.3]; for the sake of
completeness, we give a direct proof. Assume that (4.15) holds, and that a feasible
sequence (uk, yk) for (P ) satisfies (uk, yk) 6= (u, y) for all k, (uk, yk) → (u, y), and

J (uk) = J(uk, yk) ≤ J(u, y) + o(‖uk − u‖2
2). (4.16)

Set βk := ‖uk − u‖2 and vk := (uk − u)/βk. Then uk = u + βkvk. Since ‖vk‖2 = 1,
extracting if necessary a subsequence, we may assume the existence of v ∈ L2(Ω)
such that vk ⇀ v (weak convergence). Since J (uk) = J (u) + βkJ ′(u)vk + o(βk), we
deduce from (4.16) that J ′(u)v ≤ 0. Similarly, since

TK(G(u)) ⊃
K − G(uk)

βk

= G′(u)vk + o(1), (4.17)
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and since TK(G(u)) is a (weakly) closed convex set, we obtain that G′(u)v ∈ TK(G(u)).
It follows that v is a critical direction. Using L(uk, yk, p, q, µ) ≤ J(uk, yk) and
L(u, y, p, q, µ) = J(u, y), deduce from (4.16) that

0 ≥ L(uk, yk, p, q, µ) − L(u, y, p, q, µ) + o(β2
k) = 1

2β2
k∆(vk, zk) + o(β2

k). (4.18)

Since ∆(·, ·) is w.l.s.c., obtain ∆(v, z) ≤ 0, which by (4.15), since (v, z) is a critical
direction, implies (v, z) = 0, and hence, ∆(vk, zk) → ∆(v, z). Since the mapping v →
z (solution of the linearized state equation) is compact L2(Qω) → L2(Q), it follows
that ‖vk‖2 → ‖v‖2, and therefore vk → v (for the strong topology), contradicting
‖vk‖2 = 1.
b) Let (u, y) ∈ F (P ) be qualified, have a finite structure, and satisfy the quadratic
growth condition. Then for ε > 0 small enough (u, y) is a local solution of the same
problem with N changed into N− 1

2ε. Since this does not change the expression of the
first-order optimality conditions at the point (u, y), the costate p and multiplier µ are
the same, while the perturbed Hessian of Lagrangian is ∆ε(v, z) = ∆(v, z) − ε‖v‖2

2.
Since ∆ε(v, z) ≥ 0 by theorem 4.3, the conclusion follows.

5. Sensitivity analysis. We consider now a family of optimal control problems
parameterized by an additional f ∈ L2(Q) on the r.h.s. of the state equation. The
perturbed state equation is therefore

yt − ∆y + γy3 = f + iωu in Q, (5.1)

y = 0 over Σ, (5.2)

y(·, 0) = y0 over Ω. (5.3)

Let (ū, ȳ) be a local solution of (P ) satisfying the quadratic growth condition (2.20)
for some θ > 0 and ρ > 0. Assume that they satisfy the qualification condition,
and let (p̄, µ̄) denote the associated costate and Lagrange multiplier. Consider the
localizing constraint

‖u − ū‖2 ≤ ρ. (5.4)

The perturbed optimal control problem is

Min
(u,y)∈L2(Qω)×H2,1(Q)

J(u, y) subject to (5.1)-(5.3) and (5.4). (Pf )

Denote by v(f) the value of problem (Pf ). Using the methodology of [13, 18], we are
able to perform a sensitivity analysis along a path of the form

f(σ) := σf1 + 1
2σ2f2 + o(σ2), (5.5)

where f1 and f2 are given in L2(Q). Consider the following perturbed linearized
equation

zt − ∆z + 3γȳ2z = f1 + iωv in Q; z = 0 on Σ, z(·, 0) = 0. (5.6)

The related linearized optimization problem is

Min
(v,z)∈L2(Qω)×H2,1(Q)

J ′(ū, ȳ)(v, z); g′(ȳ(t))z(t) ≤ 0 over I(g(ȳ)); (5.6) holds.

(Lf1
)
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Note that S(Lf1
) coincides with the critical cone if f1 = 0. We start with a technical

lemma concerning the value of the linearized problem (Lf1
).

Lemma 5.1. We have that val(Lf1
) =

∫

Q
p̄(x, t)f1(x, t)dxdt. In addition, the set

S(Lf1
) is non empty.

Proof. Since (ū, ȳ) satisfies the qualification condition, and in view of the unique-
ness of the Lagrange multiplier, we deduce from [13, Prop. 3.1] that (i) (Lf1

) has
the same Lagrange multiplier µ̄ as the original problem (P ), (ii) (v, z) ∈ S(Lf1

) iff
(v, z) ∈ F (Lf1

) with strict complementarity with µ̄, i.e.

g′(ȳ(t))z(t) = 0 over supp(µ̄) (5.7)

and (iii) that the formula for val(Lf1
) holds. The nonemptiness of the solution set

follows from the fact that, in view of Lemma 3.5, we can control the time derivative of
the state constraint over a neigbourhood of the contact set, and therefore it is possible
to set the first-order variation of the state constraint to zero over the contact set.

Next we need an estimate of stability of approximate solutions. The Lagrangian
of the family of perturbed problems (by abuse of notation, denoted in the same way)
is

L(u, y, f, p, q, µ) := J(u, y) +

∫

Q

p
(

∆y − γy3 + f + iωu − yt

)

dxdt

+

∫ T

0

g(y(t))dµ(t) +

∫

Ω

q(x)(y(x, 0) − y0)dx.

(5.8)

It is easily checked that the value of the multiplier for the initial condition is q̄ = −p̄(0).
Lemma 5.2. Let (ū, ȳ) be a qualified local solution of (P ) satisfying the quadratic

growth condition (2.20). If ρ is small enough, then (i) when ‖f‖2 is small enough,
problem (Pf ) has a nonempty (necessarily bounded) set of solutions, (ii) if fk → 0
in L2(Q), and uk is a sequence of o(‖fk‖2

2) solutions of problem (Pfk
), we have that

‖uk − ū‖2 = O(‖fk‖2).
Proof. Since the Implicit Function Theorem may be applied to the study of the

state equation (5.1)-(5.3), denoting its solution by yf,u, we have that, in the vicinity
of (f = 0, ū), the mapping (f, u) → yf,u is well-defined and of class C∞. In particular,

when ρ and ‖f‖2 are small enough, yf,u is uniformly bounded in H2,1
Σ (Q). Therefore

we can pass to the limit in a minimizing sequence of problem (Pf ), using standard
compactness arguments in order to deal with the nonlinear term of the state equation.
Point (i) follows.
(ii) If the conclusion does not hold, for arbitrarily small ρ > 0 there exist sequences
fk → 0 in L2(Q) and uk of o(σ2) solutions of problem (Pfk

) such that ‖fk‖2 = o(‖uk−
ū‖2). We may write σk := ‖uk − ū‖2, and uk = ū + σkvk, with ‖vk‖2 = 1. Extracting
if necessary a subsequence, assume that vk ⇀ v̄. From a first-order expansion of the
cost function and constraints we easily obtain that v̄ is a critical direction. Now

L(uk, yk, fk, p̄, q̄, µ̄) ≤ J(uk, yk) ≤ val(Pfk
) + o(‖fk‖

2
2). (5.9)

From a second-order expansion of the Lagrangian, whose partial derivative w.r.t.
(u, y) is zero at (ū, ȳ, f = 0), and since L(ū, ȳ, 0, p̄, q̄, µ̄) = J(ū, ȳ), denoting by
zk the solution of (5.6) with v := vk, get ∆(vk, zk) ≤ o(1), and hence, ∆(v̄, z̄) ≤
lim infk ∆(vk, zk) ≤ 0. Since (v̄, z̄) is a critical direction, it follows that (v̄, z̄) = 0, and
hence ∆(vk, zk) → ∆(v̄, z̄), which implies vk → v̄. This cannot be since vk is of unit
norm and v̄ = 0.
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Consider the quadratic subproblem

Min
(v,z)∈S(Lf1

)
∆(v, z) +

∫

Q

p̄(x, t)f2(x, t)dxdt (Q)

Theorem 5.3. Let (ū, ȳ) be a qualified local solution of (P ) satisfying the quadra-
tic growth condition (2.20). Then a) we have the following expansion

v(f(σ)) = val(P ) + σ val(Lf1
) + 1

2σ2 val(Q) + o(σ). (5.10)

b) In addition we have that if (uσ, yσ) is a path of o(σ2) solutions, then ‖uσ − ū‖2 =
O(σ), each weak limit-point in L2(Qω) is a strong limit-point, and is solution of
problem (Q). If the latter has a unique solution v̄, then a path uσ of o(σ2) solutions
of (Pf(σ)) satisfies

uσ = ū + σv̄ + o(σ). (5.11)

Proof. a) Apply [18, Thms 4.94]. Its hypothesis are (i) directional regularity,
that follows from the qualification condition, (ii) existence of a o(σ2) solution path
for problem (Pf(σ)), which holds in view of lemma 5.2, (iii) the directional extended
polyhedricity condition which is consequence of extended polyhedricity. The conclu-
sion is, with numbering of equations of [18], that the expansion (4.235), based on
the expressions defined in (4.222)-(4.224), holds. Therefore, since (as easily checked)
val(Q) is finite, (our equation) (5.10) holds.
b) This is an obvious consequence of [18, Thm 4.95].
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