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Abstract
The goal of this paper is to formulate and solve free material optimization problems
with constraints on the smallest eigenfrequency of the optimal structure. A natural
formulation of this problem as linear semidefinite program turns out to be numerically
intractable. As an alternative, we propose a new approach, which is based on a non-
linear semidefinite low-rank approximation of the semidefinite dual. We introduce an
algorithm based on this approach and analyze its convergence properties. The article is
concluded by numerical experiments proving the effectiveness of the new approach.

1 Introduction
Free material optimization (FMO) is a branch of structural optimization that gains in-
terest in the recent years. The underlying FMO model was introduced in [4] and has
been studied in several further articles as, for example, [2, 30]. The design variable in
FMO is the full elastic stiffness tensor that can vary from point to point. The method is
supported by powerful optimization and numerical techniques which allow for scenar-
ios with complex bodies, fine finite-element meshes and several load cases. FMO has
been successfully used for conceptual design of aircraft components; the most promi-
nent example is the design of ribs in the leading edge of Airbus A380 [13].

As mentioned, the optimal elastic stiffness tensor can vary from point to point; it
should be physically available but is otherwise not restricted. Given this freedom, we
have to face the question of interpretation of the optimal result. A general anisotropic
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material that changes its properties at any point is certainly not easy to manufac-
ture. The most natural interpretation is the use of fibre-reinforced composite materials,
though other interpretations are possible, too. The problem gives the best physically
attainable material and its result thus serves as a benchmark to any realized design. The
question of practical interpretation of FMO results is intensively studied in the recent
EU FP6 project PLATO-N, whose consortium includes several industrial partners.

The basic FMO model has other drawbacks, though. For example, structures may
fail due to high stresses, or due to lack of stability of the optimal structure (compare
[16, 17] for further discussion). In order to prevent this undesirable behavior, addi-
tional requirements have to be taken into account in the FMO model. Typically, such
modifications lead to additional constraints on the set of admissible materials and/or
the set of admissible displacements. These constraints usually destroy the favorable
mathematical structure of the original problem (see [16, 17]). The particular cause of
structural failure we want to investigate in this article is vibration resonance. Structural
optimization problems with eigenvalue constraints have been intensively studied in the
context of truss and topology optimization, see, e.g., [9, 10, 20, 22, 23, 24] and many
others. We will give an appropriate formulation of the FMO problem, which takes care
of this phenomenon, derive various discretized formulations and propose an efficient
algorithm for the solution of the problem.

In contrast to the original FMO model which is based on a static PDE system, vibra-
tion of a body is a dynamic process. In the first part of the paper we demonstrate how
we can bypass this additional challenge by using a reformulation as (time-independent)
generalized eigenvalue problem. As a result, we obtain an extended FMO problem with
an eigenfrequency condition. For this problem we are able to prove the existence of
an optimal solution. In the second section we explain how an existing discretization
scheme (proposed in [28]) can be extended to cover the additional eigenfrequency con-
dition. In the third section we give a first formulation of the discretized FMO problem
with vibration constraint as a linear semidefinite program. We further explain why
this formulation is not suited to serve as a basis for efficient numerical calculations.
In the framework of the fourth section we develop an algorithm which is based on a
low-rank approximation of the semidefinite dual. The low-rank approach is motivated
by ideas recently introduced by Burer and Monteiro (see [6]) for the solution of linear
semidefinite programs. The article is concluded by numerical studies.

Throughout this article we use the following notation: We denote by SN the space
of symmetric N×N matrices equipped with the standard inner product 〈·, ·〉 defined
by 〈A,B〉 := Tr(AB) for any pair of matrices A,B ∈ SN . We further denote by SN+
the cone of all positive semidefinite matrices in SN and use the abbreviation A < 0
for matrices A ∈ SN+ . Moreover, for A,B ∈ SN , we say that A < B if and only if
A−B < 0, and similarly for A 4 B.

2 The mathematical model
Material optimization deals with optimal design of elastic structures, where the design
variables are material properties. The material can even vanish in certain areas, thus
the so-called topology optimization (see, e.g., [3]) can be considered a special case of
material optimization.

Let Ω ⊂ R2 be a two-dimensional bounded domain1 with a Lipschitz boundary.

1The entire presentation is given for two-dimensional bodies, to keep the notation simple. Extension to
the three-dimensional space is straightforward.
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By u(x) = (u1(x), u2(x)) we denote the displacement vector at a point x of the body
under load f , and by

eij(u(x)) =
1
2

(
∂ui(x)
∂xj

+
∂uj(x)
∂xi

)
for i, j = 1, 2

the (small-)strain tensor. We assume that our system is governed by linear Hooke’s
law, i.e., the stress is a linear function of the strain

σij(x) = Eijk`(x)ek`(u(x)) (in tensor notation),

where E is the elastic (plane-stress) stiffness tensor. The symmetries of E allow us to
write the 2nd order tensors e and σ as vectors

e = (e11, e22,
√

2e12)> ∈ R3, σ = (σ11, σ22,
√

2σ12)> ∈ R3 .

Correspondingly, the 4th order tensor E can be written as a symmetric 3× 3 matrix

E =

E1111 E1122

√
2E1112

E2222

√
2E2212

sym. 2E1212

 . (1)

In this notation, Hooke’s law reads as σ(x) = E(x)e(u(x)).
For a given external load function f ∈ [L2(Γ)]2 we obtain the following basic

boundary value problem of linear elasticity:

Find u ∈ [H1(Ω)]2 such that (2)

div(σ) = 0 in Ω
σ · n = f on Γ
u = 0 on Γ0

σ = E · e(u) in Ω

Here Γ and Γ0 are open disjunctive subsets of ∂Ω. The corresponding weak form,
the so called weak equilibrium equation, reads as:

Find u ∈ V, such that (3)∫
Ω

〈E(x)e(u(x)), e(v(x))〉dx =
∫

Γ

f(x) · v(x)dx, ∀v ∈ V,

where V = {u ∈ [H1(Ω)]2 |u = 0 on Γ0} ⊃ [H1
0 (Ω)]2 reflects the Dirichlet boundary

conditions. Below we will use the abbreviation

aE(w, v) =
∫

Ω

〈E(x)e(w(x)), e(v(x))〉dx (4)

for the bilinear form on the left hand side of (3). In free material optimization (FMO),
the design variable is the elastic stiffness tensor E which is a function of the space
variable x (see [4]). The only constraint on E is that it is physically reasonable, i.e.,
thatE is symmetric and positive semidefinite. This gives rise to the following definition

E0 :=
{
E ∈ L∞(Ω)3×3 | E = E>, E < 0 a.e. in Ω

}
.

The choice of L∞ is due to the fact that we want to allow for material/no-material
situations. A frequently used measure of the stiffness of the material tensor is its trace.
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In order to avoid arbitrarily stiff material, we add pointwise stiffness restrictions of the
form Tr(E) ≤ ρ, where ρ is a finite real number. We also allow for pointwise lower
trace bounds Tr(E) ≥ ρ ≥ 0. Moreover we prescribe the total stiffness/volume by
the constraint v(E) = v̄. Here the volume v(E) is defined as

∫
Ω

Tr(E)dx and v̄ ∈ R
is an upper bound on overall resources. Accordingly, we define the set of admissible
materials as

E :=
{
E ∈ E0 | ρ ≤ Tr(E) ≤ ρ a.e. in Ω, v(E) = v̄

}
.

We are now able to present the minimum compliance single-load FMO problem

inf
E∈E

∫
Γ

f(x) · uE(x)dx (5)

subject to
uE solves (3).

The objective, the so called compliance functional, measures how well the structure
can carry the load f . In [28] it is shown that problem (5) can be given equivalently as

inf
E∈E

c(E)

where c(E) is a closed formula for the compliance given by

c(E) = sup
u∈V

{
−aE(u, u) + 2

∫
Γ

f · u dx
}
.

Problem (5) has been extensively studied in [18, 28]. The most successful method
for the solution of problem (5), based on dualization of the original problem [2, 28]
gave rise to a software package MOPED, which was recently applied to real-world
applications and lead to significant improvements of the classic design. On the other
hand the underlying FMO model has certain limitations (other than the interpretation
of the result discussed in the introduction). One of the drawbacks of problem (5) is
that it does not count with possible instability of the structure (compare [16]). One
possible source of such instability is vibration resonance. In the sequel we develop a
generalized FMO model, which is more robust with respect to this phenomenon. As
we will see, the modification in the model results in an additional constraint on the set
of admissible materials E .

Vibration of a body—as a dynamic process—can be modeled by the following
time-dependent PDE:

div(σ(x, t)) = ρE(x)ü(x, t), (x, t) ∈ Ω× [0, T ], (6)

with boundary conditions

∂

∂n
σ(x, t) = 0 on Γ× [0, T ]

u(x, t) = 0 on Γ0 × [0, T ].

Here the material density term ρ is defined by ρE(x) = tr(E(x)) and E(x) is the ma-
terial tensor introduced earlier in this section. As in this case there is no external force

4



applied to the system, we call the solutions of (6) free vibrations. Using the assump-
tion of Hooke’s law and introducing the differential operator SE(·) := div(Ee(·)) we
obtain from (6):

SE(u(x, t)) = ρE(x)ü(x, t), (x, t) ∈ Ω× [0, T ], (7)
∂

∂n
SE(u(x, t)) = 0 on Γ× [0, T ],

u(x, t) = 0 on Γ0 × [0, T ].

Using Fourier transform we derive the following characterization of solutions of system
(7):

Proposition 2.1. The solutions of system (7) are of the form

u(x, t) =
∞∑
j=1

[
aj cos(

√
λjt) + bj sin(

√
λjt)

]
wj(x), (8)

where aj , bj , are free real parameters and λj , wj are the solutions (eigenvalues and
eigenvectors, respectively) of the generalized eigenvalue problem

−SE(wj(x)) = λjρE(x)wj(x), x ∈ Ω (9)
∂

∂n
σ(x) = 0 on Γ

u(x) = 0 on Γ0.

Introducing the bilinear form

b(w, v) =
∫

Ω

m(x)w(x)v(x)dx,

the weak form associated with (9) is:

Find λ ∈ R, u ∈ V, u 6= 0, such that : aE(u, v) = λb(u, v) ∀v ∈ V. (10)

In the standard dynamic analysis of a structure with a given isotropic material, the
multiplier m(x) in the definition of the bilinear form b has a meaning of the mass.
In the following, we will relate it to the trace of the elasticity matrix. We follow the
discussion in [3] and assume that, for a given E, the mass belongs toM(E), a set of
all materials with the same elastic properties but different mass, i.e., m ∈ M(E) =
{m(τ) | E(τ) = E} . The tensorE is uniquely characterized by its principal invariants
(up to a rotation that does not affect the mass), so we may write m ∈ M(I1, I2, I3). It
was shown in [3] that when we maximize the smallest eigenvalue subject to the volume
constraint only (with no compliance constraint), the optimal material satisfies I2 =
I3 = 0. In our case, we will assume this, so we will have that m ∈ MρE(x). Further,
motivated by the isotropic case, we will assume that m is in fact a linear function of
the first invariant, i.e., m(x) = c(x)ρE(x), cx,E ≤ c(x) ≤ cx,E . Finally, we will
assume that the constant c is independent of x, which corresponds to the assumption
that the optimal structure is made of the “same kind of material”. This, certainly, is a
simplification that needs to be taken into account in the interpretation of the results. In
the rest of the paper we will thus use the following form of b:

b(w, v) := bE(w, v) =
∫

Ω

cρE(x)w(x)v(x)dx,

with certain c > 0.
We use the following definition of the smallest well defined eigenvalue.
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Definition 2.2. For each E ∈ E0, let λmin(E) denote the smallest well defined eigen-
value of the system (10), i.e.

λmin = min {λ | ∃u ∈ V : Equation (10) holds for (λ, u) and u /∈ ker(bE)} ,

where
ker(bE) = {z | bE(z, v) = 0 ∀v ∈ V}.

The square root of the smallest well-defined eigenvalue will be called fundamental
eigenfrequency.

It is well known from engineering literature that the dynamic stiffness of a structure
can be improved by raising its fundamental eigenfrequency. This is our motivation
for considering the following problem: We search for a material distribution E such
that the smallest well defined eigenvalue of the system (10) is larger than a prescribed
positive lower bound. Denoting this value by λ̂, we obtain the constraint

λmin(E) ≥ λ̂. (11)

In Appendix A, Corollary A.3 it is shown that inequality (11) can be equivalently re-
formulated as

inf
u∈V,‖u‖=1

{
aE(u, u)− λ̂bE(u, u)

}
≥ 0. (12)

Introducing the function

µλ̂ : L∞(Ω)3×3 → R ∪ {∞}

E 7→ inf
u∈V,‖u‖=1

{
aE(u, u)− λ̂bE(u, u)

}
,

we are able to state the minimum compliance single-load FMO problem with vibration
constraint

inf
E∈E

∫
Γ

f(x) · uE(x)dx (13)

subject to
uE solves (3) ,
µλ̂(E) ≥ 0 .

Next we want to investigate the well-posedness of problem (13). We start with the
following lemma:

Lemma 2.3. The function µλ̂ is upper semicontinuous and concave.

Proof. We first note that for fixed u ∈ V the mapping E 7→ aE(u, u) − λ̂bE(u, u)
is affine and consequently continuous w. r. t. E. Consequently, µλ̂ is the infimum of
affine functionals and thus concave. Moreover, µλ̂ is upper semicontinuous, as it is the
infimum of (infinitely many) continuous functionals [11, Proposition III.1.2].

Using Lemma 2.3 we are able to give details about the structure of the feasible set
of problem (13):

Lemma 2.4. The set E λ̂ =
{
E ∈ E | µλ̂ ≥ 0

}
is weakly-∗ compact.
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Proof. The weakly-∗ compactness of E has been shown in the proof of Theorem 2.1
in [2]. Thus the only thing we have to show is that E λ̂ is closed. But this follows
immediately from the closedness of E and Lemma 2.3.

The following theorem can be proved exactly in the same way as Theorem 2.1 in
[2]:

Theorem 2.5. If the set E λ̂ is non-empty, then problem (13) has at least one solution.

We conclude this section by two remarks.

Remark 2.6. From the equivalence of (11) and (12) and Lemma 2.4 we immediately
conclude that the function λmin : L∞(Ω)3×3 → R ∪ {∞} is upper semicontinuous
and quasiconcave. Using this and the fact that the compliance functional, given by the
formula

c(E) = sup
u∈V

{
−1

2
aE(u, u) +

∫
Γ

f · u dx
}

is convex and lower semicontinuous w. r. t. E (see [28]), we may repeat the arguments
above in order to verify existence of at least one optimal solution for the following
problems:

inf
E∈E

v(E) (14)

subject to
c(E) ≤ δ,

λmin ≥ λ̂ .

and

inf
E∈E
−λmin(E) (15)

subject to
c(E) ≤ δ,
v(E) = v̄ .

Here δ ∈ R is an upper bound on the compliance of the structure.

Remark 2.7. All results presented above remain true when we consider more general
Dirichlet boundary conditions of the form

ui = 0 on Γ0 for i = 1 and/or 2.

3 Discretization
In order to solve the infinite-dimensional problem (13) numerically, we have to use an
appropriate discretization scheme. For the discretization, we use the standard isoparatem-
ric concept (see, e.g., [8]), using a piecewise constant approximation of the matrix func-
tion E(x) and a piece-wise linear approximation of the displacements u(x). Rather
than presenting the full convergence analysis, we just note that the finite element ap-
proach and convergence analysis presented in [28] applies to our problem without
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changes and which generalizes the analysis presented in [25] for the variable thick-
ness problems.

To keep the notation simple, we use the same symbols for the discrete objects (vec-
tors) as for the “continuum” ones (functions). Suppose that Ω is approximated by a par-
titioning of M quadrilaterals called Ωi. Let us denote by n the number of nodes (ver-
tices of the elements). We approximate the matrix function E(x) by a function that is
constant on each element, i.e., characterized by a tuple of matrices E = (E1, . . . , EM )
of its element values. Hence the discrete counterpart of the set of admissible materials
in algebraic form is

Ẽ =

{
E ∈ (S3)M | Ei < 0, ρ ≤ Tr(Ei) ≤ ρ, i = 1, . . . ,M,

M∑
i=1

Tr(Ei) = v̂

}
.

(16)
Here v̂ is derived from the upper bound on resources introduced in (5) and the measure
of a single element ω̄. Further we assume that the displacement vector u(x) is approx-
imated by a continuous function that is bilinear in each coordinate on every element.
Such a function can be written as u(x) =

∑n
i=1 uiϑi(x) where ui is the value of u at

ith node and ϑi is the basis function associated with ith node (for details, see [8]). Re-
call that the displacement function is vector valued with 2 components. Consequently
any function in the discrete set of admissible displacements can be identified with a
vector in RN , where N = 2n − #(components of u fixed by Dirichlet b. c.) and we
obtain

Ṽ = RN . (17)

With the (reduced) family of basis functions ϑk, k = 1, 2, . . . , N , we define the
3× 2 matrix

B̂>k =

∂ϑk
∂x1

0 1
2
∂ϑk
∂x2

0 ∂ϑk
∂x2

1
2
∂ϑk
∂x1

 .

Now, for an element Ωi, let Di be an index set of nodes belonging to this element.
Next we want to derive the discrete counter part of aE(·, ·). We use a Gauss formula
for the evaluation of the integral over each element Ωi, assume that there are G Gauss
integration points on each element and denote by xGi,k the k-th integration point on the
i-th element. Next we construct block matrices Bi,k ∈ R3×N composed of (3 × 2)
blocks B̂j(xGi,k), at j-th position for all j ∈ Di and zero blocks otherwise. Then the
discrete counterpart of aE(·, ·), the stiffness matrix is

A(E) =
M∑
i=1

Ai(E), Ai(E) =
G∑
k=1

B>i,kEiBi,k . (18)

The matricesAi ∈ RN×N are usually called element stiffness matrices. Now, assuming
the load function f to be linear on each element and identifying such a function with a
vector f ∈ RN , the discrete objective functional and equilibrium condition read as

f>u, A(E)u = f, (19)

respectively. Similarly, we use the representation of the discrete displacement functions
in the basis of ϑk, k = 1, 2, . . . , N , to derive the discrete version of the bilinear form
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bE(·, ·): defining vectors Vi,k ∈ RN , i = 1, 2, . . . ,M, k = 1, 2, . . . , G, with ϑj(xki ),
j ∈ Di at j-th position and zeros otherwise, the mass matrix is given by

M(E) =
M∑
i=1

Mi(E), Mi(E) = Tr(E)Mi, Mi =
G∑
k=1

Vi,kV
>
i,k . (20)

As in (18), M(E) is composed by a sum of matrices Mi ∈ RN×N , the element mass
matrices. Finally, the discrete counterpart of the condition on the lowest eigenfre-
quency of the structure (12) reads as

inf
u∈Rn,‖u‖=1

u>
(
A(E)− λ̂M(E)

)
u ≥ 0. (21)

After discretization, problem (13) becomes

min
u∈RN ,E∈Ẽ

f>u (22)

subject to
A(E)u = f,

inf
u∈Rn,‖u‖=1

u>
(
A(E)− λ̂M(E)

)
u ≥ 0 .

Problem (22) is a mathematical programming problem with linear matrix inequality
constraints and standard nonlinear constraints; in the following section we will show
how this problem can be turned into a standard linear semidefinite program.

4 The linear SDP approach
In the recent years excellent software packages, most of them based on the interior point
idea, have been developed for the solution of linear SDP problems. For an overview,
compare, for example, [29] or [19].

In the sequel we give an alternative formulation of the discrete FMO problem (22)
as linear semidefinite program.

Proposition 4.1. Problem (22) is equivalent to the following linear semidefinite pro-
gram

min
α∈R,E∈Ẽ

α (23)

subject to(
α −f
−f A(E)

)
< 0

A(E)− λ̂M(E) < 0 .

Proof. After introducing an auxiliary variable α, the assertion follows immediately
from Proposition 3.1 in [1].

In the remainder of this section we will explain why the formulation as linear SDP
is impractical for the efficient solution of FMO problems with vibration constraint, due
to the large number of variables and the size of the matrix constraints. Our observations
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are based on practical experience and complexity estimates. We have solved Example
1 from Section 7 by state-of-the-art linear SDP solvers. The fastest solver needed
about 50 hours on a high end computer with a processor speed of approximately 3
GHz. Using this number as a reference and taking into account that the computational
complexity of all currently available linear SDP solvers depends at least quadratically
(sometimes even cubically) on the size of the matrix constraints and typically cubically
on the number of variables, it becomes obvious that formulation (23) is not suited to
serve as a basis for the efficient solution of FMO problems of practical size.

Remark 4.2. Note that a formulation similar to (23) has been successfully applied to
problems of Truss Topology design as well as variable thickness sheet problems in the
past. The interested reader is referred to [22, 1, 16].

5 The dual problem and the low-rank approximation
The goal of this section is to find an alternative formulation to problem (23), which is
numerically tractable. Our strategy is as follows: First, we derive the Lagrange dual to
problem (23) and then present a low-rank approximation to the same, which is (under
certain assumptions) equivalent to the original problem.

The following theorem allows us to identify problem (23) as the Lagrange dual of
a convex semidefinite program:

Theorem 5.1. Problem (23) is equivalent to the Lagrange dual of the problem

max
u∈RN,α∈R,W<0,

βl≥0,βu≥0

2f>u− αV + ρ

M∑
i=1

βli − ρ
M∑
i=1

βui (24)

subject to

gi(u, α,W, βl, βu) 4 0, i = 1, 2, . . . ,M,

where gi(u, α,W, βl, βu) : RN+1×SN×R2M 7→ S3 is defined for all i = 1, 2, . . . ,M
as

gi(u, α,W, βl, βu)

=
G∑
j=1

B>ijuu
>Bij +

G∑
j=1

B>ijWBij − λ̂〈W,Mi〉I −
(
α+ βli − βui

)
I.

Moreover there is no duality gap and the optimal material matrices

E∗i , i = 1, 2, . . . ,M

take the role of Lagrangian multipliers associated with the nonlinear inequality con-
straints in problem (24).

Proof. We will prove the theorem for formulation (22) which, by Proposition 4.1, is
equivalent to (23). Rewriting the eigenfrequency constraints as in problem (23) and
taking into account that A(E) is positive definite for all E ∈ Ẽ , we observe that prob-
lem (22) can be written equivalently as

min
E∈Ẽ

max
u∈RN

2f>u− u>A(E)u (25)

subject to

A(E)− λ̂M(E) < 0 .
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The Lagrangian associated with problem (25) can be written in the form

L(E, u, α,W, βl, βu) := max
u∈RN

2f>u− u>A(E)u (26)

+
M∑
i=1

βli(ρ− Tr(Ei)) +
M∑
i=1

βui (Tr(Ei)− ρ)

+ α(
M∑
i=1

Tr(Ei)− V ) + 〈W, λ̂M(E)−A(E)〉,

where
(E, u, α,W, βl, βu) ∈ (Sd

′

+ )M × RN × R× SN+ × RM+ × RM+ .

Now problem (25) can be formulated as

min
E<0

max
u∈RN,α∈R,W<0,

βl≥0,βu≥0

L(E, u, α,W, βl, βu). (27)

The Lagrange dual to (27) is

max
u∈RN,α∈R,W<0,

βl≥0,βu≥0

min
E<0
L(E, u, α,W, βl, βu). (28)

Taking into account that

u>A(E)u = u>
( M∑
i=1

G∑
j=1

BijEiB
>
ij

)
u =

M∑
i=1

〈
Ei,

G∑
j=1

B>ijuu
>Bij

〉

〈W,A(E)〉 =
〈
W,

M∑
i=1

G∑
j=1

BijEiB
>
ij

〉
=

M∑
i=1

〈
Ei,

G∑
j=1

B>ijWBij

〉

〈W,M(E)〉 =
〈
W,

M∑
i=1

Tr(Ei)Mi

〉
=

M∑
i=1

〈Ei, I〉〈W,Mi〉 =
M∑
i=1

〈
Ei, 〈W,Mi〉I

〉
and Tr(Ei) = 〈Ei, I〉 for all i = 1, 2, . . . ,M, we obtain

L(E, u, α,W, βl, βu) = 2f>u− αV + ρ

M∑
i=1

βli − ρ
M∑
i=1

βui

−
M∑
i=1

〈
Ei,

G∑
j=1

B>ijuu
>Bij +

G∑
j=1

B>ijWBij − λ̂〈W,Mi〉I −
(
α+ βli − βui

)
I
〉
.

Using this form and interpretingEi (i = 1, 2, . . . ,M) as Lagrangian multipliers, prob-
lem (28) takes the form

max
u∈RN,α∈R,W<0,

βl≥0,βu≥0

2f>u− αV + ρ

M∑
i=1

βli − ρ
M∑
i=1

βui

subject to
G∑
j=1

B>ij(uu
> +W )Bij −

(
λ̂〈W,Mi〉+ α+ βli − βui

)
I 4 0, i = 1, 2, . . . ,M,
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but this is problem (24). Finally, taking into account that problem (24) is convex and
that the Slater condition holds (in order to construct a strictly feasible point, use ar-
bitrary W < 0, u ∈ RN , βl ≥ 0, βu ≥ 0 and choose α large enough, such that all
inequalities in problem (24) are strictly feasible), the fact that the duality gap is zero
follows from [5, Theorem 5.81].

Later we will make use of the following proposition. The proof is straightforward,
but rather technical and therefore postponed to Appendix I of this article.

Proposition 5.2. A tuple (u∗, α∗,W ∗, βl
∗
, βu

∗
;E∗) ∈ RN+1 × SN+ ×R2M

+ × (S3
+)M

is a KKT point of (24) if and only if the conditions

gi(u∗, α∗,W ∗, βl
∗
, βu

∗
) 4 0 (i = 1, 2, . . . ,M)

ρ ≤ Tr(E∗i ) ≤ ρ (i = 1, 2, . . . ,M)

βl
∗
(ρ− Tr(E∗i )) = 0, βu

∗
(Tr(E∗i )− ρ) = 0, (i = 1, 2, . . . ,M)∑M

i=1
tr(E∗i ) = V, A(E∗)− λ∗M(E∗) < 0, 〈A(E∗)− λ∗M(E∗),W ∗〉 = 0

A(E∗)u∗ = f, f>u∗ = α∗V − ρ
∑M

i=1
βli + ρ

∑M

i=1
βlu

are satisfied.

Theorem 5.1 guarantees that we can retrieve the solution of (22) by calculating a
primal-dual solution of (24). Consequently, we could apply any convex semidefinite
programming solver which is able to generate primal-dual solutions. Note, however,
that the computational complexity of problem (24) is not much better than that of the
linear SDP problem (23). This is due to the large size of the positive semidefiniteness
constraint W < 0. For this reason, we follow the idea of Monteiro and Burer (see [6]),
in order to construct a low-rank approximation of (24). Suppose for a moment that we
know a primal solution E∗ of problem (23). Then we define

R0 := dim
(

ker
(
A(E∗)− λ̂M(E∗)

))
, (29)

which is equal to the dimension of the multiplicity of the smallest eigenvalue λ̂ of the
generalized eigenvalue problem A(E∗)v = λ̂M(E∗)v. Now, assuming that Slater’s
condition holds for (23), we observe that the matrix W in problem (24) takes the role
of the Lagrangian multiplier associated with the inequality constraint

A(E)− λ̂M(E) < 0.

Moreover it follows from the complementarity slackness condition that there exists an
optimal multiplier W ∗, with the property

rank(W ∗) ≤ R0.

This is our motivation to substitute W in problem (24) by
∑L
`=1 w`w

>
` with w` ∈ Rn

and with some L ∈ R. Doing this, we obtain

max
w1,w2,...,wL,u∈RN

α≥0,βl≥0,βu≥0

2f>u− αV + ρ
M∑
i=1

βli − ρ
M∑
i=1

βui (30)

subject to

g̃i(u, α,w1, w2, . . . , wL, β
l, βu) 4 0, i = 1, . . . ,M,

12



where g̃i(u, α,w1, w2, . . . , wL, β
l, βu) is defined as

G∑
j=1

B>ij

(
uu> +

L∑
`=1

w`w
>
`

)
Bij −

(
λ̂
〈 L∑
`=1

w`w
>
` ,Mi

〉
+ α+ βli − βui

)
I

for all i = 1, 2, . . . ,M. The following theorem provides a relation between problems
(24) and (30).

Theorem 5.3. Let E∗0 be a solution of (23) and R0 be defined by (29). Then there
exists L ≤ R0 such that for all (global) solutions

(
u∗, α∗, w∗1 , . . . , w

∗
L, β

l∗ , βu
∗)

of
(30) the tuple

(
u∗, α∗,W ∗, βl

∗
, βu

∗)
with W ∗ :=

∑L
`=1 w

∗
` (w∗` )> is a solution of

(24). Moreover each vector of Lagrangian multipliers E∗ associated with the inequal-
ity constraints

g̃i(u, α,w1, w2, . . . , wL, β
l, βu) 4 0, i = 1, 2, . . . ,M,

forms an optimal solution of (23).

In order to proof Theorem 5.3, we make use of the following Lemmas:

Lemma 5.4. Any local/global minimum of problem (30) is a local/global minimum of
problem (24) with an additional rank constraint of the form

rank(W ) ≤ L

and vice versa.

Proof. The assertion of Lemma 5.4 can be proven exactly in the same way as Proposi-
tion 2.3 in [7].

Lemma 5.5. Robinson’s constraint qualification (see [5]) is satisfied by problem (30)
at any feasible point.

Proof. Using [5, formula (5.195)] we can write Robinson’s constraint qualification for
an arbitrary feasible point (û, α̂, ŵ1, . . . , ŵL, β̂l, β̂u) ∈ R(L+1)N+2M+1 as follows:
There exists a direction h ∈ R(L+1)N+2M+1 such that the inequality

g̃i(û, α̂, ŵ1, . . . , ŵL, β̂l, β̂u) +∇g̃i(û, α̂, ŵ1, . . . , ŵL, β̂l) · h ≺ 0 (31)

holds for all i = 1, 2, . . . ,M . Obviously, the direction (0, 1, 0, . . . , 0) with 1 in the
position of the variable α satisfies (31).

A simple consequence of Lemma 5.5 is that for each local minimum of problem
(30) associated Lagrangian multipliers exist. Now we are able to prove Theorem 5.3:

Proof. Let L = R0 and x̃∗ :=
(
u∗, α∗, w∗1 , . . . , w

∗
L, β

l∗ , βu
∗)

be a (global) solution
of (30). Then we conclude from Lemma 5.4 that x∗ :=

(
u∗, α∗,

∑
w∗`w

∗>
` , βl

∗
, βu

∗)
is a global solution of problem (24) with an additional rank constraint of the form
rank(W ) ≤ L. But then we conclude from the definition of R0 that x∗ is a global
solution of (24) (without any rank constraint). Moreover, Lemma 5.5 guarantees the
existence of optimal Lagrangian multipliers Ẽ∗ ∈ (S3

+)M associated with the inequal-
ity constraints

g̃i(u, α,w1, w2, . . . , wL, β
l, βu) 4 0, i = 1, 2, . . . ,M.

13



Now we define a Lagrangian-type function for problem (24) as follows:

L̃(x,E) =


f0(x) +

∑M

i=1
〈Ei, gi(x)〉 x ∈ C, Ei < 0 (i = 1, 2, . . . ,M)

−∞ x ∈ C, Ei 6< 0 for some i
−∞ x 6∈ C

where f0 is the objective of (24) and C is the convex set

C := RN+1 × SM+ × R2M
+ .

As x∗ is a global solution of (24) and

L̃(x∗, Ẽ∗) = f0(x∗),

we conclude that (x∗, Ẽ∗) is a saddle point of L̃. Now we obtain for example from [26,
Theorem 28.3] that Ẽ∗ is a solution of the dual problem to (24).

Theorem 5.3 allows us to replace problem (24) by a low-rank problem with an ap-
propriate rank. The advantage of the low-rank problem is that the dimension of the
optimization variable is significantly lower than in the original problem, as long as the
multiplicity of the smallest generalized eigenvalue of the stencil (A(E∗) | M(E∗)) is
not too large. Moreover, there is no large semidefinite constraint in the low-rank prob-
lem. On the other hand, problem (30) is a non-convex semidefinite program, which can
still be considered large-scale. For such a problem it is generally difficult (if not impos-
sible) to calculate a global solution. Even in the case a global solution has been found,
it is not a trivial problem to detect globality. To cope with the first problem (finding
a global optimum), from theoretical point of view, we cannot do much more than use
an optimization algorithm with strong local convergence properties and provide a good
start point. We will see in Section 7 that this is not a big problem in practice, as the lo-
cal algorithm of our choice typically identifies the global optimum, provided our guess
for the multiplicity of the smallest eigenvalue is large enough. This observation coin-
cides with the experience reported by Burer and Monteiro in [6] for linear semidefinite
programs approximated by low-rank problems. For the second problem (detecting that
a local optimum is also a global one), we will present a practical globality test in the
sequel. We start with the following proposition, which provides a characterization of
KKT-points for problem (30). The proof uses almost exactly the same arguments as
the proof of Proposition 5.2 and is therefore omitted.

Proposition 5.6. A tuple (u∗, α∗, w∗, βl
∗
, βu

∗
;E∗) ∈ RN+1×RN×L×R2M

+ ×(S3
+)M

is a KKT point of (30) if and only if the conditions

gi(u∗, α∗,
∑L
`=1 w

∗
`w
∗>
` , βl

∗
, βu

∗
) 4 0 (i = 1, 2, . . . ,M)

ρ ≤ Tr(E∗i ) ≤ ρ (i = 1, 2, . . . ,M),
∑M

i=1
tr(E∗i ) = V

βl
∗
(ρ− Tr(E∗i )) = 0, βu

∗
(Tr(E∗i )− ρ) = 0, (i = 1, 2, . . . ,M)

〈A(E∗)− λ∗M(E∗),
∑L
`=1 w

∗
`w
∗>
` 〉 = 0

A(E∗)u∗ = f, f>u∗ = α∗V − ρ
∑M

i=1
βli + ρ

∑M

i=1
βui

are satisfied.
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The following corollary is a direct consequence of Proposition 5.2 and Proposition
5.2 and provides a globality test for an arbitrary KKT point of problem (30):

Corollary 5.7. Suppose that the vector x∗ = (u∗, α∗, w∗1 , w
∗
2 , . . . w

∗
L, β

l∗, βu∗;E∗) ∈
R(L+1)N+2M+1 × (S3)M is a KKT point of problem (30) and

A(E∗)− λ̂M(E∗) < 0.

Then (u∗, α∗,
∑L
`=1 w

∗
Lw
∗>
L , βl∗, βu∗;E∗) is a KKT point of problem (24), and thus a

primal-dual solution pair of problems (23) and (24).

Moreover the following corollary can be derived directly from the KKT conditions
in Proposition 5.2 and provides an interpretation of the solution vector.

Corollary 5.8. Let (u∗, α∗,
∑L
`=1 w

∗
Lw
∗>
L , βl∗, βu∗;E∗) be a KKT point of problem

(24). Then u∗ is the optimal displacement field associated with the material E∗ and
the vectors w∗1 , w

∗
2 , . . . w

∗
L are eigenmodes associated with the generalized eigenvalue

problem A(E∗)v = λ̂M(E∗)v.

Remark 5.9. As an alternative to the approximation strategy described above one may
also try to use the ’standard’ semidefinite dual of (23), which is itself a linear semidef-
inite program and to apply the non-linear reformulation by Monteiro-Burer (see [6])
directly. This approach has however an important disadvantage: the special structure
of problem (23) is ignored. In particular, all semidefinite constraints (including the
constraints on Ei, i = 1, 2, . . . ,m) are merged into one and the low-rank character of
the dual solution is lost. As a consequence the code SDPLR by Burer, implementing
this ’direct approach’ performs rather poor on this class of problems (see [19]).

6 The low-rank algorithm
Based on the results of Theorem 5.3 and Corollary 5.7, we present a low-rank algorithm
for the free material optimization problem with control of the lowest eigenfrequency:

Algorithm 6.1.

Input: Problem (24), L = 1.

1. Solve (30) with rank L to get (ũ, α̃, w̃1, w̃2, . . . , w̃L, β̃
l, β̃u; Ẽ).

2. Check optimality of (ũ, α̃, w̃1, w̃2, . . . , w̃L, β̃
l, β̃u; Ẽ):

If A(Ẽ)− λ∗M(Ẽ) < 0 STOP; (ũ, α̃,
∑L
`=1 w̃`w̃

>
` , β̃

l, β̃u; Ẽ)
is optimal.

3. Increase L and GOTO step 1.

Output: (ũ, α̃,
∑L
`=1 w̃`w̃

>
` , β̃

l, β̃u; Ẽ).

Theorem 6.2. Let E∗0 be a solution of problem (23). Then Algorithm 6.1 converges in
at most

R0 = dim
(

ker
(
A(E∗0 )− λ̂M(E∗0 )

))
steps.
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Proof. The assertion of Theorem 6.2 is a direct consequence of Theorem 5.3.

Remark 6.3. With the globality test, the algorithm will never accept a ”wrong” opti-
mum. And in our numerical experiments we have never observed the case when, due to
repeated failure of the test, the rank would be increased up to the theoretical bound by
Pataki. Notice that even if it had happened it would have not been guaranteed that the
computed solution of (30) was a global optimum and we would have had to adapt the
penalization technique of [6]. Because the globality test had always been successful
long before reaching the theoretical bound, we did not feel it was necessary to use this
technique.

To solve low-rank problems of the form (30), we have chosen an algorithm based on
a generalized augmented Lagrangian method. This algorithm solves general nonlinear
semidefinite programs of the form

min
x∈Rn

f(x) (32)

subject to
Gj(x) 4 0, j ∈ J = {1, 2, . . . , J} ;

where f : Rn → R, and Gj(x) : Rn → Smj (j ∈ J ) are twice continuously dif-
ferentiable mappings. Local as well as global convergence properties under standard
assumptions are discussed in detail in [27]. The algorithm, implemented in the code
PENNON [15], has been recently applied to nonlinear SDP problems arising from vari-
ous applications; compare, for example, [16, 17] and [14].

7 Numerical Experiments
The goals of the numerical experiments presented throughout this section are as fol-
lows:

• to study behavior of Algorithm 6.1, when applied to FMO problems of practical
size;

• to study ability of the local algorithm applied in Step 1 of Algorithm 6.1 to find
global optima;

• to compare the performance of the low-rank algorithm with the direct solution
of the primal SDP problem (23).

All experiments have been performed on a Sun Opteron machine with 8 Gbyte of
memory and processor speed of approximately 3 GHz.

Example 1 In our first example a rectangular two-dimensional body was clamped
on its left boundary and subjected to a load from the right (see Figure 1). The design
space was discretized by 5.000 finite elements. Without the eigenfrequency constraint
the lowest eigenvalue in the optimal design was of order 10−9. For the eigenfrequency
constraint, we have used the eigenvalue threshold λ̂ = 0.0125 (notice that a too high
threshold λ̂would lead to an infeasible problem). The lower and upper bound on the the
material tensors (ρ, ρ) and the upper bound on overall resources (v) have been chosen
as ρ = 0, ρ = 4 and v̂ = 5.000, respectively.
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Table 1: Example 1

rank compliance outer/inner iterations λmin time in sec.
0 5.81 29/137 ≈ 10−9 53
1 7.74 31/214 2.5 · 10−4 209
2 7.77 29/238 1.25 · 10−2 636
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Figure 1: Basic test problem – boundary conditions
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Figure 2: Optimal density plots without and with vibration constraint

We obtained the following results: The multiplicity of the lowest eigenvalue was
two. The optimal compliance value was by 33 percent worse than in the pure com-
pliance problem. The low-rank algorithm needed about 15 minutes to calculate the
optimal result. The primal algorithm on the other hand needed already about 50 hours.
Table 1 summarizes some more computational details: For each iteration of Algorithm
6.1 we report: the rank estimate, the compliance of the computed structure, the number
of inner and outer iterations required by the augmented Lagrangian algorithm applied
in step 1 of Algorithm 6.1, the minimal eigenvalue of the computed structure and the
computation time in seconds. Optimal densities are visualized in Figure 2. In Figure 3,
the displacement field is plotted along with the two eigenmodes.

Example 2 Our second example models a two-dimensional bridge which is clamped
at the lower left and lower right corners. The bridge was subjected to vertical forces at
the bottom (see Figure 4). The design space was discretized by 2.581 finite elements.
Also in this example the smallest eigenfrequency in the pure compliance problem was
of order 10−9. We have chosen the eigenfrequency threshold λ̂ = 0.02. Furthermore
we chose ρ = 0, ρ = 4 and v̂ = 2.581.

Our results can be summarized as follows: The multiplicity of the lowest eigenvalue
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Figure 3: Displacement field (top) and eigenmodes (bottom)

Table 2: Example 2

rank compliance inner/outer iterations λmin time in sec.
0 168.29 13/68 ≈ 10−9 15
1 226.85 14/107 5.5 · 10−4 49
2 234.44 13/153 2.0 · 10−2 137

was again two. The optimal compliance value was by 25 percent worse than in the pure
compliance problem. Computational details are provided in Table 2. Optimal densities
are visualized in Figure 5. In Figure 6 we show the optimal displacement field along
with the two eigenmodes corresponding to the lowest eigenfrequency.

Example 3 In our third example we considered a rectangular three-dimensional elas-
tic body clamped on its left boundary and subjected to a load from the right (see Figure
7). The design space was discretized by 3.200 finite elements. The optimal design cal-
culated for the pure compliance problem resulted in a fundamental eigenvalue of order
10−8. For the problem with eigenfrequency constraint we put λ̂ = 0.16, ρ = 0, ρ = 2.5
and v = 3.200.

This time we obtained the following results: The multiplicity of the lowest eigen-
value is three. The optimal compliance value is only by 5 percent worse than for the
pure compliance problem. The low-rank algorithm needed about 5 hours to calculate
the optimal result (compare Table 3 for details). Again we visualize optimal densi-
ties (see Figure 8) and the corresponding displacement field along with the two most
significant eigenmodes of the optimal design (see Figure 9).

Remark 7.1. We calculated many more examples with different geometry, boundary
conditions and values of λ̂. In all these examples, the multiplicity of the smallest
eigenvalue was never bigger than 8.
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Figure 4: Basic test problem – boundary conditions
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Figure 5: Optimal density plots without and with vibration constraint
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Figure 6: Displacement field (top) and eigenmodes (bottom)

Table 3: Example 3

rank compliance outer/inner iterations λmin time in sec.
0 1.67 30/122 ≈ 10−8 414
1 1.72 28/144 8.0 · 10−5 1670
2 1.73 29/181 1.0 · 10−2 5818
3 1.73 29/238 1.6 · 10−1 12776
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Figure 7: Basic test problem – boundary conditions
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Figure 8: Optimal density plots without and with vibration constraint
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Figure 9: Displacement field (top) and 2 eigenmodes (bottom)
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A Appendix
We consider the following situation: Let V be a Hilbert space, equipped with the inner
product (·, ·)V and the corresponding norm ‖ · ‖V . Let further a : V × V → R be
a bounded, symmetric and V-elliptic bilinear form. An abstract eigenvalue problem is
defined as follows: Find λ ∈ R and u ∈ V , u 6= 0, such that

a(u, v) = λ(u, v)V ∀v ∈ V. (33)

The following theorem deals with the existence of solutions of the latter problem (see,
for example, [12] or [21]):

Theorem A.1. There exists an increasing sequence of positive eigenvalues of problem
(33) tending to∞:

0 < λ1 ≤ λ2 ≤ . . . , λk →∞ for k →∞

and an orthonormal basis {wn} of V consisting of the normalized eigenfunctions as-
sociated with λn:

a(wn, v) = λn(wn, v) ∀v ∈ V, ‖wn‖V = 1.

Furthermore the following formula holds true for λ1:

λ1 = min
v∈V,v 6=0

a(v, v)
‖v‖2V

.

Now we want to apply Theorem A.1 to the generalized eigenvalue problem (10).
The following obvious inclusion holds true for the bilinear forms in (9):

ker(bE) ⊂ ker(aE). (34)

Based on this observation, we define a Banach space V as the factor space V \ker(bE).
On V × V we further define the inner product

(u, v)V := bE(u, v), (35)

where u, v are arbitrary representatives of the equivalence classes u and v, respectively.
The inner product (·, ·)V induces the norm ‖u‖V :=

√
bE(u, u) on V . Consequently,

V is a Hilbert space. Next we define the bilinear form

aE(u, v) := aE(u, v), (36)

where again u, v are arbitrary representatives of the equivalence classes u and v. Defin-
ing the eigenvalue problem: Find λ ∈ R and u ∈ V , u 6= 0, such that

aE(u, v) = λ(u, v)V ∀v ∈ V, (37)

we are able to state the following corollary:

Corollary A.2. There exists an increasing sequence of well defined eigenvalues of
problem (10) tending to∞:

0 ≤ λ1 ≤ λ2 ≤ . . . , λk →∞ for k →∞
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and associated eigenfunctions wn, n = 1, 2, . . ., orthonormal w.r.t. the inner product
(·, ·)V , such that

aE(wn, v) = λnbE(wn, v) ∀v ∈ V.

Furthermore the following formula holds true for λ1:

λ1 = min
v∈V,v /∈ker(bE)

aE(v, v)
bE(v, v)

= min
v∈V,bE(v,v)=1

aE(v, v).

Proof. Suppose for a moment that aE is V-elliptic. Then we are able to apply Theorem
A.1 to problem (37) and all assertions of Corollary A.2 follow immediately from (34),
(35) and (36). On the other hand, if aE fails to be V-elliptic, we define a bilinear form
a′E by

a′E(u, v) := a′E(u, v) + µ(u, v)V .

Obviously a′E is V-elliptic for any (arbitrary small) positive µ ∈ R. Applying Theorem
A.1 to V and a′E we obtain the following estimates for the eigenvalues of problem (37)

−µ < λ1 ≤ λ2 ≤ . . . , λk →∞ for k →∞.

As µ can be chosen arbitrarily small we conclude that 0 ≤ λ1 and the proof is complete.

Let us finally define the bilinear form cE,λ̂(u, v) := aE(u, v) − λ̂bE(u, v) and
consider the eigenvalue problem:

Find λ ∈ R, u ∈ V, u 6= 0 such that cE,λ̂(u, v) = λ(u, v) ∀v ∈ V. (38)

Then the following result proves the equivalence of (11) and (12).

Corollary A.3. The following assertions are equivalent:

a) The smallest well defined eigenvalue of the generalized eigenvalue problem (10)
is nonnegative.

b) The smallest eigenvalue of the eigenvalue problem (38) is nonnegative.

Proof. Using Corollary A.2 and equation (34), we have

a) ⇔ aE(v, v)
bE(v, v)

≥ λ̂ ∀v ∈ V, v /∈ ker(bE)

⇔ aE(v, v)− λ̂bE(v, v) ≥ 0 ∀v ∈ V, v /∈ ker(bE)
(34)⇔ aE(v, v)− λ̂bE(v, v) ≥ 0 ∀v ∈ V, v 6= 0

⇔ aE(v, v)− λ̂bE(v, v)
‖v‖2

≥ 0 ∀v ∈ V, v 6= 0

⇔ aE(v, v)− λ̂bE(v, v) ≥ 0 ∀v ∈ V, ‖v‖ = 1 ⇔ b).
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B Appendix
In the sequel we give a proof of Proposition 5.2:

Proof. We start with the KKT conditions of problem (24) in standard form: Let

F :=
{

(u, α,W, βl, βu) ∈ RN+1 × SN × R2M |W < 0, βl ≥ 0, βu ≥ 0
}

and x∗ := (u∗, α∗,W ∗, βl
∗
, βu

∗
) ∈ F . Then a pair (x∗, E∗) is a KKT point of (24) if

and only if the conditions

gi(x∗) 4 0, E∗i < 0, i = 1, 2, . . . ,M, (39)

∇u,αf(x∗)−
M∑
i=1

〈E∗i ,∇u,αgi(x∗)〉 = 0, (40)

(W ∗, βl
∗
, βu

∗
)> − ProjF

(
(W ∗, βl

∗
, βu

∗
)> −∇W,βl,βuf(x∗)

−
M∑
i=1

〈E∗i ,∇W,βl,βugi(x∗)〉
)

= 0,
(41)

〈E∗i , gi(x∗)〉 = 0, i = 1, 2, . . . ,M, (42)

with

f(u, α,W, βl, βu) = 2f>u− αV + ρ

M∑
i=1

βli − ρ
M∑
i=1

βui

are satisfied. Now we have

∂

∂u
f(x∗) = 2f

∂

∂α
f(x∗) = −V

∂

∂W
f(x∗) = 0

∂

∂βli
f(x∗) = ρ, (i = 1, 2, . . . ,M)

∂

∂βui
f(x∗) = −ρ, (i = 1, 2, . . . ,M)

∂

∂u

( M∑
i=1

〈E∗i , gi(x∗)〉
)

=
M∑
i=1

G∑
j=1

∂

∂u
〈E∗i , B>ijuu>Bij〉|u=u∗

=
M∑
i=1

G∑
j=1

2BijE∗i B
>
iju
∗

= 2A(E∗)u∗
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∂

∂α

( M∑
i=1

〈E∗i ,∇gi(x∗)〉
)

=
M∑
i=1

〈E∗i ,−I〉 = −
M∑
i=1

Tr(E∗i )

∂

∂W

( M∑
i=1

〈E∗i ,∇gi(x∗)〉
)

=
M∑
i=1

〈E∗i ,
∂

∂W
(
G∑
j=1

B>ijWBij)− λ∗〈W,Mi〉I〉|W=W∗

=
M∑
i=1

G∑
j=1

BijE
∗
i B
>
ij − λ∗Mi〈E∗i , I〉 = A(E∗)− λ∗M(E∗)

∂

∂βl
( M∑
i=1

〈E∗i ,∇gi(x∗)〉
)

= 〈E∗i ,−I〉 = −Tr(E∗i )

∂

∂βu
( M∑
i=1

〈E∗i ,∇gi(x∗)〉
)

= 〈E∗i , I〉 = Tr(E∗i ).

Hence (40) is equivalent to

A(E∗)u∗ = f,

M∑
i=1

Tr(E∗i ) = V,

and (41) is equivalent to

ρ ≤ Tr(E∗i ) ≤ ρ (i = 1, 2, . . . ,M),

Sβl
∗
(ρ− Tr(E∗i )) = 0, βu

∗
(Tr(E∗i )− ρ) = 0, (i = 1, 2, . . . ,M),

A(E∗)− λ∗M(E∗) < 0, 〈A(E∗)− λ∗M(E∗),W ∗〉 = 0.

Next, we see from (39) that (42) is equivalent to

M∑
i=1

〈E∗i , gi(x∗)〉 = 0.

We further calculate
M∑
i=1

〈
E∗i , gi(x

∗)
〉

=
M∑
i=1

〈
E∗i ,

G∑
j=1

B>ij(u
∗u∗>+W ∗)Bij − (λ̂〈W ∗,Mi〉+ α∗ + βl

∗
− βu

∗
)I
〉

= −α∗
M∑
i=1

Tr(E∗i ) + u∗TA(E∗)u∗ + 〈W ∗, A(E∗)− λ̂M(E∗)〉

+
M∑
i=1

βliTr(E∗i )−
M∑
i=1

βui Tr(E∗i )

= −α∗V + f>u∗ + ρ

M∑
i=1

βl − ρ
M∑
i=1

βu.

and the proof is complete.
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