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1 Introduction

Given a symmetric matrix H ∈ IRn×n, a symmetric positive-definite matrix M ∈ IRn×n,

a vector c ∈ IRn and positive scalars ∆, σ and p > 2, we are interested in computing

solutions of the optimization problems

minimize
x∈IRn

q(x)
def
= cT x + 1

2
xT Hx subject to ‖x‖M ≤ ∆ (1.1)

and

minimize
x∈IRn

r(x)
def
= cT x + 1

2
xT Hx + σ

p
‖x‖pM , (1.2)

where the M-norm of x is ‖x‖M def
=
√

xT Mx. Both problems arise as subproblems in

unconstrained optimization; problem (1.1) occurs when computing the step in trust-region

methods [8, 33], while (1.2) plays the same role in more recent regularisation approaches

[5,24,35,44]; for the latter p = 3 is by far the most common choice, although p < 3 has been

mentioned for applications involving Hölder- but not Lipschitz-continuous derivatives [24].

Although it is now common to try to find approximate solutions to (1.1) and (1.2)

using iterative methods [5, 14, 15, 20, 25, 40, 41], there are still many problems for which a

factorization of H + λM for given λ is both feasible and efficient. Our intention here is

to revisit the possibility of solving our problems using factorization, and in particular to

reassess the pioneering Gay-Moré-Sorensen [17, 34] methods in the light of modern sparse

factorization.

In §2 we discuss optimality conditions for our two subproblems and see how they lead

to a robust framework for their solution. Details are given in §3, and here it is shown

that the underlying method may always be made at least superlinearly convergent. The

resulting software is outlined in §4, and we follow by describing experiments which indicate

the effectiveness of our enhancements. We conclude and suggest future extensions in §5.

Notation: I is the appropriately-dimensioned identity matrix, ei is its ith column,

and ‖ · ‖ denotes the Euclidean norm ‖ · ‖2. We suppose that the matrix pencil (H, M)

has (necessarily real) eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn with associated eigenvectors ui,

1 ≤ i ≤ n, and recall that the generalised Rayleigh quotient

ρM(x)
def
=

xT Hx

xT Mx

satisfies the Rayleigh-quotient inequality λ1 ≤ ρM (x) ≤ λn for all non-zero x; for brevity

we let ρ(x)
def
= ρI(x). We denote the gap of the eigenvalue λi of the pencil to be

gap(λi) = min
λj 6=λi

|λi − λj|,

where by convention gap(λi) =∞ if λj = λi for all 1 ≤ j ≤ n.
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2 Theoretical considerations

In this section, where appropriate, we reduce the problem to one for which M = I, and

thus ‖ · ‖M = ‖ · ‖. From a theoretical viewpoint nothing is lost in general by this since by

assumption M may be decomposed as M = RT R for some non-singular R, and problems

(1.1) and (1.2) become

minimize
x∈IRn

cT x + 1
2
xT Hx subject to ‖x‖ ≤ ∆

and

minimize
x∈IRn

r(x) ≡ cT x + 1
2
xT Hx + σ

p
‖x‖p, (2.1)

involving data c = R−T c, H = R−T HR−1 and the desired solution x = R−1x. In practice,

we may wish to avoid decomposing M and, in particular, forming H , and we return to

this when we describe practical issues. We note in passing that ‖c‖ = ‖c‖M−1 and that

eigenvalues of H are generalised eigenvalues of the pencil (H, M); if u is an eigenvector of

H , u = R−1u is a generalised eigenvector of the pencil (H, M).

For any scalar λ, we let x(λ) be the (minimum-norm) solution to

(H + λI)x(λ) = −c (2.2)

whenever the system (2.2) is consistent; equivalently x(λ)
def
= R−1x(λ) satisfies

(H + λM)x(λ) = −c. (2.3)

If H has eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn and a spectral decomposition H = UΛUT , where

Λ is the diagonal matrix of eigenvalues and U = (u1 . . . un) is the corresponding orthogonal

matrix of eigenvectors, it follows that

x(λ) = Uy(λ), where yi(λ) = − γi

λ + λi

and γi = uT
i c for 1 ≤ i ≤ n.

Throughout this paper we will be concerned with the behaviour of powers of the M-norm

of x(λ) as λ varies. To this end, we define

λS

def
= max(0,−λ1),

and have the following general result.

Lemma 2.1 Let λS = max(0,−λ1), where λ1 is the leftmost eigenvalue of the pencil

(H, M), and suppose that x(λ) satisfies (2.3). Then the function

π(λ; β)
def
= ‖x(λ)‖βM

is strictly decreasing from π(λS; β) to zero and strictly convex for λ ∈ (λS,∞) when

β > 0, and strictly increasing from π(λS; β) to infinity and concave for λ ∈ (λS,∞)

when β ∈ [−1, 0).
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Proof. The result follows directly from [6, Lem. 2.1] since

‖x(λ)‖M = ‖x(λ)‖ = ‖y(λ)‖ =

√

√

√

√

n
∑

i=1

(

γi

λ + λi

)2

. (2.4)

2

2.1 The trust-region problem

Quite remarkably, there is a characterisation of global optimality for the trust-region prob-

lem (1.1).

Theorem 2.2 [17: Thm. 2.1, 34: Lem. 2.1]. Any global minimizer x∗ of (1.1) satisfies

the equation

(H + λ∗M)x∗ = −c, (2.5)

where H +λ∗M is positive semi-definite, λ∗ ≥ 0, and λ∗(‖x∗‖M −∆) = 0. If H +λ∗M

is positive definite, then x∗ is unique.

This result is constructive. A minimizer lies strictly within the trust region only if H is

positive definite and ‖H−1c‖M < ∆, while if H is positive definite and ‖H−1c‖M = ∆ the

trust-region constraint is active but effectively irrelevant at the minimizer. Otherwise, with

one notable exception—the “hard case” [34] which we will discuss shortly—the multiplier

λ∗ > λS and ‖x∗‖M = ∆. In this, by contrast “easy” case, we seek the (unique) root of the

scalar nonlinear “secular” equation

π(λ; β) ≡ ‖x(λ)‖βM = ∆β (2.6)

in the interval (λS,∞). Our task is helped since Lemma 2.1 shows that π(λ; β) is either

strictly convex and decreasing or strictly concave and increasing for β ∈ [−1,∞) \ {0}. In

particular, if we partition the real line into

N def
= {λ | λ ∈ (−∞, λS]} , L def

= {λ | λ ∈ (λS, λ∗]} and G def
= {λ | λ ∈ (λ∗,∞)}

and denote F def
= L ∪ G (see Figure 2.1 on the following page), both Newton’s and the

secant method for (2.6) are guaranteed to converge globally (monotonically, linearly and

ultimately at least superlinearly) to the required root if started from any value(s) in L [6,

Lem. A.1]. Moreover, since this is true for all β ∈ [−1,∞)\{0}, we are at liberty to choose

the β for which the Newton correction gives the best correction, and it can be shown that

this occurs when β = −1 [6, §2.3.3]—this formalises earlier suggestions that it might be

wise to consider the secular equation 1/‖x(λ)‖M = 1/∆ with negative β, since this avoids
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- λ

6

‖x(λ)‖

∆

0 λS λ∗

N -� L-� G

- λ

6

‖x(λ)‖

∆

0 λS ≡ λ∗−λ2

N -� G

Figure 2.1: The sets N , L and G and ‖x(λ)‖ for the problem of minimizing − 1
4
x2

1 +
1
4
x2

2 + 1
2
x1 + x2 within a ℓ2-norm trust region of radius 4 (“easy” case, left) and those for

− 1
4
x2

1 − 1
8
x2

2 + x2 within a trust region of radius 5 (“hard” case, right).

the poles present at λ = −λi when β > 0 [26,38]. With fast ultimate convergence assured

in the easy case, the art is thus to be able to find an initial λ ∈ L. We return to this in §3.

The hard case may happen when uT
i c ≡ uT

i c = 0 for all i for which λi = λ1 ≤ 0.

Under these circumstances, (2.3) will be consistent when λ = λS—denote the minimum

norm solution in this case as xS—but if ‖xS‖ < ∆, there is no solution to the secular

equation in [λS,∞) or equivalently L is empty (again see Figure 2.1). In fact the required

solution in this case is xS + αSu1, where the scalar αS is chosen so that ‖xS + αSu1‖M = ∆.

Notice here that to obtain the exact solution in the hard case requires the eigenvalue λ1,

a corresponding eigenvector u1 of the pencil (H, M) and the “trajectory” vector

xS = lim
λ→λS

x(λ)

from (2.3).

2.2 The regularisation problem

As in the trust-region case, we may characterize global optimality for the regularisation

problem (1.2).
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Theorem 2.3 [5: Thm. 3.1, 35: Thm. 10 when p = 3]. Any global minimizer x∗ of

(1.2) when p > 2 satisfies the equation

(H + λ∗M)x∗ = −c, (2.7)

where H + λ∗M is positive semi-definite, and λ∗ = σ‖x∗‖p−2
M . If H + λ∗M is positive

definite, then x∗ is unique.

Proof. Since (1.2) is equivalent to (2.1), we establish the result for the latter; the

required result then follows using the given linear transformation of variables. We may

express the derivatives of the regularisation function r(x) in (2.1) as

∇xr(x) = c + Hx + λx and ∇xxr(x) = H + λI + λ(p− 2)

(

x

‖x‖

)(

x

‖x‖

)T

, (2.8)

where λ = σ‖x‖p−2.

Firstly, let x∗ be a global minimizer of r(x). Since p > 2, r(x) approaches +∞ as

x approaches infinity; thus x∗ is bounded. It follows from (2.8) and the first- and

second-order necessary optimality conditions at x∗ that

c + (H + λ∗I)x∗ = 0,

and hence transforming variables that (2.7) holds, and that

wT

(

H + λ∗I + λ∗(p− 2)

(

x∗

‖x∗‖

)(

x∗

‖x∗‖

)T
)

w ≥ 0 (2.9)

for all vectors w.

If x∗ = 0, then by definition λ∗ = 0 and (2.9) is equivalent to H being positive semi-

definite, which immediately gives the required result. Thus we need only consider

x∗ 6= 0.

There are two cases to consider. Firstly, suppose that wT x∗ = 0. In this case, it

immediately follows from (2.9) that

wT (H + λ∗I)w ≥ 0 for all w for which wT x∗ = 0. (2.10)

It thus remains to consider vectors w for which wT x∗ 6= 0. Since w and x∗ are not

orthogonal, the line x∗ + αw intersects the ball of radius ‖x∗‖ at two points, x∗ and

u∗ 6= x∗, say, and thus

‖u∗‖ = ‖x∗‖. (2.11)
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We let w∗ = u∗ − x∗, and note that w∗ is parallel to w. Since x∗ is a global minimizer,

we immediately have that

0 ≤ r(u∗)− r(x∗) = cT (u∗ − x∗) + 1
2
uT
∗ Hu∗ − 1

2
xT
∗ Hx∗ + σ

p
(‖u∗‖p − ‖x∗‖p)

= cT (u∗ − x∗) + 1
2
uT
∗ Hu∗ − 1

2
xT
∗ Hx∗,

(2.12)

where the last equality follows from (2.11). But (2.7) gives that

cT (u∗ − x∗) = (x∗ − u∗)
T Hx∗ + λ∗(x∗ − u∗)

T x∗. (2.13)

In addition, (2.11) shows that

(x∗ − u∗)
T x∗ = 1

2
xT
∗ x∗ + 1

2
uT
∗ u∗ − uT

∗ x∗ = 1
2
wT

∗ w∗. (2.14)

Thus combining (2.12)–(2.14), we find that

0 ≤ 1
2
λ∗w

T
∗ w∗ + 1

2
uT
∗ Hu∗ − 1

2
xT
∗ Hx∗ + xT

∗ Hx∗ − uT
∗ Hx∗ = 1

2
wT

∗ (H + λ∗I)w∗

from which we deduce that

wT (H + λ∗I)w ≥ 0 for all w for which wT x∗ 6= 0. (2.15)

Hence (2.10) and (2.15) together show that H + λ∗I and thus H + λ∗M are positive

semi-definite.

Now suppose that λ∗ is a root of the nonlinear equation

‖x(λ)‖p−2
M − λ/σ = 0 (2.16)

for which (2.7) holds and that H + λ∗M is positive definite and thus λ∗ > λS. But it

follows from Lemma 2.1 that ‖x(λ)‖p−2
M strictly decreases from ‖x(λS)‖p−2

M to zero on

(λS,∞) as p > 2, while clearly λ/σ strictly increases from λS/σ to infinity on the same

interval. Thus (2.16) has at most one, and hence precisely one, root λ∗ there. The

unique solution x∗ from (2.7) for this λ∗ is thus the unique global minimizer of r(x).

2

As in the trust-region case, the result suggests how to find the global minimizer of

r(x). Specifically, in all but a “hard” case, we seek the unique root λ∗ > λS of the scalar

nonlinear “secular” equation

π(λ; β) ≡ ‖x(λ)‖βM = (λ/σ)β/(p−2). (2.17)

We illustrate this in Figure 2.2. As before, Lemma 2.1 shows that ‖x(λ)‖βM−(λ/σ)β/(p−2) is

either strictly convex and decreasing or strictly concave and increasing for

β ∈ [−1, p − 2] \ {0}, and thus again both Newton’s and the secant method for (2.17)

are guaranteed to converge globally (monotonically, linearly and ultimately at least su-

perlinearly) to the required root if started from any value(s) in L [6, Lem. A.1]. Now,



On solving trust-region and other regularised subproblems in optimization 7

- λ

6

‖x(λ)‖

0 λS λ∗

N -� L -� G

λ/σ

- λ

6

‖x(λ)‖

0 λS ≡ λ∗−λ2

N -� G

λ/σ

Figure 2.2: The sets N , L and G and ‖x(λ)‖ for the problem of minimizing − 1
4
x2

1 + 1
4
x2

2 +
1
2
x1 + x2 + σ

3
‖x‖3 when σ = 0.2 (“easy” case, left) and those for − 1

4
x2

1 − 1
8
x2

2 + x2 + σ
3
‖x‖3

when σ = 0.1 (“hard” case, right).

however, the value of β which gives the best step is not known a priori although it may

be calculated very efficiently by uni-variate maximization [6, §3.3]. Moreover finding the

required root by linearizing π(λ; β) but not (λ/σ)β/(p−2) is known to out-perform Newton’s

method when β = −1 and p ∈ (2, 3] [6, Lem. 3.3]. Thus again fast ultimate convergence is

assured in the easy case, and the main task is to find an initial value in L.

The hard case occurs under similar circumstances as occur for the trust-region problem,

but when ‖x(λS)‖p−2
M < λS/σ and thus there is no solution to the secular equation in

[λS,∞) (see Figure 2.2). The remedy is the same, namely that the required solution is

then xS + αSu1, where the scalar αS is chosen so that ‖xS + αSu1‖p−2
M = λS/σ.

3 Algorithmic considerations

3.1 Matrix factorization

We aim to solve (2.3) via a factorization of the symmetric matrix H + λM . Since we are

only concerned with λ for which H + λM is positive semi-definite, Cholesky or LDLT

factorization (with permutations in the singular case) is appropriate. As we are interested

in the sparse case, symmetric permutations should be applied (implicitly) to H +λM prior

to the factorization (the “analysis” phase) in order to limit fill in the factors. However as a

priori we do not know whether H +λM is definite, precautions should be in place to report
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if an indefinite matrix has been encountered (and immediately stop the factorization if this

occurs). These features are common to a number of well-known sparse, symmetric linear

equation solvers—such methods are generally reliable and effective [19, 23]. We use the

commercial package1 MA57 [12] but provide a slightly-less effective alternative SILS (based

on the earlier MA27 [13]) for those unable to access MA57.

3.2 The secular function and its properties

Suppose that x(λ) satisfies (2.3). We consider properties of the secular function

π(λ)
def
= xT (λ)Mx(λ) ≡ ‖x(λ)‖2M . (3.1)

3.2.1 Derivatives

In order to solve the secular equations π(λ)−∆2 = 0 and π(λ)−(λ/σ)2/(p−2) = 0 by Newton-

like or higher-order iteration, we need to evaluate π(λ) and its derivatives. Denoting the

k-th derivative with respect to λ by a superscript (k), we have the following result.

Theorem 3.1 Suppose that H + λM is positive definite, that x(λ) satisfies (2.3),

and that x(0)(λ)
def
= x(λ) and α0

def
= 1. Then, for k = 0, 1, . . ., the derivatives of

π(λ) = xT (λ)Mx(λ) satisfy

π(2k+1)(λ) = 2αkx
(k)T (λ)Mx(k+1)(λ) (3.2)

and π(2k+2)(λ) = αk+1x
(k+1)T (λ)Mx(k+1)(λ), (3.3)

where

(H + λM)x(k+1)(λ) = −(k + 1)Mx(k)(λ) (3.4)

and

αk+1 = 2
(2k + 3)

(k + 1)
αk. (3.5)

Proof. It follows immediately by differentiating (2.3) that (H+λM)x(1)(λ) = −Mx(λ)

and then by induction by continued differentiation that (3.4) holds. Now suppose that

π(2k) = αkx
(k)T (λ)Mx(k)(λ);

this is true for k = 0 by definition. Differentiating gives (3.2), and a second differenti-

ation reveals

π(2k+2)(λ) = 2αk[x
(k+1)T (λ)Mx(k+1)(λ) + x(k)T (λ)Mx(k+2)(λ)]. (3.6)

1MA57 is available without charge to academics.
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But it follows from (3.4) that

(k + 1)x(k)T (λ)Mx(k+2)(λ) = −x(k+1)T (λ)(H + λM)x(k+2)(λ)

= (k + 2)x(k+1)T (λ)Mx(k+1)(λ)

and hence (3.6) gives

π(2k+2)(λ) = 2αk

(

1 +
k + 2

k + 1

)

x(k+1)T (λ)Mx(k+1)(λ)]

which is (3.3) and (3.5). 2

Corollary 3.2 Suppose that H + λM is positive definite with LDLT factorization

H + λM = LDLT . Let Ly(λ) = −c, Dz(λ) = y(λ) and LT x(λ) = z(λ). Starting with

x(0)(λ) = x(λ), define y(k+1)(λ), z(k+1)(λ) and x(k+1)(λ) recursively for k = 0, 1, . . .,

via

Ly(k+1)(λ) = −(k + 1)Mx(k)(λ), Dz(k+1)(λ) = y(k+1)(λ) and LT x(k+1)(λ) = z(k+1)(λ).

Let α0 = 1. Then, for k = 0, 1, . . ., the derivatives of π(λ) = xT (λ)Mx(λ) satisfy

π(2k+1)(λ) = 2αkx
(k)T (λ)Mx(k+1)(λ) ≡ −βky

(k+1)T (λ)z(k+1)(λ)

and π(2k+2)(λ) = αk+1x
(k+1)T (λ)Mx(k+1)(λ)

where

βk =
2

(k + 1)
αk and αk+1 = (2k + 3)βk.

Proof. Since H + λM = LDLT , the definitions of y(k+1)(λ), z(k+1)(λ) and x(k+1)(λ)

correspond to solving (3.4) by parts. The alternative definition of π(2k+1)(λ) follows

from the identity

(k + 1)x(k)T (λ)Mx(k+1)(λ) = −(LT x(k+1)(λ))T (DLT x(k+1)(λ)) = −y(k+1)T (λ)z(k+1)(λ).

The remainder of the result follows immediately from Theorem 3.1. 2

Notice how each odd-power derivative requires a product with M and solves with L

and D, while every even powered derivative needs a solve with LT . A slight simplification

occurs if a Cholesky rather than LDLT factorization is used. In particular, y(k)(λ) and

z(k)(λ) are identical, and the odd-order derivatives become π(2k+1)(λ) = −2βk‖y(k+1)(λ)‖2.
Variants on this theme for regularised linear-least-squares problems have been given by

Gander [16, Thm.5.1].
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3.2.2 Taylor series approximations to π(λ)

Armed with derivatives of π(λ), it is now possible to contemplate Taylor series approxi-

mations to π(λ; β). Consider first the special case when β = 2 and thus π(λ, 2) = π(λ).

Lemma 3.3 Let π(λ) = ‖x(λ)‖2M , where x(λ) satisfies (2.3). Suppose that λC > λS

and let πk(δ) be the k-th order Taylor series approximation to π(λC + δ). Then

π(λC + δ) ≤ πk(δ) for even k > 0 and π(λC + δ) ≥ πk(δ) for odd k > 0 (3.7)

when δ > 0, while

π(λC + δ) ≥ πk+1(δ) ≥ πk(δ) for all k > 0 (3.8)

when λs − λC < δ < 0. The inequalities in (3.7)/(3.8) are strict whenever c 6= 0.

Proof. It follows trivially from (2.4) that the j-th derivative, π(j)(λ), of π(λ) is

π(j)(λ) = (−1)j(j + 1)!
n
∑

i=1

γ2
i

(λ + λi)j+2
. (3.9)

Thus if we define the k-th order Taylor approximation

πk(δ)
def
=

k
∑

j=0

π(j)(λC)

j!
δj (3.10)

to π(λC + δ), we see from Taylor’s theorem that the error

π(λC + δ)− πk(δ) =
1

(k + 1)!
π(k+1)(λC + ξ)δk+1 (3.11)

for some ξ strictly between 0 and δ so long as δ > λs − λC. But, since (3.9) shows

that even derivatives of π(λ) are non-negative and odd derivatives non-positive for all

λC > λS, (3.11) gives (3.7) when δ > 0 and

π(λC + δ) ≥ πk(δ) for all k

when λs − λC < δ < 0. This and the relationship

πk+1(δ)− πk(δ) = (k + 2)(−δ)k+1
n
∑

i=1

γ2
i

(λC + λi)k+3
,

which follows from (3.9) and (3.10), give (3.8) for negative δ.

When c 6= 0, at least one of the γi in (3.9) is nonzero, and this is sufficient to ensure

that the inequalities due to (3.9) in the above arguments are strict. 2
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Now suppose that τ(λ) is a given monotonically non-decreasing function on (λS,∞) and

that π(λS) > τ(λS). For example τ(λ) might be constant, e.g. ∆2 as in (2.6), or increasing,

e.g. (λ/σ)2/(p−2) as in (2.17). In this case, Lemma 2.1 implies that there is a unique root,

say λ∗ > λS of the equation

π(λ) = τ(λ), (3.12)

or equivalently

π(λC + δ) = τ(λC + δ). (3.13)

for the correction δ to λC.

Consider λC < λ∗, in which case πk(0) = π(λC) > τ(λC), and let δ∗
def
= λ∗ − λC > 0. If

k is odd, Lemma 3.3 implies that πk(δ∗) ≤ π(λC + δ∗) = τ(λC + δ∗). Thus the equation

πk(δ) = τ(λC + δ) (3.14)

has at least one root in (0, δ∗) for odd k, and Newton and other odd-degree Taylor series

methods for (3.12) based on finding corrections as positive real roots of (3.14) will underes-

timate λ∗. Moreover, since τ(λC + δ) > π(λC + δ) ≥ πk(δ) for λC + δ > λ∗, all positive roots

of (3.14) give under-estimators. By contrast, if k is even, πk(δ∗) ≥ π(λC + δ∗) = τ(λC + δ∗)

and any positive root of (3.14) will overestimate λ∗.

Now consider the alternative λC > λ∗, in which case πk(0) = π(λC) < τ(λC) and δ∗ < 0.

Lemma 3.3 gives that τ(λC + δ) > π(λC + δ) ≥ πk(δ) for all δ ∈ (δ∗, 0] and thus the least-

negative root (if any) of (3.14) will not lie to the right of δ∗. Moreover, as k increases (3.8)

indicates that the least-negative roots move to the right, and thus the higher the degree of

approximation used, the better the lower bound on λ∗ provided by the least-negative root

of (3.14).

We illustrate these properties in Figure 3.1 on the following page. Notice that, since the

secular function is not analytic, the Taylor series approximations deteriorate as δ increases

whatever degree of approximation is used. In particular there is a threshold λB—for our

example, λB ≈ 0.98—above which no approximant πk is close to π; the actual value depends

on the distance of λC to the nearest singularity of π(λ) in the complex plane [4, Thm. 16.20

et seq.]. This implies that the suggested root of (3.14) for odd-degree approximations may

be a poor estimate of λ∗ if λC ∈ L and τ(λB) is significantly smaller that π(λB). As a

consequence many iterations may be required to determine λ∗. Conversely, there appears

to be good agreement for negative δ as the degree of approximation increases, and thus

scope for optimism that reasonable-order Taylor approximation will perform well if λ ∈ G.
Similar results concerning the monotonic (and rapid) convergence of Taylor series methods

for roots of more general functions, whose derivatives satisfy appropriate sign conditions,

are known [42, Thm 4.2].

There is as always a trade-off between using potentially less accurate lower order ap-

proximants against more expensive higher-order ones. For our secular equations, the dom-

inant cost is likely to be in factorizing H + λM—although this will be problem/sparsity

dependent—and a modest number of derivatives will incur little extra relative cost. Thus

better than-first-order (Newton)-like methods seem particularly appealing in our context.
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Figure 3.1: The secular function for the problem of minimizing − 1
4
x2

1 + 1
4
x2

2 + 1
2
x1 + x2

within a ℓ2-norm trust region along (dashed line) with the Taylor series approximants of

degrees 1 to 100 about λC = 0.75 (solid lines). Observe the threshold λB ≈ 0.98 above

which no approximant is good.

3.2.3 Taylor series approximations to powers of π(λ)

We now turn to the general case in which β may differ from 2, and consider the k-th

order Taylor series approximation, πk(δ; β), to π(λC + δ; β) for modest values of k ≤ 3;

a higher-order analysis is possible but both increasingly messy and of likely decreasing

practical value given the increasing cost of evaluating derivatives. Differentiating π(λ; β) =

‖x(λ)‖βM ≡ [π(λ)]
β
2 with respect to λ and using the chain rule, we obtain

π(1)(λ; β) = β
2
[π(λ)]

β
2
−1 π(1)(λ), (3.15)

π(2)(λ; β) = β
2
[π(λ)]

β
2
−1 π(2)(λ) + β

2
(β

2
− 1) [π(λ)]

β
2
−2 [π(1)(λ)

]2
,

π(3)(λ; β) = β
2
[π(λ)]

β
2
−3
(

[π(λ)]2 π(3)(λ) + 3 (β
2
− 1)π(λ)π(1)(λ)π(2)(λ) (3.16)

+ (β
2
− 1) (β

2
− 2)

[

π(1)(λ)
]3
)

and π(4)(λ; β) = β
2
[π(λ)]

β
2
−4
(

[π(λ)]3 π(4)(λ) + 4 (β
2
− 1) [π(λ)]2 π(1)(λ)π(3)(λ) (3.17)

+3 (β
2
− 1) [π(λ)]2

[

π(2)(λ)
]2

+ 6 (β
2
− 1) (β

2
− 2)π(λ)

[

π(1)(λ)
]2

π(2)(λ)

+ (β
2
− 1) (β

2
− 2) (β

2
− 3)

[

π(1)(λ)
]4
)

.

From this we may deduce the following result.
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Lemma 3.4 Let π(λ; β) = ‖x(λ)‖βM , where x(λ) satisfies (2.3). Suppose that λ > λS.

Then

(i) π(1)(λ; β) ≤ 0 for all β > 0 while π(1)(λ; β) ≥ 0 for all β < 0;

(ii) π(2)(λ; β) ≥ 0 for all β > 0 while π(2)(λ; β) ≤ 0 for all β ∈ [−1, 0);

(iii) π(3)(λ; β) ≤ 0 for all β > 0 while π(3)(λ; β) ≥ 0 for all β ∈ [− 2
3
, 0); and

(iv) π(4)(λ; β) ≥ 0 for all β > 0 while π(4)(λ; β) ≤ 0 for all β ∈ [− 2
5
, 0).

The above inequalities are strict whenever c 6= 0.

Proof. Statements (i) follows directly from (3.15) and Theorem 3.1, while (ii) follows

from Lemma 2.1. Statements (iii) and (iv) are established in Appendix B as Lem-

mas B.3 and B.5. 2

Corollary 3.5 Let π(λ; β) = ‖x(λ)‖βM , where x(λ) satisfies (2.3). Suppose that λC >

λS and let πk(δ; β) be the k-th order Taylor series approximation to π(λC +δ; β). Then,

(i) for β > 0,

π(λC + δ; β) ≤ π2(δ; β) and π(λC + δ; β) ≥ πk(δ; β) for k = 1, 3 (3.18)

when δ > 0, while

π(λC + δ; β) ≥ π3(δ; β) ≥ π2(δ; β) ≥ π1(δ; β) (3.19)

when λs − λC < δ < 0; and

(ii) otherwise

π(λC + δ; β) ≤ π1(δ; β) for β ∈ [−1, 0)

π(λC + δ; β) ≥ π2(δ; β) for β ∈ [− 2
3
, 0)

π(λC + δ; β) ≤ π3(δ; β) for β ∈ [− 2
5
, 0)

(3.20)

when δ > 0, while
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π(λC + δ; β) ≤ π3(δ; β) ≤ π2(δ; β) ≤ π1(δ; β) for β ∈ [− 2
5
, 0)

π(λC + δ; β) ≤ π2(δ; β) ≤ π1(δ; β) for β ∈ [− 2
3
, 0)

π(λC + δ; β) ≤ π1(δ; β) for β ∈ [−1, 0)

(3.21)

when λs − λC < δ < 0.

The inequalities in (3.18)–(3.21) are strict whenever c 6= 0.

Proof. These results follow directly from the relationship π(λC + δ; β) = πk(δ; β) +

π(k+1)(λC+ξk; β)δk+1/(k+1)! for some ξk between 0 and δ (Taylors’ theorem), πk+1(δ; β) =

πk(δ; β) + π(k+1)(λC; β)δk+1/(k + 1)! (Taylor series) and Lemma 3.4. 2

The limiting ranges on negative β in (3.20) and (3.21) may seem inconvenient, but as we see

in Figure 3.2 they may be necessary to ensure the Taylor polynomials over/underestimate

π(λ; β).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

λ

 

 

π(λ;-1)
π1(λ;-1)
π2(λ;-1)
π3(λ;-1)

Figure 3.2: The function π(λ,−1) for the problem of minimizing − 1
4
x2

1 + 1
4
x2

2 + 1
2
x1 + x2

within a ℓ2-norm trust region along with the Taylor series approximants π1(λ;−1) to

π3(λ;−1) of degrees 1 to 3 about λC = 0.55. Observe that π2(λ; β) and π3(λ; β) do not

obey (3.20); magnifying the figure shows that they also violate (3.21).

We can repeat the discussion following Lemma 3.3 concerning π(λ) for the more general

function π(λ; β). For positive β, all we said about solving (3.12) remains true for

π(λ; β) = τ(λ; β). (3.22)

In particular, if λC < λ∗, the largest positive roots of

πk(δ, β) = τ(λC + δ; β) (3.23)
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root of π1 = ∆2β when ∆ = 5
root of π2 = ∆2β when ∆ = 5
root of π3 = ∆2β when ∆ = 5
root of π1 = ∆2β when ∆ = 0.5
root of π3 = ∆2β when ∆ = 0.5
root of π1 = ∆2β when ∆ = 0.2
root of π3 = ∆2β when ∆ = 0.2
λ∗ ≈ 0.602 when ∆ = 5
λ∗ ≈ 2.085 when ∆ = 0.5
λ∗ ≈ 5.344 when ∆ = 0.2
λs = 0.5
λc = 1

Figure 3.3: A plot of the best prediction λk(β) of the scalar polynomial equation πk(λ; β) =

∆2β as a function of β, for the Taylor series approximants πk(λ; β) of degrees k = 1, 2, 3

to π(λ; β) ≡ ‖x(λ)‖β about λC = 1 for the problems of minimizing − 1
4
x2

1 + 1
4
x2

2 + 1
2
x1 + x2

within ℓ2-norm trust regions of radii ∆ = 5, 0.5 and 0.2.

for k = 1, 3 lead to under-estimators of λ∗, while if λ∗ < λC, the least negative roots of

(3.23) for k = 1, 2, 3 will give estimates to the left of λ∗ with the best under-estimator

resulting when k = 3. If β is negative, and τ(λ; β) is a given monotonically non-increasing

function on (λS,∞) and that π(λS; β) < τ(λS; β) the same results are true, but now only

so long as β is constrained to be larger than −1, − 2
3

and − 2
5

respectively for the linear,

quadratic and cubic Taylor approximants. Finding the root of (3.23) for a given β and

degree k as described and adding this to λC gives what we shall call the best prediction,

λk(β). We shall also define Bk to be the interval of allowable values of β for which Taylor

approximants of degree k provide guaranteed under-estimates of λ∗; thus according to

Corollary 3.5, B1 = [−1,∞) and B3 = [− 2
5
,∞), while B2 = [− 2

3
,∞) when λ < λ∗ and is

empty otherwise.

Since the best prediction for each degree k and β in its allowed range gives a viable

estimate of λ∗, a natural question is which k and β gives the overall best estimate of λ∗.

In Figure 3.3 we illustrate how the best predictions behave as a function of β for Taylor

approximations of degrees up to three in the trust-region case for which τ(λ; β) = ∆β. It is

known for linear Taylor approximants that β = −1 is best in the trust-region case [6, §2.3.3].
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The figure also suggests that the optimal choice for higher-degree polynomials might occur

at the lower end of their allowed β range. How this translates for more general τ , such as

for that for regularisation, is less clear, but certainly picking the best λk(β) from a sample

of allowable β and k is an algorithmic possibility.

Finally, as an alternative to (3.23), suppose that β > 0, that λC < λ∗, that πk(δ; β) ≤
π(λC + δ; β) for δ ∈ [0, λ∗ − λC], and that we can find a function ζ(λ; β) ≥ τ(λ; β) for

λ ∈ [λC, λ∗]. Now consider instead the equation

πk(δ; β) = ζ(λC + δ; β). (3.24)

Then if δr > 0 is a root of (3.24), we have π(λC + δr; β) ≥ πk(δk; β) = ζ(λC + δr; β) ≥
τ(λC+δr; β), and hence positive roots of (3.24) will under-estimate those of both (3.22) and

(3.23). The same is true when λ∗ < λC if πk(δ; β) and ζ(λ; β) satisfy the given relationships

when δ ∈ [λ∗ − λC, 0] and λ ∈ [λ∗, λC], and we are seeking negative roots of (3.24). When

β < 0, the above remains true so long as we reverse the sense of the inequalities on πk and

ζ .

This might be of value when β > 0 if τ is concave but complicated to evaluate, for then

picking ζ to be its first-order Taylor approximant is appropriate and the overall system

(3.24) will be polynomial; the same is true for more general τ when we pick ζ to be the ℓ-th

order Taylor approximant if λC < λ∗ and the ℓ+1-st derivative of τ is negative throughout

(λC, λ∗) or if λC > λ∗ and the ℓ+1-st derivative of τ has the same sign as (−1)ℓ throughout

(λ∗, λC). For negative β, the ℓ-th order Taylor approximant is appropriate if λC < λ∗ and

the ℓ + 1-st derivative of τ is positive throughout (λC, λ∗) or if λC > λ∗ and the ℓ + 1-st

derivative of τ has the opposite sign as (−1)ℓ throughout (λ∗, λC).

For example, for the regularisation problem τ(λ; β) = (λ/σ)β/(p−2), which is concave so

long as β ∈ [0, p− 2] and convex for all negative β. More generally for non-integer β/(p−
2) > 0, the ℓ + 1-st derivative of (λ/σ)β/(p−2) first becomes negative when ℓ = ⌈β/(p− 2)⌉,
and oscillates in sign thereafter. Thus Taylor approximants of degree ⌈β/(p−2)⌉+2j, j ≥ 0

will be possible for λC < λ∗, while if λC > λ∗ approximants (of every order) are possible

if and only if ⌈β/(p − 2)⌉ is even. For negative β, Taylor approximants of every degree

suffice if λC > λ∗ while only odd-degree approximants are appropriate when λC < λ∗.

Of course other generalisations of (3.12) are possible. In particular, one might consider

φ(π(λ)) = φ(τ(λ))

for a (carefully chosen) nonlinear function φ [16, §6] or a nonlinear transformation of the

variables

π(λ(η)) = τ(λ(η))

by regarding λ as a function of the scalar η [29–32]. We have refrained from doing so as

in general it does not seem clear how to retain the useful convexity/concavity properties

that we have exploited in this section.
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3.3 The trust-region problem

3.3.1 Finding a point in L

The standard method [17,34] for finding an initial point in L (if one exists) is to determine

bounds λL ≥ 0 and λU for which λ∗ ∈ [λL, λU]. If λU > λ∗, then necessarily λU ∈ G, while

λL ∈ N ∪L. The bounds λL and λU are adjusted by iteration so that the length of [λL, λU]

shrinks by a non-trivial amount at each step and thus ultimately will collapse to {λ∗}. If

L is non-empty (the “easy case”), the interval will be adjusted a finite number of times;

as soon as a point in L has been determined, no further adjustments of λL and λU are

required as subsequent iterates remain in L. The cases when L is empty (either the “hard

case” or when the solution lies interior to the trust-region) will be discussed later.

Suppose that we have found an interval [λL, λU] surrounding λ∗, but that the current

estimate λC ∈ [λL, λU] of λ∗ is not in L. If λC ∈ G, an improvement λ+ may be sought by

applying one or more iterations of a suitable root finder—Newton’s method applied to (2.6)

for β ≥ −1 is guaranteed to overshoot the root (and thus lie in N ∪L), but other iterations

might not; we will return to this later. There are three outcomes. With luck, λ+ ∈ L and

we are done. Otherwise, we have the opportunity to improve one of the interval bounds;

the lower one if λ+ ∈ N and the upper if λ+ ∈ G. If λC ∈ N , root-finding is unlikely

to be fruitful as we lie on the wrong side of the pole of ‖x(λ)‖. In addition—either as a

bi-product of the root-finding when λC ∈ G or from some auxiliary calculation, for instance

from a suitably chosen Rayleigh-quotient, when λC ∈ N—we might obtain a new upper

bound on λ1, and this may lead to a further improvement in λL; again we will examine

this in detail later. Having refined known lower and upper bounds, it remains to choose a

new estimate of λ∗ with the goal of ensuring that the bounding interval continues to shrink

at an at-worst linear rate. Many possibilities have been suggested in the past [8, §7.3.6],

usually involving a convex and/or geometric combination of the current bounds.

We formalize this discussion as Algorithm 3.1 on the next page. The proposed formula

for computing the next λ ensures that the ratio of successive bounding intervals is at most

max

[

1− θ, θ,
γ
√

λU√
λL +

√
λU

]

for some θ ∈ (θL, θU) ⊂ (0, 1) [8, §7.3.6], and thus that the algorithm has the desired effect

of ensuring finite convergence if L is non-empty.

3.3.2 Initial values for λL and λU

To start Algorithm 3.1, we require suitable initial values λL and λU. Since the Rayleigh-

quotient inequality and (2.3) give

(λ∗ + λ1)
2 ≤ xT

∗ (H + λ∗I)2x∗

xT
∗ x∗

=
‖c‖2
∆2

=
‖c‖2M−1

∆2
≤ (λ∗ + λn)2 (3.25)
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Algorithm 3.1: Find λ ∈ L
Given initial λL ≤ λ∗ ≤ λU and λC. Set constants 0 < θL ≤ θU < 1.

Loop:

If λC ∈ L
exit loop with λ← λC.

Else if λC ∈ N
set λL ← max(λL, λC).

Else (i.e., λC ∈ G)
set λU ← min(λU, λC).

Compute a new estimate λ+ of λ∗.

If λ+ ∈ L
exit loop with λ← λ+.

Else if λ+ ∈ N
set λL ← max(λL, λ+).

Else (i.e., λ+ ∈ G)
set λU ← min(λU, λ+).

Possibly compute an estimate λE ≥ λ1, and in this case set λL ← max(λL,−λE).

Select θ ∈ [θL, θU] and γ ∈ {0, 1}, and set λC ← max(γ
√

λLλU, λL + θ(λU − λL)).

for solutions on the trust-region boundary, it follows immediately that

‖c‖M−1

∆
− λn ≤ λ∗ ≤

‖c‖M−1

∆
− λ1. (3.26)

For (3.26) to be useful, it is necessary to find outer bounds (i.e., a lower bound on λ1 and

an upper bound on λn) on the extreme eigenvalues of the pencil (H, M). We also know

that λ∗ ≥ λS = max(0,−λ1), so any known upper bound on λ1 may be used.

Usable outer bounds when M = I are normally found from Gershgorin’s theorems or

computable overestimates of ‖H‖ such as

−min(‖H‖∞, ‖H‖F ) ≤ −‖H‖ ≤ λ1 ≤ λn ≤ ‖H‖ ≤ min(‖H‖∞, ‖H‖F )

involving the infinity norm ‖H‖∞ or the Frobenius norm ‖H‖F [8: §7.3.8, 17, 34]. For

non-unit M , Gershgorin-like methods are also possible so long as M is strictly diagonally

dominant. To see this, suppose that (H − λM)u = 0 and that k is such that |uk| ≥ |ui|

for i = 1, . . . , n. In this case (hk,k − λmk,k)uk = −
n
∑

i=1,i6=k

(hk,i − λmk,i)ui and thus

|hk,k − λmk,k| ≤
∣

∣

∣

∣

∣

n
∑

i=1,i6=k

(hk,i − λmk,i)

∣

∣

∣

∣

∣

≤ oH

k + |λ|oM

k , (3.27)
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where

oH

k
def
=

n
∑

i=1,i6=k

|hk,i| and oM

k
def
=

n
∑

i=1,i6=k

|mk,i|.

Hence the eigenvalues of (H, M) lie in the union of the regions defined by

|hk,k − λmk,k| ≤ oH

k + |λ|oM

k , k = 1, . . . , n; (3.28)

it is easy to see that each region (3.28) is a trivially computable closed interval because M

is both positive definite and strictly diagonally-dominant and thus mk,k > oM
k . Thus outer

bounds may easily be found by computing the extrema of each of these interval bounds,

and gives

λL = min
1≤k≤n

(

hk,k − oH
k

mk,k − oM
k

,
hk,k − oH

k

mk,k + oM
k

)

and λU = max
1≤k≤n

(

hk,k + oH
k

mk,k − oM
k

,
hk,k + oH

k

mk,k + oM
k

)

.

This technique fails if M is not strictly diagonally dominant as then at least one of the

sets defined by (3.28) may be unbounded; it is not clear to us how to get suitable outer

bounds in this case. Note also that the first inequality in (3.27) may provide a tighter

bound albeit at a slightly higher computational cost. It is also possible to apply optimized

diagonal scalings, as suggested by Gay [17], to improve the interval bounds, but we have

not done so.

In exceptional cases finding λ1 may be practicable—for example, if H is tri-diagonal

and M = I, the Lanczos method is a possibility. But usually the cost of computing λ1

is high, and an upper bound is preferable. Suitable bounds may be deduced from the

Rayleigh-quotient inequality λ1 ≤ ρM (x) for especially chosen x. In particular, if HS and

MS are symmetric sub-matrices of H and M , if λS1 is the leftmost eigenvalue of the pencil

(HS, MS) with associated eigenvector uS, then appropriately padding uS with zeros to obtain

a vector u ∈ IRn, we have that λ1 ≤ ρM (u) = uT
S HSuS/u

T
S MSuS = λS1. Thus, for example,

considering one-by-one symmetric sub-matrices gives the bound

λ1 ≤ min
1≤i≤n

hi,i/mi,i.

3.3.3 New estimates from G

Next we suppose that we have discovered λC ∈ G and now wish to find an improvement

λ+. Since x(λ) exists and thus the value and derivatives of π(λ; β) may be computed, the

obvious idea outlined in §3.2.3 is to estimate the root of (2.6) by replacing π(λ; β) by its

k-th order Taylor approximant πk(δ; β) for some suitable β. As we mentioned in §3.2.3,

every estimate found in this way must lie in N ∪ L, and to encourage the estimate to lie

in L ideally we should pick the largest best prediction,

max
k∈N,β∈Bk

λk(β).

In practice, the computationally viable under-estimate λ+ = λT for

λT = max
(

λ1(−1), λ2(− 2
3
), λ3(− 2

5
)
)

(3.29)
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usually suffices. Note additionally that such a λT may be used to improve λL.

Since we cannot be sure that λ+ ∈ L, we might at the same time try to improve the

current lower bound λL. More specifically, we aim to construct a close upper bound λE on

λ1. As we already have a factorization of H + λCM , we reuse this to apply one or more

inverse iterations

u← (H + λCM)−1Mu, u← u/‖u‖M
to estimate the extreme eigenvector of (H, M), and then use the Rayleigh quotient λE =

ρM (u) as our estimate of λ1. Although the starting vector u used is not critical, it is prudent

to use the result from the last λ calculation (if any) as this is already an approximation to

the desired eigenvector. We will return to this in §3.3.6.

3.3.4 New estimates from N

If λC ∈ N , it lies to the left of the rightmost pole of π(λ) and there is little point in using

Taylor series approximations to try to estimate λ∗. Moreover, since we use the failure

of the factorization to identify that λC ∈ N , we are unable to use the factors to apply

inverse iteration to estimate λ1—even if we had used an indefinite factorization, there

would of course be no guarantee that inverse iteration from an arbitrary −λC > λ1 would

converge to the desired eigenvalue. However, as Gay [17] points out, an LDLT or Cholesky

factorization will continue so long as the leading sub-matrix of H+λCM is positive definite,

and the factors generated up until this point may be used to improve the upper bound on

λ1. Specifically, if failure first occurs when factorizing the k by k sub-matrix of H + λCM ,

this sub-matrix may be factorized as LkDkL
T
k , where Lk is k by k unit lower triangular

and Dk = diag(di,i), 1 ≤ i ≤ k, with dk,k ≤ 0. If yk satisfies LT
k yk = ek and wk = (yT

k 0)T ,

it follows that

wT
k (H + λCM)wk = yT

k LkDkL
T
k yk = dk,k ≤ 0,

and hence

ρM(wk) =
dk,k

wT
k Mwk

− λc

provides an upper bound on λ1 which may be used to improve λL. In practice, a partial

factorization of H + λCM—or more especially the means to find yk—is not always easy to

recover from sophisticated sparse factorization packages; we are currently discussing this

need with the authors of MA57/MA27.

3.3.5 Improving an estimate in L

Once we have found λC ∈ L, fast (quadratic) convergence is assured using Newton’s

method. However, as we discussed in §3.2.3, there is an opportunity to get even faster

convergence using a higher-order Taylor approximation to generate an improvement λ+.

In particular, we know that the approximation π2k+1(δ) ≡ π2k+1(δ, 2) underestimates

π(λC +δ) ≡ π(λC +δ; 2), and λ2k+1(2) computed from the largest root of π2k+1(δ) = ∆2 will

lead to a globally convergent method with asymptotic Q-order 2k + 2 (see Theorem A.1);



On solving trust-region and other regularised subproblems in optimization 21

largest roots from π2k+1(δ; β) = ∆β for other β ∈ B2k+1 may be better. Ideally, the

impractical

max
k∈N,β∈B2k+1

λ2k+1(β)

would be chosen, but λ+ = λT for

λT = max
(

λ1(−1), λ3(2), λ3(− 2
5
)
)

will give quartic global convergence, which suffices for all practical purposes. If the cost of

multiplications by M and solves with L and LT are significantly cheaper than factorization

of H + λM , higher-order roots λ2k+1(β) for k > 1 might be added.

3.3.6 Fast convergence in the hard case

We now consider an inverse-iteration/Rayleigh-quotient-based algorithm for computing

approximations to −λ1 that are asymptotically greater than −λ1. In the easy case, the

algorithm generates iterates that will ultimately lie in L, but the main purpose is to cope

with the hard-case or near hard-case when |L| may be quite small.

Algorithm 3.2 assumes that an initial estimate λA
0 is available that satisfies λA

0 > −λ1,

i.e., λA
0 ∈ G region. The algorithm then repeats the following steps until convergence. First,

a positive integer nk is chosen which represents the number of inverse iterations that will

be performed. Next, the requested number of inverse iterations are computed using −λA
k

as the fixed estimate of λ1 and results in a new best approximation zk+1 to (−/+)u1—for

simplicity, in this discussion we presume that λ1 has algebraic multiplicity one, although

our analysis below does not require this. The second-order Rayleigh-quotient ρM (zk+1) is

then computed to (over-)estimate λ1. Values θk ∈ [θε, 1] and γk ∈ [1, 2nk − γε] are now

assigned; the restrictions imposed by θε and 2nk−γε are required to guarantee (ultimately)

that λA

k > −λ1, while the restrictions θk ≤ 1 and γk ≥ 1 are needed to ensure that the

Algorithm 3.2: Potential hard case

Given λA
0 > −λ1 and z0 such that ‖z0‖M = 1.

Set real constants 0 < θε ≤ 1, 0 < γε ≤ 1, and integer constant 1 ≤ nu ≤ ∞.

For k = 0 until converged

Choose 1 ≤ nk ≤ nu. [number of inverse iterations]

Initialize w0 = zk.

For i = 1 : nk [inverse iteration]

Set wi = (H + λA
kM)−1Mwi−1 and normalize wi ← wi/‖wi‖M .

Set zk+1 = wnk
and compute ρM (zk+1) = zT

k+1Hzk+1. [Rayleigh quotient]

Choose θk ∈ [θε, 1] and γk ∈ [1, 2nk − γε].

Set λA

k+1 = −ρM (zk+1) + θk

(

λA

k + ρM (zk+1)
)γk .
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sequence {λA
k} is monotonically decreasing (see Lemma 3.8). Using these, an improved

estimate λA
k+1 of −λ1 is computed with the aim of being greater than −λ1 and thus in F ;

this is in contrast to the negative of the Rayleigh-quotient estimate −ρM (zk+1), which is

always less than −λ1 and thus lies in the N region. This process is then repeated.

Numerous standard results relating to both inverse iteration and the Rayleigh quotient

may be found in [9,36,43]; for simplicity, these results typically assume that the eigenvalue

for which convergence occurs is simple and that M = I. Lemmas 3.6 and 3.7 extend two

of these results to the generalized eigenvalue problem and they account for the possibility

that eigenvalues may not be simple. The analysis that follows may be simplified if we

consider the iteration in the scaled variables zk = Rzk and wi = Rwi, in which case the

iteration becomes

Initialize w0 = zk.

For i = 1 : nk

Set wi = (H + λA
k I)−1wi−1 and normalize wi ← wi/‖wi‖.

Set zk+1 = wnk
and compute ρ(zk+1) = zT

k+1Hzk+1.

Lemma 3.6 Let λ1 be the left-most eigenvalue of the pencil (H, M) with correspond-

ing eigenspace eig(λ1). Then

|ρM(x)− λ1| = O(‖x− u‖2)

as x→ u for any u ∈ eig(λ1).

Proof. The proof follows by applying [43, see p.204] to the transformed problem in

the “bar” variables and then transforming back. 2

Lemma 3.7 Let λ1 be the left-most eigenvalue of the pencil (H, M) with correspond-

ing eigenspace eig(λ1). Define n1 = max{i : λi = λ1} and assume that gap(λ1) < ∞.

Suppose that inverse iteration is applied to an initial vector z0 =
∑n

i=1 αiui such that

z0 6⊥ eig(λ1) and with eigenvalue approximation µ that satisfies |λ1 − µ| < gap(λ1)/2.

If {zk} denotes the sequence of inverse iterates, then

|zk − (−/+)u| = O

(

∣

∣

∣

∣

µ− λ1

µ− λJ

∣

∣

∣

∣

k
)

and |ρM(zk)− λ1| = O

(

∣

∣

∣

∣

µ− λ1

µ− λJ

∣

∣

∣

∣

2k
)

as k →∞, where λJ is defined by |λJ − λ1| = gap(λ1) and
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u =

∑n1

i=1 αiui

‖∑n1

i=1 αiui‖M
,

and where the (−/+) means that for each value of k either the plus or the minus applies.

Note: the statement z0 6 ⊥ eig(λ1) should be interpreted in the inner-product 〈x, y〉M =

xT My.

Proof. Essentially, the proof follows from [43, see p.204–207]. Specifically, we may

apply [43, Thm 27.2]—taking multiple eigenvalues into account—to the transformed

problem in “bar” variables and then transform back. 2

We note that in the previous lemma, the assumption that gap(λ1) <∞ was used to make

the lemma easier to state. If gap(λ1) =∞, then λ1 has multiplicity n and every vector in

IRn is an eigenvector associated with λ1. Therefore, z0 is an eigenvector associated with

λ1 and ρM(z0) = λ1.

The next lemma gives two important properties of the sequence {λA

k} generated by

Algorithm 3.2.

Lemma 3.8 Let λ1 be the left-most eigenvalue of the pencil (H, M). Then the se-

quence {λA
k} generated by Algorithm 3.2 satisfies

(i) λA
k+1 ≤ λA

k and

(ii) λA
k+1 > −λ1

for all k ≥ 0 provided λA
0 is sufficiently close to −λ1. Moreover, strict inequality holds

in part (i) if either θk < 1 or γk > 1.

Proof. The proof is by induction. If λA
0 is sufficiently close to −λ1 then Lemma 3.7

implies

0 < λA

0 + ρM(z1) = (λA

0 + λ1) + (−λ1 + ρM (z1)) < 1.

Using this fact, θ0 ≤ 1, and γ0 ≥ 1, we may write

λA

1 = −ρM(z1) + θ0

(

λA

0 + ρM(z1)
)γ0 ≤ −ρM(z1) + λA

0 + ρM (z1) = λA

0 ,

so that part (i) holds for k = 0. We now show that part (ii) is true for k = 0, but

first note that part (ii) is true for k = −1 by construction of the algorithm. Also, the

constants that are implicitly defined by the O(·) notation in Lemma 3.7 are uniformly

bounded over all iterations of the algorithm, provided that we choose λA
0 sufficiently

close to −λ1; we denote this uniform bound by ĉ. We then assume that λA
0 is sufficiently
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close to −λ1 so that

ĉ(λA
0 + λ1)

γε

κ
≤ θε/2 and |λA

0 + λ1| < 1, where κ
def
= min

(

1, gap(λ1)
2nu
)

. (3.30)

We then have

λA

1 + λ1 = −ρM (z1) + λ1 + θ0(λ
A

0 + ρM (z1))
γ0 (3.31)

≥ −ĉ

(

λA
0 + λ1

gap(λ1)

)2n0

+ θ0(λ
A

0 + λ1)
γ0 (3.32)

= (λA

0 + λ1)
γ0

(

θ0 −
ĉ(λA

0 + λ1)
2n0−γ0

gap(λ1)
2n0

)

(3.33)

≥ (λA

0 + λ1)
γ0

(

θε −
ĉ(λA

0 + λ1)
γε

κ

)

(3.34)

≥ θε(λ
A
0 + λ1)

γ0

2
> 0. (3.35)

Equation (3.31) follows from the definition of λA
1 , while equation (3.32) follows from

Lemma 3.7 and the inequality λA
0 + ρM(z1) ≥ λA

0 + λ1. Equations (3.33)–(3.35) follow

from factorization, the restrictions that θε and γε place on θ0 and γ0, and (3.30).

Therefore, part (ii) holds for k = 0.

Next assume that λA
j+1 ≤ λA

j and λA
j+1 > −λ1 for all 0 ≤ j ≤ k − 1. We now show that

it is true for j = k. The inductive hypothesis implies that λA
j is greater than −λ1 and

that it approximates −λ1 at least as well as λA
0 does for j = 0, . . . , k. It then follows

from Lemma 3.7 that

0 < λA

k + ρM (zk+1) = (λA

k + λ1) + (−λ1 + ρM (zk+1)) < 1. (3.36)

Using this fact, θk ≤ 1, and γk ≥ 1, we may write

λA

k+1 = −ρM (zk+1) + θk

(

λA

k + ρM(zk+1)
)γk ≤ −ρM (zk+1) + λA

k + ρM (zk+1) = λA

k ,

so that part (i) holds for j = k. Using essentially the same argument as for equations

(3.31)–(3.35), we have

λA

k+1 + λ1 = −ρM(zk+1) + λ1 + θk

(

λA

k + ρM(zk+1)
)γk

≥ −ĉ

(

λA
k + λ1

gap(λ1)

)2nk

+ θk(λ
A

k + λ1)
γk

= (λA

k + λ1)
γk

(

θk −
ĉ(λA

k + λ1)
2nk−γk

gap(λ1)
2nk

)

≥ (λA

k + λ1)
γk

(

θε −
ĉ(λA

k + λ1)
γε

κ

)

≥ θε(λ
A
k + λ1)

γk

2
> 0,

so that part (ii) holds for j = k. In addition, it is easily verified that strict inequality

holds in part (i) if either θk < 1 or γk > 1. 2
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Theorem 3.9 Let λ1 be the left-most eigenvalue of the pencil (H, M). Suppose

that there exists positive constants γ̄ and n̄ such that γk = γ̄ and nk = n̄ for all k

sufficiently large. Then the sequence {λA
k} generated by Algorithm 3.2 converges to

−λ1 with Q-rate equal to γ̄, provided λA
0 is chosen sufficiently close to −λ1.

Proof. For k sufficiently large and λA
0 sufficiently close to −λ1, we have

|λA

k+1 + λ1| = | − ρM (zk+1) + λ1 + θk

(

λA

k + ρM (zk+1)
)γ̄ | (3.37)

≤ | − ρM(zk+1) + λ1|+ θk|λA

k + ρM(zk+1)|γ̄ (3.38)

≤ | − ρM(zk+1) + λ1|+ 2γ̄θk|λA

k + λ1|γ̄ (3.39)

≤ ĉ

∣

∣

∣

∣

λA
k + λ1

gap(λ1)

∣

∣

∣

∣

2n̄

+ 2γ̄|λA

k + λ1|γ̄ (3.40)

=

[

ĉ(λA
k + λ1)

2n̄−γ̄

gap(λ1)
2n̄ + 2γ̄

]

|λA

k + λ1|γ̄ (3.41)

≤
[

ĉ(λA
0 + λ1)

γε

gap(λ1)
2n̄ + 2γ̄

]

|λA

k + λ1|γ̄ = c|λA

k + λ1|γ̄, (3.42)

where

c =
ĉ(λA

0 + λ1)
γε

gap(λ1)
2n̄ + 2γ̄ and ĉ was defined in the proof of Lemma 3.8.

Equations (3.37) and (3.38) follow from the definition of λA

k+1 and the triangle inequality.

Equation (3.39) follows from the inequality λA
k + ρM (zk+1) ≤ 2(λA

k + λ1), which follows

from Lemma 3.7 for λA
0 sufficiently close to −λ1. Equations (3.40) and (3.41) follow

from Lemma 3.7, the definition of gap(λ1), the inequality θk ≤ 1, and factorization.

Finally, equation (3.42) follows from the properties of {λA
k} described in Lemma 3.8

and definition of γk. 2

This theorem essentially says that we can obtain any Q-order convergence we wish at

the expense of performing an ever increasing number of inverse iterations. More precisely,

we can obtain the Q-convergence “goal” γ̄ by setting γk = γ̄ and consequently choosing

nk, the number of inverse iterations performed, to satisfy 2nk − γε > γ̄ (this should be

done for all k sufficiently large). For example, we could obtain superlinear convergence by

ultimately setting γk = 1.5 and by performing a single inverse iteration (nk = 1), or we

could obtain super-cubic-convergence by ultimately setting γk = 3.5 and by performing

two steps of inverse iteration (nk = 2).

A reasonable implementation would be to use Algorithm 3.2 once λU − λL is relatively

small. In the easy case, Algorithm 3.2 will quickly produce an iterate that lands in the

L-region, while in the hard-case the algorithm converges rapidly to −λ1 = λs. We also note

that the algorithm produces iterates zk that approximate the eigenspace associated with
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λ1, which is required for computing a solution to problems (1.1) and (1.2) in the hard-case.

Initially, using a single step of inverse iteration with γk ≈ 1.5 is reasonable. In general,

this will force λ+ into L rapidly, with subsequent fast convergence as described in § 3.3.5.

If the hard-case is suspected, it may be wise to increase γk from 1.5 to 3 and to perform

two steps of inverse iteration, but only after the value γk = 1.5 has been “successful”; the

resultant cubic-convergence seems sufficient for all practical purposes.

Formally, if λC ∈ G, we compute a new estimate λ+ as follows. Let λT be the Taylor

series under-estimate (3.29), let λSL be the best under-estimate of λS found so far, let γ̄ be

the desired order of convergence in the hard case, and let θG and θH be given constants in

(0, 1)—for example, in practice we use θg = 0.5 and θH = 0.9. Then whenever |λC− λSL| ≤
θHλC, we suspect we might be in the hard case, so use the Rayleigh quotient −ρM (zk+1) to

try to improve λSL and subsequently set

λ+ = min

(

λL + θG(λC − λL), max

(

λT, λL, λSL +

(

λC − λSL

λC

)γ̄))

.

Otherwise, if λT ≥ λL, the Taylor estimate gives the best estimate in F found so far, and

we assign λ+ = λT. If neither happens, we simply revert to improving the interval of

uncertainty by setting λ+ = λL + θG(λC − λL).

3.3.7 Interior solution, sequences of related problems and initial values

The one remaining issue is when, if at all, to test for the possibility that the solution to

(1.1) lies interior to the trust region, and thus that the required λ∗ = 0. Clearly this is

impossible if λL > 0, so any investigation should be delayed until the initial λL has been

computed [34].

In a trust-region context, a sequence of problems of the form (1.1) will be solved. There

will generally be two possibilities. In the first, the data H and c will be unchanged, but

∆ will have been reduced to ∆+. Define the usual sets G, L and N with respect to λ,

and let G+, L+ and N+ be their analogs with respect to λ+. In this case, if the previous

λ− ∈ L∪{λS}, then λ− ∈ L+ and is a good starting point for the new problem. Potentially

better, λ may have been sampled at points λ+ > λ− when solving the previous problem,

and corresponding values of π(λ+) will be known. Thus finding the largest previous λ+

for which π(λ+) ≥ ∆+ will also give a value in L+. The other possibility is that H and

c might have changed but ∆+ ≥ ∆. Little useful information is then available, but as a

heuristic starting from λ− is a possibility; if small changes to H and c have occurred, it is

likely that λ− ∈ G+.

In the absence of better initial information, we simply choose the initial λ as 0 if λL = 0,

and as max(γ
√

λLλU, λL+θ(λU−λL)) for some θ ∈ (0, 1) and γ ∈ {0, 1} (c.f., Algorithm 3.1)

otherwise.
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3.4 The regularisation problem

Much of what we described in the previous section may easily be adapted to solve the

regularisation problem (1.2). The main differences result from our needing to solve the

secular equation (2.16) rather than ‖x(λ)‖M = ∆; there is no “interior solution” case to

worry about.

To find a point in L for the regularisation problem, Algorithm 3.1 is still applicable.

Finding initial values for λL and λU is slightly different. The Rayleigh-quotient bound

(3.25) becomes

(λ∗ + λ1)
2 ≤ xT

∗ (H + λ∗I)2x∗

xT
∗ x∗

=
σ2/(p−2)‖c‖2

λ
2/(p−2)
∗

=
σ2/(p−2)‖c‖2M−1

λ
2/(p−2)
∗

≤ (λ∗ + λn)2,

leading to the inequalities

(λ∗ + λ1)λ
1/(p−2)
∗ ≤ σ1/(p−2)‖c‖M−1 ≤ (λ∗ + λn)λ1/(p−2)

∗ . (3.43)

Replacing λ1 and λn by outer bounds in (3.43) gives simple nonlinear inequalities from

which bounds on λ∗ may be deduced; when p = 3, this involves solving quadratic equa-

tions, while for other p iteration may be required. Outer bounds, such as that provided

by the generalization of the Gershgorin theorems described in §3.3.2, may be used. In

addition, as before, the lower bound λ∗ ≥ λS = max(0,−λ1) may be employed, so any

known upper bound on λ1 is useful. Inverse iteration/Rayleigh-quotient-based estimates

as described in §3.3.3, 3.3.4 and 3.3.6 are appropriate. The only real issue is in how to

compute improvements from a given λC in G or L.

3.4.1 New estimates from G

Consider first a λC ∈ G. We may then follow the reasoning in §3.2.3 to compute λk(β) =

λC + δk(β), where δk(β) is the least-negative root of

πk(δ; β) = (λ/σ)β/(p−2), (3.44)

the polynomial πk(δ; β) is the k-th degree Taylor approximant to π(λ; β) at λC, and β ∈ Bk.

If β/(p− 2) is an integer, the resulting equation is (or may be converted to) a polynomial

system, and easily solved. For non-integral β/(p− 2), we can use a derivative-based root

finder. Alternatively, as we saw in §3.2.3, we might instead pick λk,ℓ(β) = λC +δk,ℓ(β) from

the least-negative root δk,ℓ(β) of

πk(δ; β) = θℓ(δ; β), (3.45)

where θℓ(δ; β) is the ℓ-th order Taylor approximation to (λ/σ)β/(p−2); if β > 0 this is only

permissible if ⌈β/(p − 2)⌉ is even and ℓ = ⌈β/(p − 2)⌉ + 2j for some j ≥ 0. Since such

a root is inferior to δk(β), this alternative is only worthwhile if solving (3.44) is viewed

unreasonable.
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Once again, every estimate found in this way must lie in N ∪ L, and to encourage the

estimate to lie in L ideally we should pick the largest,

max
k∈N,β∈Bk

λk(β).

As before, the computationally viable under-estimate

λ+ = max
(

λ1(−1), λ2(− 2
3
), λ3(− 2

5
)
)

usually suffices. The less expensive but likely inferior alternative

λ+ = max
(

λ1,1(−1), λ2,2(− 2
3
), λ3,3(− 2

5
)
)

is another possibility.

3.4.2 Improving an estimate in L

Once we have found λC ∈ L, fast monotonic convergence is assured if we compute λk(β)

via (3.44) just as in §3.44 so long as k is odd and βk ∈ Bk (and thus πk(δ; β) < π(λC +δ) for

positive δ). Indeed, the convergence will be of asymptotic Q-order k+1 (see Theorem A.1).

If solving (3.44) is considered unreasonable for particular p and β, the (likely inferior)

alternative using (3.45) is available so long as ℓ = ⌈β/(p− 2)⌉ + 2j for some j ≥ 0 when

β > 0 or ℓ = 2j + 1 when β < 0 (see §3.2.3), and then the convergence will be of Q-order

min(k, ℓ) + 1 (see Theorem A.2).

Once again, the impractical

max
j∈N,β∈B2j+1

λ2j+1(β)

would be ideal, but both

λ+ = max
(

λ1(−1), λ3(2), λ3(− 2
5
)
)

and

λ+ = max
(

λ1,1(−1), λ3,2/(p−2)(2), λ3,3(− 2
5
)
)

will give quartic global convergence which is sufficient for all practical purposes. Higher-

order estimates might be added if factorization of H + λM dominates other costs.

4 Software and numerical experiments

The ideas developed in this paper have been implemented as a pair of thread-safe Fortran

95 packages—respectively TRS and RQS for problems (1.1) and (1.2)—as part of version 2.3

of the GALAHAD optimization library2 [22]. The packages provide a number of options.

2Available from http://galahad.rl.ac.uk/galahad-www/.
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The matrix H (and optionally M) may be given in a variety of sparse and dense matrix

formats. The highest degree of the Taylor polynomials used may be specified (up to three),

as may the number of inverse iterations performed. Iterative refinement may be used when

solving (2.3) and this is particularly important in the “hard” or “nearly hard” cases. Any

a priori knowledge of initial λL, λU and λ may optionally be provided, and this proves

useful when a sequence of problems is solved. Finally, there is an option to replace the

trust region constraint in TRS by the equation ‖x‖M = ∆ since there is currently much

interest in solving optimization problems on Riemannian manifolds including the hyper-

ellipsoid [1, 2]; in this case there is no longer the requirement that λ be positive, merely

that λ ≥ −λ1, and the algorithm is adapted in the obvious way. Currently the possible

improvement when λC ∈ N mentioned in §3.3.4 has not been implemented, as we await

the necessary features from the sparse factorization packages we are using.

As a comparison, we use the MINPACK-2 package3 dgqt which is an implementation

of the Moré-Sorensen [34] approach; we slightly modified this software to record and print

required details.

By way of a simple example, consider the data

H =





1 0 4

0 2 0

4 0 3



 , c1 =





5

0

4



 , c2 =





0

2

0



 , and c3 =





0

2

0.0001





with M = I and ∆ = 1. If we pick c = c1, the resulting problem (1.1) is an example of the

“easy case”. By contrast, c = c2 gives rise to the “hard case”, and c = c3 is the “nearly

hard case”. By default, TRS picks its initial value of λ automatically as described in §3.3.7.

Running TRS when c = c1 and stopping as soon as

∣

∣‖x(λ)‖ −∆
∣

∣ < 10−12 max(1, ∆) (4.1)

gives

it lambda_l lambda lambda_u

G 1 2.123105625617661E+00 4.468089744720383E+00 4.468089744720383E+00

it ||x||-radius lambda d_lambda

L 2 3.479156233026082E-04 3.999056146822190E+00 0.000000000000000E+00

L 3 9.769962616701378E-15 3.999999999999973E+00 9.438531777834491E-04

Normal stopping criteria satisfied

3 factorizations. Solution and Lagrange multiplier = -4.5000E+00 4.0000E+00

Here the characters G and L indicate that the current value of λ lies in the G and L regions
respectively, while lambda l, lambda u, ||x||-radius and d lambda are respectively the
current λL and λU, the residual |‖x(λ)‖−∆| and the change in λ. By contrast dgqt (started
with the same initial λ) yields

3Available from ftp://info.mcs.anl.gov/pub/MINPACK-2/gqt/.
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it lambda_l lambda lambda_u

G 1 0.000000000000000E+00 4.468089744720383E+00 4.468089744720383E+00

it ||x||-radius lambda d_lambda

L 2 1.398428589050060E-02 3.962817739881419E+00 3.693192836831821E-02

L 3 9.224016079900643E-05 3.999749668249738E+00 2.503204418455550E-04

L 4 4.166259115478965E-09 3.999999988691583E+00 1.130841750579190E-08

L 5 0.000000000000000E+00 4.000000000000001E+00 0.000000000000000E+00

5 factorizations. Solution and Lagrange multiplier = -4.5000E+00 4.0000E+00

Notice how using the higher (third)-order Taylor model improves the ultimate rate of

convergence; this is both typical in practice in the “easy case”, and to be expected.

Running TRS when c = c2 and stopping as soon as

λU − λL < 10−12 max(1, λU) (4.2)

gives

it lambda_l lambda lambda_u

G 1 2.123105625617661E+00 3.258147959821393E+00 3.258147959821393E+00

G 2 2.123105625617661E+00 2.328723983198157E+00 2.328723983198157E+00

G 3 2.123105625617661E+00 2.123310177530242E+00 2.123310177530242E+00

G 4 2.123105625617661E+00 2.123105625617669E+00 2.123105625617669E+00

G 5 2.123105625617661E+00 2.123105625617661E+00 2.123105625617669E+00

Hard-case stopping criteria satisfied. Interval width = 8.8818E-15

4 factorizations. Solution and Lagrange multiplier = -1.5466E+00 2.1231E+00

By contrast dgqt (again started with the same initial λ) yields

it lambda_l lambda lambda_u

G 1 0.000000000000000E+00 3.258147959821393E+00 3.258147959821393E+00

G 2 2.026074553757914E+00 2.569289916255538E+00 2.569289916255538E+00

G 3 2.102919568297307E+00 2.324437575312084E+00 2.324437575312084E+00

. .. ..................... ..................... .....................

G 36 2.123105625617661E+00 2.123105625639012E+00 2.123105625639012E+00

G 37 2.123105625617661E+00 2.123105625628336E+00 2.123105625628336E+00

G 38 2.123105625617661E+00 2.123105625622999E+00 2.123105625622999E+00

38 factorizations. Solution and Lagrange multiplier = -1.5466E+00 2.1231E+00

Notice now how the inverse Rayleigh-quotient iteration and improved lower bound on λ

obtained using the higher (second- and third)-order Taylor models dramatically improves

convergence; in the absence of better lower bounds dqdt essentially reverts to bisection

to ensure convergence. Once again TRS is superlinearly convergent, and the performance

indicated is typical in practice in the “hard case”.

Finally, running TRS when c = c3 and stopping as for the previous case, we obtain
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it lambda_l lambda lambda_u

G 1 2.123105625617661E+00 3.258147960635930E+00 3.258147960635930E+00

G 2 2.123105625617661E+00 2.328723983342385E+00 2.328723983342385E+00

G 3 2.123105625617661E+00 2.123310177530700E+00 2.123310177530700E+00

it ||x||-radius lambda d_lambda

L 4 2.275299065674614E-01 2.123160201503088E+00 0.000000000000000E+00

L 5 5.309901864716249E-04 2.123175951499089E+00 1.574999600073568E-05

G 6 2.611244553918368E-13 2.123176000326642E+00 4.882755266777394E-08

Normal stopping criteria satisfied

6 factorizations. Solution and Lagrange multiplier = -1.5467E+00 2.1232E+00

By comparison, for dgqt, we find

it lambda_l lambda lambda_u

G 1 0.000000000000000E+00 3.258147960635930E+00 3.258147960635930E+00

G 2 2.026074553651017E+00 2.569289916508920E+00 2.569289916508920E+00

G 3 2.102919568276703E+00 2.324437575415315E+00 2.324437575415315E+00

. .. ..................... ..................... .....................

G 12 2.123105561462512E+00 2.123463910456750E+00 2.123463910456750E+00

G 13 2.123105609581684E+00 2.123284752461381E+00 2.123284752461381E+00

G 14 2.123105621609018E+00 2.123195185146074E+00 2.123195185146074E+00

it ||x||-radius lambda d_lambda

L 15 2.402191047985047E-02 2.123173864436229E+00 2.113422099896687E-06

L 16 2.442362429893041E-04 2.123175977858329E+00 2.246578161241124E-08

L 17 2.750231753445576E-08 2.123176000324110E+00 2.530956130439299E-12

L 18 3.371303236576750E-12 2.123176000326641E+00 3.102986617653514E-16

G 19 2.123176000326641E+00 2.123176000326642E+00 2.123176000326642E+00

19 factorizations. Solution and Lagrange multiplier = -1.5467E+00 2.1232E+00

Here TRS immediately refines the lower bound on the interval of uncertainty to obtain a λ

in L, and thereafter converges rapidly to the required root. By contrast, the linear Taylor

model used by dgqt is less able to find a good λL, and this results in a number of essentially

bisection steps until L is reached. This again is indicative of the behaviour of the methods

in practice in the “nearly hard case”.

We should be cautious not to infer too much from these examples, particularly as dgqt

was originally designed to terminate fast with a low-accuracy but usable solution. However,

they do illustrate well the new design features we have added.

To see more generally the effect of improved convergence in both easy and hard cases,

we consider all the unconstrained problems contained in the CUTEr [21] test set; we restrict

our attention to those problems involving 2000 or fewer variables, since the dense Cholesky

factorization used by dgqt struggles with larger cases, and this leads to 97 examples. We

construct instances of (1.1) by setting c = ∇xf(x0) and H = ∇xxf(x0) for the given

objective function f(x) and starting point x0; a spherical trust-region of radius 1 is used.

We provided the same initial “guess” λ = 0 for both packages.



32 H. Sue Dollar, Nicholas I. M. Gould, and Daniel P. Robinson

In Table 4.1 we report the number of factorizations required by TRS and dgqt on each

problem; the algorithms terminate as soon as either (4.1) or (4.2) occurs. We also provide a

graphical interpretation of this data using performance profiles of the factorization counts

in Figure 4.1; briefly, given a set of test problems and a set of competing algorithms,

the i-th performance profiles pi(α) indicates the fraction of problems for which the i-th

algorithm is within a factor α of the best for a given metric—see [10] for a formal definition

of performance profiles and a discussion of their properties.

 0
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Figure 4.1: Performance profile for the numbers of factorizations required to solve the

sample set of CUTEr problems using dgqt compared to those using TRS.

Both the detailed and summary results indicate the improvements offered by the en-
hancements discussed in this paper. In most cases, the number of factorizations falls, and

for those cases where dgqt requires fewer factorizations, TRS is usually not significantly
worse. The worst performance is for problem GROWTHLS, and in details we see the following
for TRS:

it lambda_l lambda lambda_u

N 1 0.000000000000000E+00 0.000000000000000E+00 6.516158914938158E+06

G 2 0.000000000000000E+00 3.258079457469079E+06 3.258079457469079E+06

G 3 0.000000000000000E+00 3.258079457469079E+04 3.258079457469079E+04

G 4 0.000000000000000E+00 3.258079457469079E+02 3.258079457469079E+02

N 5 0.000000000000000E+00 3.258079457469079E+00 3.258079457469079E+02

G 6 3.258079457469079E+00 3.551306608641297E+01 3.551306608641297E+01

N 7 3.258079457469079E+00 1.075659756093366E+01 3.551306608641297E+01

G 8 1.075659756093366E+01 2.313483182367331E+01 2.313483182367331E+01

N 9 1.869105479497000E+01 1.869105479497000E+01 2.313483182367331E+01

N 10 1.869105479497000E+01 1.913543249784033E+01 2.313483182367331E+01
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problem dgqt TRS problem dgqt TRS problem dgqt TRS

3PK 8 7 EXTROSNB 2 3 PALMER5C 3 3

AKIVA 1 1 FLETCHCR 4 3 PALMER6C 4 3

ALLINITU 6 5 FMINSURF 6 5 PALMER7C 4 3

ARGLINA 1 1 GENROSE 6 4 PALMER8C 10 3

ARGLINB 2 2 GENROSEB 6 4 PARKCH 9 8

ARGLINC 2 2 GROWTHLS 14 14 PENALTY1 2 2

BARD 6 5 GULF 6 3 PENALTY2 4 3

BEALE 7 3 HAIRY 6 4 PENALTY3 2 2

BIGGS6 7 8 HATFLDD 5 4 PFIT1LS 8 3

BOX3 6 4 HATFLDE 5 4 PFIT2LS 7 3

BRKMCC 1 1 HEART6LS 11 4 PFIT3LS 7 3

BROWNAL 2 2 HEART8LS 5 4 PFIT4LS 7 3

BROWNBS 1 1 HELIX 7 4 POWELLSG 7 5

BROWNDEN 4 3 HIELOW 7 9 POWER 3 3

CHNROSNB 5 4 HIMMELBB 8 6 ROSENBR 1 1

CLIFF 2 3 HIMMELBF 8 4 S308 1 1

CUBE 5 4 HIMMELBG 6 3 SENSORS 4 3

DECONVU 6 4 HIMMELBH 4 3 SINEVAL 2 2

DENSCHNA 1 1 HUMPS 4 3 SISSER 1 1

DENSCHNB 7 5 HYDC20LS 6 4 SNAIL 4 3

DENSCHNC 1 1 JENSMP 1 1 SPARSINE 3 3

DENSCHND 4 3 KOWOSB 7 6 SPARSQUR 4 3

DENSCHNE 4 4 LOGHAIRY 5 8 STRATEC 9 8

DENSCHNF 1 1 MANCINO 3 2 STREG 2 2

DJTL 4 3 MEXHAT 1 1 TOINTGOR 4 3

EDENSCH 2 2 MEYER3 4 4 TOINTPSP 3 2

EG2 1 1 MSQRTALS 5 4 VARDIM 2 4

EIGENALS 4 4 MSQRTBLS 5 4 VAREIGVL 5 4

EIGENBLS 5 3 NONCVXU2 2 2 VIBRBEAM 15 13

EIGENCLS 5 4 NONCVXUN 2 2 WATSON 7 6

ENGVAL2 6 4 OSBORNEA 6 7 WOODS 4 3

ERRINROS 8 7 OSBORNEB 8 10 YFITU 8 5

EXPFIT 6 3

Table 4.1: The numbers of factorizations required to solve the sample set of CUTEr prob-

lems using dgqt compared to those using TRS.

G 11 1.913543249784033E+01 2.113513216075682E+01 2.113513216075682E+01

it ||x||-radius lambda d_lambda

L 12 8.884499521913303E-02 2.054711382755286E+01 0.000000000000000E+00

L 13 1.199973391163844E-05 2.058132199997437E+01 3.420817242151486E-02

L 14 1.088906742552354E-12 2.058132716354694E+01 5.163572570410224E-06
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Normal stopping criteria satisfied

Here, the character N records that the current value of λ lies in the N region. Observe that

the initial interval [λL, λU] is large, the first few iterations refine estimates from G which

eventually underestimate λ∗. This leads to a cycle to and from N and eventually to L
from whence fast convergence occurs. It is difficult to imagine how this might be improved

in general, and so we feel reassured that TRS behaves as well as might be expected.

Since both TRS and RQS are designed to cope with large problems, we illustrate its

performance on bigger problems from the CUTEr test set. In Table 4.2, we consider the

problem BOX as we increase its dimension n from a thousand to ten million; the Hessian

has non-zeros along the diagonal, and in positions (1, i), (i, 1), (n, i), (i, n), (n/2, i) and

(i, n/2), for all 1 ≤ i ≤ n. Here and elsewhere the experiments were performed on a single

CPU of a Dell Precision T340, single Core2 Quad Q9550 processor(2.83GHz, 1333MHz

FSB, 12MB L2 Cache) with 4GB RAM; the code is in double precision and compiled with

the g95 compiler using default (-O) optimization. For TRS we use the radius δ = 1, while

for RQS, cubic (p = 3) regularisation with a weight σ = 10 is used.

TRS RQS

n factorizations CPU factorizations CPU

1000 3 0.00 3 0.00

3162 3 0.02 3 0.02

10000 3 0.14 3 0.13

31622 2 1.04 3 1.04

100000 3 0.39 3 0.29

316228 2 1.03 3 1.01

1000000 3 4.04 2 2.56

3162278 3 12.92 2 8.10

10000000 1 24.58 2 28.82

Table 4.2: The numbers of factorizations and the CPU time (in seconds) required to solve

the CUTEr problem BOX in the trust-region (TRS) and cubic regularisation (RQS) cases, as

the dimension n increases.

The dominant cost here, as might be expected, is for the ordering and factorization of

H + λI, although for the largest problem the cost of the Rayleigh-quotient iteration also

starts to become significant.

In Table 4.3, we illustrate the behaviour on other large CUTEr examples. Although

the actual behaviour clearly depends on sparsity, and particularly on fill-in—the problem

NONCVUN is an example which fills in significantly during factorization—the main message

is that both TRS and RQS are capable of solving large problems, and thus often provide

good alternatives to iterative methods. We leave a more general comparison between

direct and iterative approaches for solving the subproblems to follow-up work, in which we

plan to investigate such subproblems in the context of general methods for unconstrained

optimization.
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TRS RQS

problem n factorizations CPU factorizations CPU

SCURLY10 100000 14 2.41 12 1.40

SCOSINE 100000 20 1.34 18 0.91

NONCVXUN 100000 2 287.17 2 299.98

INDEF 100000 5 0.65 2 0.31

FLETCBV2 100000 4 0.61 3 0.31

DIXMAANA 90000 3 0.42 3 0.38

FMINSRF2 90000 5 15.05 4 12.07

Table 4.3: The numbers of factorizations and the CPU time (in seconds) required to solve

a variety of large CUTEr problems in the trust-region (TRS) and cubic regularisation (RQS)

cases.

5 Comments and conclusions

Our aim has been to revisit the popular Gay-Moré-Sorensen [17, 34] algorithm(s) for the

direct solution of the trust-region subproblem and to provide flexible modern software for

this and the related regularized quadratic subproblem. We have provided enhancements so

that the method is both globally and superlinearly convergent in all (“easy” and “hard”)

cases. The resulting software is freely available as the packages TRS and RQS as part of the

GALAHAD optimization library [22].

Our next goal will be to investigate the use of these subproblem solvers as part of

general trust-region/regularisation methods for unconstrained and constrained optimiza-

tion methods. Of particular importance here is whether it pays off to solve the subprob-

lems more accurately than is currently done, and whether these methods are competitive

with iterative methods [5, 14, 15, 20, 25, 40, 41] for large problems. We are encouraged

here as the sparse-matrix factorization technology has advanced rapidly of late, and both

parallel/multi-core and out-of-core factorizations are now available and capable of coping

with matrices of high (in the millions) order [3, 27, 28, 37, 39].

Some iterative methods [5, 20] for the solution of (1.1) and (1.2) solve sequences of

problems of the same form, albeit now with simpler tridiagonal matrices H . Clearly the

improvements suggested in §3 are equally appropriate in this case. We plan to update the

relevant GALAHAD packages GLTR and GLRT to take account of this.

Problems involving linear equality constraints may be dealt with in essentially the same

way. For example, if we add the restrictions Ax = 0 to (1.1) or (1.2), the essential difference

is that the required x(λ), together with some auxiliary y(λ), satisfies

(

H + λM AT

A 0

)(

x(λ)

y(λ)

)

= −
(

c

0

)

(5.1)

rather than (2.3). Thus rather than assessing whether a given λ ∈ F by the success of

the Cholesky factorization of H + λM as we do in the unconstrained case, here instead we
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note that λ ∈ F if and only if the matrix

(

H + λM AT

A 0

)

(5.2)

is positive definite in the null-space of A, or equivalently that (5.2) is non-singular and has

precisely rank(A) negative eigenvalues [7, 18]. To verify the latter condition and then to

solve (5.1), any inertia-revealing symmetric, indefinite factorization package is appropriate

(see §3.1), although now numerical pivoting will be required for stability, and thus non-

static data structures for the factors may be required. All other aspects are essentially as

for the unconstrained cases covered in §3.3 and §3.4, although non-trivial initial values (cf.

§3.3.2) for λL and λU are not obvious.
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Appendix A

Let φ ∈ Cm+1, θ ∈ C1 : IR→ IR, and suppose we wish to find a root of the scalar equation

φ(λ) = θ(λ). (A.1)

Now suppose that a given λk is closest to the simple root λ∗, of (A.1)—the root is simple

if θ(1)(λ∗)− φ(1)(λ∗) 6= 0—and let

φm(δ; λk)
def
=

m
∑

i=0

φ(i)(λk)

i!
δi

be the m-th order Taylor approximation to φ(λk + δ). To improve on λk, we compute the

root δk of smallest magnitude to the approximating equation φm(δ; λk) = θ(λk +δ), update

λk+1 = λk + δk, increment k by 1, and repeat.
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Theorem A.1 Suppose that φ ∈ Cm+1, θ ∈ C1 : IR→ IR, that λ∗ is a simple root of

φ(λ) = θ(λ). Then for all λk sufficiently close to λ∗,

|λk + δk − λ∗| = O(|λk − λ∗|m+1),

where δk is the root of smallest magnitude of φm(δ; λk) = θ(λk + δ) and φm(δ; λk) is

the m-th order Taylor approximation to φ(λk + δ).

Proof. We first show that δk is small when λk is close to λ∗. Define the function

F (δ, λ) =
m
∑

i=0

φ(i)(λ)

i!
δi − θ(λ + δ).

From the assumptions of this theorem and the fact that

F (0, λ∗) = φ(λ∗)− θ(λ∗) = 0 and F ′(0, λ∗) = φ′(λ∗)− θ′(λ∗) 6= 0,

it follows by the implicit function theorem [4, Theorem 13.7] that there exists an open

neighborhood T of λ∗ such that λ∗ ∈ T ⊆ IR and a unique continuously differentiable

function G : T → IR such that

G(λ∗) = 0 and F
(

G(λ), λ
)

= 0. (A.2)

This implies that for λk sufficiently close to λ∗, we have G(λk) ≡ δk so that

lim
λk→λ∗

δk = lim
λk→λ∗

G(λk) = G(λ∗) = 0, (A.3)

where the last two equalities follow from the continuity of G and equation (A.2). There-

fore, δk converges to zero as λk approaches λ∗.

Now let ǫk = λ∗ − λk. Taylor’s theorem and the fact that λ∗ is a root give

φ(λ∗) = φm(ǫk; λk) +
φ(m+1)(ζk)

(m + 1)!
ǫm+1
k = θ(λ∗) (A.4)

for some ζk between λk and λ∗, while the definition of δk and Taylor’s theorem give

φm(δk; λk) = θ(λk+1) = θ(λ∗) + θ(1)(χk)(λk+1 − λ∗) (A.5)

for some other χk between λk+1 and λ∗. Hence, combining (A.4) and (A.5),

φm(δk; λk)− φm(ǫk; λk)− θ(1)(χk)(λk+1 − λ∗) =
φ(m+1)(ζk)

(m + 1)!
ǫm+1
k . (A.6)
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But

φm(δk; λk)− φm(ǫk; λk) =

m
∑

i=1

φ(i)(λk)

i!
(δi

k − ǫi
k)

= (λk+1 − λ∗)

(

φ(1)(λk) +
m
∑

i=2

φ(i)(λk)

i!

i−1
∑

j=0

δj
kǫ

i−j−1
k

)

(A.7)

in which case (A.6) gives

λk+1 − λ∗ =
κk

(m + 1)!
(λ∗ − λk)

m+1 (A.8)

where

κk =
φ(m+1)(ζk)

φ(1)(λk)− θ(1)(χk) +
m
∑

i=2

φ(i)(λk)

i!

i−1
∑

j=0

δj
kǫ

i−j−1
k

.

Then (A.3) implies that for sufficiently small λk − λ∗, |κk| ≤ 2|φ(m+1)(λ∗)/(φ(1)(λ∗) −
θ(1)(λ∗))| < ∞ because x∗ is a simple root, the required convergence estimate follows

from (A.8). 2

If we replace θ(λ) by a Taylor approximation we have the following simple generalisa-

tion.

Theorem A.2 Suppose that φ ∈ Cm+1, θ ∈ Cℓ+1 : IR → IR where min(m, ℓ) ≥ 1,

that λ∗ is a simple root of φ(λ) = θ(λ). Then for all λk sufficiently close to λ∗,

|λk + δk − λ∗| = O(|λk − λ∗|min(m,ℓ)+1),

where δk is the root of smallest magnitude of φm(δ; λk) = θℓ(δ; λk) and φm(δ; λk) and

θℓ(δ; λk) are the m-th and ℓ-th order Taylor approximations to φ(λk + δ) and θ(λk + δ)

respectively.

Proof. The proof follows the same general arguments as its predecessor. Under the

current assumptions of this theorem and using an argument similar to the previous

theorem, we may again show that

lim
λk→λ∗

δk = 0. (A.9)

Taylor’s theorem and the fact that λ∗ is a root give

φ(λ∗) = φm(ǫk; λk) +
φ(m+1)(ζk)

(m + 1)!
ǫm+1
k = θ(λ∗) = θℓ(ǫk; λk) +

θ(ℓ+1)(χk)

(ℓ + 1)!
ǫℓ+1
k
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for some ζk and χk between λk and λ∗, and hence

φm(δk; λk)− φm(ǫk; λk)− θℓ(δk; λk) + θℓ(ǫk; λk) =
φ(m+1)(ζk)

(m + 1)!
ǫm+1
k − θ(ℓ+1)(χk)

(ℓ + 1)!
ǫℓ+1
k .

(A.10)

But then, using (A.7) and the analogous expansion for θℓ(δk; λk)−θℓ(ǫk; λk), we deduce

(λk+1 − λ∗)

(

φ(1)(λk)− θ(1)(λk) +
m
∑

i=2

φ(i)(λk)

i!

i−1
∑

j=0

δj
kǫ

i−j−1
k −

ℓ
∑

i=2

θ(i)(λk)

i!

i−1
∑

j=0

δj
kǫ

i−j−1
k

)

=
φ(m+1)(ζk)

(m + 1)!
ǫm+1
k − θ(ℓ+1)(χk)

(ℓ + 1)!
ǫℓ+1
k

which leads to the desired estimate for sufficiently small λk − λ∗. 2

Appendix B

Let

π(λ)
def
= ‖x(λ)‖2M =

n
∑

i=1

γ2
i

(λ + λi)
2 ,

where λ1 ≤ λ2 ≤ . . . ≤ λn. Let

π(λ; β)
def
= ‖x(λ)‖βM = [π(λ)]

β
2 .

Differentiating π(λ; β) with respect to λ we obtain

π(1)(λ; β) = β
2
[π(λ)]

β
2
−1 π(1)(λ),

π(2)(λ; β) = β
2
[π(λ)]

β
2
−1 π(2)(λ) + β

2
(β

2
− 1) [π(λ)]

β
2
−2 [π(1)(λ)

]2
,

π(3)(λ; β) = β
2
[π(λ)]

β
2
−3
(

[π(λ)]2 π(3)(λ) + 3 (β
2
− 1)π(λ)π(1)(λ)π(2)(λ) (B.1)

+ (β
2
− 1) (β

2
− 2)

[

π(1)(λ)
]3
)

and π(4)(λ; β) = β
2
[π(λ)]

β
2
−4
(

[π(λ)]3 π(4)(λ) + 4 (β
2
− 1) [π(λ)]2 π(1)(λ)π(3)(λ) (B.2)

+3 (β
2
− 1) [π(λ)]2

[

π(2)(λ)
]2

+ 6 (β
2
− 1) (β

2
− 2)π(λ)

[

π(1)(λ)
]2

π(2)(λ)

+ (β
2
− 1) (β

2
− 2) (β

2
− 3)

[

π(1)(λ)
]4
)

.
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Since π(λ) =

n
∑

i=1

γ2
i / (λ + λi)

2 it follows that

π(1)(λ) = −2

n
∑

i=1

γ2
i

(λ + λi)
3 , (B.3)

π(2)(λ) = 6

n
∑

i=1

γ2
i

(λ + λi)
4 , (B.4)

π(3)(λ) = −24
n
∑

i=1

γ2
i

(λ + λi)
5 , (B.5)

π(4)(λ) = 120

n
∑

i=1

γ2
i

(λ + λi)
6 . (B.6)

Lemma B.3 Let β ≥ 0, then π(3)(λ; β) ≤ 0 for all λ ∈ (λS,∞); let β ∈ [−2
3
, 0), then

π(3)(λ; β) ≥ 0 for all λ ∈ (λS,∞). These inequalities are strict if γi 6= 0 for some i.

Proof. Substituting (B.3)–(B.5) into (B.1) and rearranging we obtain

π(3)(λ; β) = β [π(λ)]β−6 η(λ; β),

where

η(λ; β) = (−β2 + 6β − 8)

(

n
∑

i=1

γ2
i

(λ + λi)
3

)3

− 12

(

n
∑

i=1

γ2
i

(λ + λi)
2

)2( n
∑

i=1

γ2
i

(λ + λi)
5

)

+(18− 9β)

(

n
∑

i=1

γ2
i

(λ + λi)
2

)(

n
∑

i=1

γ2
i

(λ + λi)
3

)(

n
∑

i=1

γ2
i

(λ + λi)
4

)

.

If γi = 0 for i = 1, . . . , n, clearly π(3)(λ; β) = 0 for all β. Furthermore, from Lemma B.4

we deduce that π(3)(λ; β) ≤ 0 for all λ ∈ (λS,∞) and β > 0; π(3)(λ; β) ≥ 0 for all

λ ∈ (λS,∞) and β ∈ [−2
3
, 0]. 2
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Lemma B.4 Let
∑n

i=1 γ2
i > 0 and

η(λ; β) = (−β2 + 6β − 8)

(

n
∑

i=1

γ2
i

(λ + λi)
3

)3

− 12

(

n
∑

i=1

γ2
i

(λ + λi)
2

)2( n
∑

i=1

γ2
i

(λ + λi)
5

)

+(18− 9β)

(

n
∑

i=1

γ2
i

(λ + λi)
2

)(

n
∑

i=1

γ2
i

(λ + λi)
3

)(

n
∑

i=1

γ2
i

(λ + λi)
4

)

.

The expression η(λ; β) is negative for all λ ∈ (λS,∞) and β ≥ −2
3
.

Proof. The proof is by induction. Let γp 6= 0 and γi = 0 for all i < p. Define

η(λ; β; q) = (−β2 + 6β − 8)

(

q
∑

i=p

γ2
i

(λ + λi)
3

)3

− 12

(

q
∑

i=p

γ2
i

(λ + λi)
2

)2( q
∑

i=p

γ2
i

(λ + λi)
5

)

+(18− 9β)

(

q
∑

i=p

γ2
i

(λ + λi)
2

)(

q
∑

i=p

γ2
i

(λ + λi)
3

)(

q
∑

i=p

γ2
i

(λ + λi)
4

)

and note that η(λ; β) = η(λ; β; n).

Now η(λ; β; p) = (−β2 − 3β − 2)
γ6

p

(λ+λp)9
< 0 for all λ ∈ (λS,∞) and β ≥ −2

3
.

Assume that η(λ; β; k − 1) < 0 for all λ ∈ (λS,∞). Now

η(λ β; k) = η(λ; β; k − 1) +
(

−β2 − 3β − 2
) γ6

k

(λ + λk)
9

+

k−1
∑

i=p

γ4
kγ

2
i η1(λ; λk; λi; β)

(λ + λk)
7 (λ + λi)

5

+

k−1
∑

i,j=p

γ2
kγ

2
i γ

2
j η2(λ; λk; λj; λi; β)

(λ + λk)
5 (λ + λi)

5 (λ + λj)
5 ,

where

η1(λ; λk; λi; β) = (−9β − 6) (λ + λi)
3 +

(

−3β2 + 9β − 6
)

(λ + λi)
2 (λ + λk)

+ (18− 9β) (λ + λi) (λ + λk)
2 − 12 (λ + λk)

3 ,

η2(λ; λk; λj ; λi; β) = −12 (λ + λi)
3 (λ + λj)

3 − 12 (λ + λi)
3 (λ + λk)

3 − 12 (λ + λj)
3 (λ + λk)

3

+
18− 9β

2

(

(λ + λi)
2 (λ + λj)

3 (λ + λk) + (λ + λi)
3 (λ + λj)

2 (λ + λk)
)

+
18− 9β

2

(

(λ + λi) (λ + λj)
3 (λ + λk)

2 + (λ + λi)
3 (λ + λj) (λ + λk)

2)

+
18− 9β

2

(

(λ + λi) (λ + λj)
2 (λ + λk)

3 + (λ + λi)
2 (λ + λj) (λ + λk)

3)

+
(

−3β2 + 18β − 24
)

(λ + λi)
2 (λ + λj)

2 (λ + λk)
2
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The proof is completed by showing that for all β ≥ −2
3
, η1(λ; λk; λi; β) is non-positive for

all λ ∈ [max(0,−λi),∞) and η2(λ; λk; λj; λi; β) is non-positive for all λ ∈ [max(0,−λi,−λj),∞) .

We give a sketch of the methodology for proving these results and refer the reader to [11]

for more details.

Consider η1(λ; λk; λi; β). Let λiS := max(0,−λi). Using the assumption that λi ≤ λk we

prove the result by showing that

η1(λiS; λk; λi; β), η
(1)
1 (λiS; λk; λi; β), η

(2)
1 (λiS; λk; λi; β), η

(3)
1 (λ; λk; λi; β)

are all non-positive, where each derivative is with respect to λ. For λi ≤ 0, this is

straightforward to do. For λi > 0, each derivative will be a polynomial in terms of λk

and λi (and β). We show that these are all non-positive for all λk ≥ λi by descending

through their own derivatives with respect to λk and showing that the value of each of

these derivatives is non-positive at λk = λi for all β ≥ −2
3
.

The proof for η2(λ; λk; λj; λi; β) is similar to that of η1(λ; λk; λi; β). Without loss of

generality assume that λk ≥ λj ≥ λi. We show that

η2(λiS; λk; λj; λi; β), η
(1)
2 (λiS; λk; λj; λi; β), . . . , η

(6)
2 (λ; λk; λj ; λi; β)

are non-negative for all β ≥ −2
3
. For λi > 0, each of these derivates will be polynomials

in terms of λk, λj and λj. We show that these polynomials are non-positive by descend-

ing through their own derivatives with respect to λk and showing that these derivatives

are non-positive for λk = λj. Correspondingly, each of these will be polynomials in

terms of λi and λj which we show to be non-positive for all λj ≥ λi and β ≥ −2
3
.

Hence, η(λ, k) < 0 for all λ ∈ (λS,∞). This completes the proof.

2

Lemma B.5 Let β ≥ 0, then π(4)(λ; β) ≥ 0 for all λ ∈ (λS,∞); let β ∈ [−2
5
, 0), then

π(4)(λ; β) ≤ 0 for all λ ∈ (λS,∞). These inequalities are strict if γi 6= 0 for some i.

Proof. Substituting (B.3)–(B.6) into (B.2) we obtain

π(4)(λ; β) = β [π(λ)]β−8 ζ(λ; β),
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where

ζ(λ; β) = (β − 2) (β − 4) (β − 6)

(

n
∑

i=1

γ2
i

(λ + λi)
3

)4

+60

(

n
∑

i=1

γ2
i

(λ + λi)
2

)3( n
∑

i=1

γ2
i

(λ + λi)
6

)

+27 (β − 2)

(

n
∑

i=1

γ2
i

(λ + λi)
2

)2( n
∑

i=1

γ2
i

(λ + λi)
4

)2

+48 (β − 2)

(

n
∑

i=1

γ2
i

(λ + λi)
2

)2( n
∑

i=1

γ2
i

(λ + λi)
3

)(

n
∑

i=1

γ2
i

(λ + λi)
5

)

+18 (β − 2) (β − 4)

(

n
∑

i=1

γ2
i

(λ + λi)
2

)(

n
∑

i=1

γ2
i

(λ + λi)
3

)2( n
∑

i=1

γ2
i

(λ + λi)
4

)

If γi = 0 for i = 1, . . . , n, clearly π(4)(λ; β) = 0 for all β. Furthermore, from Lemma B.6

we deduce that π(4)(λ; β) ≥ 0 for all λ ∈ (λS,∞) and β > 0; π(4)(λ; β) ≤ 0 for all

λ ∈ (λS,∞) and β ∈ [−2
5
, 0].

2

Lemma B.6 Let
∑n

i=1 γ2
i > 0 and

ζ(λ; β) = (β − 2) (β − 4) (β − 6)

(

n
∑

i=1

γ2
i

(λ + λi)
3

)4

+60

(

n
∑

i=1

γ2
i

(λ + λi)
2

)3( n
∑

i=1

γ2
i

(λ + λi)
6

)

+27 (β − 2)

(

n
∑

i=1

γ2
i

(λ + λi)
2

)2( n
∑

i=1

γ2
i

(λ + λi)
4

)2

+48 (β − 2)

(

n
∑

i=1

γ2
i

(λ + λi)
2

)2( n
∑

i=1

γ2
i

(λ + λi)
3

)(

n
∑

i=1

γ2
i

(λ + λi)
5

)

+18 (β − 2) (β − 4)

(

n
∑

i=1

γ2
i

(λ + λi)
2

)(

n
∑

i=1

γ2
i

(λ + λi)
3

)2( n
∑

i=1

γ2
i

(λ + λi)
4

)

.

The expression ζ(λ; β) is positive for all λ ∈ (λS,∞) and β ≥ −2
5
.
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Proof. The proof is by induction. Let γp 6= 0 and γi = 0 for all i < p. Define

ζ(λ; β; q) = (β − 2) (β − 4) (β − 6)

(

q
∑

i=p

γ2
i

(λ + λi)
3

)4

+60

(

q
∑

i=p

γ2
i

(λ + λi)
2

)3( q
∑

i=p

γ2
i

(λ + λi)
6

)

+27 (β − 2)

(

q
∑

i=p

γ2
i

(λ + λi)
2

)2( q
∑

i=p

γ2
i

(λ + λi)
4

)2

+48 (β − 2)

(

q
∑

i=p

γ2
i

(λ + λi)
2

)2( p
∑

i=q

γ2
i

(λ + λi)
3

)(

q
∑

i=p

γ2
i

(λ + λi)
5

)

+18 (β − 2) (β − 4)

(

q
∑

i=p

γ2
i

(λ + λi)
2

)(

q
∑

i=p

γ2
i

(λ + λi)
3

)2( q
∑

i=p

γ2
i

(λ + λi)
4

)

and note that ζ(λ; β) = ζ(λ; β; n).

Now ζ(λ; β; p) = (β3 + 6β2 + 11β + 6)
γ8

p

(λ+λp)12
> 0 for all λ ∈ (λS,∞) and β ≥ −2

5
.

Assume that ζ(λ; β; k − 1) > 0 for all λ ∈ (λS,∞). Now

ζ(λ; β; k) = ζ(λ; β; k − 1) +
(

β3 + 6β2 + 11β + 6
) γ8

1

(λ + λk)
12

+

k−1
∑

i=p

γ6
kγ

2
i ζ1(λ; λk; λi; β)

(λ + λk)
10 (λ + λi)

6

+

k−1
∑

i,j=p

γ4
kγ

2
i γ

2
j ζ2(λ; λk; λj; λi; β)

(λ + λk)
8 (λ + λi)

6 (λ + λj)
6

+

k−1
∑

i,j,l=p

γ2
kγ

2
i γ

2
j γ

2
l ζ3(λ; λk; λl; λj; λi; β)

(λ + λk)
6 (λ + λi)

6 (λ + λj)
6 (λ + λl)

6,
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where

ζ1(λ; λk; λi; β) =
(

18β2 + 42β + 24
)

(λ + λi)
4 + 60 (λ + λk)

4

+
(

4β3 − 12β2 + 8β
)

(λ + λi)
3 (λ + λk) − 48 (2− β) (λ + λi) (λ + λk)

3

+
(

18β2 − 54β + 36
)

(λ + λi)
2 (λ + λk)

2 ,

ζ2(λ; λk; λj; λi; β) = (75β + 30) (λ + λi)
4 (λ + λj)

4

+90 (λ + λi)
4 (λ + λk)

4 + 90 (λ + λj)
4 (λ + λk)

4

+
(

18β2 − 60β + 48
)

(λ + λi)
3 (λ + λj)

4 (λ + λk)

+
(

18β2 − 60β + 48
)

(λ + λi)
4 (λ + λj)

3 (λ + λk)

−48 (2− β) (λ + λi) (λ + λj)
4 (λ + λk)

3

−48 (2− β) (λ + λi)
4 (λ + λj) (λ + λk)

3

−24 (2− β) (λ + λi) (λ + λj)
3 (λ + λk)

4

−24 (2− β) (λ + λi)
3 (λ + λj) (λ + λk)

4

−27 (2− β) (λ + λi)
2 (λ + λj)

2 (λ + λk)
4

+
(

9β2 − 36
)

(λ + λi)
2 (λ + λj)

4 (λ + λk)
2

+
(

9β2 − 36
)

(λ + λi)
4 (λ + λj)

2 (λ + λk)
2

+18
(

β2 − 6β + 8
)

(λ + λi)
2 (λ + λj)

3 (λ + λk)
3

+18
(

β2 − 6β + 8
)

(λ + λi)
3 (λ + λj)

2 (λ + λk)
3

+
(

6β3 − 54β2 + 156β − 144
)

(λ + λi)
3 (λ + λj)

3 (λ + λk)
2 ,

and

ζ3(λ;λk;λl;λj ;λi;β) = 60 (λ + λi)
4 (λ + λj)

4 (λ + λl)
4

+60 (λ + λi)
4 (λ + λj)

4 (λ + λk)
4

+60 (λ + λi)
4 (λ + λk)

4 (λ + λl)
4

+60 (λ + λj)
4 (λ + λk)

4 (λ + λl)
4

+ (16β − 32)
∑

{n1,n2,n3,n4}
∈perm(1,3,4,4)

(λ + λi)
n1 (λ + λj)

n2 (λ + λk)
n3 (λ + λl)

n4

+ (18β − 36)
∑

{n1,n2,n3,n4}
∈perm(2,2,4,4)

(λ + λi)
n1 (λ + λj)

n2 (λ + λk)
n3 (λ + λl)

n4

+
(

6β2 − 36β + 48
)

∑

(n1,n2,n3,n4)
∈perm(2,3,3,4)

(λ + λi)
n1 (λ + λj)

n2 (λ + λk)
n3 (λ + λl)

n4

+
(

4β3 − 48β2 + 176β − 192
)

(λ + λk)
3 (λ + λi)

3 (λ + λj)
3 (λ + λl)

3
,

where perm(i, j, k, l) is defined to be the set of distinct permutations of the arguments.

For example,

perm(2, 2, 4, 4) = {(2, 2, 4, 4) , (2, 4, 2, 4) , (2, 4, 4, 2) , (4, 2, 2, 4) , (4, 2, 4, 2) , (4, 4, 2, 2)} .
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Without loss of generality, we assume that λk ≥ λj ≥ λi in ζ2(λ; λk; λj; λi; β), and

λk ≥ λl ≥ λj ≥ λi in ζ3(λ; λk; λl; λj; λi; β).

The proof is completed by showing that ζ1(λ; λk; λi; β), ζ2(λ; λk; λj; λi; β) and

ζ3(λ; λk; λl; λj; λi; β) are non-negative for all β ≥ −2
5

and λ ∈ [max(0,−λi),∞) . The

methodology for proving these results is similar to that used in the proof of Lemma B.4.

We refer the reader to [11] for further details.
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