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Abstract. The mixing set with a knapsack constraint arises in deterministic equiv-
alent of chance-constrained programming problems with finite discrete distributions.
We first consider the case that the chance-constrained program has equal probabili-
ties for each scenario. We study the resulting mixing set with a cardinality constraint
and propose facet-defining inequalities that subsume known explicit inequalities for
this set. We extend these inequalities to obtain valid inequalities for the mixing set
with a knapsack constraint. In addition, we propose a compact extended reformula-
tion (with polynomial number of variables and constraints) that characterizes a linear
programming equivalent of a single chance constraint with equal scenario probabil-
ities. We introduce a blending procedure to find valid inequalities for intersection
of multiple mixing sets. We propose a polynomial-size extended formulation for the
intersection of multiple mixing sets with a knapsack constraint that is stronger than
the original mixing formulation. We also give a compact extended linear program
for the intersection of multiple mixing sets and a cardinality constraint for a special
case. We illustrate the effectiveness of the proposed inequalities in our computational
experiments with probabilistic lot-sizing problems.

Key words: Mixed-integer programming, facets, compact extended formulations,
chance constraints, lot-sizing, computation.

1. Introduction4

Many optimization problems in practice contain quality of service (QoS) or relia-5

bility constraints that result in probabilistic (chance) constraints. In this paper, we6

consider mixed-integer programming (MIP) reformulations of chance-constrained pro-7

grams with joint probabilistic constraints in which the right-hand-side vector is random8

with a finite discrete distribution (Ruszczyński, 2002, Luedtke et al., 2010). The re-9

formulation contains the mixing set (Günlük and Pochet, 2001) with an additional10

cardinality/knapsack constraint as a substructure. We first study the mixing set with11

a cardinality constraint and propose facet-defining inequalities that subsume the ex-12

plicit inequalities given by Luedtke et al. (2010). In addition, we propose a compact13
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extended reformulation (with polynomial number of variables and constraints) that1

characterizes a linear programming equivalent of a single inequality in the probabilistic2

constraint for a special case. This is in contrast to an exponential extended formula-3

tion proposed in Luedtke et al. (2010). We extend the results derived for the mixing4

set with a cardinality constraint to obtain valid inequalities for the mixing set with5

a knapsack constraint. In addition, we introduce a blending procedure to find valid6

inequalities for intersection of multiple mixing sets.7

Charnes et al. (1958) were first to define a chance-constrained program with disjoint8

probabilistic constraints. Miller and Wagner (1965) study chance-constrained pro-9

gramming with joint probabilistic constraints for independent random variables. Joint10

probabilistic constraints with dependent random variables were introduced in Prékopa11

(1973). Sen (1992) studies chance-constrained programs with discrete distributions12

and gives a disjunctive programming reformulation by using so-called (1− τ)-efficient13

points (Prékopa, 1990). Valid inequalities are proposed based on the extreme points14

of the reverse polar of the disjunctive program. The computational challenges of this15

approach are the enumeration of the (1 − τ)-efficient points and the solution of a16

linear program for each cut generation. Dentcheva et al. (2000) use (1 − τ)-efficient17

points to obtain various reformulations for chance-constrained programming with dis-18

crete random variables and to derive valid bounds on the optimal objective function19

value. Ruszczyński (2002) uses the concept of (1− τ)-efficient points to derive consis-20

tent orders on different scenarios representing the discrete distribution. The consistent21

ordering is represented with precedence constraints and valid inequalities for the re-22

sulting precedence-constrained knapsack set are proposed. Beraldi and Ruszczyński23

(2002a) propose a branch-and-bound method for chance-constrained integer programs24

using a partial enumeration of the (1− τ)-efficient points.25

Some recent applications of chance-constrained programs with discrete distributions26

are probabilistic set covering (Beraldi and Ruszczyński, 2002b, Saxena et al., 2010),27

probabilistic lot/batch sizing (Beraldi and Ruszczyński, 2002a, Lulli and Sen, 2004),28

and probabilistic production and distribution planning (Lejeune and Ruszczyński,29

2007).30

The particular MIP reformulation of the chance-constrained programs of interest in31

this paper is proposed in Luedtke et al. (2010). This reformulation contains the mixing32

set as a substructure. Günlük and Pochet (2001) first introduced the mixing set and33

gave valid inequalities that define the convex hull of feasible solutions. Because this34

is a fundamental substructure arising in different contexts, various extensions of the35

mixing set has been studied, such as the continuous mixing set (Miller and Wolsey,36

2003, van Vyve, 2005), mixing set with flows (Conforti et al., 2007) and mixing set37

with divisible capacities (Zhao and de Farias Jr, 2008).38
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Let ξ denote a d-variate random variable with a known finite discrete cumulative1

distribution function, F (z) = P (ξ ≤ z). Given A, a d× n matrix, c, an n-dimensional2

cost vector, τ , a threshold probability with 0 ≤ τ ≤ 1, and X ⊆ Rn1 × Zn2 , where3

n1 + n2 = n, the chance-constrained programming problem is4

min cTx5

s.t. P (Ax ≥ ξ) ≥ 1− τ6

x ∈ X,7

or equivalently8

min cTx9

s.t. y = Ax10

P (y ≥ ξ) ≥ 1− τ11

x ∈ X.12

Suppose that the random vector ξ has finitely many realizations (scenarios) given13

by h1,h2, . . . ,hn, where hi = (h1i, h2i, . . . , hdi), with probabilities π1, π2, . . . , πn, re-14

spectively. By definition, 0 < π1, π2, . . . , πn < 1 and
∑n

i=1 πi = 1. Throughout, we15

assume, without loss of generality, that hti ≥ 0 for all t = 1, . . . , d and i = 1, . . . , n.16

(For each t = 1, . . . , d, if there exists i = arg min{hti : i = 1, . . . , n} with hti < 0, then17

we can replace htj by htj − hti for all j = 1, . . . , n and let y = Ax − htiet, where et18

is the unit vector of size d, with tth entry equal to 1 and the other entries equal to19

0.) Throughout, we let [i, j] := {t ∈ Z : i ≤ t ≤ j}. A deterministic equivalent of the20

chance-constrained program is21

min cTx22

s.t. y = Ax(1)23

yt ≥ hti(1− zi) t ∈ [1, d], i ∈ [1, n](2)24 ∑n
i=1 πizi ≤ τ(3)25

x ∈ X,0 ≤ z ≤ 1(4)26

z ∈ Zn,(5)27

where zi = 0 implies that under scenario i we have no violated inequality in the28

probabilistic constraint (i.e., y = Ax ≥ hi) at the solution (y, x). If at least one29

inequality in the probabilistic constraint is violated (i.e., y = Ax 6≥ hi) in a feasible30

solution, then zi = 1. When zi = 1, we have yt ≥ 0, which trivially follows from31

the assumption that hti ≥ 0 for all t = 1, . . . , d, i = 1, . . . , n. The total probability32

of violating the joint chance constraint is then given by P (Ax 6≥ ξ) ≤
∑n

i=1 πizi,33

which must not exceed the threshold τ . Note that the inequalities (2)–(3) contain the34
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intersection of d mixing sets with a knapsack constraint as a substructure. We study1

this set in more detail in Sections 3 and 5.2

Outline. In Section 2, we review earlier results from the study of related mixing sets.3

In Section 3, we give facet-defining inequalities for the mixing set with a cardinality4

constraint that subsume the known inequalities for this set. In Section 4, we give a5

compact extended formulation that characterizes a linear programming equivalent of a6

single probabilistic constraint with equal scenario probabilities. In Section 5, we extend7

our results to give valid inequalities for the mixing set with a knapsack constraint. In8

Section 6, we introduce a blending approach and reformulations for intersection of9

multiple mixing sets with a cardinality/knapsack constraint. In Section 7 we illustrate10

the effectiveness of the proposed inequalities in our computational experiments with11

probabilistic lot-sizing problems. We conclude with Section 8.12

2. Mixing sets arising in chance-constrained programming13

For t = 1, . . . , d, let14

Kt = {(yt, z) ∈ R+ × {0, 1}n :
n∑
i=1

πizi ≤ τ, yt + htizi ≥ hti, i ∈ [1, p]}.15

The set Kt is a mixing set with a knapsack constraint. We are interested in studying16

the polyhedral structure of the intersection of mixing sets with a (single) knapsack con-17

straint given by ∩dt=1Kt, which arises in deterministic equivalent of chance-constrained18

programs (see (2)–(3)).19

First, we consider a single mixing set with a knapsack constraint, i.e., d = 1. Drop-20

ping the subscript t we get21

K = {(y, z) ∈ R+ × {0, 1}n :
n∑
i=1

πizi ≤ τ, y + hizi ≥ hi, i ∈ [1, n]}.22

We assume that hi are in non-increasing order, h1 ≥ h2 ≥ · · · ≥ hn. As observed23

by Luedtke et al. (2010), for ν such that
∑ν

i=1 πi ≤ τ and
∑ν+1

i=1 πi > τ , we must24

have y ≥ hν+1. Then constraints y + hizi ≥ hi for i = ν + 1, . . . , n are redundant.25

Furthermore, given that y ≥ hν+1 in any solution, y + (hi − hν+1)zi ≥ hi is valid26

and at least as strong as y + hizi ≥ hi. To see this, note that for zi = 0 the two27

inequalities are equivalent, and for zi = 1 the former reduces to y ≥ hν+1, whereas the28

latter reduces to y ≥ 0. Therefore, we can rewrite K as K = {(y, z) ∈ R+ × {0, 1}n :29 ∑n
i=1 πizi ≤ τ, y+(hi−hν+1)zi ≥ hi, i ∈ [1, ν]}. Note that we do not drop the variables30

zi for i = ν + 1, . . . , n because they are necessary when we consider the intersection of31

multiple mixing sets, Kt, t = 1, . . . , d.32
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2.1. Basic mixing set. The basic mixing set is first defined in Günlük and Pochet1

(2001). The mixing set arising in chance-constrained programming is given by2

S = {(y, z) ∈ R+ × {0, 1}n : y + (hi − hν+1)zi ≥ hi, i ∈ [1, ν]}.3

Theorem 1 (Günlük and Pochet (2001), Atamtürk et al. (2000)). For T = {t1, t2, . . . , ta} ⊆4

{1, . . . , ν}, the inequalities5

(6) y +
a∑
j=1

(htj − htj+1
)ztj ≥ ht1 ,6

where t1 < t2 < · · · < ta and hta+1 = hν+1, are valid for S and facet-defining for7

conv(S) when t1 = 1.8

We illustrate inequalities (6) in an example.9

Example 1. Let h = (40, 38, 34, 31, 26, 16, 8, 4, 2, 1) for n = 10, and ν = 6.10

y + 32z1 ≥ 40

y + 30z2 ≥ 38

y + 26z3 ≥ 34

y + 23z4 ≥ 31

y + 18z5 ≥ 26

y + 8z6 ≥ 16.

For T = {1, 2, 4}, the mixing inequality is11

y + (40− 38)z1 + (38− 31)z2 + (31− 8)z4 ≥ 40.12

�13

2.2. Mixing set with a cardinality constraint. Consider the chance-constrained14

program for which the scenarios are empirically approximated through i.i.d. sampling.15

In this case, hi are independent observations of ξ with πi = 1/n for all i = 1, . . . , n.16

For example, Luedtke and Ahmed (2008) give a sample approximation approach to get17

bounds for chance-constrained programs in which the original distribution is replaced18

by an empirical distribution obtained by independent Monte-Carlo sampling.19

When πi = 1/n for all i, the knapsack constraint (3) can be written as a cardinality20

constraint:21

(7)
n∑
i=1

zi ≤ bnτc = p,22
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and ν = p, where ν is such that
∑ν

i=1 πi ≤ τ and
∑ν+1

i=1 πi > τ . Let1

Q = {(y, z) ∈ R+ × {0, 1}n :
n∑
i=1

zi ≤ p, y + hizi ≥ hi, i ∈ [1, n]}.2

Also, for t = 1, . . . , d let3

Qt = {(yt, z) ∈ R+ × {0, 1}n :
n∑
i=1

zi ≤ p, yt + htizi ≥ hti, i ∈ [1, n]}.4

Theorem 2 (Luedtke et al. (2010)). For m ∈ Z+ with m ≤ p, let T = {t1, t2, . . . , ta} ⊆5

{1, . . . ,m} where t1 < t2 < · · · < ta and Q = {q1, q2, . . . , qp−m} ⊆ {p + 1, . . . , n}, the6

inequalities7

(8) y +
a∑
j=1

(htj − htj+1
)ztj +

p−m∑
i=1

∆m
i (1− zqi) ≥ ht1 ,8

where for m < p9

(9) ∆m
i =

{
hm+1 − hm+2 i = 1

max{∆m
i−1, hm+1 − hm+i+1 −

∑i−1
j=1 ∆m

j } i ∈ [2, p−m],
10

and hta+1 := hm+1, are valid for Q and facet-defining for conv(Q) when t1 = 1.11

Example 1 (cont.) For T = {1, 2} and Q = {7, 8, 9}, m = 3, inequality (8) is12

y+(40−38)z1 +(38−31)z2 +(31−26)(1−z7)+(31−16−5)(1−z8)+10(1−z9) ≥ 40.13

�14

3. Proposed Valid Inequalities for the Mixing set with a cardinality15

constraint16

In this section, we give a class of inequalities that contains inequalities (8) as a17

special case.18

Theorem 3. For m ∈ Z+ such that m ≤ p, let T = {t1, t2, . . . , ta} ⊆ {1, . . . ,m}19

with t1 < t2 < · · · < ta, L ⊆ {m + 2, . . . , n} and a permutation of the elements in L,20

ΠL = {`1, `2, . . . , `p−m} such that `j ≥ m+ 1 + j. The (T,ΠL) inequalities21

(10) y +
a∑
j=1

(htj − htj+1
)ztj +

p−m∑
j=1

αj(1− z`j) ≥ ht1 ,22

are valid for Q, where ta+1 = m+ 1 and for m < p23

(11) αj =

{
hm+1 − hm+1+j j = 1

max{αj−1, hm+1 − hm+1+j −
∑

i:i<j and `i≥m+1+j
αi} j ∈ [2, p−m].

24
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Proof. First note that α1 ≤ α2 ≤ · · · ≤ αp−m. If y ≥ ht1 then inequality (10) is trivially1

satisfied. If y ≥ hti for some i = 2, . . . , a and y < htj for all j ∈ [1, i− 1], then we must2

have ztj = 1 for all j ∈ [1, i− 1]. Thus,3

y +
a∑
j=1

(htj − htj+1
)ztj ≥ hti +

i−1∑
j=1

(htj − htj+1
) = ht1 ≥ ht1 −

p−m∑
j=1

αj(1− z`j),4

and inequality (10) is satisfied. Therefore, we assume that y < hta and ztj = 1 for all5

j = 1, . . . , a in the rest of the proof. Hence,6

(12)
a∑
j=1

(htj − htj+1
)ztj = ht1 − hm+1.7

Now suppose that y ≥ hm+1. Then8

y +
a∑
j=1

(htj − htj+1
)ztj ≥ hm+1 + ht1 − hm+1 ≥ ht1 −

p−m∑
j=1

αj(1− z`j),9

and inequality (10) is valid. Otherwise, we must have hm+i′ > y ≥ hm+i′+1 for some10

i′ = 1, . . . , p−m. Thus, zj = 1 for all j = 1, . . . ,m+ i′. Because
∑n

j=1 zj ≤ p, we have11

(13)
n∑

j=m+i′+1

zj ≤ p−m− i′.12

Let i′′ = |{j : j ∈ [1, p − m] and `j ≤ m + i′}|. Note that, due to the choice of the13

ordering in L, ΠL, if `j ≤ m + i′, then we must have j < i′. As a result, i′′ = |{j :14

j ∈ [1, i′ − 1] and `j ≤ m + i′}| < i′. So in the set L \ [1,m + i′] there are p −m − i′′15

elements. For j ∈ L \ [1,m + i′] we have |{j ∈ L \ [1,m + i′] : zj = 1}| ≤ p −m − i′16

(from (13)), and so |{j ∈ L \ [1,m+ i′] : zj = 0}| ≥ i′ − i′′. Thus,17

p−m∑
j=1

αj(1− z`j) =
∑

j:`j≥m+1+i′

αj(1− z`j) ≥ αi′ +
∑

j:j<i′,`j≥m+1+i′

αj(14)

≥ hm+1 − hm+1+i′ .

To see the first inequality in (14), note that the coefficients, α, are in increasing order,18

so the i′ − i′′ elements of the set {j ∈ [1, i′] : `j ≥ m + i′ + 1} have the smallest αj19

among all `j ∈ L \ [1,m + i′]. From (12), (14) and the assumption that y ≥ hm+i′+1,20

we have21
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y +
a∑
j=1

(htj − htj+1
)ztj +

p−m∑
j=1

αj(1− z`j) ≥ hm+1+i′ + ht1 − hm+1 + hm+1 − hm+1+i′

= ht1 .

�1

Theorem 4. Inequality (10) is facet-defining for conv(Q) if and only if t1 = 1. Fur-2

thermore, for a given i = 1, . . . , d, assume without loss of generality, that hi1 ≥ hi2 ≥3

· · · ≥ hin. Then the (T,ΠL) inequality:4

(15) yi +
a∑
j=1

(hitj − hitj+1
)ztj +

p−m∑
j=1

αj(1− z`j) ≥ hit1 ,5

valid for Qi is facet-defining for conv(∩di=1Qi) if and only if t1 = 1, where T, L and6

ΠL = {`1, . . . , `p−m} are as previously defined, and α is given by (11) with hj = hij for7

j ∈ T ∪ L.8

Proof. Note that Q is full-dimensional. First, we show that t1 = 1 is a necessary9

facet condition. Given a (T,ΠL) inequality (10) where t1 > 1, consider the (T ′,ΠL′)10

inequality with T ′ = T ∪ {1} and L′ = L \ {`p−m}:11

y + (h1 − ht1)z1 +
a∑
j=1

(htj − htj+1
)ztj +

p−m−1∑
j=1

αj(1− z`j) ≥ h1,12

or equivalently,13

(h1 − ht1)(z1 − 1)− αp−m(1− z`p−m) + y +
a∑
j=1

(htj − htj+1
)ztj +

p−m∑
j=1

αj(1− z`j) ≥ ht1 .14

As (h1 − ht1)(z1 − 1) − αp−m(1 − z`p−m) ≤ 0, (T ′,ΠL′) inequality is at least as strong15

as the (T,ΠL) inequality.16

To show that inequalities (10) are facet-defining for conv(Q) when t1 = 1 we give17

n+ 1 affinely independent points on the face defined by the inequality (10). First, let18

y0 = ht1 = h1, z0
j = 1 if j ∈ L and z0

j = 0 otherwise. Next, for each j 6∈ (T ∪ L),19

consider the point (yj, zj) = (y0, z0 + ej), where ej is the unit vector of size n, with jth20

entry equal to 1 and the other entries equal to 0. This point is feasible, because t1 = 121

implies that a ≥ 1, so
∑n

i=1 z
j
i = p − a + 1 ≤ p. For each j ∈ [1, a], let ytj = htj+1

,22

z
tj
i = 1 if i = 1, . . . , tj+1 − 1 or i ∈ L, and z

tj
i = 0 otherwise. Let y`1 = hm+2,23

z`1i = 1 if i = 1, . . . ,m + 1 and z`1`i = 1 for i > 1; z`1i = 0 for all other values of i.24

For each j = 2, . . . , p − m such that α`j = hm+1 − hm+1+j −
∑

i:i<j and `i≥m+1+j
αi,25

let y`j = hm+1+j, z
`j
i = 1 if i = 1, . . . ,m + j and z

`j
`i

= 1 for i > j; z
`j
i = 0 for26
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all other values of i. Finally, for each j = 2, . . . , p − m such that αj = αj−1, let1

(y`j , z`j) = (y`j−1 , z`j−1 + e`j−1
− e`j). As z

`j−1

`j−1
= 0 and z

`j−1

`j
= 1, we have z

`j
`j−1

= 12

and z
`j
`j

= 0. These n + 1 points on the face defined by inequality (10) are affinely3

independent.4

To prove the second part of the theorem for inequality (15), valid for Qi for some5

i = 1, . . . , d, we first construct n + 1 affinely independent points (yj, zj), j = 0, . . . , n,6

from the n+ 1 affinely independent points (yji , z
j), j = 0, . . . , n listed above by letting7

yjt = ht[1]t for t = 1, . . . , d and t 6= i, where [1]t = arg max{hti : i = 1, . . . , n}. The8

corresponding (yj, zj), j = 0, . . . , n, are feasible in ∩dt=1Qt. Let (ŷ, ẑ) be one of these9

points. Now consider the d − 1 additional points, (ŷ, ẑ) + εej for ε > 0, for each10

j = 1, . . . , d and j 6= i, where ej is the jth unit vector of size n + d. These points are11

affinely independent and hence inequality (10) is facet-defining for conv(∩dt=1Qt). The12

necessity of the facet condition t1 = 1 in this case follows similarly to the case of a13

single mixing set.14

�15

Note that if L = ∅ then inequalities (10) are equivalent to inequalities (6). In16

addition, inequality (8) is a special case of inequality (10) with L ⊆ [p + 1, n] and17

`1 ≤ `2 ≤ · · · ≤ `p−m.18

Example 1 (cont.) For T = {1}, m = 1 and L = {4, 6, 7, 8, 9} the (T,ΠL) inequalities19

corresponding to different permutations ΠL are20

y + (h1 − h2)z1 + (h2 − h3)(1− z4) + (h2 − h3)(1− z6) + (h2 − h5 − α6)(1− z7)

(16)

+ (h2 − h6 − α6 − α7)(1− z8) + (h2 − h7 − α7 − α8)(1− z9) ≥ h1,

y + (h1 − h2)z1 + (h2 − h3)(1− z4) + (h2 − h3)(1− z6) + (h2 − h5 − α6)(1− z7)

+ (h2 − h7 − α7 − α9)(1− z8) + (h2 − h6 − α6 − α7)(1− z9) ≥ h1,

y + (h1 − h2)z1 + (h2 − h3)(1− z4) + (h2 − h3)(1− z6) + (h2 − h5 − α6)(1− z9)

+ (h2 − h6 − α6 − α9)(1− z8) + (h2 − h7 − α8 − α9)(1− z7) ≥ h1,

y + (h1 − h2)z1 + (h2 − h3)(1− z4) + (h2 − h5 − α7)(1− z6) + (h2 − h3)(1− z7)

+ (h2 − h6 − α6 − α7)(1− z8) + (h2 − h7 − α7 − α8)(1− z9) ≥ h1,

y + (h1 − h2)z1 + (h2 − h3)(1− z4) + (h2 − h3)(1− z8) + (h2 − h5 − α8)(1− z6)

+ (h2 − h6 − α6 − α8)(1− z9) + (h2 − h7 − α8 − α9)(1− z7) ≥ h1.

For example, in the first inequality ΠL = {4, 6, 7, 8, 9}, whereas in the last inequality21

ΠL = {4, 8, 6, 9, 7}.22
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Even though we propose a large class of facet-defining inequalities for conv(Q), we1

show that the proposed inequalities are not enough to give the convex hull of solutions2

in the original space of variables. The convex hull representation in the original space3

of variables proves to be much richer. In particular, the following inequalities are valid4

and facet-defining for this example:5

y + (h1 − h2)z1 + (h2 − h3)z2 + (h3 − h6 − α7)z3

+ (h6 − h7)(1− z7) + (h6 − h7)(1− z9) ≥ h1,

y + (h1 − h3)z1 + (h3 − h6 − α7)z3 + (h6 − h7)(1− z7) + (h6 − h7)(1− z9) ≥ h1,

y + (h1 − h2)z1 + (h2 − h6 − α7)z2 + (h6 − h7)(1− z7) + (h6 − h7)(1− z9) ≥ h1,

y + (h1 − h3)z1 + (h3 − h4)(1− z4) + (h1 − h5 − α1)((1− z6) + (1− z7))

+ (h1 − h7 − α1 − α5 − α7)(1− z9) + (h1 − h6 − α1 − α6 − α7)z5 ≥ h1,

y + (h1 − h2)z1 + (h1 − h3 − α1)(1− z4) +
h1 − h7 − α1

2
((1− z7) + (1− z9))

+ (h1 − h5 − α1 − α6)(1− z5) + (h1 − h6 − α1 − α7)(1− z6) ≥ h1.

These inequalities are different than the (T,ΠL) inequalities (10). In the first four6

inequalities, the coefficient of the last element in T depends on the coefficient of ele-7

ments in L, whereas in inequality (10), the coefficient of the last element in T depends8

only on the cardinality of T . Finally, the last inequality is different because of the9

coefficient h1−h7−α1

2
. Although we are able to prove the validity of these inequalities10

for this example, we were not able to obtain a general form of these inequalities. (See11

Appendix A for a proof of validity of the last inequality listed.) �12

3.1. Separation of (T,ΠL) Inequalities. In this section, we give a polynomial time13

exact separation algorithm for a special case of the (T,ΠL) inequalities. This algorithm14

is used in our computational experiments in Section 7. The special case we consider has15

S = {m+ 2, . . . ,m+ r+ 1} for m, r ∈ Z+ with m+ r ≤ p, and Q ⊆ [p+ 1, n] such that16

L = S∪Q. Note that with this choice of S, we must have `j = m+1+j for j = 1, . . . , r17

as the first r elements in the permutation ΠL. As a result, αj in equation (11) simplifies18

as αj = max{αj−1, hm+1 − hm+1+j} for j = 2, . . . , r. (If S is not contiguous, then this19

simplification does not hold.) Therefore, it is easy to calculate, in advance, all of the20

coefficients αj for all j = 1, . . . , r, which do not depend on the choice of Q. Next,21

observe that for `i ∈ Q ⊆ [p+ 1, n], `i ≥ p+ 1 ≥ m+ 1 + j for all j = r+ 1, . . . , p−m.22

As a result, αj in equation (11) simplifies as αj = max{αj−1, hm+1−hm+1+j−
∑j−1

i=1 αi}23

for j = r+1, . . . , p−m. Note that, assuming S = {m+2, . . . ,m+r+1}, the coefficients24

αj, j = r + 1, . . . , p−m, do not depend on a particular choice of Q, but depend only25

on αr.26



ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING 11

Let (y∗, z∗) be a fractional solution. For given m, r ∈ Z+ with m+ r ≤ p, we give an1

algorithm to identify the most violated inequality (10) with S = {m+2, . . . ,m+r+1}.2

Note that the problem of finding the best set T in inequalities (10) can be solved3

as a shortest path problem on a directed acyclic graph, G = (V,A), where V =4

{1, . . . ,m + 1}. There exists an arc (i, j) ∈ A for all 1 ≤ i < j ≤ m + 1 with a cost5

of (hi − hj)z∗i . There are O(p2) arcs in G. The vertices visited in the shortest path6

on this graph, starting from node 1 before reaching the sink m + 1, give the set T in7

the most violated (T,ΠL) inequalities. Note that we always include 1 ∈ T to obtain8

violated facets, as this is a necessary and sufficient facet condition (Theorem 4).9

For a given m, r ∈ Z+ with m + r ≤ p, S is fixed. To find the set Q that gives10

the most violated inequality (10) in the desired form, we keep an ordered list of the11

elements in {p + 1, . . . , n}, denoted by Z = {q1, q2, . . . , qn−p}, in increasing order of12

(1 − z∗j ) for j = p + 1, . . . , n and we choose the first p −m − r elements in the list Z13

to be in the set Q. This order also determines the order of the last p−m− r elements14

in the permutation ΠL. In other words, `r+i = qi for i = 1, . . . , p−m− r15

As a result, for a given m, r ∈ Z+ with m + r ≤ p, the above algorithm runs in16

O(p3). Therefore, for a given m ≤ p we can find the most violated inequality (10) with17

L = S ∪Q, S = {m+ 2, . . . ,m+ r + 1} and Q ⊆ [p+ 1, n] in O(p4) by searching over18

r, 0 ≤ r < p −m. Note that for m = p, the algorithm gives the most violated basic19

mixing inequality (6), and for r = 0 and Q such that q1 < q2 < · · · < qk, it gives the20

most violated inequality (8).21

4. A compact extended formulation for the mixing set with a22

cardinality constraint23

In this section, we give a compact (polynomial-size) formulation for the mixing24

set with a cardinality constraint based on disjunctive programming. Note that the25

extended formulation given by Luedtke et al. (2010) for the mixing set with a cardinality26

constraint has exponentially many inequalities, which can be separated in polynomial27

time.28
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Theorem 5. The set D = {(y, z, λ, ω) ∈ R2n+p+np+2 : (17)− (23)}, where1 ∑p+1
j=1 λj = 1(17)2

0 ≤ ωji ≤ λj j ∈ [1, p+ 1], i ∈ [1, n](18)3

y ≥
∑p+1

j=1 hjλj(19)4

zi =
∑p+1

j=1 ω
j
i i ∈ [1, n](20)5 ∑n

i=j ω
j
i ≤ (p− j + 1)λj j ∈ [1, p+ 1](21)6

ωji ≥ λj j ∈ [1, p+ 1], i ∈ [1, j − 1](22)7

λj ≥ 0 j ∈ [1, p+ 1](23)8

is a compact extended formulation of the set conv(Q) and conv(Q) = projy,z(D).9

Proof. Observe that y takes at most p+1 distinct values, h1, . . . , hp+1, in extreme points10

of conv(Q). For j ∈ [1, p + 1] such that hi > hj for all i < j, let Q(hj) = {(y, z) ∈11

Q : y = hj}. Note that, all feasible points in Q(hj) have zi = 1 for all i = 1, . . . , j − 1.12

Therefore,13

(24) Q(hj) = {(y, z) ∈ {hj} × {0, 1}n :
n∑
i=j

zi ≤ p− j + 1, zi ≥ 1, i ∈ [1, j − 1]}.14

Observe that15

conv(Q(hj)) = {(y, z) ∈ {hj} × Rn
+ :

n∑
i=j

zi ≤ p− j + 1, zi ≥ 1, i ∈ [1, j − 1], z ≤ 1},16

because the constraint matrix defining Q(hj) is totally unimodular.17

As y ∈ {h1, . . . , hp+1} in extreme points of conv(Q), we have18

conv(Q) = conv(∪p+1
j=1 conv(Q(hj))) + C,19

where20

C = {(y, z) ∈ Rn+1 : z = 0, y ≥ 0}21

is the recession cone of the linear programming relaxation of Q. The theorem now22

follows from Theorem 2.1 of Balas (1998) on union of polyhedra (see also Theorem 423

in Cornuéjols (2008)).24

�25

Theorem 5 is a case when a compact formulation can be obtained as a union of26

polyhedra as observed for related polyhedra without cardinality constraints (Miller27

and Wolsey, 2003, Atamtürk, 2006, Conforti and Wolsey, 2008).28
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5. Valid inequalities for the mixing set with a knapsack constraint1

Until now we studied the mixing set with a cardinality constraint (7), Q, correspond-2

ing to the chance-constrained program with equal scenario probabilities π1 = · · · = πn.3

For the more general case that scenarios have unequal probabilities, if we can find p4

such that the cardinality constraint (7) is valid for the set K, then we can derive (T,ΠL)5

inequalities (10) valid for K. Let 〈1〉, 〈2〉, . . . , 〈n〉 be a nondecreasing order of scenario6

probabilities, i.e, π〈1〉 ≤ π〈2〉 ≤ · · · ≤ π〈n〉. Also let p be such that
∑p

i=1 π〈i〉 ≤ τ and7 ∑p+1
i=1 π〈i〉 > τ . Then the extended (knapsack) cover inequality8

n∑
i=1

zi ≤ p9

is valid (cf. Wolsey (1998)) and can be used as a cardinality constraint to derive in-10

equalities (10) valid for K. Recall that h1 ≥ h2 ≥ · · · ≥ hn, by assumption, and ν is11

such that
∑ν

i=1 πi ≤ τ and
∑ν+1

i=1 πi > τ . Note that unlike the equal probability case, ν12

is not necessarily equal to p and we have y ≥ hν+1 in every feasible solution. Therefore,13

we can further strengthen inequalities (10) for the set K when ν < p.14

Theorem 6. For m ∈ Z+ such that m ≤ ν, let T = {t1, t2, . . . , ta} ⊆ {1, . . . ,m}15

with t1 < t2 < · · · < ta, L ⊆ {m + 2, . . . , n} and a permutation of the elements in L,16

ΠL = {`1, `2, . . . , `p−m} such that `j ≥ m+ 1 + j. For ν < p, the strengthened (T,ΠL)17

inequalities18

(25) y +
a∑
j=1

(htj − htj+1
)ztj +

p−m∑
j=1

α′j(1− z`j) ≥ ht1 ,19

are valid for K, where ta+1 = m+1, α′1 = hm+1−hmin{ν+1,m+2}, and for j = 2, . . . , p−m20

α′j = max{α′j−1, hm+1 − hmin{ν+1,m+1+j} −
∑

i:i<j and `i≥m+1+j

α′i}.21

Proof. Note that for ν = p, inequality (25) is equivalent to inequality (10). Therefore,22

we consider the case ν < p. The proof for the cases in which y ≥ hti for i = 1, . . . , a,23

or hm+i′ > y ≥ hm+i′+1 ≥ hν+1 for i′ = 1, . . . , p−m, is the same as that of Theorem 3.24

Therefore, we assume that zti = 1 for all i = 1, . . . , a and so (12) holds. For the cases25

in which hm+i′ > y ≥ hν+1 > hm+i′+1 for some i′ = 1, . . . , p−m, inequality (13) holds.26

Hence,27

p−m∑
j=1

α′j(1− z`j) ≥ α′i′ +
∑

j:j<i′,`j≥m+1+i′

α′j ≥ hm+1 − hν+1,
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following a similar argument to the proof of Theorem 3. Consequently,1

y +
a∑
j=1

(htj − htj+1
)ztj +

p−m∑
j=1

α′j(1− z`j) ≥ hν+1 + ht1 − hm+1 + hm+1 − hν+1

= ht1 .

�2

Note that as hmin{ν+1,m+1+j} ≥ hm+1+j, α
′
j ≤ αj and inequality (25) is at least as3

strong as inequality (10) when ν < p.4

Example 1 (cont.) Suppose that we have τ = 0.5 and π1 = π2 = · · · = π4 = τ/45

and π5 = π6 = · · · = π10 = τ/6. Thus, ν = 4 and p = 6. The strengthened (T,ΠL)6

inequality with T = {1}, L = ΠL = {4, 6, 7, 8, 9} is7

y + (h1 − h2)z1 + (h2 − h3)(1− z4) + (h2 − h3)(1− z6) + (h2 − h5 − α′6)(1− z7)

+ (h2 − h5 − α′6)(1− z8) + (h2 − h5 − α′6)(1− z9) ≥ h1.

This inequality is stronger than inequality (16) for the same choice of (T,ΠL), because8

α′j < αj for j = 8, 9. In fact, we can show that this inequality is facet-defining9

for the convex hull of feasible solutions to the set Q with the additional constraint10

y ≥ hν+1. �11

6. Intersection of multiple mixing sets12

Until now, we considered a single mixing set with a cardinality or a knapsack con-13

straint. The single mixing set with a knapsack constraint, given by Kt, corresponds14

to the deterministic equivalent of a single inequality in the probabilistic constraint.15

In this section, we consider the case of a joint probabilistic constraint that contains16

d > 1 inequalities, defined by an intersection of d mixing sets and a knapsack con-17

straint, ∩dt=1Kt. Inequalities (25) are valid for ∩dt=1Kt. We also showed in Theorem18

4 that inequalities (15), with arg max{hij, j = 1, . . . , n} ∈ T , are facet-defining for19

conv(∩dt=1Qt) when πt = 1/n for all t = 1, . . . , n (i.e., when the knapsack constraint (3)20

reduces to the cardinality constraint (7)). Furthermore, considering the intersection of21

multiple mixing sets, we can derive new mixing sets and valid inequalities for them. In22

particular, for β ∈ Zd
+, consider the single mixing set with a knapsack constraint given23

by24

(26) Kβ = {(y′, z) ∈ R+ × {0, 1}n :
d∑
i=1

πizi ≤ τ, y′ + h′izi ≥ h′i, i ∈ [1, n]},25
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where y′ =
∑d

t=1 βtyt and h′i =
∑d

t=1 βthti. We call this the blending set with pro-1

portions β. Note that using scaling arguments we can assume β ∈ Zd
+ without loss2

of generality. Inequalities (25) valid for the mixing set Kβ are valid for ∩dt=1Kt. In3

Example 2 in Section 6.1, we illustrate that they may define facets that are not given4

by inequalities (25) valid for each individual mixing set Kt, t = 1, . . . , d.5

Next we give a formal definition of (1 − τ)-efficient points. Using (1 − τ)-efficient6

points, we give conditions to find blending proportions for the intersection of two mixing7

sets that may provide a violated inequality for a given fractional point. Throughout, let8

ht[1]t ≥ ht[2]t ≥ · · · ≥ ht[n]t for each t = 1, . . . , d. Reordering h′, let h′1′ ≥ h′2′ ≥ · · · ≥ h′n′ .9

Finally, let νβ be such that
∑νβ

i=1 πi′ ≤ τ and
∑νβ+1

i=1 πi′ > τ . Recall that the finite10

discrete cumulative distribution function of the random right-hand-side vector ξ is11

given by F (z) = P (ξ ≤ z).12

Definition 1. (Prékopa, 1990) Let θi ∈ Rd
+, i = 1, . . . , S be such that F (θi) ≥ 1 − τ13

and F (θi − ε) < 1 − τ for any infinitesimally small ε ≥ 0, ε 6= 0. The points θi,14

i = 1, . . . , S are called (1− τ)-efficient.15

Note that all (1− τ)-efficient points can be obtained by total enumeration of all pos-16

sible outcomes for each right-hand-side. Therefore, the total number of (1−τ)-efficient17

points, S, is O(nd). However, the number of distinct values of any two components in18

all (1 − τ)-efficient points is at most O(n2). Without loss of generality, we consider19

the first two components of θi, i = 1, . . . , S. We reorder the (1− τ)-efficient points θi,20

i = 1, . . . , S such that the vectors (θi1, θ
i
2) are distinct for i = 1, . . . , S ′.21

Proposition 7. Let ȳ ∈ R2 be a given a point with ȳj ∈ projyj(conv(Kj)), j = 1, 222

and ȳ 6∈ projy(conv(K1 ∩ K2)), and let θi ∈ R2, i = 1, . . . , S ′ be the distinct values of23

(θi1, θ
i
2) in all (1− τ)-efficient points. If β>θj = h′(νβ+1)′ for some j = 1, . . . , S ′ and24

(27) max
i=1,...,S′:θi1−ȳ1>0,θi2−ȳ2<0

{
θi2 − ȳ2

ȳ1 − θi1

}
<
β1

β2

< min
i=1,...,S′:θi1−ȳ1<0,θi2−ȳ2>0

{
θi2 − ȳ2

ȳ1 − θi1

}
,25

then β>ȳ 6∈ projy′(conv(Kβ)) for β ∈ Z2
+ with β > 0.26

Proof. Observe that Kβ is a relaxation of K1∩K2 for β > 0. As θi ∈ projy(K1∩K2), for27

all i = 1, . . . , S ′, we have β>θi ∈ projy′(Kβ). Therefore, we have β>θi ≥ h′(νβ+1)′ for all28

i = 1, . . . , S ′. Note that ȳ 6∈ projy(conv(K1 ∩K2)) implies that we do not have ȳj ≥ θij,29

j = 1, 2, for any i = 1, . . . , S ′. For all i = 1, . . . , S ′ such that ȳj < θij for j = 1, 2, we30

have β>ȳ < βθi for any β > 0. Similarly, for all i such that ȳ1 = θi1 and ȳ2 < θi2 or31

ȳ1 < θi1 and ȳ2 = θi2, we have β>ȳ < β>θi for any β > 0. For all i = 1, . . . , S ′ such32

that ȳ1 > θi1 and ȳ2 < θi2, the condition β1

β2
<

θi2−ȳ2
ȳ1−θi1

in (27) implies that β>ȳ < β>θi33

for such i. Similarly, for all i = 1, . . . , S ′ such that ȳ1 < θi1 and ȳ2 > θi2, the condition34

β1

β2
>

θi2−ȳ2
ȳ1−θi1

in (27) implies that β>ȳ < β>θi for such i. As a result, β>ȳ < β>θi35
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for all i = 1, . . . , S ′ when β satisfies (27). In addition, β>ȳ < β>θj = h′(νβ+1)′ for1

some j = 1, . . . , S ′. Therefore, β>ȳ 6∈ projy′(conv(Kβ)), as all feasible points (y′, z) of2

conv(Kβ) have y′ ≥ h′(νβ+1)′ .3

�4

As a result, for a point ȳ 6∈ projy(conv(∩dt=1Kt)), if the conditions in Proposition 75

hold for β1, β2, then β>ȳ /∈ projy′(conv(Kβ)) for β ∈ Zd
+ with β = (β1, β2, 0, . . . , 0). We6

illustrate this on Example 2. In what follows, we give a strong reformulation for ∩dt=1Kt.7

The reformulation can be further strengthened using blending set reformulations.8

Theorem 8. The formulation9

∑νt+1
j=1 λtj = 1 t ∈ [1, d](28)10

0 ≤ ωjti ≤ λtj t ∈ [1, d], j ∈ [1, νt + 1], i ∈ [1, n](29)11

yt ≥
∑νt+1

j=1 ht[j]tλtj t ∈ [1, d](30)12

z[i]t =
∑νt+1

j=1 ωjt[i]t t ∈ [1, d], i ∈ [1, n](31)13 ∑n
i=j ω

j
t[i]t
≤ (p− j + 1)λtj t ∈ [1, d], j ∈ [1, νt + 1](32)14

ωjt[i]t ≥ λtj t ∈ [1, d], j ∈ [1, νt + 1], i ∈ [1, j − 1](33)15 ∑n
i=1 πizi ≤ τ(34)16

Ax = y(35)17

x ∈ X,0 ≤ λ ≤ 1(36)18

λ ∈ Z
∑d
t=1 νt+d,(37)19

is an extended formulation for the set given by (1)–(5). The continuous relaxation of20

the extended formulation defined by (28)–(36) is at least as strong as the continuous21

relaxation of the mixing set formulation defined by (1)–(4).22

Proof. The validity of this formulation follows from the validity of the reformulation23

given in Theorem 5 for a single mixing set. To show that formulation (28)–(36) is at24

least as strong as the formulation given by (1)–(4), we show that for any (y, x, z, λ, ω)25

satisfying (28)–(36), the vector (y, x, z) satisfies (1)–(4). Clearly, (y, x, z) satisfies (1),26

(3)–(4). We show that inequalities (2) are also satisfied by this choice of (y, x, z). For27

each t = 1, . . . , d and i = 1, . . . , νt + 1 from inequality (30) we have28
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yt ≥
νt+1∑
j=1

ht[j]tλtj

≥ ht[i]t

i∑
j=1

λtj

≥ ht[i]t

i∑
j=1

(λtj − ωjt[i]t)

= ht[i]t(
i∑

j=1

(λtj − ωjt[i]t)− z[i]t +
νt+1∑
j=1

ωjt[i]t) (from (31))

= ht[i]t(
i∑

j=1

λtj +
νt+1∑
j=i+1

ωjt[i]t − z[i]t)

= ht[i]t(1−
νt+1∑
j=i+1

λtj +
νt+1∑
j=i+1

ωjt[i]t − z[i]t) (from (28))

= ht[i]t(1−
νt+1∑
j=i+1

ωjt[i]t +
νt+1∑
j=i+1

ωjt[i]t − z[i]t) (from (29) and (33))

= ht[i]t(1− z[i]t).

From (30), yt is a convex combination of ht[1]t , ht[2]t , . . . , ht[νt+1]t . Therefore, yt ≥1

ht[νt+2]t in any feasible solution and inequalities yt ≥ ht[i]t(1−z[i]t) are trivially satisfied2

for i = νt + 2, . . . , n.3

�4

As a result, the set of feasible solutions given by (28)–(36) is a subset of the set5

of feasible solutions given by (1)–(4). We show that the former set could be a strict6

subset in Example 2 in Section 6.1. Observe that, we can strengthen the formulation7

(28)–(36) further by appending it with the extended formulation of the set Kβ for8

β ∈ Rd
+. We illustrate this strengthening in Example 2.9

Note that unlike in the single mixing set with a cardinality constraint, we must10

have integer λ in formulation (28)–(37), as relaxing integrality does not necessar-11

ily result in integral λ for the intersection of multiple mixing sets, even when the12

knapsack constraint is a cardinality constraint. However, for the special case when13

ht1 ≥ ht2 ≥ · · · ≥ htn for all t = 1, . . . , d, we give a more compact extended formu-14

lation that describes the intersection of mixing sets with a cardinality constraint as a15

linear program.16
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Theorem 9. Suppose that ht1 ≥ ht2 ≥ · · · ≥ htp+1 for all t = 1, . . . , d and πi = 1/n for1

i = 1, . . . , n. A compact extended formulation of the polyhedron given by conv(∩dt=1Qt)2

is3 ∑p+1
j=1 λj = 1(38)4

0 ≤ ωji ≤ λj j ∈ [1, p+ 1], i ∈ [1, n](39)5

y ≥
∑p+1

i=1 hiλi(40)6

zi =
∑p+1

j=1 ω
j
i i ∈ [1, n](41)7 ∑n

i=j ω
j
i ≤ (p− j + 1)λj j ∈ [1, p+ 1](42)8

ωji ≥ λj j ∈ [1, p+ 1], i ∈ [1, j − 1](43)9

λj ≥ 0 j ∈ [1, p+ 1](44)10

y ∈ Rd
+,(45)11

where hi ∈ Rd
+ for i = 1, . . . , p+ 1.12

Proof. Note that if ht1 ≥ ht2 ≥ · · · ≥ htp+1 for all t = 1, . . . , d, we have νt = p for13

t = 1, . . . , d. In an extreme point of the convex hull of the intersection of mixing14

sets with a cardinality constraint, the vector y ∈ Rd is one of at most p + 1 vectors15

hj = (h1j, h2j, . . . , hdj) for j = 1, . . . , p+ 1. Therefore,16

Q(hj) = {(y, z) ∈ {hj} × {0, 1}n :
n∑
i=j

zi ≤ p− j + 1, zi ≥ 1, i ∈ [1, j − 1]}.17

Observe that18

conv(Q(hj)) = {(y, z) ∈ {hj} × Rn
+ :

n∑
i=j

zi ≤ p− j + 1, zi ≥ 1, i ∈ [1, j − 1], z ≤ 1},19

because the constraint matrix defining Q(hj) is totally unimodular.20

As y ∈ {h1, . . . ,hp+1} in extreme points of conv(∩dt=1Qt), we have21

conv(∩dt=1Qt) = conv(∪p+1
j=1 conv(Q(hj))) + C,22

where23

(46) C = {(y, z) ∈ Rd+n : z = 0,y ≥ 0}.24

Then the theorem follows from the result of Balas (1998) on union of polyhedra.25

�26

Note that the linear programming reformulation for the special case described in27

Theorem 9 has p+ 1 many λ variables as compared to
∑d

t=1(νt + 1) many λ variables28

in the MIP reformulation given in Theorem 8 for the general case. Finally, note that29

(htj, ẑ
j), j = 1, . . . , p + 1, with ẑji = 1 for i < j and ẑji = 0 for i ≥ j are all extreme30



ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING 19

point solutions of conv(Qt) for all t = 1, . . . , d if ht1 ≥ ht2 ≥ · · · ≥ htp+1 for all1

t = 1, . . . , d. Also, (yt, z) = (1,0) is the extreme ray of conv(Qt) for each t = 1, . . . , d2

and the conical combination of these extreme rays give C in (46). Therefore, we have3

the following result.4

Corollary 10. conv(∩dt=1Qt) = ∩dt=1 conv(Qt) if ht1 ≥ ht2 ≥ · · · ≥ htp+1 for all5

t = 1, . . . , d.6

6.1. An example on the strength of alternative reformulations. In this section,7

we give a slight modification of the example in Sen (1992) to illustrate the strength8

of the alternative reformulations. While the reformulation proposed in Sen (1992) is9

stronger in most cases, there are several computational challenges in obtaining this re-10

formulation. In this approach, first all (1−τ)-efficient points need to be enumerated to11

obtain an equivalent disjunctive programming reformulation. In general, it is compu-12

tationally intensive to enumerate all (1− τ)-efficient points (Beraldi and Ruszczyński,13

2002a). The (1 − τ)-efficient points are also used to define the reverse polar of this14

disjunctive program whose extreme points give valid inequalities that define a linear15

inequality reformulation of this disjunctive set (Sen, 1992). It is also not practical to16

list all extreme points of the reverse polar, in general.17

Example 2. Consider the chance-constrained program18

min x1 + x219

s.t. P

{
2x1 − x2 ≥ ξ1

x1 + 2x2 ≥ ξ2

}
≥ 0.6 = 1− τ20

x ≥ 0,21

where ξ1 and ξ2 are dependent random variables with joint probability density function22

given in Table 1.23

Table 1. Joint probability density function of ξ

Scenario 1 2 3 4 5 6 7 8 9

ξ1 0.75 0.5 0.5 0.25 0.25 0.25 0 0 0

ξ2 1.25 1.5 1.25 1.75 1.5 1.25 2 1.5 1.25

Probability 0.2 0.14 0.06 0.06 0.06 0.3 0.04 0.04 0.1

Observe that the set of all (1 − τ)-efficient points, obtained by enumerating all24

possible combinations of ξ1 and ξ2 and checking the condition in Definition 1, is25

{(0.25, 2), (0.5, 1.5), (0.75, 1.25)}. For example, θ1 = (0.25, 2) is (1 − τ)-efficient, be-26

cause the cumulative distribution function evaluated at this point, F (θ1) = P (ξj ≤27

θij, i = 1, 2) = 0.6 = 1−τ and F (θi−ε) < 0.6 for any infinitesimally small ε ≥ 0, ε 6= 0.28
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Note that the (1 − τ)-efficient point θ1 = (0.25, 2) is not given by any realization hi,1

i = 1, . . . , n. Using the list of all (1 − τ)-efficient points, an alternative reformulation2

of this chance-constrained program is given by the disjunctive program (Sen, 1992):3

min x1 + x24

s.t.

{
y1 ≥ 0.25

y2 ≥ 2

}
or5 {

y1 ≥ 0.5

y2 ≥ 1.5

}
or6 {

y1 ≥ 0.75

y2 ≥ 1.25

}
7

y1 = 2x1 − x28

y2 = x1 + 2x29

x ≥ 0.10

The optimal solution is (x, y) = (0.55, 0.35, 0.75, 1.25) with objective value 0.9. Next,11

we illustrate the reformulations proposed in this paper on this example.12

For this example, τ = 0.4, p = 6, ν1 = 3, ν2 = 5, y1 = 2x1 − x2 and y2 = x1 + 2x2,13

and the mixing set reformulation is14

y1 + 0.75z1 ≥ 0.75

y1 + 0.50z2 ≥ 0.5

y1 + 0.50z3 ≥ 0.5

y1 + 0.25z4 ≥ 0.25

y1 + 0.25z5 ≥ 0.25

y1 + 0.25z6 ≥ 0.25
...

y2 + 2.00z7 ≥ 2

y2 + 1.75z4 ≥ 1.75

y2 + 1.50z2 ≥ 1.5

y2 + 1.50z5 ≥ 1.5

y2 + 1.50z8 ≥ 1.5

y2 + 1.25z1 ≥ 1.25
...

n∑
i=1

πizi ≤ 0.4 = τ.15

The initial linear programming (LP) relaxation solution of the mixing set reformu-16

lation is (x, y) = (0.49, 0.38, 0.6, 1.25) with an objective value 0.87. After adding the17

following violated cuts (25)18
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y1 + 0.25z1 + 0.25z3 ≥ 0.751

y1 + 0.25z1 + 0.25(1− z4 + 1− z5 + 1− z7 + 1− z8) ≥ 0.752

y2 + 0.25z7 + 0.25z4 + 0.25z5 ≥ 23

in that order, we get a solution (x, y) = (0.52, 0.365, 0.675, 1.25) with an objective value4

0.885. There is no violated inequality (25) at this point valid for either of the two indi-5

vidual mixing sets. Note that for β1 = β2 = 1 we have 1 = β1

β2
< min{ 2−1.25

0.675−0.25
, 1.5−1.25

0.675−0.5
}6

and β>θ2 = h′(νβ+1)′ = 2, where νβ = 3 for Kβ. So, to obtain violated inequalities using7

Proposition 7, we consider the blending set formed by y′ = y1 + y2 with β1 = β2 = 18

in (26):9

y′ + 2z1 ≥ 2

y′ + 2z2 ≥ 2

y′ + 2z4 ≥ 2

y′ + 2z7 ≥ 2

y′ + 1.75z3 ≥ 1.75
...

The violated inequality (25) is10

y1 + y2 ≥ 2,11

and it is facet-defining for conv(∩dt=1Kt). After adding this inequality, we get the12

solution (x, y) = (0.55, 0.35, 0.75, 1.25), which is optimal. However, z1 = 0.3 and13

z2 = z4 = z5 = z7 = z8 = 1 and there are no violated inequalities (25) at this point.14

In contrast, solving the LP relaxation of the extended reformulation of the chance-15

constrained program given by (28)–(37), we get (x, y) = (0.52, 0.365, 0.675, 1.25) with16

an objective function value 0.885. This example illustrates that the extended formula-17

tion is a stronger formulation than the original mixing set formulation. Furthermore,18

adding the extended formulation for the mixing set given by y1 +y2 to this formulation,19

we get the optimal solution with integral λ, z.20

Finally, consider the linear programming relaxation of the extended formulation21

proposed in Luedtke et al. (2010) given by the additional constraints:22

yt +
∑νt

i=1(ht[i]t − ht[i+1]t)wt[i]t ≥ ht[1]t t ∈ [1, d]23

wt[i]t ≥ wt[i+1]t t ∈ [1, d], i ∈ [1, νt]24

zi ≥ wti t ∈ [1, d], i ∈ {[1]t, . . . , [νt]t}25

where wt[i]t = 1 if scenario [i]t is violated for the single constraint t and wt[νt+1]t = 0.26

The LP relaxation solution to this extended formulation has an objective function27
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value 0.8769, with (x, y) = (0.504, 0.373, 0.635, 1.25), which shows that this is a weaker1

formulation. Luedtke et al. (2010) propose a class of valid inequalities for this formu-2

lation, which results in an exponential-size LP extended formulation for the case that3

d = 1.4

�5

In the next section, we summarize our computational experience in solving larger6

probabilistic lot-sizing problems effectively with a branch-and-cut algorithm incorpo-7

rating inequalities (25).8

7. Computations9

To test the effectiveness of the proposed inequalities in solving chance-constrained10

programs with finite discrete distributions, we implement a branch-and-cut algorithm11

that incorporates inequalities (25). All computations are done on a 3.2 GHz Sun12

workstation with 4 GB RAM, under 3600 CPU seconds time limit.13

We test our methods on the probabilistic lot-sizing problem described in Beraldi and14

Ruszczyński (2002a), where the right-hand-sides, hti, represent cumulative demands in15

time period t = 1, . . . , d under scenario i = 1, . . . , n, and the probabilistic constraint16

represents a service level requirement on the joint probability of a stock-out in any time17

period. We assume that the demand in a time period is Uniform(1,50). Therefore, the18

right hand sides, h1i, for row 1 of the probabilistic constraint is generated from discrete19

uniform distribution between 1 and 50 for each scenario i = 1, . . . , n. To obtain the20

right-hand-side hti, we add a Uniform(1,50) random variable to the value of h(t−1)i for21

each t = 2, . . . , d and i = 1, . . . , n. As a result, we have dependency between the rows22

of the probabilistic constraints.23

The variable production costs are generated from a discrete uniform distribution24

between 0 and 10. We let τ ∈ {5, 10, 15, 20} be the threshold percentage on the25

probabilistic constraint. In addition, production setup costs follow a discrete uniform26

distribution between 0 and 1000f , for f ∈ {0, 1}. In other words, when f = 0, there are27

no setup costs and we get a chance-constrained linear program, whereas when f = 1,28

we get a chance-constrained mixed-integer program. To test the performance of our29

branch-and-cut algorithm for varying cost parameters and probability thresholds, we30

generate five random instances for each combination of f and τ and report the averages.31

A summary of these experiments with d = 50, n = 500 is reported in Table 2. In32

column gap, we report the average integrality gap, which is 100× (zub− zinit)/zub,33

where zinit is the objective value of the initial LP relaxation and zub is the ob-34

jective value of the best integer solution. In column % gapimp, we compare the35

average percentage improvement of the integrality gap at the root node, which is36

100× (zroot− zinit)/(zub− zinit), where zroot is the objective value of the LP at37
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the root node after the cuts are added. Columns cuts and nodes compare the average1

number of cuts added, and the average number of branch-and-cut tree nodes explored,2

respectively. In the last column, we report the average CPU time elapsed (in seconds).3

We indicate the case that none of the five problem instances could be solved within an4

hour with T. If the problem is not solved within the time limit, then we also report,5

in parenthesis, the average percentage gap between the best lower bound and the best6

integer solution found in the search tree (endgap). Except for percentage gaps, all7

table entries are rounded to the nearest integer.8

The set of experiments summarized in Table 2, is on solving probabilistic lot-sizing9

problems with scenario probabilities generated from Uniform(0,1) distribution. We10

implement a branch-and-cut algorithm using a separation algorithm for a subset of11

inequalities (25) as described in Section 3.1 with the restriction that p−m ∈ {0, 1, 2, 3}.12

The problem instances are solved with the MIP solver of CPLEX1 Version 10.1. The13

experiments with the branch-and-cut algorithm using inequalities (25) are summarized14

under the columns TL. We solve the same instances with the default settings of CPLEX15

(CPX) without adding any user cuts. We also report our experiments using mixing16

inequalities (6) instead of inequalities (25) under the columns Mix.17

In our experiments with no setup costs (f = 0), we observe that even though the18

initial gaps are small, the default CPLEX reaches the time limit in instances with large19

τ , whereas the branch-and-cut algorithm using a subset of inequalities (25) takes less20

than a few minutes on average for all problem instances. This can be attributed to21

the close to 100 per cent gap improvement at the root node as compared to the less22

than 26 percent improvement made by default CPLEX. While adding inequalities (6)23

also improve the percentage gap close to 100 per cent, Mix takes longer to solve. As24

the objective function does not include the z variables, we see that even though the25

gap improvement is almost always the same for Mix and TL, we get more fractional z’s26

using Mix than using TL. CPLEX default adds about half the number of inequalities in27

all problem instances, however, these inequalities are not very effective in closing the28

integrality gap and CPLEX resorts to enumerating thousands of nodes in the branch-29

and-cut tree. The problems with setup costs (f = 1) are harder to solve for all methods30

as we have additional binary variables in the formulation. In addition, we observe that31

for both f = 0 and f = 1, the problems are harder to solve for larger τ .32

We have also tested the extended formulation proposed in Section 6. We found33

that while the bounds given by this formulation are much stronger, the formulation is34

very large to make it practical for large instances. This addresses a question posed in35

Conforti and Wolsey (2008) regarding the practicality of similar extended formulations.36

1CPLEX is a trademark of ILOG, Inc.
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Table 2. Probabilistic lot-sizing experiments

% gapimp cuts nodes time (endgap)
f τ gap

CPX Mix TL CPX Mix TL CPX Mix TL CPX Mix TL

5 1.3 23 90 90 85 559 199 1139 117 81 130 255 59
10 1.7 26 97 97 131 833 333 10493 171 68 821 529 104

0
15 2.0 24 98 98 217 1360 559 36765 265 209 T(0.4) 1387 341
20 2.4 18 97 97 248 1527 779 25479.0 291 418 T(1.0) 1764 967
5 2.4 47 74 74 235 574 359 72889 3258 15663 T(0.3) T(0.4) 3476(0.2)
10 2.7 43 78 77 288 846 499 39773 1323 4169 T(0.7) T(0.5) T(0.4)

1
15 3.1 39 77 76 373 1334 707 22837 492 1831 T(1.4) T(0.7) T(0.6)
20 3.5 36 75 76 452 1849 1089 17031 245 939 T(1.7) T(0.9) T(0.7)

8. Conclusion1

In this paper, we study the mixing set with a cardinality constraint arising in2

chance-constrained programs and propose facet-defining inequalities that subsume the3

explicit inequalities given by Luedtke et al. (2010). We extend the results derived for4

the mixing set with a cardinality constraint to obtain valid inequalities for the mixing5

set with a knapsack constraint. Our computational tests illustrate the efficacy of a6

branch-and-cut algorithm using these inequalities. In addition, we propose a compact7

extended reformulation (with polynomial number of variables and constraints) that8

characterizes a linear programming equivalent of a single inequality in the probabilistic9

constraint. We propose an extended formulation for the intersection of multiple mixing10

sets with a knapsack constraint that is stronger than the original mixing formulation11

and is polynomial in size. We also give a compact extended linear program for the12

intersection of multiple mixing sets and a cardinality constraint for a special case.13

The complete linear description of the single mixing set with a cardinality constraint,14

in its original space, remains an open question. In addition, an efficient method for15

finding blending proportions β for the intersection of multiple mixing sets merits further16

research. In this paper, we give a simple condition on β for blending two mixing sets.17
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Appendix A. Example 1 (cont.)23

In this section, we prove the validity of one of the inequalities that cannot be ex-

pressed as a (T,ΠL) inequality:

y + (h1 − h2)z1 + (h1 − h3 − α1)(1− z4) +
h1 − h7 − α1

2
((1− z7) + (1− z9))

+ (h1 − h5 − α1 − α6)(1− z5) + (h1 − h6 − α1 − α7)(1− z6) ≥ h1.(47)

Consider each feasible value for y = hi, i = 1, . . . , 7 and a feasible assignment of z24

values that minimizes the left-hand-side (LHS) of an inequality:25

(48) y + α1z1 + α4(1− z4) + α5(1− z5) + α6(1− z6) + α7(1− z7) + α9(1− z9) ≥ h1.26

Case 1. For y = h1, a valid assignment that minimizes the LHS of (48) is z1 = 0, z4 =27

z5 = z6 = z7 = z9 = 1. In this case, inequality (48) is tight.28

Case 2. For y = h2, a valid assignment that minimizes the LHS of (48) is z1 = z4 =29

z5 = z6 = z7 = z9 = 1. In this case, we must have h2 + α1 ≥ h1, or30

(49) α1 ≥ h1 − h2.31
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Case 3. For y = h3, a valid assignment that minimizes the LHS of (48) is z4 = 01

z1 = z2 = z5 = z6 = z7 = z9 = 1. In this case, we must have h3 + α1 + α4 ≥ h1,2

or3

(50) α1 + α4 ≥ h1 − h3.4

Case 4. For y = h4, a valid assignment that minimizes the LHS of (48) is z4 = z5 = 05

z1 = z2 = z3 = z6 = z7 = z9 = 1. In this case, we must have h4 +α1 +α4 +α5 ≥6

h1, or7

(51) α1 + α4 + α5 ≥ h1 − h4.8

Case 5. For y = h5, a valid assignment that minimizes the LHS of (48) is z5 = z6 = 09

z1 = z2 = z3 = z4 = z7 = z9 = 1. In this case, we must have h5 +α1 +α5 +α6 ≥10

h1, or11

(52) α1 + α5 + α6 ≥ h1 − h5.12

Case 6. For y = h6, a valid assignment that minimizes the LHS of (48) is z6 = z7 = 013

z1 = z2 = z3 = z4 = z5 = z9 = 1. In this case, we must have h6 +α1 +α6 +α9 ≥14

h1, or15

(53) α1 + α6 + α9 ≥ h1 − h6.16

Alternatively, another valid assignment that minimizes the LHS of (48) is z6 =17

z9 = 0 z1 = z2 = z3 = z4 = z5 = z7 = 1. In this case, we must have18

h6 + α1 + α6 + α7 ≥ h1, or19

(54) α1 + α6 + α7 ≥ h1 − h6.20

Case 7. For y = h7, a valid assignment that minimizes the LHS of (48) is z7 = z9 = 021

z1 = z2 = z3 = z4 = z5 = z6 = 1. In this case, we must have h7 +α1 +α7 +α9 ≥22

h1, or23

(55) α1 + α7 + α9 ≥ h1 − h7.24

To show validity of inequality (47), we select the six coefficients α in (48) such that25

six of the seven inequalities (49)–(55) hold at equality and the remaining inequality26

is satisfied. Assuming that inequalities (49)–(50) and (52)–(55) hold at equality and27

solving for α, we get a unique solution for α that gives the inequality (47). With this28

choice of α, α1 + α4 + α5 > h1 − h4 and (51) is satisfied. Therefore, inequality (47) is29

a valid inequality for this example. We can also show that it is facet-defining.30


