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Abstract

We present a structure-conveying algebraic modelling language for mathematical pro-
gramming. The proposed language extends AMPL with object-oriented features that allows
the user to construct models from sub-models, and is implemented as a combination of pre-
and post-processing phases for AMPL. Unlike traditional modelling languages, the new ap-
proach does not scramble the block structure of the problem, and thus it enables the passing
of this structure on to the solver. Interior point solvers that exploit block linear algebra and
decomposition-based solvers can therefore directly take advantage of the problem’s structure.

The language contains features to conveniently model stochastic programming problems,
although it is designed with a much broader application spectrum.

1 Introduction

Algebraic modelling languages (AMLs) are recognised as an important tool in the formulation
of mathematical programming problems. They facilitate the construction of models through a
language that resembles mathematical notation, and offer convenient features such as automatic
differentiation and direct interfacing to solvers. Their use vastly reduces the need for tedious
and error-prone coding work. Examples of popular modelling languages are AMPL [11], GAMS
[5], AIMMS [3] and Xpress-Mosel [7]. See [14, 23, 31] for surveys.
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The increased availability of computing power (through multiprocessor architectures) and the
advances in the implementation of solvers (through structure exploitation) mean that users
expect the solution of ever-growing problem instances to be viable. It has long been recognized
that most large-scale problems are sparse and that exploiting sparsity is key to their numerical
tractability. Modelling languages therefore pass information about the sparsity of a problem
to a solver. However, today’s large-scale optimization problems are typically not only sparse
but also structured. By structure we mean the presence of a discernible pattern in the non-zero
entries of the constraint matrix. In such cases, it is often possible to partition the matrix into
blocks, only some of which contain non-zero elements, while the rest are empty. These structures
usually appear in the problem (and the problem matrices) due to some underlying generating
process. In particular, they may reflect a discretization process over time (as in optimal control
problems), over space (for PDE-constrained optimization) or over a probability space (as in
stochastic programming). Further, they might reflect a structure inherent to the concept being
modelled (e.g. a company consisting of several divisions). Often these structures are also nested.

In most cases, the structure (or at least the process generating it) is known to the modeller.
Many approaches to solving large-scale optimization problems, such as decomposition techniques
and interior point methods, can efficiently exploit the structure present in a problem. There-
fore, it seems natural to pass the knowledge about the structure from the modeller to the solver.
However, current modelling languages do not, in general, offer this possibility. While some lan-
guages have features to express network constraints (and pass this information to the solver),
and there are some specialised input formats (such as the SMPS format for stochastic program-
ming), most of the currently available algebraic modelling languages do not offer the flexibility
to model general nested structures, preserve the structure during the problem generation and
feed it to the solver. A notable exception is provided by modelling languages based on the
constraint programming paradigm [30, 26].

Further, truly large scale problems may require parallel processing not only for the solution of
the problem, but also during the model generation phase. The Asset and Liability Management
problem solved in [17] requires 60GB of memory just to store the matrices and vectors describing
the problem; even the raw data used to generate the matrices requires 2GB of storage. It would
be impossible for a modelling tool to construct the solver files if it considered the problem as a
whole. An AML that facilitates the modelling of the problem structure allows the development of
a parallel model generator for the language which would overcome these problems. We explored
this issue in [21], in which an earlier version of the structure-conveying language is described.

This paper addresses these issues by proposing an extension to AMPL that allows the modeller to
express the structure inherent to the problem in a natural way. The AMPL language is extended
by the block keyword that groups together model entities and allows them to be repeated over
indexing sets. Compared with our preliminary development [21], in this paper we present the
extensions for stochastic programming with recourse. An implementation of the interpreter for
the language extensions accompanies this paper; in addition we provide an implementation of
the AMPL solver interface for the OOPS solver [20]. Together they allow the full journey from
structured model to solution. It should be noted that the design is generic, and allows the use
of other structure-exploiting solvers.

The paper is organised as follows: In the next section we review some background on mathe-
matical programming and existing approaches to modelling structured mathematical program-
ming problems. Section 3 presents the design and syntax of our structure-conveying modelling



language (SML), using the example of a survivable network design problem to illustrate the
discussion. Section 4 shows how SML deals with the special case of stochastic programming,
using an Asset and Liability Management example. Section 5 describes the design of the solver
interface, and provides more information on our implementation, before we draw our conclusions
in Section 6.

2 General and structured optimization problems

A mathematical programming problem can be written in the form
min f(z) s.t. g(z) <0, 2>0,z € X, (1)
x

where X C IR", f : R" — IR, g : IR® — IR™. Functions f and g are usually assumed to
be sufficiently smooth: f, g € C? is common. The vector-valued constraint function g can be
thought of as vector of scalar constraints g(z) = (g1(%), ..., gm(x))T. The set X from which the
decision variables are taken can include simple bounds on the variables or further restrictions
such as integrality constraints. A solution algorithm for problems as general as (1) will typically
require access to routines that evaluate f(z), gi(x), Vf(x), Vgi(z), V2f(z), V2gi(x) at various
points x € X.

Mathematical programming can frequently reach very large sizes: n,m being of the order of
millions is not uncommon. For problems of these sizes, the variables x and constraint functions
gi(x) are usually generated by replicating a limited number of variable and constraint proto-
types over large index sets. This repetition of prototypes over large sets, typical of large-scale
mathematical programming problems, leads to matrices in which the sparsity pattern displays
a structure. We are particularly interested in structures where the Hessian matrix V2 f(x) has
non-zero entries contained in diagonal blocks, while for the Jacobian matrix of the constraints
Vg(x) non-zero entries lie in some combination of diagonal, row and column blocks.

Several efficient solution approaches exist that are capable of exploiting such a block structure.
Generally speaking, they can be classified into decomposition approaches and interior point
methods. Both classes have the strength that they parallelize very well. One possible advantage
of interior point methods is their broad applicability to nonlinear as well as linear problem for-
mulations, while decomposition-based techniques encounter stronger challenges in the nonlinear
case.

2.1 Solution approaches to structured optimization problems

In a decomposition framework (e.g. Benders decomposition [1] or Dantzig-Wolfe decomposition
[8]) the problem is decomposed into two (or more) levels. In the top level, the primal values
for complicating variables (linking columns) or the dual values for complicating constraints
(linking rows) are temporarily fixed; this results in a separation of the problem into many
smaller subproblems (corresponding to the diagonal blocks in Figure 1) that can be solved
independently. The top level optimises these complicating primal/dual variables by building up
value surfaces for the optimal subproblem solutions.



Within an Interior Point Method (IPM), the main work of the algorithm is to solve systems of
—(H+071) AT 2

A 0 where H = V*f(z) +
S ¥ V2gi() is the Hessian of the Lagrangian, © is a diagonal scaling matrix, and A = Vg(z)
is the Jacobian of the constraints. For problems with a block-structured A matrix, the linear
algebra computations required by the algorithm can be organized to exploit the structure [4, 28].
Alternatively, the matrix @ itself can be reordered into a block-structured matrix [20], which can
then be exploited in the linear algebra of the IPM using Schur complement techniques and the
Sherman-Morrison-Woodbury formula. The object-oriented parallel interior point solver OOPS
[19] does this by building a tree of submatrices, with the top node corresponding to the whole
problem and the nodes further down the tree corresponding to the constituent parts of the
problem matrices. All linear algebra operations needed for the interior point algorithm (such as
factorisations, backsolves, and matrix-vector products) can be broken down into operations on
the tree: i.e. a factorisation on the top node of the tree can be broken down into factorisations,
solves, and matrix-vector products involving nodes further down the matrix tree. This approach
generalises easily to more complicated nested structures and facilitates an efficient parallelization
of the IPM. The power of this approach has been demonstrated by solving an Asset and Liability
Management problem with over 10? variables on 1280 processors in under 1 hour [17].

equations with the augmented system matrix ® =

In the rest of the paper, we will forgo possible limitations of applicability of our modelling
language to the general nonlinear problem (1), which would needlessly encumber us with as-
sumptions, restrictions or details that are outside the scope of this paper, and will concentrate
on the modelling of linear and quadratic problems. The design of the proposed modelling frame-
work is kept general enough to embrace nonlinear optimization problems. However, to reflect
the current status of the implementation and for ease of presentation of both mathematical
formulations and corresponding model descriptions, we have restricted our examples to linear
and quadratic programming problems.

2.2 Modelling approaches to structured problems

While it is possible to implement routines to evaluate the functions f, g; of (1) and their deriva-
tives in a programming language such as C or Fortran, this is a tedious and error-prone task. An
Algebraic Modelling Language (AML) provides facilities to express a mathematical program-
ming problem in a form that is both close to the mathematical formulation and easy to parse
by an automated tool. The AML tool will then provide the solver with the required information
about the functions that define the problem.

Sparsity has long been recognised as an important factor in solving optimization problems ef-
ficiently, hence all modelling languages pass sparsity information to a solver. To apply any
structure-exploiting solution approach, however, additional information about the block struc-
ture of the problem must be provided to the solution algorithm. This information is not imme-
diately apparent from usual AML models. Moreover, AMLs typically order rows and column
of the generated system matrices by constraint and variable names rather than by structural
blocks, thus losing information about the problem structure. While there have been attempts
to automatically recover such a structure from the sparsity pattern of the problem matrices
[9], these approaches are generally computationally expensive and they obtain far from perfect
results. Such procedures ignore the essential fact that in most cases the structure of the prob-



lem (or at least the process generating the structure) is known to the modeller, but it is lost
in the model generation process for the lack of appropriate language constructs. The proper
remedy is to enable the modeller to express the structural description of the problem directly
in the modelling language. The need for a structure-conveying modelling language has been
raised several times by practitioners, especially those involved in stochastic programming [31].
However there are very few actual implementations and no universally accepted approach exists.
In what follows, we briefly review the most relevant attempts.

An early effort was the SMPS format for stochastic programming problems [2]. SMPS is an
extension of the standard MPS format [25] (created to represent LP problems) that is targeted
at the special structures encountered in stochastic programming. Being a specialized data format
rather than a modelling language, it produces problem instances that are cumbersome to write,
hard to read, and laborious to modify.

Many different modelling tools specifically targeted at stochastic programming have been sug-
gested, and we mention the most relevant. sMAGIC [6] uses a recursive model formulation
that can be exploited in nested Benders decomposition, but unfortunately it is limited to linear
programming problems. SAMPL [29] and the proposed stochastic programming extension to
AMPL [10] add new language constructs to the ones existing in the current version of AMPL
with the aim to ease the formulation of several classes of stochastic programming problems.
StAMPL [13] and MusMod [22] separate the model at a time stage from the stochastic tree
topology, that is described as data. Our approach is similar in spirit to theirs.

There have been very few attempts at producing a general structure-conveying modelling lan-
guage. SET [15] offers facilities to declare the structure of a model as a postscript to the
problem: an additional structure file defines the blocks making up the structure of the problem
and a list of row and column names that make up each block. This approach requires that the
full (unstructured) problem be processed first by the modelling language: hence this hampers
any potential parallelisation of the model generation. Furthermore, considerable (and in our
opinion needless) effort goes into unscrambling the problem following the structure definition
file. The authors of AMPL argue in [12] that AMPL’s suffix facility can be used to the same
effect (but with the same restrictions). Finally, MILANO [27] is an interesting concept of an
object-oriented modelling language; however its available documentation is scarce and it seems
to have been abandoned.

Overall, the main concern of the described approaches is with easing the work for the modeller
by supplementing the syntactic capabilities of existing AMLs, rather than conveying additional
structural information to the solver or allowing the parallelization of the generation process
itself.

3 Design of a structure-conveying modelling language

AMPL [11] is a widely used algebraic modelling language. One of its main advantages is its
well-defined interface that makes the linking to new solver backends straightforward. This
linking is done through the amplsolver library [16], that provides routines to read AMPL’s
binary nl-file model representation. For these reasons we have based our structure-conveying
modelling language (SML) on AMPL, and extended AMPL’s capabilities by providing keywords



to express the problem structure. While the current implementation is based on AMPL, which
we follow quite closely in terms of language extension, the ideas presented in this paper (mainly,
the block keyword) are general and apply to possible extensions based on different algebraic
modelling languages.

We will use a multi-commodity survivable network design (MSND) problem as the motivating
example throughout this section. Through this example we aim to show how existing languages
are not suited to capturing the problem structure in a natural way.

3.1 Example problem: Survivable Network Design

A network is described by sets V of vertices and £ of (directed) edges and a base capacity C;
for every edge j € £. The basic multi-commodity network flow (MCNF) problem considers the
best way to move commodities k € C from their sources to their respective destinations, through
the edges of the shared-capacity network. Each commodity is described as the triplet (s, tx, dx)
consisting of start vertex s, terminal vertex t; and amount to be shipped di. A feasible flow
x = (x1,j)jce for the k-th commodity can be represented by the constraint

Az = by, x>0,

where A € RVI¥I€l is the vertex—edge incidence matrix, and by = (by;)icy is the demand vector
for the k-th commodity, with the following conventions:

-1 vertex ¢ is source of edge j, —dy vertex ¢ is source of demand k,
Aij = 1 vertex i is target of edge j, 0bp; = dy, vertex ¢ is target of demand k,
0 otherwise, 0 otherwise.

In multi-commodity survivable network design (MSND) the aim is to find the minimum instal-
lation cost of additional (spare) capacities S; at price ¢;, j € &, so that the given commodities
can still be routed through the network if any one edge or vertex should fail. The MSND prob-
lem can be modelled by a series of multi-commodity network flow problems, in each of which
one of the original edges or vertices is removed. Note that the subproblems are not completely
independent, as they are linked by the common spare capacities S;.

Let A®D [ € &€, be the vertex—edge incidence matrix in which the column corresponding to the

I-th edge is set to zero. Then any vector of flows :1:,(:’” > 0 satisfying

Al —p - pec leé,

gives a feasible flow to route the k-th commodity through the edge-reduced network. Similarly
let A9 i eV, be the vertex—edge incidence matrix in which the row corresponding to the i-th
vertex and the columns corresponding to edges incident to this vertex are set to zero. Then any
(v9)
k

vector of flows z > 0 satisfying

A(v,i)x](gv,i) =b,, keC,ieV,

gives a feasible flow to route the k-th commodity through the vertex-reduced network. As the
network is capacity-limited, however, each edge j € £ can carry at most C; + S; units of flow.



The complete formulation of the MSND problem is as follows:

min g c;Sj

JjEE
st AlCDZED —p, VkeCle&
A@D 0D VkeCieV
S e <cits;  Vieglee @)
kec
Sa <o+ 8 Vi€EicV
keC

2>0,8>0 Vje€

Figure 1: Structure of the constraint matrix for the MSND problem.

The constraint matrix of this problem has the form shown in Figure 1. The basic building
blocks are the vertex—edge incidence matrices (shown in dark grey). These blocks are repeated
for every commodity that needs to be shipped, and they are linked by a series of common
rows (shown in medium grey) that represent the global capacity constraints to build a MCNF
problem. Each MCNF block (framed by dashed lines) is repeated for every (missing) edge and
vertex. The common capacity variables (light grey blocks) act as linking columns. While the
nested structure of the problem is obvious is Figure 1, it cannot be easily appreciated from the
mathematical formulation (2).

3.2 Standard modelling language formulation

Problem (2) can be represented in an algebraic modelling language as shown in Figure 2, where
we adopt a syntax that is very close to AMPL, slightly modified to compress the example and
aid readability; models in other languages will look much the same. The modelling language
approach has the desirable property of separating model and data, but this formulation has a
few notable deficiencies.

First of all, the model appears overly complicated and hardly elegant: the flow variables have
to be indexed over three sets to be able to capture the commodity they refer to, the edges



set VERTS, EDGES, COMM;
param cost{EDGES}, basecap{EDGES};
param edge_source{EGDES}, edge_target{EDGES};
param comm_source{COMM}, comm_target{COMM}, comm_demand{COMM};
param b{k in COMM, i in VERTS} :=
if (comm_source[k]==1i) then comm_demand[k] else
if (comm_target[k]==i) then -comm_demand[k] else 0;

# first index ts missing egde/vertex, then commodity, then edge of flow
var Flow{EDGES union VERTS, COMM, EDGES} >= 0;
var sparecap{EDGES} >= 0;

# flow tnto vertex — flow out of vertex equals demand

subject to FlowBalanceMissingEdges{e in EDGES, k in COMM, i in VERTS}:
sum{j in EDGES:j~=e, edge_target[jl==i} Flowl[e,k, j]
- sum{j in EDGES:j~=e, edge_source[jl==i} Flowl[e,k,j]l = blk,il;

subject to FlowBalanceMissingVerts{v in VERTS, k in COMM, i in VERTS diff {v}}
sum{j in EDGES:edge_target[jl==i, edge_source[j]~=v} Flow[v,k,j]
- sum{j in EDGES:edge_source[jl==i, edge_target[j]~=v} Flowl[v,k,jl = blk,il]

subject to Capacity{ev in EDGES union VERTS, j in EDGES}:
sum{k in COMM} Flow[ev,k,j] <= basecap[j] + sparecaplj];

minimize obj: sum{j in EDGES} sparecapl[jl*cost[j];

Figure 2: AMPL-like model for the MSND problem.

they traverse, and which edge or vertex is currently missing from the network; the flow balance
constraints are also indexed over three sets and require a nested indexing over set EDGES, which
makes the intentions unclear; the conditions on some of the sets that describe the modified
network (such as {j in EDGES:j~=e, edge_target[jl==1i}) need to be restated several times,
are difficult to read and make the coding phase error-prone. Other approaches to modelling this
problem (such as defining edges as pairs of vertices) may improve readability.

A further, less obvious, shortcoming should be noted: some of the Flow[1,k, j] variables (those
for which 1==j, corresponding to the flow over the missing edge), are not strictly required,
even though they appear in constraints. This is not made explicit in the model, and the model
formulation as written will result in empty columns. This could of course be remedied: either by
a revised model, at the expense of significantly complicating the formulation, or by an automated
process (in the model translator, as done by AMPL, or as a pre-processing phase of the solver)
spotting and removing them. Nevertheless, we consider this lack of expressive power to be a
deficiency in the modelling approach.

Finally, as with the mathematical description (2), the structure of the problem is not exposed
from the modelling language formulation. As such, the model processor is incapable of generating
a constraint matrix in a structured fashion.



3.3 SML formulation

The main contribution of SML is the introduction of the block keyword, that is used to define
a sub-model. Its power comes from the fact that a block is indexable, and thus it can be
conveniently repeated. A sub-model definition using the block command takes the form:

block nameofblock{j in nameofset}: {

}

Within the scope delimited by block { ... }, any number of set, param, subject to, var,
minimize or indeed further block definitions can be placed. The interpretation is that all decla-
rations placed inside the block environment are implicitly repeated over the indexing expression
used for the block command. Clearly, the nesting of such blocks creates a tree structure of
blocks.

A block command creates a variable scope: within it, entities (sets, variables, constraints)
defined inside this block or in any of its parents can be used. Entities defined in the block
can be accessed from outside by using the form nameofblock[j].nameofentity inspired by
the naming convention of object-oriented programming. Entities defined in nodes that are not
direct children or ancestors of the current block cannot be referenced as this would make the
resulting structure more difficult to exploit.

Using the block keyword, the MSND model of Figure 2 can be rewritten as shown in Figure 3.
There are several advantages of the SML formulation over the plain AMPL formulation. Firstly,
the confusing triple indexing of the Flow variables and FlowBalance constraints is not needed any
more, making the model much clearer to read. The fact that some of the Flow variables and some
of the FlowBalance constraints are indeed empty is evident through the use of the EDGEDIFF and
VERTDIFF sets. Most importantly, the nested structure of the problem (Figure 1) is immediately
apparent from the SML model file. Apart from making the structure exploitable by the solver,
this also aids the modeller to visualize the relation between different model components.

It is worth mentioning how objectives are handled in SML. The model in Figure 3 has a single
objective declaration in the top level model. However often it is more convenient to place
objectives (or partial objectives) in a submodel block. SML allows the placement of an objective
declarations (through a minimize or maximize statement) anywhere in the model. As in plain
AMPL, objectives are named. Objective declarations (in different submodels) that define an
objective of the same name are summed together to define a global objective declaration of the
given name. If more than one global objective function is defined, then by default the one given
last in the top level model is used. The objective direction (minimize/maximize) is determined
by the declaration given at the top level of the model (if there is none, the default is minimize).
Any declaration with a differing direction to that at the top level is added to the global objective
after being multiplied by —1.

3.4 The “prototype” and the “expanded” model trees

The block definitions in the SML model (Figure 3) can be described by a tree (see left-hand side
in Figure 4). This is what we call the prototype model tree. It has one node for each type of



set VERTS, EDGES, COMM;
param cost{EDGES}, basecap{EDGES};
param edge_source{EDGES}, edge_target{EDGES};
param comm_source{COMM}, comm_target{COMM}, comm_demand{COMM};
param b{k in COMM, i in VERTS} :=
if (comm_source[k]==i) then comm_demand[k] else
if (comm_target[k]==i) then -comm_demand[k] else 0;

var sparecap{EDGES} >= 0;

block MCNFEdge{e in EDGES}: {
set EDGEDIFF = EDGES diff {e}; # local EDGES still present

block Net{k in COMM}: {
var Flow{EDGEDIFF} >= 0;
# flow into vertex — flow out of vertexr equals demand
subject to FlowBalance{i in VERTS}:
sum{j in EDGEDIFF:edge_target[jl==i} Flow[j]
- sum{j in EDGEDIFF:edge_source[j]l==i} Flow[j] = blk,i];

}

subject to Capacity{j in EDGEDIFF}:
sum{k in COMM} Net[k].Flow[j] <= basecap[j] + sparecaplj];

}

block MCNFVert{v in VERTS}: {
set VERTDIFF = VERTS diff {v}; # local VERTS still present
set EDGEDIFF = {i in EDGES: edge_sourcel[i] =v, edge_target[i] =v};

block Net{k in COMM}: {
var Flow{EDGEDIFF} >= 0;
# flow into vertex - flow out of vertex equals demand
subject to FlowBalance{i in VERTDIFF}:
sum{j in EDGEDIFF:edge_target[jl==i} Flow[j]
- sum{j in EDGEDIFF:edge_source[jl==i} Flow[j] = bl[k,i];

}

subject to Capacity{j in EDGEDIFF}:
sum{k in COMM} Net[k].Flow[j] <= basecap[j] + sparecaplj];

}

minimize costToInstall: sum{j in EDGES} sparecap[jl*cost[j];

Figure 3: SML model for the MSND problem.
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Figure 4: Prototype and expanded model trees for the MSND problem.

block rather than for each actual block present in the problem. The prototype tree is obtained
from the SML model file, and gives a compact representation of the problem.

Also the dependency between the blocks that make up the structure of the MSND problem of
Figure 1 can be described by a tree (see right-hand side of Figure 4, for an example with two
nodes, two arcs and three commodities), that we call the ezpanded model tree. The root node of
the tree is the whole problem, and its children are the MCNF problems for all possible choices
of the missing arcs and nodes. At the bottom level, the leaf nodes in the tree are the network
routing problems: each MCNF node contains one of these for each commodity.

The expanded tree (and therefore the full problem) can be obtained from the prototype tree by
repeating nodes according to the indexing expression used in the definition of the block.

4 Stochastic programming in SML

Uncertainty in the data is a commonly observed phenomenon in real-life optimization problems.
It can be argued that nearly all practical optimization problems display uncertainty in the data,
even if this is not made explicit in the chosen solution method. Stochastic programming is a
popular modelling approach for problems involving uncertainty.

Stochastic programming describes situations in which information about the problem parameters
becomes available at various points in time. The decision makers have to decide on some
course of action (first stage decisions) before the full information is known; as the information
becomes available, they can take different actions (second stage decisions/recourse actions) that
are allowed to depend on the observed event. In a multistage setting there may be several
cycles of observing events and taking recourse actions. For a correct representation of the time
structure, it is essential that the model guarantees that decisions up to a point in time can
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depend only on the information available up to that point, and not on any information to be
revealed at later stages (nonanticipativity). Figure 5 (taken from [13]) shows a typical decision
process.

decisiona[ event ]—» decision——[ event ]—» decison|— ... ——[ event ]—» decision

stage 1 stage 2 stage 3 stage T

Figure 5: Stochastic programming decision process.

While the underlying stochastic process that generates the

events may be continuous, it is customary, in order to obtain (20)
a computationally viable description, to work with a discretized (1,0/0
approximation. Such a discretized decision process is commonly @1
represented by a scenario tree (Figure 6). ©0) Wy 22
Each level in the tree corresponds to a point in time when some 2.3)
of the information is revealed and a consequent action can be

taken. Each node corresponds to a series of event realisations (12) 2.4
that have been observed up to this point in time. The branches ’
that depart from a node correspond to possible future realisa- O(2,5)

tions that we are considering from that particular node. To each
node of the tree we can assign a probability of being reached.
The size of the resulting problem is exponential in the number
of stages, leading quickly to very large problem dimensions.

Figure 6: A scenario tree.

Stochastic programming is an important source of highly structured problems, particularly in
the multistage setting. The structure is very well understood, and modellers have a good deal
of control over it, and again exploiting this structure is the key to efficient solution approaches.
Therefore, it is fundamental that the way a stochastic programming problem is formulated can
convey this structure to the solver.

4.1 Example problem: Asset and Liability Management

As an example of a stochastic programming problem we use an asset and liability management
problem [18]. The problem is concerned with investing an initial cash amount b into a given set
of assets A over T time periods in such a way that, at every time stage 0 < ¢t < T, a liability
payment [; can be covered. Each asset has value v;, j € A. The composition of the portfolio can
be changed throughout the investment horizon, incurring (proportional) transaction costs c;,

z! . is the amount of asset j held at node i, l‘?,j and 7 ; are the amounts bought and sold. These

1,
sat]isfy the inventory and cash balance equations at every node. The random parameters are the
asset returns 7; ; that hold for asset j at node 7. The evolution of uncertainties can be described
by an event tree: For a node i, 7(4) is its parent in the tree, p; is the probability of reaching
it, and 7(i) represents its stage. With L7 we denote the set of final-stage nodes. The root

node of the tree is assumed to have index t = 0. The objective maximises a linear combination
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of the expectation of the final portfolio value (denoted by p) and its negative variance, with
risk-aversion parameter A, as in the Markovitz model [24]:

max{E(wealth) — AVar(wealth)} = max{IE (wealth — X [wealth? — [E(wealth)?])}.

The complete model is the following:

max w—pl Z pil(1 = ¢) Z ’Ujl“?,j]Q - MQ]

# 20 €Ly jeA
s.t. aly = (Lrigalhy  vab,—af;, Vi#0jeA  (3)
Yjeall —cvjzs; = L + el +avjag;, Vi o
ZjeA(l + C)Ujl‘gJ = b
YieLs Pi jeaVith; = p

4.2 SML formulation

The model structure displayed by stochastic programming problems such as (3) is naturally
suited to being expressed with SML. The different decision stages of Figure 5 can be represented
as a nested chain of submodels. This corresponds, in our terminology, to the prototype tree of
the model (Figure 7, left). Each submodel, i.e. each node of the prototype tree, is indexed by
the set of random events at this stage, thus producing an expanded tree (Figure 7, right). Note
the exact correspondence between expanded tree and the scenario tree of Figure 6.

Q Stage 0

C) Stage 1

O Stage 2 Q

20 21D (22 (23 (24 (25

Figure 7: Prototype tree and expanded tree for stochastic programming.

The stochastic programming problem (3) could be modelled in SML using the block keyword
(and a three-stage model written explicitly this way is shown in Figure 8). However, such an
approach ignores two important considerations:

1. The problem description for a stochastic programming problem is typically very similar
for each stage (with possibly more accentuated differences for the first and last stage): a
modelling approach where each stage is written out explicitly would necessarily present
redundant information, increasing the chance of error and the size of the model’s SML
representation.
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2. The shape of the scenario tree (including the number of stages) should be treated as
problem data: instead, writing each stage explicitly as blocks forces the scenario tree to
be hard-coded into the model.

Our approach to the modelling of stochasticity in SML is guided by the observation that the
stage-wise model description and the specification of the stochasticity are two logically separate
phases that should not be coupled. The modeller is first interested in defining the multistage
setting and in laying out how the stages interact with each other. The modelling of stochas-
ticity is done independently at a later time; moreover, there can be many different event trees
associated to the same multistage model, thus reinforcing the need to separate this aspect from
the model proper.

SML provides language facilities to describe the stages within a stochastic program and it allows
the definition of how the model changes at different stages. Information on how the model is to
be represented as prototype and expanded model tree (i.e. the number of stages and the scenario
tree) is supplied as data. As desired, this design makes it possible to have different event trees
defined for the same model by only changing the problem data.

A stochastic program is declared in SML via the stochastic modifier to the block command:

block nameofblock stochastic using(NODESET, Prob, Parent, STAGESET): {

}

The parameters provided in the (mandatory) using block describe the shape of the scenario
tree. They are assumed to be declared as

set NODESET;

param Prob{NODESET};

param Parent{NODESET} symbolic;
set STAGESET ordered;

STAGESET and NODESET are the set of stages and nodes, respectively, Prob gives the conditional
probability of reaching a node given that its parent was reached, and finally, Parent describes
the tree structure by defining the parent for every node (set to the keyword "null" for the root
node). It is assumed that the number of levels thus defined in the tree matches the cardinality
of the STAGESET set. In keeping with the usual syntax, the declaration of dummy variables over
the node and stage sets is permitted.

By default, all entities declared within the scope of block stochastic are instantiated for all
nodes. However, declarations of model components can be limited to certain stages, either by a
stages attribute:

var x{j in ASSETS} stages STAGESUBSET;

or as a separate block within the block stochastic:
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param Budget, Ct, Rho, Liabilityl, Liability2;
set ASSETS, NODES;

param Parent{NODES}

param Value{ASSETS};

param Ret{NODES, ASSETS};

param Probs{NODES};

var mu;

# Stage O:
var xhO{ASSETS} >= 0, xbO{ASSETS} >= 0;
subject to StartBudget:
(1+Ct)*sum{j in ASSETS} xbO[jl*Value[j] <= Budget;

# Stage 1:
block Stagel{nl in NODES:Parent[k]==0}: {
var xh1{ASSETS} >= 0, xb1{ASSETS} >= 0, xs1{ASSETS} >= 0;
subject to Inventory{j in ASSETS}:
xh1[j] = (1+Ret[n1,j]) * xh0(j) + xb1l[j]l - xsi[jl;
subject to CashBalance:
(1-Ct) * sum{j in ASSETS} Value[jl*xsi[j] =
Liabilityl + (1+Ct) * sum{j in ASSETS} Valuel[jl*xb1[j];

# Stage 2:
block Stage2{n2 in NODES:Parent[n2]==n1}: {
var xh2{ASSETS} >= 0, xb2{ASSETS} >= 0, xs2{ASSETS} >= 0;
subject to Inventory{j in ASSETS}:
xh2[j] = (1+Ret2[n2,j]) * xh1(j) + xb2[j] - xs2[j];
subject to CashBalance:
(1-Ct) * sum{j in ASSETS} valuel[jl*xs2[j] =
Liability2 + (1+Ct) * sum{j in ASSETS} Valuel[jl*xb2[j];

var wealth := Prob[nl] * Prob[n2] * sum{j in ASSETS} Value[jl*xh2[j];

maximize objFunc:
( mu - Rho * ((wealth*wealth) - mu*mu) ) * Prob[nl] * Prob2[n2]
}

}

subject to ExpPortfolioValue:
mu = sum{nl in NODES:Parent[n1]==0, n2 in NODES:Parent[n2]==n1}
Prob[nl] * Prob[n2] * Stagel[nl].Stage2[n2].wealth;

Figure 8: Explicitly-blocked model for a simple 3-stage asset liability problem.
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stages STAGESUBSET: {

}

where STAGESUBSET is a subset of STAGESET that conveys information on how to index and
replicate the entities declared within the stages block. Inside a stages block, we can nest
one or more blocks if the problem has a further structure. Relations between different stages
can be expressed by using the ancestor(int i) function that allows to reference the i-th
ancestor stage. Variables of the ancestor can be referenced using the normal SML syntax, such
as ancestor (i) .x.

Within a stochastic programming problem model, the language should allow the differentiation of
time-dependent stochastic entities (the values of which depend on the realisation of the stochastic
process, i.e. they are node dependent) from time-dependent deterministic entities (the values
of which are known in advance). By default, an entity declared inside a block stochastic is
considered to be completely stochastic, and its value is assumed to depend on the node of the
event tree: therefore, there is one copy of such entity for each node. To identify a time-dependent
deterministic entity, it can be declared as deterministic using either

var wvarname deterministic; or deterministic: { ... }

resulting in only one copy of the entity existing at each time-stage (rather than at every node).

Objectives are treated in the same manner as before: elements of the objective in different blocks
but having the same declared name are summed into one global objective. However, there is
one important difference: in stochastic programming, the objective is always to minimize or
maximize the expectation of an expression. Therefore, within a stochastic block, objective
terms are always weighted by the unconditional probability of the node to which they belong.
Conveniently, there is no need to specify the expectation explicitly, as the SML preprocessor
performs this automatically.

As many stochastic programming models, such as the modelling of conditional value at risk
(CVaR) or stochastic dominance constraints include expectation-like constraints, the language
provides the Exp(:) function to compute the expected value of the parameter. The function
operates across the nodes that are present in the stage where the function is called. Exp(x) is
expanded internally into

sum{nd in NODESET: nd in currentstage} Prob[nd] * x[nd]

where currentstage is a list of nodes in the scope of the current stages block.

Figure 9 shows how the ALM model (3) can be modelled in SML, using the features of the
language. The stochastic block definition can be seen as a concise description of the model
chain respresentation of Figure 8.
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param Budget, T, Ct, Rho;

set ASSETS, NODESET, STAGESES := 0..T;

param Parent{NODESET} symbolic, Probs{NODESET};
param Value{ASSETS};

var mu;

block alm stochastic using (NODESET, Parent, Probs, STAGESET):{

var xh{ASSETS} >= 0, xb{ASSETS} >= 0, xs{ASSETS} >= 0;
param Ret{ASSETS};
param Liability deterministic;

stages {0}: {
subject to StartBudget:
(1+Ct)*sum{j in ASSETS} xb[jl*Value[j] <= Budget;
}

stages {1..T}: {
subject to Inventory{j in ASSETS}:
xh[j] = (1+Ret[j]) * ancestor(l).xh(j) + xbl[j]l - xs[jl;
subject to CashBalance:
(1-Ct) * sum{j in ASSETS} Value[jl*xs[j] =
Liability + (1+Ct)*sum{j in ASSETS} Value[jl*xb[j];

}

stages {T}: {
var wealth := sum{j in ASSETS} Value[jl*xh[j];
subject to ExpPortfolioValue:
Exp(wealth) = mu;
maximize objFunc: mu - Rho * ((wealth*wealth) - mu*mu )

}
}

Figure 9: Structured model using stochastic language features for the ALM problem.
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5 Software design and implementation

Although SML was initially conceived as a front-end to the object-oriented IPM solver OOPS,
it is designed with as broad an application spectrum in mind as possible. In particular, it should
be possible to use SML to communicate structured problems to any structure-exploiting solver,
whether it be based on decomposition approaches or interior point methods (or something else).
In this section we briefly review what model information is available from our description and
then show how this fits naturally with the two most popular solution approaches (namely TPM
and decomposition) and then proceed to describe how SML communicates this information to
the solver. Our description refers to the MSND problem in Figure 1 as an example.

The main vehicle for SML to describe a problem to a solver is the expanded model tree (Figure 4).
Fach node of the expanded model tree represents a section of the model given by a set of local
variables, local constraints and (if present) a list of child nodes. Figure 10 shows how the
Jacobian of the MSND problem fits into this framework: note the use of empty boxes to denote
blocks (local variables/constraints) that could be present at a particular node, but are not used
in this particular model.

Figure 10: System matrix for MSND problem as described by the expanded model tree: The
root block (light grey) has only local variables (sparecap) but no local constraints (represented
by empty boxes) and four children. Each of the children (medium grey, corresponding to the
MCNFEdge/Vert blocks) has local constraints (Capacity) but no local variables and three chil-
dren. Finally the bottom level blocks (dark grey, corresponding to the Net blocks) have both
local variables and constraints but no children.

This representation of the structured model is natural for a solver using a nested linear algebra
such as OOPS, that requires this information in two steps. In the first step, only a description
of the shape of the expanded model tree is needed together with information on the dimension
(number of rows and columns) in each of the leaf nodes of the tree; in the second stage, OOPS
requires a separate description of each of the blocks in Figure 10 (whether empty or not) as
a sparse matrix. The information needed at the first stage is conveniently provided by SML
through the expanded model tree. For the second stage, OOPS effectively needs to evaluate the
Jacobian of the local constraints of one expanded model node with respect to the variables local
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Figure 11: Schematic representation of model blocks

to another node. We will see that the same information is needed for a decomposition solver.

A decomposition solver applied to the MSND problem conceptually needs to solve the following

nested problems:
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We leave aside considerations of whether problems (4)-(6) are infeasible and/or unbounded.
Appropriate conditions and modifications to the problems to guarantee the well-definedness of
the conceptual decomposition algorithm can be stated, but would distract from the purpose of
this discussion.

Problem (6) needs to evaluate its system matrix A /A®9 (corresponding to the dark grey
blocks in Figure 10). Further, it needs to know how the Lagrange multiplier A impacts on the
current objective function, information obtained by evaluating the appropriate medium grey
block. Similar reasoning for the other two problems (5) and (4) shows that a decomposition
solver needs the capability to evaluate each of the coloured matrix blocks in Figure 10 separately.
Following from this need to acquire the Jacobian in a blockwise manner, we provide separate
functions to obtain each of the required block submatrices. For any pair of models between
which an ancestor-descendant relation in the expanded model tree exists there is the potential
for non-zero Jacobian block. In terms of the simplified schematic representation of the Jacobian
structure in Figure 11 a call to evaluate the intersection of a expanded tree node with itself will
provide the block labelled A, a call to evaluate the intersection of an expanded tree node with
any of its children will provide blocks labelled C and D (depending on the order of parent and
child), whereas blocks B are obtained by intersecting a child node with itself.

We separate functions for returning the size of a block from those returning the entries of the
block for two reasons:
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Memory allocation To allow efficient allocation of available memory based on the sizes of the
blocks.

Parallel planning To allow the solver to analyse the full model tree and distributing it to the
correct processor before forcing generation of the data.

A key design decision was made to use AMPL itself to interpret the models. Therefore, SML is
implemented in C++ as a pre- and post-processor to AMPL. The SML model file is parsed to
extract the prototype model-tree, the list of entities associated with each prototype-tree node
and the dependency graph of the entities. The goal of the pre-processing stage is to create, for
each node in the prototype model-tree, a stand-alone AMPL model file that describes the local
model for this block of the problem. The file includes definitions for all the entities belonging to
the prototype-tree node and all their dependencies: references to entities are changed to a global
naming and indexing scheme, that is easily generated from the SML model file by generic text
substitutions. Figure 12 shows these AMPL submodel files for the MSND problem formulation.

The AMPL submodels are then used to generate the appropriate submodels for every node of the
expanded tree by changing the indexing sets. Each block definition is replaced by declaring an
indexing set (named *_SUB) for the indexing expression of the sub-block, and this is prepended
to the indexing expressions of every entity declared in the sub-block. By temporarily defining
the set EDGES_SUB to a suitable subset of EDGES (leveraging AMPL’s scripting commands), the
model for any node on the expanded tree can be generated from the corresponding submodel
*.mod file.

This process of model expansion based on indexing sets results in a *.nl file for every node of
the expanded model tree; each file carries all the information about this node needed by a solver.
The underlying submodel is the same for all expanded-tree nodes that correspond to the same
prototype-tree node. However they are produced with different data instances: namely different
choices of elements from the block’s indexing sets.

The nodes of the prototype and the expanded tree are internally represented as C++ objects
that carry pointers to their children. Therefore, the prototype and expanded trees are themselves
trees of C++4 objects. The ExpandedTreeNode class provides information on the dimension of
the node (number of local constraints and variables) and a list of its children; further, it provides
methods to evaluate the Jacobian of its local constraints with respect to the local variables of a
second ExpandedTreeNode object. Information on the number of sparse elements of this Jacobian
block can be obtained prior to requesting the complete sparse matrix description to enable the
allocation of sufficient memory. As argued above, these methods should satisfy the needs of all
different conceivable structure-exploiting solvers. A full discussion of the ExpandedTreeNode
class can be found in the SML documentation.

6 Conclusions and future work

In this paper we have presented a new structure-conveying algebraic modelling language (SML)
for mathematical and stochastic programming. It supplements the standard AMPL modelling
language with extensions that allow models to be constructed from sub-models in an elegant and
natural way. There is a noticeable reduction in the complexity of the resulting model, especially
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set EDGES;
param cost{EDGES};

var sparecap{EDGES} >= 0;

minimize obj: sum{j in EGDES} sparecapljl*cost[jl;

set EDGES, COMM;
param basecap{EDGES};

var sparecap{EDGES} >= 0;

set EDGES_SUB within EDGES;
set EDGEDIFF{e in EDGES_SUB} = EDGES diff {e}; # local EDGES still present

var MCNFEdge_Net_Flow{e in EDGES_SUB, EDGEDIFF[e], k in COMM} >= O;
subject to Capacity{e in EDGES_SUB, j in EDGEDIFF[e]l:
sum{k in COMM} MCNFEdge_Net_Flowl[e,k,j] <= basecaplj] + sparecapljl;

set VERTS, EDGES, COMM;
param edge_source{EDGES}, edge_target{EDGES};
param comm_source{COMM}, comm_target{COMM}, comm_demand{COMM};
param b{k in COMM, i in VERTS} :=
if (comm_source[k]==i) then comm_demand[k] else
if (comm_target[k]==i) then -comm_demand[k] else 0;

set EDGES_SUB within EDGES;
set EDGEDIFF{e in EDGES} = EDGES diff {e}; # local EDGES still present

set COMM_SUB within COMM;

var MCNFEdge_Net_Flow{e in EDGES_SUB, k in COMM_SUB, EDGEDIFF[e]} >= 0;

# flow tnto vertex — flow out of vertex equals demand

subject to MCNFEdge_Net_FlowBalance{e in EDGES_SUB, k in COMM_SUB, i in VERTS}:
sum{j in EDGEDIFF[e]:edge_target[jl==i} MCNFEdge_Net_Flow[e,Xk, j]
- sum{j in EDGEDIFF[a]:edge_source[j]==i} MCNFEdge_Net_Flowl[e,k,j] = blk,i];

Figure 12: Generated AMPL model files for the root MSND model and MCNF submodels
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in the indexing of variables, and the SML formulation exposes the inherent structure of the
problem. The strength of the approach lies in the fact that this block structure is passed on to
solvers that can exploit it [4, 18, 28]. SML supports the modelling of stochastic programs with
recourse based on a stage-wise description. Information on the depth and shape of the associated
scenario tree is provided as data, thus achieving a complete separation between model and data.

An SML parser for linear, quadratic and stochastic programming problems is already available.
Its extension to nonlinear programming problem and the support for parallel model generation
are work in progress.

One major advantage of solvers that exploit structure is the ease with which they can be adapted
to solve sub-problems in parallel. The inherent parallelism in the problem is also known to the
AML processor and, to keep this advantage, this information should be used to parallelize the
problem generation process itself [21]. There are two issues that make this non-trivial. Firstly,
distributing sub-problems evenly amongst the available processors could lead to load balancing
problems, and so some understanding of the relative size or difficulty of each sub-problem is
required. Secondly, the distribution of sub-problems should be guided by the solver to enable
node-specific solver files to be created locally on the correct processor and avoid excessive data
transfers. This will require a more sophisticated SML-solver interface than that described above.

Even without a parallel sub-model generation process, we believe the design of our structure-
conveying modelling language is scalable to truly large problems.

This feature will become of major importance in the future, as optimisation models keep growing
in size: although huge optimization problems are solvable by modern parallel solvers, such
problems are now frequently beyond the reach of current modelling languages.

7 Code availability

The implementation of SML we describe has been released under an open source license and is
distributed along with a limited version of the solver OOPS (proprietary license). Full details
of the packages and their license conditions are available at

http://www.maths.ed.ac.uk/ERGO/sml/

Acknowledgements: We thank Robert Fourer, the referees and the technical editor for their
comments, which led to a more precise presentation.
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