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1. Introduction. Bound-constrained nonlinear least-squares problems model a
large number of practical applications. Let consider the problem given by

min
l≤x≤u

f(x) =
1

2
‖F (x)‖2

2,(1.1)

where F : IRn → IRm is a continuously differentiable function and l, u ∈ IRn are lower
and upper bounds such that l < u. It includes as a special case solving a bound-
constrained system of nonlinear equations. If a solution to the nonlinear system cannot
be found, a local minimizer for the violations of the equations is computed. Also,
problem (1.1) is also a suitable reformulation of systems of nonlinear equalities and
inequalities ([15]) which arise in model formulation design, parameter identification
problems, detection of feasible points in nonlinear programming and take the form

CE(x) = 0,
CI(x) ≤ 0,
L ≤ x ≤ U.

(1.2)

Here CE : IRn → IRmE , CI : IRn → IRmI , and the components of the bound-
constraints L, U ∈ IRn satisfy −∞ ≤ Li ≤ Ui ≤ ∞, i = 1, · · · , n, see e.g. [8, 12, 17].
The functions CE and CI are supposed to be continuously differentiable. To ob-
tain problem (1.1), the general inequalities CI(x) ≤ 0 are transformed into equalities
while the simple bounds are left unchanged. Thus any zero-residual solution of the
least-squares problem solves (1.2).

In this paper we present a new Matlab solver for problem (1.1) which handles
systems of nonlinear equalities and inequalities (1.2). Our proposal is based on the
results presented by the authors in the recent papers [15, 16]. In particular, in [15] a
trust-region Gauss-Newton method and a trust-region Levenberg-Marquardt method
for solving (1.1) are presented. These methods handle the least-squares problem ir-
respective of its dimensions m and n, generate feasible iterates and rely on matrix
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factorizations. The theoretical analysis conducted in [15, 16] showed that such meth-
ods are globally and fast locally convergent under standard assumptions. A wide
experimental study showed that they are reliable in solving zero and small-residual
problems and that the trust-region Gauss-Newton algorithm is more efficient and
robust then the trust-region Levenberg-Marquardt procedure.

Our solver implements the trust-region Gauss-Newton algorithm proposed in [15]
and offers an internal reformulation of (1.2) as problem (1.1) which preserves the
smothness required by the trust-region algorithm. Hence, it is called TRESNEI, Trust-
REgion Solver for Nonlinear Equalities and Inequalities.

If there are no general inequalities, i.e. mI = 0, then TRESNEI solves nonsquare
bound-constrained nonlinear systems and it turns out to be a nontrivial extension of
the solver STRSCNE for square bound-constrained systems, [1]. Moreover, it overcomes
a limitation in the functions for bound-constrained nonlinear least-squares problems
provided by the Matlab Optimization Toolbox [18]; in fact, these functions cannot
solve underdetermined problems, i.e. problems where the dimensions of F are such
that m < n.

It is important to note that we may attempt to formulate (1.2) as an uncon-
strained nonlinear least-squares problem where the objective function includes all the
inequalities and apply numerical methods for unconstrained optimization, see [4, 11].
Our motivations for not converting also the simple bounds into equalities comes from
the observation that restricting the expected size of each variable serves both as check
on the problem formulation and as a specification of the domain of the maps CE and
CI ; further, it can prevent function evaluations at unreasonable points during the
iterations. Thus, it is advisable to adopt the formulation (1.1) and apply a procedure
that enforce feasibility of the iterates with respect to these constraints.

TRESNEI has been intensively tested and the goals of our experiments were twofold.
First, we were interested in assessing if the formulation (1.1) may offer an advantage
as compared with an unconstrained least-squares formulation. Second, we were in-
terested in comparing the computational cost and robustness of our algorithm with
competing solvers. The function lsqnonlin from the Matlab Optimization Toolbox
served our purpouses as will be shown in §4 and §6. The overall performance of
TRESNEI shows that it is cost effective and robust and suggests us some lines for
future research.

Finally, we note that TRESNEI does not require any special toolbox, so it can
easily serve as a template for translations in another language. The solver is freely
accessible through the web site: http://TRESNEI.de.unifi.it.

Throughout the paper, the subscript k will denote an iteration counter and for
any function h, hk will be the shorthand for h(xk). The ith component of a vector x
will be denoted by either xi or (x)i and for any set of indices I, [x]I will denote the
subvector of x with components xi, i ∈ I. Finally, [l, u] will denote the feasible set
{x ∈ IRn | l ≤ x ≤ u}.

2. Proposed approach. The procedure implemented in TRESNEI consists of
two phases. In the first phase, the constrained problem (1.1) is formed; then in the
second phase such problem is solved. In this section we outline the proposed approach.
The implementation details will be fully described in §3.

The first step of TRESNEI is to express the problem (1.2) as a bound-constrained
least-squares problem where F is continuously differentiable and l < u. This is done
considering a general and widespread modelling of the systems of equalities and in-
equalities which is also adopted in the CUTEr collection of test problems [9].
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In (1.2), the components xi of x can be either free or bounded on one side or
bounded from above and from below. Moreover, it is standard to provide the problem
parameters as “fixed” variables, i.e. variables with equal upper and lower bounds. In
what follows, we let Ifx, Ilb and Iub be the sets containing the indeces of fixed, lower
and upper bounded variables respectively:

Ifx = {i ∈ {1, . . . , n} : Li = Ui},(2.1)

Ilb = {i ∈ {1, . . . , n} : i /∈ Ifix and Li 6= −∞},(2.2)

Iub = {i ∈ {1, . . . , n} : i /∈ Ifix and Ui 6= +∞}.(2.3)

Obviously Ilb and Iub may not be disjoint.
Suppose that the problem (1.2) contains no fixed variables neither nonlinear in-

equalities. Then, TRESNEI attempts to solve (1.1) where

F (x) = CE(x),

m = mE , l = L, u = U.

Otherwise, the problem (1.2) is posed as a bound-constrained nonlinear least-
squares including fixed variables and the general inequalities CI(x) ≤ 0 into the
function F . In particular, the general inequalities are converted into equalities using
the continuously differentiable function [t]+ = max{t, 0}2/2 and the bounds on the
fixed variables are dropped introducing equalities of the form

[x]Ifx
− [U ]Ifx

= 0.(2.4)

Thus, the function F in (1.1) takes the form

F (x) =





CE(x)
[x]Ifx

− [U ]Ifx

[CI(x)]+



 ,(2.5)

and the number of its components is

m = mE + mI + nfx,

where nfx is the cardinality of the set Ifx. The remaining simple bounds are kept
separate from the objective function so that the bounds l and u in (1.1) are given by

li =

{

−∞ if i ∈ Ifx

Li otherwise
, ui =

{

+∞ if i ∈ Ifx

Ui otherwise
,(2.6)

i = 1, . . . , n.
Clearly, zero-residual solutions of the above constrained least-squares problem

solve (1.2). The first-order optimality conditions for (1.1) can be stated as ([3])

D(x)∇f(x) = 0,(2.7)

where ∇f(x) = F ′(x)T F (x), F ′ is the Jacobian matrix of F , and D is the scaling
matrix

D(x) = diag(|d1(x)|, . . . , |dn(x)|),

di(x) =















xi − ui if (∇f(x))i < 0, ui < ∞,
xi − li if (∇f(x))i ≥ 0, li > −∞,
1 if (∇f(x))i ≥ 0, li = −∞, or

(∇f(x))i < 0, ui = ∞.
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The method implemented in TRESNEI for solving (1.1) uses a Gauss-Newton
model for f together with a trust-region strategy and generates a sequence {xk}
of feasible iterates. At kth iteration, the trust-region problem is given by

min
p

{mk(p) : ‖p‖2 ≤ ∆k},(2.8)

where

mk(p) =
1

2
‖F ′

k p + Fk‖2
2,(2.9)

and ∆k > 0 is the trust-region radius.
Let the sequence {xk} be defined by xk+1 = xk + pk, k ≥ 0. The first-order

optimality conditions are satisfied at every limit point of {xk} if the step pk satisfies
the fraction of Cauchy decrease condition

ρc(pk) =
mk(0) − mk(pk)

mk(0) − mk(pC
k )

≥ β1, β1 ∈ (0, 1),(2.10)

where pC
k is the scaled Cauchy step defined as

pC
k = argmin

p∈span{−Dk∇fk}

mk(p) subject to ‖p‖2 ≤ ∆k, xk + p ∈ [l, u],(2.11)

see [15]. To find such a step pk, first we compute a solution ptr to the trust-region
problem. In particular, since in general the global minimizer to mk is non-unique, we
evaluate the minimum norm solution pN

k to the problem minp mk(p) which is given
by

pN
k = −F ′

k

+
Fk,(2.12)

where F ′
k
+

denotes the Moore-Penrose pseudoinverse of matrix F ′
k. The vector pN

k

solves the trust-region problem (2.8) if it is inside the trust-region, otherwise the
dogleg step between pN

k and the Cauchy direction for (2.8) is computed. Second, we
form the projected step p̄tr

p̄tr = P (xk + ptr) − xk,

where P is the projection map, P (x) = max{l,min{x, u}}, and compute a step pk of
the form

pk = t pC
k + (1 − t)p̄tr, t ∈ [0, 1],(2.13)

satisfying the condition (2.10). Since the steps pC
k and p̄tr give rise to feasible points,

the point xk + pk is feasible too.
Finally, the predicted reduction of the quadratic model mk and the actual reduc-

tion of the objective function f at the trial point xk + pk are compared using the
standard rule

ρf (pk) =
f(xk) − f(xk + pk)

mk(0) − mk(pk)
≥ β2, β2 ∈ (0, 1).(2.14)

If the trial point is accepted, then xk+1 = xk + pk and a new iteration begins. Oth-
erwise the trust-region radius is reduced.
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The results of the convergence analysis for the Gauss-Newton trust-region method
carried out in [15, 16] are summarized below. The global convergence properties are
guaranteed by (2.10); the local fast convergence rate properties follow from using the
step pN

k .
Theorem 2.1. Let {xk} be the sequence generated by the Gauss-Newton trust-

region method and L be an open, bounded and convex set containing the whole sequence
{xk}. Suppose that the Jacobian matrix F ′ is Lipschitz continuous in L and ‖F ′‖ is
bounded above on L. Then the following statements hold:
i) Every limit point of the sequence {xk} is a first-order stationary point for the

problem (1.1).
ii) If x∗ is a limit point of {xk} and ‖F (x∗)‖2 = 0, then all the limit points of {xk}

solve the problem (1.2).
iii) If the sequence {xk} has a limit point x∗ such that ‖F (x∗)‖2 = 0 and F ′(x∗) is

full rank, then {xk} converges to x∗ quadratically.

Proof. See [15, Theorems 4.1, 4.2] and [16, Theorem 3.1].
We remark that the above assumptions on function F are satisfied if CI , C ′

E , C ′
I

are bounded in norm in the set L and C ′
E and C ′

I are Lipschitz continuous in L.

3. Implementation details. The procedure implemented in TRESNEI is de-
scribed in Algorithm 3.1. In this section we give details on its steps and discuss the
user’s options for the problem description and the choice of the parameters.

3.1. Problem description. TRESNEI offers its user the facility of requiring a
minimal description of the problem (1.2) and building an internal reformulation of the
problem. In particular, the functions CE , CI and the bounds L and U are expected.
Then, the problem (1.1) is internally formed as described in §2, see Step 1.

Following the notation in (2.5), it easy to see that the solution of a bound-
constrained least-squares problem is attempted providing its residual function CE .

If the Jacobian matrices C ′
E , C ′

I have been provided along with CE and CI , the
Jacobian matrix F ′ is formed. Otherwise, a finite difference approximation of matrix
F ′ is evaluated.

It is important to note that the user may prefer an alternative transformation of
the nonlinear inequalities to the one employed in (2.5). For example, the use of slack
variables casting nonlinear inequalities into nonlinear equalities, can be accomplished
providing the resulting sistem of nonlinear equations to TRESNEI.

3.2. Solution of the trust-region problem. The solution of the trust-region
problem (2.8) is addressed in Step 3 of the algorithm. If the Jacobian matrix F ′ is
square and nonsingular, then the step pN

k given in (2.12) is computed by the Matlab

backslash operator. Otherwise, the complete orthogonal decomposition of F ′ is ap-
plied using procedures which are sligth modifications of those given in [13]. Clearly,
the use of matrix factorization sets limits on the size of problems that can be solved
efficiently by TRESNEI.

If pN
k does not solve the trust-region problem, then we use the classical dogleg path

to approximate the trust-region solution, [17]. The Cauchy step ck for the problem
(2.8) has the form

ck = −min

{ ‖∇fk‖2
2

‖F ′
k∇fk‖2

2

,
∆k

‖∇fk‖2

}

∇fk.(3.1)

The procedure described above was implemented achieving economies in the cal-
culations. Since a zero components of [CI(xk)]+ gives rise to a zero component in F
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and to a null row in F ′, instead of (2.9) we use the reduced model

m̂k(p) =
1

2
‖F̂ ′

k p + F̂k‖2
2,(3.2)

where F̂k is the vector formed by CE(xk) and the nonzero components of [CI(xk)]+
and F̂ ′

k is the Jacobian of F̂ at xk, see [11].

3.3. Computation of the trial step. In Step 4 of the algorithm, the trial step
pk is formed testing the condition (2.10); the scalar β1 used in (2.10) is an internal
parameter fixed in Step 2. To evaluate pC

k defined in (2.11), let

qk = argmin
p∈span{−Dk∇fk}

mk(p) subject to ‖p‖2 ≤ ∆k

i.e.

qk = −ωDk∇fk, ω = min

{

‖D
1

2

k ∇fk‖2
2

‖F ′
kDk∇fk‖2

2

,
∆k

‖Dk∇fk‖2

}

,

and

ξ = min
1≤i≤n

λi, λi =

{

max{ li−(xk)i

(qk)i
, ui−(xk)i

(qk)i
} if (qk)i 6= 0,

∞ if (qk)i = 0.

Then pC
k takes the form

pC
k =

{

qk if xk + qk ∈ [l, u],
ξqk, otherwise.

(3.3)

The step p̄tr is accepted as the trial step pk if it satisfies (2.10). Alternatively, we
find the step pk of the form (2.13) such that ρc(pk) = ρc(t pC

k + (1 − t)p̄tr) = β1. It
is easy to verify that this is a quadratic scalar equation admitting a unique positive
root t∗.

3.4. Test on the trial step and trust-region radius update. The trial step
pk is accepted in Step 5 of the algorithm if condition (2.10) is satisfied. In this case
the trust-region radius is updated following a standard strategy and imposing that
the initial trust-region radius ∆k+1 is greater than or equal to a prescribed value ∆m1.
Clearly, on termination of each iteration, the trust-region radius may be smaller that
∆m1. On the other hand, if pk fails to satisfy (2.14), then it is rejected and the
trust-region radius ∆k is reduced. Note that if ∆k becomes smaller than the fixed
parameter ∆m2, we terminate the procedure and declare a failure.

The parameters β2, ∆m1, ∆m2 are set internally in Step 2.

3.5. Termination criteria and accuracy. Successful termination of TRESNEI
means that one of the following conditions is met

‖Fk‖∞ ≤ ǫ1
√

n,(3.4)

min{‖Dk∇fk‖2, ‖P (xk −∇fk) − xk‖2} ≤ ǫ2,(3.5)

where ǫ1 and ǫ2 are prescribed tolerances. The condition (3.5) involves two optimality
measures: the scaled gradient D∇f which is a key ingredient of our method, and the
projected gradient of function f . The use of both measures is due to the fact that the
value ‖D∇f‖ may oscillate and exhibit a large growth at some iterations. Thus, the
use of the norm of the projected gradient provides a more reliable stopping condition.
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Algorithm 3.1: The trust-region Gauss-Newton algorithm

Input: CE , CI , L, U , mE , mI , n,
x0 ∈ [l, u], ∆0, kM , ǫ1, ǫ2.

1. Problem description
Let l, u as in (2.6) and m be the length of F in (2.5).
Compute F (x0) by (2.5) and F ′(x0). Set k = 1.

2. Internal parameters
Set β1 = 1/10, β2 = 1/4, β3 = 3/4.
Let ǫm be the machine precision, set ∆m1 =

√
ǫm, ∆m2 = ǫm.

While k ≤ kM do

3. Solve the trust-region problem
3.1 If m 6= n compute pN

k given in (2.12) by the complete
orthogonal decomposition.

If m = n solve the linear system F ′
k pN

k = −Fk;
If F ′

k is singular, compute pN
k by the complete

orthogonal factorization.
3.2 If ‖pN

k ‖2 ≤ ∆k set ptr = pN
k ;

Else form ck given in (3.1).
compute the dogleg step ptr between pN

k and ck.
4. Compute the trial step pk.

4.1 Let p̄tr = P (xk + ptr) − xk.
4.2 Compute pC

k in (3.3).
4.3 If p̄tr satisfies (2.10), set pk = p̄tr;

Else compute the positive root t∗ of ρc(t pC
k + (1 − t)p̄tr) − β1 = 0

set pk = t∗ pC
k + (1 − t∗)p̄tr.

5. Test on pk and trust-region radius update
5.1 Compute F (xk + pk) by (2.5).

If pk satisfies (2.14) set xk+1 = xk + pk.
Else set ∆k = min{∆k/4, ‖pk‖2/2};

If ∆k > ∆m2, go to Step 3.2;
Else exit.

5.2 If ρf (pk) ≥ β3, set ∆k+1 = max{∆k, ∆m1, 2‖pk‖2};
Else set ∆k+1 = max{∆k, ∆m1};

6. Termination test
6.1 If (3.4) or (3.5) is satisfied, exit.

Else compute F ′(xk+1) and increment k.

4. An alternative approach. The use of the commercial Matlab Optimization
Toolbox software for solving least-squares problems, gives rise to an approach alter-
native to the one used in TRESNEI. In particular, it yields to testing an unconstrained
least-squares formulation of (1.2).

The MATLAB Optimization Toolbox includes the function lsqnonlin which con-
sists of two implementations: the large-scale algorithm and the medium-scale algo-
rithm. The large-scale algorithm is a subspace trust-region method while the medium-
scale algorithm uses either the Levenberg-Marquardt method or the Gauss-Newton
method globalized by a line-search strategy.
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The applicability of lsqnonlin has some limitations. Bounds on the variables can
be handled only by the large-scale algorithm. On the other hand, such algorithm can-
not solve underdetermined problems i.e. problems where the number of elements of F
is lower than the number of variables. Therefore, bound-constrained underdetermined
least-squares problems cannot be solved by lsqnonlin.

Because of the above limitations, the only way to solve a variety of systems of
equalities and inequalities without restrictions on their dimensions consists in ex-
pressing the problems as unconstrained least-squares problems. In fact, given (1.2)
we apply the medium-scale algorithm to the problem

min
x

g(x) = ‖G(x)‖2
2,(4.1)

where

G(x) =









CE(x)
[x]Ifx

− [U ]Ifx

[CI(x)]+
max{

[

[L − x]Ilb

]

+
,
[

[x − U ]Iub

]

+
}









.(4.2)

Note that the function G differs from (2.5) as it incorporates the simple bounds in
the sets Ilb, Iub. It easy to verify that G is continuously differentiable. Similar
reformulations can be found in [4, 11].

We will cosider the solution of (4.1) by the medium-scale algorithm of lsqnonlin.
It terminates successfully either if the directional derivative along the search direction
sk and the infinity-norm of the gradient of gk are less than prescribed tolerances, i.e.

∇gT
k sk ≤ ζ1 and ‖∇gk‖∞ ≤ 10(ζ1 + ζ2),(4.3)

or if the magnitude of search direction is sufficiently small, i.e.

‖sk‖∞ ≤ ζ2.(4.4)

On the other side, a failure is declared if the line-search strategy can not sufficiently
decrease the residual along the current search direction.

5. Benchmarking. The solvers TRESNEI and lsqnonlin do not test a uniform
stopping criterium. Hence, it is essential benchmarking the two solvers in order to
guarantee that the returned approximate solutions satisfy the same accuracy require-
ment.

We adopt the benchmarking process proposed in [6] for general constrained op-
timization problems and we fit it to the problem (1.1). It consists in computing and
checking a specific test for the solvers a posteriori. Specifically, each solver is run using
the default tolerances. If the approximate solution returned by the solver does not
satisfy the a posteriori convergence test, then the native solver tolerances are reduced
and the problem is solved again. Further tolerance reductions are made until the a
posteriori convergence test is satisfied or a failure is declared.

The definition of the a posteriori convergence test is given in terms of measures for
feasibility and stationarity. Such measures are defined using an error measure function
δ[·, ·] which involves a mixture of the absolute and relative error. In particular, given
real numbers ξ1 and ξ2, δ[ξ1, ξ2] is defined as

δ[ξ1, ξ2] = min

{

|ξ1 − ξ2|,
|ξ1 − ξ2|
|ξ1| + |ξ2|

}

,
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with δ[0, 0] = 0 and δ[ξ1, ξ2] = 1 if either ξ1 or ξ2 is infinite. The function δ[·, ·] is
continuous.

The feasibility measure is given by

νf (x) = ‖v(x)‖∞,(5.1)

where v(x) ∈ IRn and

(v(x))i =

{

0 if li ≤ xi ≤ ui,
min{δ[xi, li], δ[xi, ui]} otherwise.

Clearly, νf is null at feasible points while it measures the constraints violations at
infeasible points. Given a small positive scalar τ , a vector x is defined to be τ -feasible
if νf (x) ≤ τ , [6].

The stationarity measure νs can be defined as

νs(x, τ) = ‖r(x, τ)‖∞,(5.2)

where τ is a small positive scalar, r(x, τ) ∈ IRn and

(r(x, τ))i =























min{0, (∇f(x))i} if δ[xi, li] ≤ τ, δ[xi, ui] > τ,
max{0, (∇f(x))i} if δ[xi, li] > τ, δ[xi, ui] ≤ τ,
(∇f(x))i if δ[xi, li] > τ, δ[xi, ui] > τ,
0 if δ[xi, li] ≤ τ, δ[xi, ui] ≤ τ or

if δ[xi, Li] ≤ τ, i ∈ Ifx.

(5.3)

Note that the last assignement in (5.3) is related to the equation (2.4) and that Li is
the value assumed by the fixed variable xi, i ∈ Ifx, of the problem (1.2).

The relationship between the optimality measures (5.1) and (5.2) and the first-
order optimality conditions for the problem (1.1) is clarified by the following theorem.

Theorem 5.1. Let τ > 0 be given and let x∗ be a first-order stationary point
of the problem (1.1). If {xk} is a sequence that converges to x∗, then {νf (xk)} and
{νs(xk, τ)} converge to zero.

Proof. The sequence {νf (xk)} trivially converges to zero since the sequence {xk}
converges to a feasible point x∗ of problem (1.1).

We prove that {νs(xk, τ)} converges to zero recalling that the first-order optimal-
ity conditions (2.7) are equivalent to the conditions

(∇f(x∗))i = 0 if li < x∗
i < ui,

(∇f(x∗))i ≤ 0 if x∗
i = ui,

(∇f(x∗))i ≥ 0 if x∗
i = li.

(5.4)

Consider the ith component of xk for k sufficiently large and without lack of generality
suppose that if x∗

i is active then x∗
i = li. Since {xk} converges to x∗, if x∗

i = li
then δ[(xk)i, li] ≤ τ for all k sufficiently large, otherwise either δ[(xk)i, li] ≤ τ or
δ[(xk)i, li] > τ may hold.

If x∗
i = li and (∇f(x∗))i > 0, then by (5.3) and the continuity of the gradient,

we get

(r(xk, τ))i = min{0, (∇f(xk))i} = 0,

for k sufficiently large.
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If x∗
i = li and (∇f(x∗))i = 0 or x∗

i > li and δ[(xk)i, li] ≤ τ , then

(r(xk, τ))i = min{0, (∇f(xk))i} ≤ |(∇f(xk))i|.(5.5)

Since limk→∞(∇f(xk))i = 0, then from (5.5) we obtain limk→∞(r(xk, τ))i = 0.
Finally if x∗

i > li and δ[(xk)i, li] > τ , limk→∞(r(xk, τ))i = 0 easily follows from
(5.3) and (5.4).

The case x∗
i = ui can be studied as above and therefore we can conclude that

limk→∞ νs(xk, τ) = 0. �

The first requirement on the solutions returned by the solvers TRESNEI and
lsqnonlin is their τ -feasibility. Moreover, we assess the accuracy of the solutions
by using the stationarity measure νs. In practice, benchmarking requires that the
solutions delivered by TRESNEI and lsqnonlin satisfy

νf (x) ≤ τf , νs(x, τf ) ≤ τs,(5.6)

for specified tolerances τf and τs. The τ -feasibility feature is nontrivially fulfilled by
lsqnonlin as it may return a nonzero-residual stationary point for (4.1). On the
other hand, since TRESNEI generates a sequence of feasible iterations, enforcing (5.6)
means controlling only the stationarity measure νs.

6. Numerical experience. In this section we discuss the numerical experiments
with TRESNEI and lsqnonlin, with particular emphasis on the effects of the enforce-
ment of the convergence test (5.6). All the tests were performed on an Intel Xeon
(TM) 3.4 Ghz, 1GB RAM using Matlab 7.6 and machine precision ǫm ≈ 2 × 10−16.

6.1. The problem set. The test examples are from the CUTEr test collection
[10]. In view of the suitability of TRESNEI for medium-size problems, we selected
135 problems of the form (1.2) and we adjusted their dimensions to obtain variants
where n ≤ 500. Among the problems considered, there are 14 systems of nonlinear
equations; the rest of the problems are constraint sets of problems from CUTEr.

In Tables (6.1)-(6.3) we report the names along with the main characteristics of
the problems under consideration. In particular, nfr and nfx indicate the number
of free and fixed variables respectively, nb the number of variables that are bounded
at least on one side and nr the number of variables bounded on both sides (“range”
variables). Moreover, the number mE of equalities and the number mI of general
inequalities are reported.

The starting point x0 and the analytical Jacobian matrices C ′
E and C ′

I are pro-
vided by CUTEr as part of each problem specification.

6.2. Algorithmic options. TRESNEI was run with the initial trust-region ra-
dius ∆0 in Algorithm 3.1 set equal to 1. To obtain a feasible starting guess, the initial
guess provided by CUTEr was projected onto the box [l, u].

In lsqnonlin, for the line search algorithm we selected a safeguarded cubic poly-
nomial method instead of the default strategy. This choice is recommended in [18] if
gradients are supplied and can be calculated quite inexepensively. The initial point
used is the one given by CUTEr.

For both solvers, all attempts to solve the test problems were limited to a maxi-
mum of 1000 iterations or 1000 function evaluations. The default tolerances ǫ1, ǫ2 in
(3.4) and (3.5) and ζ1, ζ2 in (4.3) and (4.4) are

ǫ1 = ǫ2 = 10−6, ζ1 = ζ2 = 10−6.
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Benchmarking of the solvers has been performed as follows. If one solver reports
a failure with the default tolerances then the benchmarking process is not activated.
Otherwise, the a posteriori test (5.6) is checked as suggested in [6], i.e. setting

τf = τs = 10−6.

In case (5.6) is not satisfied, the tolerances provided to the solvers are reduced by a
factor 10 and the problem is solved again. The progressive reduction of the tolerances
is stopped, and a failure is declared, when they reach the value 10−16. It is important
to remark that if the solvers fails during the repeated runs but the test (5.6) is satisfied
at the returned approximation, then we declare a successful run.

6.3. Results. Firstly, we tested TRESNEI and lsqnonlin on the problem set us-
ing the default tolerances. Secondly, we compared TRESNEI and lsqnonlin checking
the a posteriori test (5.6).

Let consider the experiments conducted with the default tolerances. Both the
Gauss-Newton method and the Levenberg-Marquardt method implemented in the
medium-scale algorithm of lsqnonlin were run, see §4. TRESNEI solved 121 of the
135 problems, the Levenberg-Marquardt and the Gauss-Newton implementations of
lsqnonlin solved 130 and 91 problems respectively. In fact, the Gauss-Newton imple-
mentation of lsqnonlin fails to handle overdetermined problems with rank-deficient
Jacobian matrices. Due to this pitfall, we will refer to the Levenberg-Marquardt
implementation of lsqnonlin in the remaining of the section.

For the successful runs, we analyzed the value of residual functions F in (2.5) and
G in (4.2) returned by TRESNEI and lsqnonlin respectively; Figure 6.1 shows the
values

ρT = − log10 ‖F (x)‖2, ρl = − log10 ‖G(x)‖2.(6.1)

We note that the final residual is less than 10−6 in 70 problems for TRESNEI and in 26
problems for lsqnonlin. For problem HS99EXP, the residual ‖G‖2 returned is around
1.

Since the convergence tests of the solvers are not consistent, conclusions are dif-
ficult to drawn from the results obtained. It is quite evident that, TRESNEI returns
small values of ‖F‖2; hence we can safely conclude that the solutions returned by the
solver are accurate approximations to the solutions of problem (1.2). On the other
hand, assessing the accuracy of the solutions delivered by lsqnonlin is more difficult.
The residual function G in (4.1) includes the simple bounds and the values of ‖G‖2

shown in Figure 6.1 may indicate the computation of an infeasible solution of (1.2)
with respect to the simple bounds.

Performing the benchmark, TRESNEI and lsqnonlin computed a solution satis-
fying (5.6) in 119 (88%) of the 135 problems and 117 (87%) of the tests, respectively.
Figures 6.2 displays the function-evaluations count performance profile [5] for these
runs. The plot shows that both solvers are very reliable and makes clear that TRESNEI
is the most efficient for about 75% of the runs and lsqnonlin is within a factor 5 of
TRESNEI for about 80% of the runs.

Some comments on the failures occurring in the benchmarking process are needed.
TRESNEI fails to satisfy the stationarity requirement νs in (5.6) for 2 problems while
lsqnonlin fails 13 times as the τ -feasibility required in (5.6) is not met. The reason
why lsqnonlin fails to satisfy this requirement is that its iterates may not be feasible
and tipically the problem (1.2) has nonisolated solutions. Thus, it may happen that
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Fig. 6.1. Plot of final residuals (6.1) for the successful runs.
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Fig. 6.2. Performance profile, ψ(χ): Function-evaluation counts for the 135 problem under
consideration.

the sequence generated by lsqnonlin converges to a solution of problem (4.1) that is
not feasible but close to the boundary of the box [l, u]. This situation can be verified
numerically as the value of νf settles down for decreasing values of the tolerances ζ1

and ζ2 in (4.3) and (4.4).

The purpose of what follows is to investigate the effect of the convergence criteria
(5.6) on solvers performance. In Figures 6.3-6.4, for each problem we report the bar
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Fig. 6.3. Graph of the performance measure (6.2) for TRESNEI.
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Fig. 6.4. Graph of the performance measure (6.2) for lsqnonlin.

showing the values

Π = − log10(τB),(6.2)

where τB is the tolerance needed by either TRESNEI or lsqnonlin to satisfy the
condition (5.6). If one solver failed either with the default tolerances or in the bench-
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marking, no bar is plotted. Concerning runs made with TRESNEI, Figure 6.3 shows
that the heigth of 65 bars is equal to 6 and that for only 7 problems the bars reach
values greater than or equal to 9. On the other hand, for lsqnonlin 26 bars have
heigth equal to 6 and 24 bars are higher than 9; this indicates that lower tolerances
than the default ones are often necessary to obtain accurate solutions in the sense of
(5.6), see Figure 6.4.

These observations are confirmed in Figures 6.5-6.6 where for each problem and
solver we plot the performance metric

p(x) = − log10(max{νf (x), νs(x, τf )}),(6.3)

for the computed solution x. Clearly, the heights of the bars give the levels of accuracy
reached, and returned solutions x such that p(x) < 6 do not satisfy the test (5.6). The
white bars indicate the values p(x) obtained using the default tolerances. The black
bars indicate the values p(x) resulting from the benchmarking process; if a black bar
is not present, then (5.6) is satisfied using the default tolerances. If no bar is present,
then the solver fails with the default tolerances.

Figure 6.5 shows that TRESNEI is able to compute highly accurate solutions and,
in accordance to Figure 6.3, the convergence test (5.6) is satisfied with the default
tolerances for most of the problems. Therefore, we can conclude that criteria (3.4)-
(3.5) tend to agree with (5.6) in most cases. On the other hand, comparing Figure 6.5
and 6.6 it is evident that the level of accuracy of the solutions computed by lsqnonlin

is remarkably lower than the level of accuracy reached using TRESNEI.

7. Conclusions. We have fully described the implementation of the solver TRESNEI
and performed a numerical comparison to assess its reliability. Its overall performance
against lsqnonlin encourages us to study possible improvements and extensions of
the algorithm implemented. A chance of extending the applicability of TRESNEI comes
from the use of iterative linear solvers in the trust-region solution. Further, the basic
trust-region scheme can be enhanced by using a filter strategy.
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Problem nfr nb nr nfx mE mI

AIRPORT 0 0 84 0 0 42
ALLINITC 1 1 1 1 1 0
ALJAZZAF 0 100 400 0 1 0
ALSOTAME 0 0 2 0 1 0
ANTWERP 0 3 24 0 8 2
AVGASA 0 0 8 0 0 10
AVION2 0 0 49 0 15 0
BATCH 0 2 46 0 12 61
BIGGSC4 0 0 4 0 0 13
BLOCKQP1 0 0 30 0 10 1
BLOWEYA 11 0 11 0 12 0
BT13 4 1 0 0 1 0
CAMSHAPE 0 0 100 0 0 304
CANTILVR 0 5 0 0 0 1
CHANDHEQ 0 10 0 0 10 0
CHEMRCTA 0 10 0 0 10 0
CHEMRCTB 0 10 0 0 10 0
CLNLBEAM 51 0 98 4 100 0
CONCON 10 5 0 0 11 0
CORE2 0 41 116 0 108 26
CORKSCRW 47 0 40 9 60 10
C-RELOAD 0 84 258 0 200 84
CSFI1 0 4 1 0 2 3
CSFI2 0 5 0 0 2 3
CVXQP1 0 0 100 0 50 0
DALLASM 0 0 196 0 151 0
DALLASS 0 0 46 0 31 0
DECONVC 0 51 10 0 1 0
DEGENLPA 0 0 20 0 15 0
DEMBO7 0 0 16 0 0 21
DISC2 22 0 7 0 17 6
DISCS 21 12 0 3 18 48
DNIEPER 1 0 56 4 24 0
DRUGDISE 10 30 19 4 50 0
DUAL1 0 0 85 0 1 0
EG3 1 0 100 0 1 299
EIGENA 0 0 110 0 110 0
EIGMAXA 0 0 101 0 101 0
EIGMAXB 0 0 101 0 101 0
FCCU 0 19 0 0 8 0
FEEDLOC 0 0 87 3 19 288
FLETCHER 3 1 0 0 1 3
GRIDNETA 26 16 4 14 36 0
GRIDNETC 40 20 0 0 36 0
HAGER4 10 10 0 1 10 0
HIMMELBI 0 100 0 0 0 12
HIMMELBJ 0 43 0 2 14 0
HIMMELBK 0 24 0 0 14 0
HIMMELP5 0 0 2 0 0 3
HONG 0 0 4 0 1 0
HS15 1 1 0 0 0 2
HS17 0 1 1 0 0 2
HS18 0 0 2 0 0 2
HS19 0 0 2 0 0 2
HS23 0 0 2 0 0 5
HS41 0 0 4 0 1 0

Table 6.1

Test problem characteristics
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Problem nfr nb nr nfx mE mI

HS53 0 0 5 0 3 0
HS54 0 0 6 0 1 0
HS59 0 0 2 0 0 3
HS60 0 0 3 0 1 0
HS63 0 3 0 0 2 0
HS68 0 0 4 0 2 0
HS71 0 0 4 0 1 1
HS72 0 0 4 0 0 2
HS73 0 0 4 0 1 2
HS74 0 0 4 0 3 2
HS75 0 0 4 0 3 2
HS80 0 0 5 0 3 0
HS83 0 0 5 0 0 3
HS87 0 0 6 0 4 0
HS95 0 0 6 0 0 4
HS101 0 0 7 0 0 5
HS104 0 0 8 0 0 5
HS106 0 0 8 0 0 6
HS107 4 2 3 0 6 0
HS108 8 1 0 0 0 13
HS109 0 2 7 0 6 4
HS111 0 0 10 0 3 0
HS112 0 10 0 0 3 0
HS114 0 0 10 0 3 8
HS116 0 0 13 0 0 14
HS119 0 0 16 0 8 0
HS99EXP 21 0 7 3 21 0
HUES-MOD 0 10 0 0 2 0
HUESTIS 0 10 0 0 2 0
LEAKNET 80 70 6 0 153 0
LEWISPOL 0 0 6 0 9 0
LOTSCHD 0 12 0 0 7 0
MANNE 0 199 100 1 0 200
MCONCON 10 5 0 0 11 0
MINC44 0 11 12 4 18 0
MINPERM 0 1 4 0 5 0
MISTAKE 8 1 0 0 0 13
MRIBASIS 0 0 24 12 9 46
NET1 20 0 23 5 38 19
NCVXQP1 0 0 10 0 5 0
ODFITS 0 6 0 0 10 0
OPTCDEG3 40 39 40 3 80 0
OPTCNTRL 9 10 10 3 20 0
ORTHREGE 35 1 0 0 20 0
ORTHREGF 78 2 0 0 25 0
PFIT1 2 1 0 0 3 0
PFIT2 2 1 0 0 3 0
PFIT3 2 1 0 0 3 0
PFIT4 2 1 0 0 3 0
POLYGON 0 0 48 2 0 324
PRODPL0 0 60 0 0 20 9
QR3D 145 10 0 0 155 0
QR3DBD 117 10 0 0 155 0

Table 6.2

Test problem characteristics
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Problem nfr nb nr nfx mE mI

READING1 0 0 5 1 2 0
READING4 0 0 50 1 0 100
READING5 0 0 100 1 100 0
READING6 50 0 51 1 50 0
READING9 100 0 101 1 100 0
RK23 11 6 0 0 11 0
ROCKET 102 101 100 4 252 0
SEMICON1 0 0 10 2 10 0
SEMICON2 0 0 10 2 10 0
SINROSNB 9 0 1 0 0 18
SOSQP1 0 0 20 0 11 0
SSNLBEAM 11 0 20 2 20 0
STCQP1 0 0 17 0 8 0
STCQP2 0 0 65 0 30 0
STEENBRA 0 432 0 0 108 0
STEERING 197 1 51 7 200 0
STNQP2 0 0 65 0 30 0
SWOPF 73 0 10 0 88 14
SYNTHES2 0 2 9 0 1 14
TRAINF 200 0 200 8 202 0
TRAINH 20 0 20 8 22 0
TRUSPYR1 3 8 0 0 3 1
TWOBARS 0 0 2 0 0 2
UBH1 54 0 33 12 60 0
WATER 0 0 31 0 10 0

Table 6.3

Test problem characteristics
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