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Abstract

This paper presents a Nash equilibrium model where the underlying objective functions involve un-
certainty and nonsmoothness. The well-known sample average approximation method is applied to solve
the problem and the first order equilibrium conditions are characterized in terms of Clarke generalized
gradients. Under some moderate conditions, it is shown that with probability one, a statistical esti-
mator (a Nash equilibrium or a Nash-C-stationary point) obtained from sample average approximate
equilibrium problem converges to its true counterpart. Moreover, under some calmness conditions of
the Clarke generalized derivatives, it is shown that with probability approaching one exponentially fast
by increasing sample size, the Nash-C-stationary point converges to a weak Nash-C-stationary point of
the true problem. Finally, the model is applied to stochastic Nash equilibrium problem in the wholesale
electricity market.

Key words. Stochastic Nash equilibrium, exponential convergence, H-calmness, Nash-C-stationary
point.

1 Introduction

Let Xi i = 1, · · · , î, be a closed convex subset of IRni , where î and ni are positive integers. Let X−i =
X1 × · · · × Xi−1 × Xi+1 × · · · × Xî where “×” denotes Cartesian product. We consider the following
stochastic Nash equilibrium problem: find (x∗1, · · · , x∗î ) ∈ X1 × · · · ×Xî such that

ϑi(x∗i , x
∗
−i) = min

xi∈Xi
E[vi(xi, x∗−i, ξ(ω))], for i = 1, · · · , î, (1.1)

where x−i = (x1, · · · , xi−1, xi+1, · · · , xî) ∈ X−i, vi(·, x−i, ξ) : IRni → IR is Lipschitz continuous, ξ : Ω→ Ξ ⊂
IRk is a random vector defined on probability space (Ω,F , P ), E denotes the mathematical expectation with
respect to the distribution of the random vector ξ. We make a blanket assumption that E[vi(xi, x−i, ξ)] is
well defined for all xi ∈ Xi and x−i ∈ X−i, i = 1, · · · , î and an equilibrium of (1.1) exists. To ease notation,
we will use ξ to denote either the random vector ξ(ω) or an element of Rk, depending on the context.

Nash equilibrium models have been well studied and have found many applications in economics and
engineering, see for instances [16, 40, 20] for recent developments on the topic. Our Nash equilibrium model
(1.1) has two specific features: one is that the underlying functions involve some random variables, the other
is that these functions are not necessarily continuously differentiable with respect to the decision variables.
The nonsmoothness of vi allows us to broaden the scope of the model (1.1) to include the following two stage
stochastic Nash equilibrium problem

min
xi∈Xi,y(·)

E[fi(xi, x−i, y(ω), ξ(ω))]

s.t. y(ω) ∈ F(x, ξ(ω)), a.e. ω ∈ Ω,
(1.2)

where fi is a continuously differentiable function of xi, x−i, y and ξ, and F(x, ξ(ω)) is a closed subset of IRm.
To see this, let vi(xi, x−i, ξ) denote the optimal value function of the following second stage problem:

min
y

fi(xi, x−i, y, ξ)

s.t. y ∈ F(x, ξ).
(1.3)
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It is well known (see e.g. [30, 35]) that under some metric regularity conditions of F(x, ξ), vi(xi, x−i, ξ)
is locally Lipschitz continuous. Moreover that under some moderate conditions (1.2) is equivalent to (1.1)
and (1.3), see [49, 56]. A particular interesting case is when F(x, ξ(ω)) is the solution set of a parametric
generalized equation, that is,

F(x, ξ) = {y ∈ IRm : 0 ∈ H(x, y, ξ) +NQ(y)}, (1.4)

where Q is a closed subset in IRm and NQ(y) denotes the Clarke normal cone to set Q at point y. In such
a case, we call (1.2) the two stage stochastic equilibrium program with equilibrium constraints (SEPEC) in
that the generalized equation in (1.4) often represents an equilibrium in practical applications. Another
interesting case is when F(x, ξ) is presented by a system of equalities and inequalities, that is,

F(x, ξ) = {y ∈ IRm : h(x, y, ξ) = 0, g(x, y, ξ) ≤ 0}, (1.5)

where h and g are some continuous vector-valued functions. In such a case we call the corresponding Nash
equilibrium problem (1.2) the two stage stochastic generalized Nash equilibrium (SGNE) problem. Here
“generalized” is used to distinguish the Nash model where players strategy spaces are independent. Mathe-
matically, equalities and inequalities can be recovered from the generalized equation in (1.4) by considering
a specific set Q, which means SEPEC subsumes SGNE. In Section 6, we will discuss applications of the
stochastic Nash equilibrium model (1.1) and the two stage SEPEC model (defined by (1.2) and (1.4)) in
electricity markets.

Note that stochastic Nash equilibrium/game is not a new concept. Over the past few decades, various
stochastic Nash equilibrium models have been proposed to study specific practical decision making problems
which involve random data as well as multiple decision makers who are in a competitive relationship. For
instance, Watling [58] proposed a stochastic Nash equilibrium model in transportation and Ngo and Krishna-
murthy [37] proposed a stochastic Nash equilibrium model for signal transmission in wireless networks [37].
Haurie, Zaccour and Smeers [20] introduced an S-adapted open-loop equilibrium model which is essentially
a two stage SGNE. In a more recent development, DeMiguel and Xu proposed a two stage multiple-leader
stochastic Stackelberg Nash-Cournot models for future market competition [14], Henrion and Römisch [22],
and Zhang, Xu and Wu [65] proposed two stage stochastic equilibrium program with equilibrium constraints
(SEPEC) models for electricity markets [22, 65]. A broader literature review of the subject of stochastic
equilibrium/game may also include Harsanyi’s Bayesian equilibrium model [19], Aumann’s correlated equi-
librium model [7], Shubik and Sobel’s Markov perfect equilibrium model and Klemperer and Meyer’s supply
function equilibrium model [32] although they may have different mathematical formulations.

In this paper, we are concerned with the numerical methods for solving (1.1). In particular, we deal
with the complications resulting from the randomness and nonsmoothness. Note that if one knows the
distribution of ξ and can integrate out the expected value E[vi(xi, x−i, ξ)] explicitly, then the problem
becomes a deterministic minimization problem. Throughout this paper, we assume that E[vi(xi, x−i, ξ)]
cannot be calculated in a closed form so that we will have to approximate it through discretization.

One of the best known discretization approaches is the Monte Carlo simulation based method. The basic
idea of the method is to generate an independent and identically distributed (i.i.d.) sample ξ1, · · · , ξN of
ξ and then approximate the expected value with sample average. In this context, the objective function of
(1.1) is approximated by

ϑNi (xi, x−i) :=
1
N

N∑
k=1

vi(xi, x−i, ξk)

for i = 1, · · · , î, and consequently we may consider the following sample average approximate Nash equilib-
rium problem: find xN := (xN1 , · · · , xNî ) ∈ X1 × · · · ×Xî such that

ϑNi (xNi , x
N
−i) = min

xi∈Xi
ϑNi (xi, xN−i), for i = 1, · · · , î. (1.6)

We refer to (1.1) as the true problem and (1.6) as the Sample Average Approximation (SAA) problem.
Naturally we will use xN as a statistical estimator of its true counterpart. SAA is a very popular method in
stochastic optimization and it is also known as Sample Path Optimization (SPO) method [43]. There has
been extensive literature on SAA and SPO. See recent work [3, 29, 45, 54, 11, 34, 60, 56] and a comprehensive
review by Shapiro in [53].
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Our focus here is on the convergence (also known as asymptotic consistency in some references) of xN to
its true counterpart as the sample size N increases. This includes two cases: (a) xN is Nash equilibrium of
(1.6), (b) xN is a Nash stationary point (to be defined in Section 3) of (1.6). The notion of Nash stationary
point is proposed by Hu and Ralph [26] (they called Nash-stationary equilibrium) for modeling a bilevel
game in an electricity market.

There are essentially two ways to carry out the convergence analysis: one is through convergence of
function values, that is, the convergence of ϑNi to E[vi(xi, x−i, ξ)] as N tends to infinity. This approach
has been widely used in SAA method for stochastic optimization problems. See [53] and references therein.
The other is through the convergence of derivatives of ϑNi , that is, by considering the first order equilibrium
condition of (1.6). This approach has also been used recently in stochastic programming for analyzing
convergence of stationary points of sample average optimization problems, see for instance [55, 60, 61].
There are also other ways such as epi-convergence where convergence of optimal values and solutions are
investigated through the asymptotic consistency of epi-graphs of objective functions, see [29].

In this paper, we investigate the convergence of {xN} through the first order equilibrium condition of the
true problem (1.1) rather than through (1.1) itself because the latter involves î stochastic optimization prob-
lems where a decision variable of one problem becomes a parameter of another problem while the first order
equilibrium conditions can be put under a unified framework of generalized equations with xi, i = 1, · · · , î
being treated equally as variables. The main disadvantage of this approach is that the first order equilib-
rium conditions may involve set-valued mappings when vi(xi, x−i, ξ) is not continuously differentiable in xi.
Note that when vi(xi, x−i, ξ), i = 1, · · · , î, is continuously differentiable with respect to xi, the first order
equilibrium condition of (1.6) reduces to a variational inequality problem or a nonlinear complementarity
problem [14].

There are two types of convergence one may consider: almost sure convergence and exponential conver-
gence. The former concerns whether or not the statistical estimator of an SAA problem converges to its
true counterpart. This type of convergence is usually obtained by applying classical uniform strong law of
large numbers (SLLN) ([47, Lemma A1]) to the underlying functions which define the statistical estimator.
The uniform SLLN requires the random functions to be Lipschitz continuous. More recently, the classical
uniform SLLN has been extended to random outer semicontinuous random compact set-valued mappings
[55, Theorem 1]. The extension allows one to analyze statistical estimators defined by set-valued mappings,
e.g. stationary points characterized by Clarke generalized gradients in stochastic nonsmooth optimization,
see [55, 61].

Almost sure convergence does not address the rate of convergence and exponential convergence does.
A popular way for the latter is to use the well-known Cramer’s theorem in large deviation theory [13] to
investigate the probability of the deviation of a statistical estimator from its true counterpart as sample
size increases and show that the probability goes to zero at exponential rate of sample size. Over the past
few years, various exponential convergence results have been established for sample average approximate
optimization problems and the focus has been largely on optimal solutions and/or optimal values. See for
instance [31, 45, 54, 53, 11, 56] and the references therein. Similar to almost sure convergence, exponential
convergence of a statistical estimator in stochastic programming is usually obtained by the uniform expo-
nential convergence of the underlying functions which define the estimator. It also requires some additional
sensitivity conditions which ensure the deviation of a statistical estimator is bounded by that of the un-
derlying functions defining it, see for instance, second order growth condition in [51, 45]. More recently,
Homem-de-Mello [27] presented a strong exponential convergence of the SAA optimal solution to its true
counterpart without a second order growth condition.

In this paper, the underlying functions of (1.1) and (1.6) are not necessarily continuously differentiable and
consequently their first order equilibrium conditions have to be characterized in terms of generalized gradients.
We investigate both almost sure convergence and exponential convergence of {xN} through the first order
equilibrium conditions. Since generalized gradients are usually set-valued mappings, the convergence results
in the literature we have reviewed cannot be used in our setting. Consequently our analysis will be carried out
through some kind of uniform semi-convergence of sample average random mapping. The main challenges
and complications arise from the necessity to establish exponential convergence of sample average of the
generalized gradients which characterizes {xN} in the first order equilibrium conditions.

The key steps we take to tackle the challenges and complications are as follows: we derive a uniform
exponential convergence for sample average H-calm random functions, Proposition 4.1, and then apply it to
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the support function of random set-valued mappings and establish one sided uniform exponential convergence
of sample average random set-valued mappings through Hömander’s formula (Theorem 4.3). By using a
sensitivity result (Lemma 4.1), we translate the uniform set-valued convergence (Theorem 4.3) into to that
of the SAA Nash-stationary points (Theorem 4.4).

As far as we are concerned, the main contributions of this paper can be summarized as follows:

(a) We propose a general stochastic Nash equilibrium model where the underlying function may be nons-
mooth and nonconvex and apply the well-known sample average approximation method to solve it. We
establish two types of convergence: almost sure convergence and exponential convergence for the Nash
equilibrium estimator obtained from sample average Nash equilibrium problem. The a.s. convergence
consists of two parts: a.s. convergence of Nash-C-stationary points (Theorem 4.1) and a.s. convergence
of Nash equilibrium (Theorem 4.2) both of which are established under moderate conditions.

The exponential convergence (Theorem 4.4) addresses the rate of convergence of Nash-C-stationary
points. As far as we are concerned, this is the first result which shows the exponential convergence of
the SAA estimators of the Nash stationary points of nonsmooth stochastic Nash equilibrium problems.
This result is established through the uniform exponential semi-convergence results, Proposition 4.1,
under H-calmness. The latter is an extension of [42, Lemma 3.5], a core result that Ralph and Xu
used to establish exponential convergence of SAA generalized equations ([42, Theorem 3.6]). Note that
[42, Theorem 3.6] is obtained under some metric regularity type condition while our main convergence
result, Theorem 4.4, is obtained without such a condition.

There are a couple of other papers that may be related to the exponential convergence results in this
paper. Shapiro and Xu [56, Theorem 5.1] established a uniform exponential convergence of a class
of Hölder continuous random functions. This result has been widely used to analyze SAA optimal
solutions, stationary points and equilibria where the underlying functions are single valued and Hölder
continuous. Obviously [56, Theorem 5.1] cannot be used to analyze Clarke stationary points/equilibria
because the underlying functions of the latter are not Hölder continuous in general. Homem-De-Mello
[27] also presented an exponential result for SAA optimal solutions under Lipschitz continuity, see e.g.
[27, Theorem 2.3]. His result makes two interesting contributions: (i) the sampling is not necessarily
i.i.d.; (ii) the metric regularity is not needed to obtain the exponential convergence of SAA optimal
solution to its true counterpart. Our Theorem 4.4 enjoys the advantage of [27, Theorem 2.3] in the
sense of (ii) but it has strengthened or complemented the latter in the sense that it deals with stationary
points characterized by Clarke generalized gradients which are not necessarily continuous.

Note that DeMiguel and Xu [14] investigated a stochastic multiple-leaders Stackelberg game which
can be essentially reformulated as (1.1). The objective functions in the decision problems there are
convex under some moderate conditions and the analysis concerns the exponential convergence of
SAA equilibrium by exploiting the Hausdorff continuity of epsilon-convex subdifferentials of a convex
function. The same analysis cannot be used in this paper where the underlying functions are not
necessarily convex.

To summarize, all of our convergence results are new in the sense that no existing convergence result
of SAA for optimization problems can be applied to the stochastic Nash equilibrium problem although
some of the tools used to establish these convergence might have some links to our previous work.
The analysis tool for a.s. convergence (Theorem 4.1) is not new. This was first proposed in Xu and
Meng’s paper ([60, Lemma 3.2]). The tool for exponential convergence (Theorem 4.4) is Proposition
3.1. As indicated, Proposition 3.1 (i) is from Ralph and Xu’s paper ([42, Lemma 3.5]) and Proposition
3.1 (iii) is Shapiro and Xu’s [56, Theorem 5.1]. However Proposition 3.1 gives a unified treatment
of uniform exponential convergence of sample average random functions under H-calmness. In other
words the proposition is not entirely new but it has consolidated the previous results. The main
convergence result Theorem 4.4 is novel. This is the strongest convergence result as far as we know:
it gives exponential rate for the convergence of SAA stationary sequence {xN} to its true counterpart
x∗ without metric regularity type condition.

(b) We propose a smoothing model for solving the SAA Nash equilibrium problem coupled with conver-
gence analysis. The smoothing scheme is not new but the proposed smoothing SAA scheme is very
relevant in the sense that the complicated nonsmooth stochastic Nash equilibrium problem can now be
approximated by an ordinary variational inequality for which many powerful numerical methods have
been proposed over the past couple of decades [17].
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(c) Finally we model the competition in the electricity spot market as a stochastic nonsmooth Nash
equilibrium problem and use a smoothing SAA method to solve it.

2 Preliminaries

Throughout this paper, we use the following notation. xT y denotes the scalar products of two vectors x and
y, ‖ ·‖ denotes the Euclidean norm of a vector and a compact set of vectors. If D is a compact set of vectors,
then ‖D‖ := maxx∈D ‖x‖. d(x,D) := infx′∈D ‖x− x′‖ denotes the distance from point x to set D. For two
compact sets D1 and D2, D(D1, D2) := supx∈D1

d(x,D2) denotes the deviation from set D1 to set D2 (in
some references [21] it is also called excess of D1 over D2), and H(D1, D2) denotes the Hausdorff distance
between the two sets, that is, H(D1, D2) := max (D(D1, D2),D(D2, D1)) . We use D1 + D2 to denote the
Minkowski addition of D1 and D2, that is, D1 + D2 = {x + y : x ∈ D1, y ∈ D2}. We use B(x, δ) to denote
the closed ball with radius δ and center x, that is B(x, δ) := {x′ : ‖x′ − x‖ ≤ δ}. When δ is dropped, B(x)
represents a neighborhood of point x. Finally we use B to denote the unit ball in a finite dimensional space.
Finally, for a closed convex set D, we use ND(x) to denote the normal cone of D at x, that is,

ND(x) :=
{
z ∈ Rm : zT (x′ − x) ≤ 0, ∀x′ ∈ D

}
, if x ∈ D.

For a closed set D in IRm, the support function of D is defined as σ(D,u) = supx∈D uTx for every u ∈ IRm.
The following results are known as Hömander’s formulae.

Proposition 2.1 ([8, Theorem II-18]) Let D1, D2 be two convex and compact subsets of IRm. Let σ(D1, u)
and σ(D2, u) denote the support functions of D1 and D2 respectively.Then

D(D1, D2) = max
‖u‖≤1

(σ(D1, u)− σ(D2, u))

and

H(D1, D2) = max
‖u‖≤1

|σ(D1, u)− σ(D2, u)|.

2.1 Set-valued mappings

Let X be a closed subset of IRn. Recall that a set-valued mapping F : X → 2IRm is said to be closed at
x ∈ X if for xk ⊂ X , xk → x, yk ∈ F (xk) and yk → ȳ implies ȳ ∈ F (x). F is said to be uniformly compact
near x̄ ∈ X if there is a neighborhood B(x̄) of x̄ such that the closure of

⋃
x∈B(x̄) F (x) is compact. F is said

to be outer semicontinuous ([44, Definition 5.4]) at x̄ ∈ X if

lim
x→x̄

F (x) ⊂ F (x̄)

where
lim
x→x̄

F (x) = {u : ∃xν → x̄, ∃uν → ū with uν ∈ S(xν)}.

2.2 Expectation of random set-valued mappings

Consider now a random set-valued mapping F (·, ξ(·)) : X × Ω→ 2IRn (we are slightly abusing the notation
F ) where X is a closed subset of IRn and ξ is a random vector defined on probability space (Ω,F , P ). Let
x ∈ X be fixed and consider the measurability of set-valued mapping F (x, ξ(·)) : Ω → 2IRn . Let B denote
the space of nonempty, closed subsets of IRn. Then F (x, ξ(·)) can be viewed as a single valued mapping from
Ω to B. Using [44, Theorem 14.4], we know that F (x, ξ(·)) is measurable if and only if for every B ∈ B,
F (x, ξ(·))−1B is F-measurable.

Recall that A(x, ξ(ω)) ∈ F (x, ξ(ω)) is said to be a measurable selection of the random set A(x, ξ(ω)), if
A(x, ξ(ω)) is measurable. It is well-known that measurable selections exist, see [2] and references therein.
The expectation of F (x, ξ(ω)), denoted by E[F (x, ξ(ω))], is defined as the collection of E[A(x, ξ(ω))], where
A(x, ξ(ω)) is an integrable measurable selection. The expected value is also known as Aumann’s integral
[21] as it was first studied comprehensively by Aumann in [6]. E[F (x, ξ(ω))] is regarded as well defined if
E[F (x, ξ(ω))] ∈ B is nonempty. A sufficient condition of this is E[‖F (x, ξ(ω))‖] := E[H(0, F (x, ξ(ω)))] <∞,
see [2]. In such a case, F is said to be integrably bounded [6, 21].
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2.3 Clarke generalized gradients of a random function

We are interested in the cases when the integrand functions in (1.1) are Lipschitz continuous. Let f(·, ξ(·)) :
IRn×Ω→ IR be a random function that is locally Lipschitz continuous with respect to x, let ξ be a realization
of ξ(ω). The Clarke generalized gradient [9] of f(x, ξ) with respect to x at point x ∈ IRn is defined as

∂xf(x, ξ) := conv
{

lim
y∈Df(·,ξ),y→x

∇xf(y, ξ)
}
,

where Df(·,ξ) denotes the set of points near x where f(x, ξ) is Fréchet differentiable with respect to x,
∇xf(y, ξ) denotes the usual gradient of f(x, ξ) in x and ‘conv’ denotes the convex hull of a set. It is well-
known that the Clarke generalized gradient ∂xf(x, ξ) is a convex compact set and it is outer semicontinuous
[9, Proposition 2.1.2 and 2.1.5]. When f(·, ξ) is continuously differentiable at x, ∂xf(x, ξ) coincides with
∇xf(x, ξ).

3 First order equilibrium conditions

In this section, we discuss the first order equilibrium conditions of stochastic Nash equilibrium problem (1.1)
and its sample average approximation (1.6) in terms of Clarke generalized gradient. For i = 1, · · · , î, assume
that the Lipschitz modulus of vi(xi, x−i, ξ) with xi is integrable for every x−i ∈ X−i. It is well-known
[49] that E[vi(xi, x−i, ξ)] is also Lipschitz continuous in xi and hence the Clarke generalized gradient of
E[vi(xi, x−i, ξ)] in xi, denoted by ∂xiE[vi(xi, x−i, ξ)], is well defined. Consequently we can characterize the
first order equilibrium condition of (1.1) at a Nash equilibrium in terms of the Clarke generalized gradients
as follows:

0 ∈ ∂xiE[vi(xi, x−i, ξ)] +NXi(xi), i = 1, · · · , î. (3.7)

Here and later on, the addition of sets is in the sense of Minkowski. We call a point x∗ satisfying (3.7)
a stochastic Nash-C-stationary point. As we discussed in the introduction, the notion of Nash-stationary
point/equilibrium is introduced by Hu and Ralph [26]. Obviously if x∗ is stochastic Nash equilibrium, then
it must satisfy (3.7) and hence it is a stochastic Nash-C-stationary point, but not vice versa. However, if
E[vi(xi, x−i, ξ)] is convex in xi for each i, then a Nash-C-stationary point is a Nash equilibrium. Note that

∂xiE[vi(xi, x−i, ξ)] ⊂ E[∂xivi(xi, x−i, ξ)]. (3.8)

The equality holds when vi is Clarke regular [9] in xi, see for instance [9, Theorem 2.7.2]. Consequently, we
may consider a weaker condition than (3.7)

0 ∈ E[∂xivi(xi, x−i, ξ)] +NXi(xi), i = 1, · · · , î. (3.9)

We call (3.9) weak Clarke first order equilibrium condition of (1.1) and a point satisfying (3.9) a weak
stochastic Nash-C-stationary point. Here “weak” is in the sense that a stochastic Nash-C-stationary point
is a weak stochastic Nash-C-stationary point but not vice versa.

Using the Clarke generalized gradient, we can also characterize the first order equilibrium condition of
the sample average approximation equilibrium (1.6) as follows:

0 ∈ 1
N

N∑
k=1

∂xivi(xi, x−i, ξ
k) +NXi(xi), i = 1, · · · , î. (3.10)

We call a point xN satisfying (3.10) an SAA Nash-C-stationary point. In Section 4, we will investigate the
convergence of xN as sample size N increases and show under some appropriate conditions that w.p.1 an ac-
cumulation point of {xN} is a weak stochastic Nash-C-stationary point. Our general idea to investigate some
kind of uniform almost sure and exponential convergence of 1

N

∑N
k=1 ∂xivi(xi, x−i, ξ

k) to E[∂xivi(xi, x−i, ξ)]
over a compact subset of X. The main challenges arise from the set-valued nature of the SAA mappings.

Remark 3.1 When vi(xi, x−i, ξ) is Clarke regular [9] with respect to xi, i = 1, · · · , î, equality in (3.8) holds
and hence weak stochastic Nash-C-stationary point is a stochastic Nash-C-stationary point. This includes
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two important cases: (a) vi is continuously differentiable in xi; (b) vi is convex in xi (when vi, i = 1, · · · , î,
is convex in xi, these stationary points coincide with Nash equilibria). In this paper, our discussion is
not restricted to the two cases. Note that without convexity, the existence of Nash equilibrium might be a
problem. This is why we consider Nash-stationary point, a notion which is used by Hu and Ralph [26] in a
deterministic Nash game, see also Remark 4.1 regarding the existence of equilibrium.

Let us now comment on the relevance of weak Nash equilibrium condition (without C-regularity) and the
relationship between weak Nash-C-stationary point and a Nash-C-stationary point. Note first that the SAA
Nash-C-stationary points converge to a weak Nash-C-stationary point, see Theorem 4.1. Note also that in
many practical instances, vi is smooth (continuously differentiable) for almost every ξ at “almost every”
point, see Remark 4.3. At a “smooth” point, one has E[∂xivi] = ∂xiE[vi] = ∇xiE[vi]. Therefore, there is
no difference between Nash-C-stationarity and weak Nash-C-stationarity at such a point. At a “nonsmooth”
point where E[∂xivi] is larger than ∂xiE[vi], the difference between the two stationary points relies on the local
sensitivity at the set of weak Nash-C-stationary points with respect to the difference of the two set-valued
mappings. Metric regularity [44, 15] is perhaps a proper concept to address this issue.

Note also that many practical problems are “piecewise convex”. If we may obtain a weak Nash-C-
stationary point where E[vi(·, x−i, ξ)] is locally convex at xi, then x is a local Nash equilibrium.

In conclusion, a weak Nash-C-stationary condition is used as a convenient and unified mathematical
framework to describe the optimality conditions of our problem at both “smooth” and “nonsmooth” points.

Next, we look into the outer semicontinuity of the set-valued mapping ∂xivi(xi, x−i, ξ) with respect to
(xi, x−i).

Assumption 3.1 Let vi(xi, x−i, ξ), i = 1, · · · , î, be defined as in (1.1) and ∂xivi(xi, x−i, ξ) be its Clarke
generalized gradient with respect to xi.

(a) vi(·, x−i, ξ) is Lipschitz continuous on Xi with modulus κi(ξ), where E[κi(ξ)] <∞.

(b) ∂xivi(xi, x−i, ξ) is closed with respect to (xi, x−i) on space Xi ×X−i.

Corollary 3.1 Under Assumption 3.1, ∂xivi(xi, x−i, ξ) is outer semicontinuous with respect to (xi, x−i).

Proof. Recall that a set-valued mapping is closed on its domain if and only if its graph is closed, see Section
1.3 in [4]. On the other hand, [44, Theorem 5.7] (a) states that a set-valued mapping is outer semicontinuous
if and only if its graph is closed, in other words, the set-valued mapping is closed on its domain. Using these
arguments, the conclusion then follows straightforwardly under Assumption 3.1 (b).

Finally, we state the measurability and integrability of the set-valued mapping ∂xivi(xi, x−i, ξ(·)) : Ω→
2IRm in the following proposition. The proof is standard, we move it to the appendix.

Proposition 3.1 Let ∂xivi(xi, x−i, ξ) be the Clarke generalized gradient of vi with respect to xi. Then (i)
∂xivi(xi, x−i, ξ(·)) : Ω → 2IRm is measurable; (ii) under Assumption 3.1 (a), E[∂xivi(xi, x−i, ξ)] is well
defined.

4 Convergence analysis

In this section, we analyze the convergence of a sequence of SAA Nash stationary points {xN} defined by
(3.10). The analysis is carried out in two steps. First, we show almost sure convergence, that is, w.p.1, an
accumulation point of {xN} satisfies (3.9). Second, under additional conditions, namely H-calmness, of the
generalized gradient ∂xivi(xi, x−i, ξ), we show that with probability approaching one exponentially fast by
increasing the sample size N , {xN} converges to a weak Nash-C-stationary point.

For the simplicity of notation, we denote throughout this section ∂xivi(xi, x−i, ξ) by ∂xivi(x, ξ). This
will not cause confusion because both xi and x−i are treated as variables in the analysis. Let

Av(x, ξ) := ∂x1v1(x, ξ)× · · · × ∂xîvî(x, ξ) (4.11)
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and

GX(x) := NX1(x1)× · · · × NXî(xî). (4.12)

The first order equilibrium condition (3.7) can be written as

0 ∈ E[Av(x, ξ)] +GX(x), (4.13)

where
E[Av(x, ξ)] := E[∂x1v1(x, ξ)]× · · · × E[∂xîvî(x, ξ)].

By Proposition 3.1, E[Av(x, ξ)] is well defined. Likewise, the first order equilibrium condition (3.10) can be
written as

0 ∈ AϑN (x) +GX(x), (4.14)

where

AϑN (x) :=
1
N

N∑
k=1

∂x1v1(x, ξk)× · · · × 1
N

N∑
k=1

∂xîvî(x, ξ
k). (4.15)

Obviously, E[AϑN (x)] = E[Av(x, ξ)].

Remark 4.1 For the simplicity of discussion, we make a blanket assumption that (3.10) has a solution for
all N . In doing so, we do not restrict the integrand vi(xi, x−i, ξ) to be convex or strategy space Xi to be
bounded. Further discussion on the existence issue requires sensitivity analysis of generalized equation (4.13).
For instance, Shapiro [53, Section 7] investigated a similar issue under the context of stochastic generalized
equation (SGE). Under the condition that the underlying function in SGE is continuously differentiable
(corresponding to our case that vi is twice continuously differentiable) and the true SGE satisfies a strong
metric regularity condition, he showed the existence of a solution to the SAA-SGE, see [53, Theorem 22] for
details.

Note that in deterministic cases, King and Rockafellar [28] investigated the existence of solution to a
perturbed generalized equation when the original equation has a solution under subinvertibility of set-valued
mappings. We refer the interested readers to [28] for details.

Note finally that if X = X1 × · · · ×Xî is compact, then the set of solutions to the generalized equations
(4.13) and (4.15) are nonempty. This follows easily from [5, Theorem 9.9] in that the set-valued mappings
E[Av(·, ξ)], AϑN (·) are compact and convex valued; X is a convex set, and GX(·) is outer semicontinuous on
X. The same argument is used by Outrata to show the existence of Clarke stationary points in deterministic
equilibrium programs with equilibrium constraints (EPEC), see [39, Theorem 3.3].

4.1 Almost sure convergence

Our idea to obtain almost sure convergence is to apply the uniform SLLN for sample average random set-
valued mapping, recently established by Shapiro and Xu [55] to set-valued mapping Av(x, ξ). This approach
has been used in nonsmooth stochastic optimization in [55, 61]. Here we use the approach to an equilibrium
problem. Note that a key condition we need to impose is that the sequence of SAA Nash-C-stationary points
{xN} is bounded w.p.1. Various conditions may lead to this, e.g., X is a compact set; vi is coercive in xi
uniformly.

Theorem 4.1 Let xN be a solution of (3.10) and Assumption 3.1 hold. Assume that w.p.1 the sequence
{xN} is contained in a compact subset X of X. Then w.p.1, an accumulation point of {xN} satisfies (3.9).

Proof. Under Assumption 3.1, Av(·, ξ) is outer semicontinuous on X and

‖Av(x, ξ)‖ ≤
î∑
i=1

κi(ξ),
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where E[
∑î
i=1 κi(ξ)] < ∞. Let δ > 0 be any fixed positive number. Applying [55, Theorem 2] to AϑN (x)

on the compact set X ,

lim
N→∞

AϑN (x) ⊂ E
[
conv Aδv(x, ξ)

]
, w.p.1 (4.16)

uniformly for x ∈ X, where Aδv(x, ξ) :=
⋃
x′∈B(x,δ)Av(x′, ξ). Let x∗ be an accumulation point of {xN} and

assume (by taking a subsequence if necessary) that {xN} → x∗. Then (4.16) implies

lim
N→∞

AϑN (xN ) ⊂ E
[
conv Aδv(x∗, ξ)

]
, w.p.1.

This and the outer semicontinuity of GX(·) further imply

0 ∈ E
[
conv Aδv(x∗, ξ)

]
+GX(x∗).

Note first that Aδv(x∗, ξ) is integrably bounded by
∑î
i=1 κi(ξ) and ‖Aδv(x∗, ξ)‖ is decreasing on δ, therefore

‖Aδv(x∗, ξ)‖ is uniformly integrable. Moreover, Aδv(x∗, ξ) is closed. To see this, let {ηk} be a sequence
such that ηk ∈ Aδv(x∗, ξ) and ηk → η̄. By definition, there exists xk ∈ X such that xk ∈ B(x∗, δ)
and ηk ∈ Av(xk, ξ). Suppose without loss of generality that xk → x̄. Then by [9, Proposition 2.1.5(b)],
η̄ ∈ Av(x∗, ξ) ⊂ Aδv(x∗, ξ). Furthermore, for every ξ, it follows from [9, Proposition 2.1.5(b)] that

lim
δ→0
Aδv(x∗, ξ) =

⋂
δ>0

⋃
x∈B(x∗,δ)

Av(x, ξ) = Av(x∗, ξ).

By [23, Theorems 2.5] ( or [23, Theorem 2.8] and the following remark, or [36, Theorem 1.43 (iii)]),

lim
δ→0

E
[
Aδv(x∗, ξ)

]
= E

[
lim
δ→0
Aδv(x∗, ξ)

]
= E[Av(x∗, ξ)].

which means that x∗ satisfies (4.13).

Theorem 4.1 states that if {xN} is a sequence of SAA Nash-C-stationary points of problem (1.6), then
w.p.1 its accumulation point is a weak Nash-C-stationary point of the true problem. In some cases, one may
be able to obtain a Nash equilibrium in solving SAA problem, that is, xN is a Nash equilibrium of (1.6).
Consequently we may want to know whether an accumulation point of {xN} is a Nash equilibrium of the
true problem (1.1). The following theorem addresses this.

Theorem 4.2 Let {xN} be a sequence of Nash equilibria of obtained from solving the SAA problem (1.6)
and Assumption 3.1 hold. Assume that w.p.1 the sequence {xN} is contained in a compact subset X of X.
Then w.p.1 an accumulation point of {xN} is a Nash equilibrium of the true problem (1.1) if one of the
following conditions holds:

(a) vi(xi, x−i, ξ), i = 1, · · · , î, is convex with respect to xi for almost every ξ ∈ Ξ;

(b) vi(xi, x−i, ξ), i = 1, · · · , î, is Lipschitz continuous with respect to x−i on X−i with Lipschitz modulus
κ−i(ξ) where E[κ−i(ξ)] <∞.

Proof. Under condition (a), the set of weak Nash-C-stationary points of the true problem coincides with
the set of its Nash equilibria. In what follows, we prove the conclusion under condition (b). Let

ρ(y, x) :=
î∑
i=1

ϑi(yi, x−i)

and

ρ̂N (y, x) :=
î∑
i=1

ϑ̂Ni (yi, x−i).
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It is well-known (see e.g. [46]) that x∗ ∈ X is a Nash equilibrium of the true problem (1.1) if and only if x∗

solves the following minimization problem
min
y∈X

ρ(y, x∗).

Similarly xN ∈ X is a Nash equilibrium of the SAA problem (1.6) if and only if xN solves the following
minimization problem

min
y∈X

ρ̂N (y, xN ).

Assume without loss of generality (by taking a subsequence if necessary) that {xN} converges to x∗ w.p.1.
We show that w.p.1 ρ̂N (y, xN ) converges to ρ(y, x∗) uniformly with respect to y. Let us consider

ρ̂N (y, xN )− ρ(y, x∗) = ρ̂N (y, xN )− ρ̂N (y, x∗) + ρ̂N (y, x∗)− ρ(y, x∗).

Since vi(xi, x−i, ξ) is Lipschitz with respect to x−i with modulus κ−i(ξ), we have

|ρ̂N (y, xN )− ρ̂N (y, x∗)| ≤
î∑
i=1

1
N

N∑
j=1

|vi(yi, xN−i, ξj)− vi(yi, x∗−i, ξj)|

≤
î∑
i=1

1
N

N∑
j=1

κ−i(ξj)‖xN − x∗||.

The last term tends to 0 uniformly with respect to y when N →∞ because 1
N

∑N
j=1 κ−i(ξ

j)→ E[κ−i(ξ)] <
∞. On the other hand, we can show, through the application of the classical uniform law of large numbers
[47, Lemma A1], that ρ̂N (y, x∗) − ρ(y, x∗) → 0 on the compact set X uniformly with respect to y w.p.1 as
N →∞. This shows that w.p.1 ρ̂N (y, xN ) converges to ρ(y, x∗) uniformly with respect to y. It is well-known
that the uniform convergence implies that the limit of the global minimizer of ρ̂N (y, xN ) over set X is a
global minimizer of ρ(y, x∗) over X (hence a Nash equilibrium of the true problem), see for instance [47,
Theorem A1]2.

4.2 Exponential convergence

Next we discuss the exponential convergence of {xN} as N goes to infinity. As we discussed in Section 1,
there are many discussions in the literature on the exponential convergence of SAA optimization problems.
However, as far as we are concerned, our discussion on the topic here is new in two fold: (a) this is first
work which deals with the exponential convergence of SAA Nash-C-stationary point of a stochastic Nash
equilibrium problem; (b) the underlying functions in first order equilibrium conditions (3.9) and (3.10) (or
equivalently (4.13) and (4.14)) are set-valued.

We carry out our analysis in three steps. First, we extend Shapiro and Xu’s uniform exponential conver-
gence results ([56, Theorem 5.1]) to a class of random semicontinuous functions that are H-calm (from above
or below). Second, we show uniform exponential convergence of D(AϑN (x),E[Av(x, ξ)]) under some moder-
ate conditions of the Clarke generalized derivative (vi)o. We do so by reformulating D(AϑN (x),E[Av(x, ξ)])
as the difference of the support functions of AϑN (x) and E[Av(x, ξ)] using the well-known Hörmander’s
formulae, Lemma 2.1, and then applying uniform exponential convergence established in the first step to
the sample average of the support functions. Finally, we obtain an error bound for d(xN , X∗) in terms of
D(AϑN (x),E[Av(x, ξ)]) under some metric regularity of E[Av] at x∗, where X∗ is the set of weak Nash-C-
stationary points of the true problem, and subsequently the exponential convergence of d(xN , X∗).

Definition 4.1 Let φ : IRn×Ξ→ IR be a real valued function and ξ : Ω→ Ξ ⊂ IRk a random vector defined
on probability space (Ω,F , P ), let X be a subset of IRn and x ∈ X . φ is said to be

• H-calm at x from above with modulus κ(ξ) and order γ if φ(x, ξ) is finite and there exists a (measurable)
function κ : Ξ→ R+, positive numbers γ and δ such that

φ(x′, ξ)− φ(x, ξ) ≤ κ(ξ)‖x′ − x‖γ (4.17)
2In the theorem, the convergence of v̄N to v∗ was proved under the condition that v∗ is a unique global minimizer of l(v)

but the conclusion can be easily extended to the case when l(v) has multiple minimizers in which case one can prove that
d(v̄N , V ∗)→ 0 where V ∗ denotes the set of global minimizers of l(v).

10



for all x′ ∈ X with ‖x′ − x‖ ≤ δ and almost every ξ ∈ Ξ;

• H-calm at x from below with modulus κ(ξ) and order γ if φ(x, ξ) is finite and there exists a (measurable)
function κ : Ξ→ R+, positive numbers γ and δ such that

φ(x′, ξ)− φ(x, ξ) ≥ −κ(ξ)‖x′ − x‖γ (4.18)

for all x′ ∈ X with ‖x′ − x‖ ≤ δ and almost every ξ ∈ Ξ;

• H-calm at x with modulus κ(ξ) and order γ if φ(x, ξ) is finite and there exists a (measurable) function
κ : Ξ→ R+, positive numbers γ and δ such that

|φ(x′, ξ)− φ(x, ξ)| ≤ κ(ξ)‖x′ − x‖γ (4.19)

for all x′ ∈ X with ‖x′ − x‖ ≤ δ and almost every ξ ∈ Ξ.

Note that the constants δ, γ and κ(ξ) may depend on point x in the above definition. φ is said to be H-calm
from above, calm from below, calm on set X if the respective properties stated above hold at every point of
X .

Calmness of a deterministic real valued function is well-known. See for instance [44, page 322]. The
property is a generalization of Lipschitz continuity, that is, a locally Lipschitz continuous function is calm
but the converse is not necessarily true, see discussions in [44, page 350-352]. Our definition is slightly
different from the calmness in [44] in that we allow a nonlinear growth bound and therefore we use term
“H-calmness” to indicate that the property is a generalization of Hölder continuity. Note that γ is not
restricted to positive values between 0 and 1, instead, it may take any positive values.

Remark 4.2 From (4.17) and (4.18), it is easy to observe that H-calmness from above implies upper semi-
continuity while H-calmness from below implies lower semicontinuity.

In what follows, we discuss uniform exponential convergence of sample average random function φ(x, ξ)
under H-calmness. Let ξ1, ..., ξN be an i.i.d. sample of the random vector ξ(ω). We consider the sample
average function

ψN (x) :=
1
N

N∑
k=1

φ(x, ξk).

Let ψ(x) = E[φ(x, ξ)]. We use the large deviation theorem to investigate the probability of ψN (x) deviating
from ψ(x) over a compact set X ⊂ IRn as sample size N increases. Let

Mx(t) := E
{
et[φ(x,ξ(ω))−ψ(x)]

}
denote the moment generating function of the random variable φ(x, ξ(ω)) − ψ(x). We make the following
assumption.

Assumption 4.1 Let φ : IRn × Ξ → IR be a random function and ξ be a random vector, let X ⊂ IRn be a
compact subset of IRn.

(a) For every x ∈ X , the moment generating function Mx(t) is finite valued for all t in a neighborhood of
zero.

(b) ψ(x) is continuous on X .

Assumption 4.1 (a) implies that the probability distribution of random variable φ(x, ξ) dies exponentially
fast in the tails. In particular, it holds if this random variable has a distribution supported on a bounded
subset of IR. See similar assumptions in [56]. Assumption 4.1 (b) holds when φ(x, ξ) is continuous w.p.1
and bounded by an integrable function. Comprehensive discussions on the continuity of the expectation of
piecewise continuous random set-valued mappings (real-valued random function is just a special case) can
be found in [42, Section 4].
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Proposition 4.1 Let φ : IRn × Ξ → IR be a real valued function and ξ be a random vector, let X be a
compact subset of IRn and Assumption 4.1 hold.

(i) (Ralph and Xu [42, Lemma 3.6]) If φ(·, ξ) is H-calm from above on X with modulus κ(ξ) and order γ
and the moment generating function E

[
eκ(ξ)t

]
is finite valued for t close to 0, then for every ε > 0,

there exist positive constants c(ε) and β(ε), independent of N , such that

Prob
{

sup
x∈X

(ψN (x)− ψ(x)) ≥ ε
}
≤ c(ε)e−Nβ(ε). (4.20)

(ii) If φ(·, ξ) is H-calm from below on X with modulus κ(ξ) and order γ and the moment generating function
E
[
eκ(ξ)t

]
is finite valued for t close to 0, then for every ε > 0, there exist positive constants c(ε) and

β(ε), independent of N , such that

Prob
{

inf
x∈X

(ψN (x)− ψ(x)) ≤ −ε
}
≤ c(ε)e−Nβ(ε). (4.21)

(iii) (Shapiro and Xu [56, Theorem 5.1]) If φ(·, ξ) is H-calm on X with modulus κ(ξ) and order γ and the
moment generating function E

[
eκ(ξ)t

]
is finite valued for t close to 0, then for every ε > 0, there exist

positive constants c(ε) and β(ε), independent of N , such that

Prob
{

sup
x∈X
|ψN (x)− ψ(x)| ≥ ε

}
≤ c(ε)e−Nβ(ε). (4.22)

Part (i) is proved in [42]. We include the proof in the appendix for completeness as the paper has not
been published yet. Part (ii) can be proved in a similar way to Part (i) and Part (iii) is [56, Theorem 5.1]
which is a combination of Parts (i) and (ii).

Proposition 4.1 is a generalization of [56, Theorem 5.1] where an exponential convergence of the sample
average of a random function is obtained under Assumption 4.1 and uniform Hölder continuity of ψ(x) in
x. The significance of the results here is that we extend the exponential convergence to a class of random
functions which may be discontinuous at some points. The results can be easily used to establish the
exponential convergence of sample average approximation of stochastic optimization problems where the
underlying functions are lower or upper semicontinuous and satisfy certain calmness conditions. Our main
purpose here, however, is to use Proposition 4.1 to establish the exponential rate of convergence of random
set-valued mappings AϑN (x) over a compact subset of X.

We are now ready to present one of the main results of this section. For i = 1, · · · , î, let (vi)oxi(x, ξ, ui)
denote the Clarke generalized derivative of vi with respect to xi in direction ui, where ui ∈ IRni and ‖ui‖ ≤ 1.
Then (vi)oxi(x, ξ, ui) = σ(∂xivi(x, ξ), ui).

Theorem 4.3 Let Av(x, ξ) be defined by (4.11) and X be a nonempty compact subset of X. Assume: (a)
part (a) of Assumption 3.1 holds, (b) E[(vi)oxi(x, ξ, ui)] is continuous on X , (c) (vi)oxi(x, ξ, ui) is H-calm
from above on X with modulus ai(ξ) and order γ, (d) for pi(ξ) ≡ κi(ξ) + ai(ξ), where κi is defined as in
Assumption 3.1, the moment generating function E

[
etpi(ξ)

]
of pi(ξ), is finite valued for t close to 0. Then

for any small positive number ε > 0, there exist ĉ(ε) > 0 and β̂(ε) > 0, independent of N , such that for N
sufficiently large

Prob
{

sup
x∈X

D(AϑN (x),E[Av(x, ξ)]) ≥ ε
}
≤ ĉ(ε)e−β̂(ε)N . (4.23)

Proof. We use Proposition 4.1 to prove the result. First, for any u := (u1, · · · , uî), it follows from [38,
Proposition 3.4]

E[σ(Av(x, ξ), u)] = σ(E[Av(x, ξ)], u). (4.24)

Observe next that

D(AϑN (x),E[Av(x, ξ)]) ≤
î∑
i=1

D(∂xiv
N
i (x, ξ),E[∂xivi(x, ξ)]), (4.25)
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where

∂xiϑ
N
i (x, ξ) :=

1
N

N∑
k=1

∂xivi(x, ξ
k), i = 1, · · · , î.

Since ∂xivi(x, ξ) is a convex set,

σ(∂xiϑ
N
i (x, ξ), ui) ≤

1
N

N∑
k=1

σ(∂xivi(x, ξ
k), ui) =

1
N

N∑
k=1

(vi)oxi(x, ξ
k, ui), i = 1, · · · , î.

Using this, Proposition 2.1 and (4.24), we obtain

D(∂xiϑ
N
i (x, ξ),E[∂xivi(x, ξ)]) = sup

‖ui‖≤1

(
σ(∂xiϑ

N
i (x, ξ), ui)− σ(E[∂xivi(x, ξ)], ui)

)
≤ sup

‖ui‖≤1

(
1
N

N∑
k=1

(vi)oxi(x, ξ
k, ui)− E[(vi)oxi(x, ξ, ui)]

)
.

Consequently

sup
x∈X

D(∂xiϑ
N
i (x, ξ),E[∂xivi(x, ξ)]) ≤ sup

‖ui‖≤1,x∈X

(
1
N

N∑
k=1

(vi)oxi(x, ξ
k, ui)− E[(vi)oxi(x, ξ, ui)]

)
. (4.26)

Let Zi := {ui ∈ IRni : ‖ui‖ ≤ 1} × X . In what follows, we show the uniform exponential convergence of the
right hand side of the above inequality by applying Proposition 4.1 (i) to φ(x, ξ, ui) with variable (x, ui).
Observe that

‖(vi)oxi(x, ξ, ui)‖ ≤ ‖∂xivi(x, ξ)‖ ≤ κi(ξ),

and by assumption (vi)oxi(x, ξ, ui) is H-calm from above in x with modulus ai(ξ) and order γ. Thus

(vi)oxi(x
′, ξ, u′i)− (vi)oxi(x, ξ, ui) ≤ ai(ξ)‖x

′ − x‖γ + κi(ξ)‖u′i − ui‖ ≤ pi(ξ)‖z′i − zi‖min(γ,1),

where zi = (x, ui) and the last inequality is due to the fact that we only use the inequality for z′i close to z
and hence may assume without lost of generality that ‖z′i − zi‖ ≤ 1. This shows the H-calmness from above
of (vi)oxi(x, ξ, ui) with respect to (x, ui) set Zi. Notice that E[(vi)oxi(x, ξ, ui)] is continuous in x by assumption
and because (vi)oxi(x, ξ, ui) is Lipschitz continuous in ui with integrable modulus κi(ξ), E[(vi)oxi(x, ξ, ui)] is
also continuous in ui. This shows the continuity of E[(vi)oxi(x, ξ, ui)] with respect to (x, ui) on set Zi.

By Proposition 4.1, for any εi > 0, there exist positive constants ĉi(εi) and β̂i(εi), independent of N ,
such that

Prob

{
sup

(x,ui)∈Zi

(
1
N

N∑
k=1

(vi)oxi(x, ξ
k, ui)− E[(vi)oxi(x, ξ, ui)]

)
≥ εi

}
≤ ĉi(εi)e−Nβ̂i(εi), (4.27)

for i = 1, · · · , î. For any ε > 0, let εi > 0 be such that
∑î
i=1 εi ≤ ε. Then by combining (4.25)-(4.27), we

obtain

Prob
{

sup
x∈X

D(AϑN (x),E[Av(x, ξ)]) ≥ ε
}
≤

î∑
i=1

Prob
{

sup
x∈X

D(∂xiϑ
N
i (x, ξ),E[∂xivi(x, ξ)]) ≥ εi

}

≤
î∑
i=1

ĉi(εi)e−Nβ̂i(εi) ≤ ĉ(ε)e−Nβ̂(ε).

This shows (4.23) with ĉ(ε) = îmaxîi=1 ĉi(εi) and β̂(ε) = minîi=1 β̂i(εi).

Remark 4.3 The H-calmness from above of (vi)oxi(x, ξ, ui) and continuity of E[∂xivi] in a certain compact
set X play an important role in Theorem 4.3. It is therefore natural to ask when the properties hold.
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(i) (H-calmness from above) Except in some pathological examples, vi is often piecewise smooth in many
practical instances, that is, for almost every ξ ∈ Ξ, vi can be expressed as a finite number of smooth
functions of x, see [50] for detailed discussion of piecewise smooth functions. Let us consider the
case that for almost every ξ ∈ Ξ, vi is piecewise twice continuously differentiable with respect to x.
Then (vi)oxi(x, ξ, ui) is H-calm in x. The conclusion follows from a number of claims which can be
verified without much difficulties: (a) ∂xivi(x, ξ, ui) is outer semicontinuous with respect to x; (b) by
[4, Proposition 2.6.4], claim (a) implies that (vi)oxi(x, ξ, ui) is upper semicontinuous with respect to x;
(c) (vi)oxi(x, ξ, ui) is upper bounded by maxJj=1 ‖∇xiv

j
i (x, ξ, ui)‖ where vji , j = 1, · · · , J denote active

pieces of vi at point x. Therefore,

(vi)oxi(x
′, ξ, ui) ≤ (vi)oxi(x, ξ, ui) +

J
max
j=1
{‖∇2

xixv
j
i (x, ξ, ui)‖‖x

′ − x‖+ o(‖x′ − x‖)}

for all x′ in a small neighborhood of x relative to X (here we assume that the existence of such
neighborhood is independent of ξ). Let κi(ξ) := maxx∈X maxJj=1 ‖∇2

xixv
j
i (x, ξ, ui)‖. The H-calmness of

(vi)oxi follows.

(ii) (Continuity of E[∂xivi]) Shapiro [52, Proposition 4.1] showed that if a random function is continuously
differentiable w.p.1 and Lipschitz continuous with integrable Lipschitz modulus, then the expected value
of the function is continuously differentiable. In the context of this paper, the proposition implies that
if vi is continuously differentiable with respect to xi w.p.1 and Assumption 3.1 holds, then E[vi] is
continuously differentiable in xi and

∂xiE[vi] = ∇xiE[vi] = E[∇xivi] = E[∂xivi].

Moreover, since ∇xivi is single valued, the outer semicontinuity of ∂xivi with respect to x−i established
in Proposition 3.1 implies the continuity. This gives us the desired continuity of E[∂xivi] with respect
to x.

When ∂xivi, i = 1, · · · , î, is H-calm, the exponential convergence of Theorem 4.3 can be strengthened by
replacing D with H in (4.23). We state this in the following corollary.

Corollary 4.1 If (vi)oxi(x, ξ, ui) is H-calm with respect to x on X with modulus ai(ξ) and order γ, and for
pi(ξ) ≡ κi(ξ) + ci(ξ), where κi is defined as in Assumption 3.1, the moment generating function E

[
etpi(ξ)

]
of pi(ξ), is finite valued for t close to 0, then for any small positive number ε > 0, there exist ĉ(ε) > 0 and
β̂(ε) > 0, independent of N , such that for N sufficiently large

Prob
{

sup
x∈X

H(AϑN (x),E[Av(x, ξ)]) ≥ ε
}
≤ ĉ(ε)e−β̂(ε)N . (4.28)

Proof. Under the H-calmness, we can show, similar to the proof of Theorem 4.3, that

D(E[∂xivi(x, ξ)], ∂xiϑ
N
i (x, ξ)) = sup

‖ui‖≤1

(
E[(vi)oxi(x, ξ, ui)]−

1
N

N∑
k=1

(vi)oxi(x, ξ
k, ui)

)
.

Moreover,

Prob

{
sup

(x,ui)∈Zi

(
E[(vi)oxi(x, ξ, ui)]−

1
N

N∑
k=1

(vi)oxi(x, ξ
k, ui)

)
≥ εi

}

= Prob

{
inf

(x,ui)∈Zi

(
1
N

N∑
k=1

(vi)oxi(x, ξ
k, ui)− E[(vi)oxi(x, ξ, ui)]

)
≤ −εi

}
.

Notice that H-calmness of ∂xivi(x, ξ) implies that (vi)oxi(x, ξ, ui) is H-calm from below for every fixed ui.
By applying Proposition 4.1 (ii) to the right hand side of the above equation, we obtain that for any small
positive number ε > 0, there exist ĉ(ε) > 0 and β̂(ε) > 0, independent of N , such that for N sufficiently
large

Prob
{

sup
x∈X

D(E[Av(x, ξ)],AϑN (x)) ≥ ε
}
≤ ĉ(ε)e−β̂(ε)N . (4.29)

The conclusion follows by combining (4.29) and (4.23).
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Theorem 4.4 Let X ⊂ X be a nonempty compact subset of X and X∗ be a set of weak stochastic Nash-
C-stationary points of the true problem (1.1) within X . Let Ψ(x) = E[Av(x, ξ)] + GX(x), where GX(x) is
defined by (4.12). Assume that for N̄ sufficiently large, the sequence {xN}N>N̄ is located in X w.p.1. Then
under conditions (a)-(d) of Theorem 4.3, {xN} converges to X∗ at an exponential rate, that is, for any small
positive number ε > 0, there exist c̃(ε) > 0 and β̃(ε) > 0, independent of N , such that for N sufficiently large

Prob
(
d(xN , X∗) ≥ ε

)
≤ c̃(ε)e−β̃(ε)N . (4.30)

We need an intermediate result on sensitivity analysis to prove the result. Consider the following gener-
alized equation

0 ∈ H(x) +NC(x), (4.31)

where H(x) : C → 2IRm is a closed set-valued mapping, C is a closed convex subset of IRm. Let H̃(x) be a
perturbation of H(x) and we consider the perturbed equation

0 ∈ H̃(x) +NC(x). (4.32)

The following lemma states that when D(H̃(x), H(x)) is sufficiently small uniformly with respect to x, then
the solution set of (4.32) is close to the solution set of (4.31).

Lemma 4.1 ([62, Lemma 4.2]) Let X be a compact subset of IRm. Let X∗ denote the set of solutions to
(4.31) restricted to X and Y ∗ denote the set of solutions to (4.32) restricted to X . Suppose that both X∗

and Y ∗ are nonempty. Then

(i) for any ε > 0 there exists a δ > 0 such that if H is outer semicontinuous in X and supx∈X D(H̃(x), H(x)) <
δ, then D(Y ∗, X∗) < ε.

(ii) for any ε > 0 there exists a δ > 0 such that if H̃ is outer semicontinuous in X and supx∈X H(H̃(x), H(x)) <
δ, then H(Y ∗, X∗) < ε.

Proof of Theorem 4.4. The conclusion follows from Theorem 4.3 and Lemma 4.1 (i). Indeed, for
any ε > 0, it follows from Lemma 4.1 (i) that there exists a δ > 0 such that d(xN , X∗) ≤ ε so long as
supx∈X D(AϑN (x),E[Av(x, ξ)]) ≤ ε. This is equivalent to

Prob
(
d(xN , X∗) ≥ ε

)
≤ Prob

{
sup
x∈X

D(AϑN (x),E[Av(x, ξ)]) ≥ ε
}
.

The rest follows from (4.23).

Remark 4.4 It is possible to express the constants c̃(ε) and β̃(ε) in Theorem 4.4 in terms their counter-
parts in Theorem 4.3 under some stronger conditions. For instance, if there exists a strictly monotonically
increasing function Θ : IR+ → IR+ such that

d(x,X∗) ≤ Θ(sup
x∈X

d(0,E[Aϑ(x, ξ)] +GX(x))), (4.33)

then we can easily obtain that

d(xN , X∗) ≤ Θ(sup
x∈X

(AϑN (x),E[Aϑ(x, ξ)])).

Consequently we have c̃(ε) = ĉ(Θ−1(ε)) and β̃(ε) = β̂(Θ−1(ε)). In a particular case when Θ(t) = αt,
inequality (4.33) is implied by the metric regularity, see recent discussions about this by Ralph and Xu in
[42]. A stronger regularity condition is also considered for SAA-SGE by Shapiro in [53, Section 7], see
Remark 4.1.
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5 A smoothing approach

Having established the convergence results in the preceding section, we now turn to discuss the numerical
solution of the sample average Nash equilibrium problem (1.6). For fixed sample, this is a deterministic
nonsmooth equilibrium problem and one may use well-known bundle methods [33, 48] to solve it.

In this section, we consider the case when the underlying function has simple nonsmoothness structure.
Our idea here is to approximate vi by a parameterized smooth function and then solve the smoothed sample
average approximation problem. The approach is known as smoothing and has been used to deal with
nonsmooth stochastic optimization problem in [61]. It is shown that the approach is very effective when the
nonsmoothness of underlying functions is caused by a few simple operations such as max (min)-function.
The approach is even more attractive here because once the function is smoothed, the first order equilibrium
conditions are reduced to variational inequalities or nonlinear complementarity problems for which many
numerical methods are available [17]. Let us first describe the smoothing method.

Definition 5.1 Let f : IRm → IR be a locally Lipschitz continuous function and ε ∈ IR be a parameter.
f̂(x, ε) : IRm × IR→ IR is a smoothing of f if it satisfies the following:

(a) for every x ∈ IRm, f̂(x, 0) = f(x);

(b) for every x ∈ IRm, f̂ is locally Lipschitz continuous at (x, 0);

(c) f̂ is continuously differentiable on IRm × IR\{0};

(d) f̂ is convex if f is convex.

A smoothing scheme, excluding (d), was first proposed by Ralph and Xu [41] for obtaining a smooth
approximation of an implicit function defined by a nonsmooth system of equations and was applied to tackle
nonsmoothness in nonsmooth stochastic minimization problem in [61]. Parts (a) and (c) in the definition
require that the smoothing function match the original function when the smoothing parameter is zero and
be continuously differentiable when the smoothing parameter is nonzero. The Lipschitz continuity in part
(b) implies that the Clarke generalized gradient ∂(x,ε)f̂(x, 0) is well defined and this allows us to compare
the generalized gradient of the smoothed function at point (x, 0) with that of the original function. If

πx∂(x,ε)f̂(x, 0) ⊂ ∂xf(x),

where πx∂(x,ε)f̂(x, 0) denotes the set of all m-dimensional vectors a such that, for some scalar c, the (m+1)-
dimensional vector (a, c) belongs to ∂(x,ε)f̂(x, 0), then f̂ is said to satisfy gradient consistency (which is
known as Jacobian consistency when f is vector valued, see [41] and references therein). This is a key
property that will be used in the analysis of the first order optimality condition later on. Property (d)
requires the smoothing function preserve the convexity. This is particularly relevant in this paper because
Nash equilibria are closed related to convexity.

Using the smoothing function, we may consider the smoothed true problem: find x∗(ε) such that

ϑ̂i(x∗i (ε), x
∗
−i(ε), ε) = min

xi∈Xi
E[v̂i(xi, x∗−i(ε), ξ, ε)], for i = 1, · · · , î, (5.34)

and its sample average approximation: find (xN1 (ε), · · · , xN
î

(ε)) ∈ X1 × · · · ×Xî such that

ϑ̂Ni (xNi (ε), xN−i(ε), ε) = min
xi∈Xi

ϑ̂Ni (xi, xN−i(ε), ε) for i = 1, · · · , î, (5.35)

where

ϑ̂Ni (xi, xN−i(ε), ε) =
1
N

N∑
k=1

v̂i(xi, xN−i(ε), ξ
k, ε).

The first order equilibrium conditions of (5.34) and (5.35) can be written respectively as

0 ∈ E[∇xi v̂i(xi, x−i, ξ, ε)] +NXi(xi), i = 1, · · · , î, (5.36)
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and

0 ∈ 1
N

N∑
k=1

∇xi v̂i(xi, x−i, ξk, ε) +NXi(xi), i = 1, · · · , î. (5.37)

Note that in numerical implementation, we may solve (5.35) by fixing sample and driving the smoothing
parameter to zero or fixing the smoothing parameter and increasing the sample size. The former might be
more preferable because it is numerically cheaper to reduce the smoothing parameter than increasing sample
size. In what follows, we give a statement of convergence for both cases. Let S(ε) denote the set of solutions
to (5.36) and SN (ε) the set of solutions to (5.37).

Theorem 5.1 For i = 1, · · · , î, let v̂i(xi, x−i, ξ, ε) be a smoothing of vi(xi, x−i, ξ). Suppose: (a) there exists
an integrable function κi(ξ) such that the Lipschitz modulus of v̂i(x, ξ, ε) with respect to xi is bounded by
κi(ξ), (b) for almost every ξ,

lim
x′→x,ε→0

{∇xi v̂i(x′i, x′−i, ξ, ε)} ⊂ ∂xivi(xi, x−i, ξ). (5.38)

(i) If S(ε) is nonempty for all ε close to 0, then limε→0 S(ε) ⊂ S, w.p.1., where S denotes the set of
solutions to (3.7).

(ii) If εN → 0 as N → ∞, SN (εN ) is nonempty for all N sufficiently large, then limN→∞ SN (εN ) ⊂ S,
w.p.1, where SN denotes the solution set of (3.10);

(iii) If SN (ε) is nonempty for all N sufficiently large, then limN→∞ SN (ε) ⊂ S(ε), w.p.1.

Proof. The proof of parts (i) and (ii) is similar to the proof of [61, Theorem 3.1]. Here we give a brief proof
sketch.

Part (i). By assumption, ∇xi v̂i(x′i, x′−i, ξ, ε) is integrably bounded by κi(ξ). Then similar to the proof of
[61, Theorem 3.1],

lim
x′→x,ε→0

E
[
∇xi v̂i(x′i, x′−i, ξ, ε)

]
= E

[
lim

x′→x,ε→0
∇xi v̂i(x′i, x′−i, ξ, ε)

]
⊂ E [∂xivi(xi, x−i, ξ)] .

The inclusion follows from (5.38). The rest is straightforward.

Part (ii). Let

G(x, ξ, ε) =
{

∇xi v̂i(x, ξ, ε), if ε > 0,
lim(x′,ε′)→(x,0)∇xi v̂i(x′, ξ, ε′), if ε = 0,

and
Fδ(x, ξ, 0) =

⋃
(x′,ε′)∈B((x,0),δ)

G(x′, ξ, ε′).

By [55, Theorem 2],

lim
N→∞

1
N

N∑
k=1

∇xi v̂i(xi, x−i, ξk, εN ) ⊂ E[Fδ(x, ξ, 0)]

w.p.1 uniformly with respect to x. Thus for any sequence {xN} ⊂ S(εN ) with accumulation point x∗

lim
N→∞

1
N

N∑
k=1

∇xi v̂i(xN , ξk, εN ) ⊂ E[Fδ(x∗, ξ, 0)].

By [23, Theorems 2.5] ( or [23, Theorem 2.8] and the following remark, or [36, Theorem 1.43 (iii)]),

lim
δ→0

E[Fδ(x∗, ξ, 0)] = E[ lim
δ→0
Fδ(x∗, ξ, 0)] ⊂ ∂xivi(xi, x−i, ξ).
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The last inclusion follows from (5.38). The rest is obvious.

Part (iii). Let X be a compact subset of X such that limε→0 S
N (ε) ⊂ X . Under condition (a),

∇xi v̂i(xi, x−i, ξ, ε) is bounded by κi(ξ). Applying the uniform strong law of large numbers [47, Lemma
A1] to 1

N

∑N
k=1∇xi v̂i(xi, x−i, ξk, ε) over set X , we have

lim
N→∞

1
N

N∑
k=1

∇xi v̂i(xi, x−i, ξk, ε) = E[∇xi v̂i(xi, x−i, ξ, ε)], for i = 1, · · · , î,

w.p.1. The rest is straightforward given the outer semicontinuity of normal cones NXi(·).

Analogous to Theorem 4.4, it is possible to analyze the rate of convergence in part (ii) of Theorem 5.1.
That is, if: (a) xN (ε) ∈ SN (ε) and for N sufficiently large, it is located within a neighborhood of x(ε) ∈ S(ε),
(b) the moment generating functions e(v̂i(xi,x−i,ξ,ε)−E[v̂i(xi,x−i,ξ,ε)])t and eκi(x)t are finite valued for t close to
0, i = 1, · · · , î and (c) the set valued mapping

Φ(x) = Av(x, ε) +GX(x)

is metric regular at x(ε) for 0, where

Av(x, ε) = E[∇x1 v̂1(x1, x−1, ξ, ε)]× · · · × E[∇xî v̂î(xî, x−î, ξ, ε)]

and GX(x) is defined as in (4.12), then one can obtain exponential rate of convergence for xN (ε) to x(ε).
We omit the technical details.

6 Applications

In this section, we discuss a stochastic Nash equilibrium problem arising from competition of generators in
a wholesale electricity market and use the sample average approximation method to solve the problem.

6.1 A stochastic Nash equilibrium model for the impact of options in electricity
markets

6.1.1 The model

Consider an electricity spot market with M generators competing in a non-cooperative manner to bid for
dispatch of electricity before market demand is realized. The market demand is characterized by an inverse
demand function p(q, ξ(ω)), where p(q, ξ(ω)) is the market price, q is the total supply to the market, and
ξ : Ω → IR is a continuous random variable with support set Ξ. Demand uncertainty is thus characterized
by the distribution of the random variable ξ. Before market demand is realized, generator i, i = 1, · · · ,M ,
chooses its quantity for dispatch, denoted by qi. The generator’s expected profit can then be formulated as

Ri(qi, Q−i) = E[qip(Q, ξ)− Ci(qi) +Hi(p(Q, ξ))], (6.39)

where Q = qi + Q−i is the total bids by all generators to the market, Q−i denotes the total bids by i’s
competitors, qip(Q, ξ) is the total revenue for generator i from selling amount qi of electricity if the market
demand scenario turns out to be p(Q, ξ), Ci(qi) denotes the total cost for producing qi amount of electricity
and finally Hi(p) denotes the payments related to contracts which generators sign with retailers before
entering the spot market.

Contracts are typically used to hedge risks arising from uncertainties in the spot market. They are
financial instruments which do not involve the actual generation of electricity, but the money paid under
the contract is tied to the pool price. There are essentially two types of contracts: a one-way contract such
as a put or a call option where only one party of the contract commits to pay the difference between the
strike price and the spot price for the contracted quantity, and a two-way contract where both parties of the
contracts commit to the difference as opposed to the one-way contract. We assume that both generators
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and retailers are risk neutral, that no retailer will sign a two way contract with strike price greater than the
expected spot price and generators, in equilibrium, will not find it advantageous to offer lower contract price
than expected spot price. Under this kind of assumption which is also known as no-arbitrage condition in
the literature [1, 18], the strike price (denoted by f) of a two way contract is equal to the expected value of
the spot market price E[p(Q, ξ)], consequently the payment related to the two way contract does not appear
in the expected profit in that for any contacted quantity q, E[q(f − p(Q, ξ))] = 0. Based on this discussion,
here we only consider one way contracts, specifically call option and put option can be dealt with in the
same manner. By selling a call option at a strike price f , generator i will pay wi (p− f) to the contract
holder if p > f , but no payment is made if p ≤ f , where wi is the quantity signed by generator i on one-way
contract at strike price f . Assuming that generator i enters a call option of quantity wi at strike price f , we
can formulate Hi(p(Q, ξ)) as follows:

Hi(p(Q, ξ)) = −wi max (p(Q, ξ)− f, 0) .

Generator i’s decision making problem is to choose an optimal quantity qi such that its expected profit
defined in (6.39) is maximized. Let

ri(qi, Q−i, ξ) := qip(Q, ξ)− Ci(qi)− wi max (p(Q, ξ)− f, 0) .

Then generator’s total expected profit can be written as Ri(qi, Q−i) = E [ri(qi, Q−i, ξ)]. Assuming that every
generator is a profit maximizer, we can formulate the competition as a stochastic Nash equilibrium problem.

Definition 6.1 A stochastic Nash Equilibrium is an M-tuple q∗ = (q∗1 , . . . , q
∗
M ) such that

−Ri(q∗i , Q∗−i) = min
qi∈Qi

−Ri(qi, Q∗−i). (6.40)

for i = 1, · · · ,M , where Qi := [0, qui ], and qui is the capacity limit of generator i.

The Nash equilibrium problem above is a practical example of the general model (1.1). In what follows,
we apply the SAA method to this problem and investigate the convergence of sample average approximate
equilibrium as sample size increases using our established results in the preceding sections. We need the
following assumptions.

Assumption 6.1 The inverse demand function p(q, ξ) and the cost function Ci(qi) satisfy the following
conditions:

(a) p(q, ξ) is twice continuously differentiable and strictly decreasing in q for any fixed ξ ∈ Ξ;

(b) there exists an integrable function κ(ξ) such that

max(|p(q, ξ)|, |p′q(q, ξ)|, |p′′qq(q, ξ)|) ≤ κ(ξ)

for all ξ ∈ Ξ;

(c) p′q(q, ξ) + qp′′q (q, ξ) ≤ 0, for all q ≥ 0 and ξ ∈ Ξ;

(d) the cost function Ci(qi), i = 1, 2, . . . ,M , is twice continuously differentiable and C ′i(qi) ≥ 0 and
C ′′i (qi) ≥ 0 for all qi > 0.

The assumptions are fairly standard, see similar ones in [14, 57].

Proposition 6.1 Under Assumption 6.1,

(i) Ri(qi, Q−i) is continuously differentiable in qi and its derivative is continuously differentiable with
respect to q;

(ii) ri(qi, Q−i, ξ) and Ri(qi, Q−i) are strictly concave in qi.
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Proof. Part (i). Observe first that ri(qi, Q−i, ξ) is piecewise continuously differentiable, that is, if p(Q, ξ) >
f , then

(ri)′qi(qi, Q−i, ξ) = p(Q, ξ)− C ′i(qi) + (qi − wi)p′q(Q, ξ)
and if p(Q, ξ) < f

(ri)′qi(qi, Q−i, ξ) = p(Q, ξ)− C ′i(qi) + qip
′
q(Q, ξ).

The function is not differentiable at point qi where p(Q, ξ) = f . Under Assumption 6.1 (a), (ri)′qi(qi, Q−i, ξ)
is bounded by

L(qi, ξ) := max{κ(ξ) + |C ′i(qi)|+ |qi − wi|κ(ξ), κ(ξ) + |C ′i(qi)|+ qiκ(ξ)}, (6.41)

which implies that ri(qi, Q−i, ξ) is globally Lipschitz continuous in qi with an integrable modulus maxqi∈Qi L(qi, ξ).
Notice that for every fixed Q, the strict monotonic decreasing property of p(·, ξ) implies that there exists
at most one ξ value such that p(Q, ξ) = f . This means that ri(qi, Q−i, ξ) is continuously differentiable in
qi w.p.1. By [49, Chapter 2, Proposition 2], E[ri(qi, Q−i, ξ)] is also continuously differentiable in qi. In a
similar manner, we can show that the derivative of E [ri(qi, Q−i, ξ)] in qi is also continuously differentiable
with respect to q by verifying that the function (ri)′qi(qi, Q−i, ξ) is Lipschitz continuous in q with some
integrable modulus and it is continuously differentiable in q w.p.1. We omit the details.

Part (ii). Under Assumption 6.1, one can easily show the strict concavity of ri(qi, Q−i, ξ) and hence
Ri(qi, Q−i). Again we omit the details.

With Proposition 6.1 and [46, Theorems 1 and 2], we can show the existence and uniqueness of the
equilibrium of (6.40). We omit the details because they are not the main focus of this paper.

6.1.2 Sample average approximation

Stochastic Nash equilibrium problem (6.40) makes a good case for SAA method in that: (a) the distribution
of ξ is not necessarily known but it may be obtained by sampling from past data or computer simulation;
(b) the presence of max-operator in ri(qi, Q−i, ξ) makes it difficult to obtain a closed form of Ri(qi, Q−i)
even when the distribution of ξ is known.

Let ξ1, · · · , ξN be an i.i.d. sample of ξ(ω). The sample average approximation of the Nash equilibrium
problem (6.40) is: find qN := (qN1 , q

N
2 , . . . , q

N
M ) ∈ Q1 ×Q2 × · · · × QM such that

−RNi (qNi , Q
N
−i) = min

qi∈Qi
−RNi (qi, QN−i) :=

1
N

N∑
k=1

−ri(qi, Q−i, ξk) (6.42)

for i = 1, · · · ,M . In order to study the convergence of qN , we need first order equilibrium conditions of
both the true problem and its sample average approximation. Observe first that from Proposition 6.1 (i),
E[ri(qi, Q−i, ξ)] is continuously differentiable. Therefore the weak first order equilibrium condition of the
true problem (6.40) coincides with the first order equilibrium condition which can be written as:

0 ∈ −E [∇qiri(qi, Q−i, ξ)] +NQi(qi), i = 1, 2, . . . ,M. (6.43)

For the SAA problem, the underlying functions are piecewise continuously differentiable. We use the Clarke
generalized gradient to characterize the first order equilibrium condition as follows:

0 ∈ − 1
N

N∑
k=1

∂qiri(qi, Q−i, ξ
k) +NQi(qi), i = 1, 2, . . . ,M. (6.44)

For simplicity of notation, let

F (q, ξ) :=
(
(r1)′q1(q1, Q−1, ξ), · · · , (rM )′qM (qM , Q−M , ξ)

)T
,

G(q) = NQ1(q1)× · · ·NQM (qM ) and Ψ(q) = −E[F (q, ξ)] +G(q). Then the first order equilibrium condition
(6.43) can be written as 0 ∈ Ψ(q).

Lemma 6.1 Under Assumption 6.1, ∇qE[F (q, ξ)] = E[∇qF (q, ξ)] and E[∇qF (q, ξ)] is a nonsingular for
all q ∈ Q.
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The proof of this lemma can be obtained by a detailed calculation of the determinant of matrix E[∇qF (q, ξ)].
We include it in the Appendix.

Theorem 6.1 Let qN be a Nash-C-stationary point defined by (6.44). Under Assumption 6.1, there exists
a unique Nash equilibrium q∗ for problem (6.43) and the sequence {qN} converges to q∗ at an exponential
rate, with the increase of sample size N , that is, for any small positive number ε > 0, there exist constants
ĉ1(ε) > 0 and ĉ2(ε) > 0, independent of N , such that for N sufficiently large

Prob
(
‖qN − q∗‖ ≥ ε

)
≤ ĉ1(ε)e−ĉ2(ε)N . (6.45)

Proof. Under Assumption 6.1, we can show through Proposition 6.1 the existence and uniqueness of the
Nash equilibrium q∗. We use Theorem 4.4 to prove the rest. To this end, we verify conditions (a)-(d)
of Theorem 4.3 in this context. Condition (a) is part (a) of Assumption 3.1. Obviously ri(qi, Q−i, ξ) is
Lipschitz continuous with respect to qi with modulus L(qi, ξ) defined as in (6.41). Condition (b) follows
from Proposition 6.1 which shows that E[ri(qi, Q−i, ξ)] is continuous. Conditions (c) follows from Remark
4.3. To see this, observe that ri is piecewise twice continuously differentiable. It is easy to verify that the
Clarke generalized derivative (ri)oqi is upper semicontinuous with respect to q. Condition (d) is automatically
satisfied because the support set Ξ is bounded, see comments by Shapiro and Xu about conditions (C1) and
(C3) in [56, page 408].

Note that the nonsingularity of matrix ∇qE[F (q, ξ)] implies that Ψ(q) is metric regular for all q ∈ Q,
see a discussion by Rockafellar and Wets in [44, page 388]. Therefore Remark 4.4 applies in this case, that
is, (4.33) holds with Θ(t) = αt. We omit the details.

6.1.3 Smoothing approximation and convergence

In Proposition 6.1, we have shown that E[ri(qi, Q−i, ξ)] is continuously differentiable in qi. However,
ri(qi, Q−i, ξk) in the sample average Nash equilibrium problem (6.42) is not necessarily continuously dif-
ferentiable for every ξk. The possible nonsmoothness results from the max-function. In what follows, we
consider a simple smoothing scheme used in [61] to smooth the max-function. Let ε ∈ IR+ and â(z, ε) be
such that for every ε > 0, let

â(z, ε) := ε ln(1 + ez/ε) (6.46)

and for ε = 0, â(z, 0) := max(z, 0). It is proved in [61, Example 3.1] that â(z, ε) satisfies properties (a)-(c)
specified in Definition 5.1. Moreover, â(z, ε) is convex in z and it satisfies the gradient (subdifferential)
consistency, that is,

lim
(z′,ε)→(z,0)

dâ(z, ε)
dz

= [0, 1] = ∂z max(z, 0). (6.47)

Let ĥi(qi, Q−i, ξ, ε) := â(p(qi +Q−i, ξ)− f, ε) and

r̂i(qi, Q−i, ξ, ε) := qip(Q, ξ)− Ci(qi)− wiĥi(qi, Q−i, ξ, ε).

Then we may solve the following smoothed SAA problem instead of (6.42): find an M-tuple qN (ε) :=(
qN1 (ε), . . . , qNM (ε)

)
such that

−R̂Ni (qNi (ε), QN−i(ε), ε) = min
qi∈Qi

− 1
N

N∑
k=1

r̂i(qi, QN−i(ε), ξ
k, ε), i = 1, 2, . . . ,M. (6.48)

The above problem is the sample average approximation of the following smoothed true problem: find an
M-tuple q(ε) := (q1(ε), . . . , qM (ε)) such that

−R̂i(qi(ε), Q−i, ε) = max
qi∈Qi

−R̂i(qi, Q−i(ε), ε), i = 1, 2, . . . ,M. (6.49)

Since the smoothing preserves the convexity, R̂i(qi, Q−i, ε) is also convex in qi. Therefore both (6.48) and
(6.49) have a unique equilibrium under Assumption 6.1. Moreover, the convexity of the problem means that
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we can we can solve (6.48) by solving the following KKT conditions (which form a variational inequality):

0 ∈ − 1
N

N∑
k=1

(r̂i)′qi(qi, Q
N
−i(ε), ξ

k, ε) +NQi(qi), i = 1, 2, . . . ,M. (6.50)

The following proposition summarizes the convergence of qN (ε) and q(ε) as N →∞ and ε→ 0.

Proposition 6.2 Under Assumption 6.1, qN (ε) converges to q(ε) w.p.1 as N →∞ for fixed ε > 0 and q(ε)
converges to a stochastic Nash equilibrium of (6.40) w.p.1 as ε tends to 0.

Proof. We use Theorem 5.1 to prove the results. Since â(z, ε) is a smoothing of max(0, z), it is easy to verify
that r̂i(qi, Q−i, ξ, ε) is a smoothing of ri. Moreover, since âz(z, ε) is bounded by a constant ([61, Example
3.1]), then under Assumption 6.1, there exists an integrable function κi(ξ) such that the Lipschitz modulus
of r̂i(qi, Q−i, ξ, ε) with respect to qi is bounded by κi(ξ). Moreover, (6.47) implies that for almost every ξ,

lim
q′→q,ε→0

{∇qi r̂i(q′i, Q′−i, ξ, ε)} ⊂ ∂qiri(qi, Q−i, ξ).

The conclusion follows from Theorem 5.1.

6.1.4 Numerical tests

We carry out numerical tests on the proposed smoothing SAA scheme for solving the stochastic Nash
equilibrium problem (6.40) with three generators signing call options. We use mathematical programming
codes in GAMS installed in a PC with Windows XP operating system and the solver PATH for solving
(6.50). Our tests are focused on different values of the smoothing parameter ε and sample size N .

Example 6.1 Consider problem (6.40) with three generators which compete with each other in dispatching
electricity. The inverse demand function is p(q, ξ) = α(ξ)− βq, where ξ is a random variable with uniform
distribution on [0, 1], β is deterministic (we set β = 1), and α(ξ) takes a form of αξ + α0 with α = 20,
α0 = 30. Table 1 lists the three generators’ quantities of call option wi and cost functions. The strike price
is f = 22.

Table 1: Quantities of the contracts and cost functions

Generator wi Ci(qi)
1 10 q2

1 + 2q1

2 8 2q2
2 + 2q2

3 0 2q2
3 + 3q3

We can solve the true problem analytically and obtain the exact equilibrium and other related quantities
as displayed in Table 2.

Table 2: Exact result of Example 6.1.

True problem (q∗1 , q
∗
2 , q
∗
3) Q∗ E [p(Q∗, ξ)] (R∗1, R

∗
2, R

∗
3)

(8.300, 4.781, 4.987) 18.067 21.933 (71.886, 29.851, 44.677)

We carry out the numerical tests with different smoothing parameter values and sample sizes. The
results are displayed in Table 3 where qNi (ε) denotes generator i’s approximate dispatch, RNi (ε) denotes i’s
approximate profit, QN (ε) denotes the approximate aggregate dispatch, p̄(QN (ε)) denotes the approximate
average price.

The results show that the convergence is not very sensitive to changes of the value of ε when it is in the
range of [0.02, 2]. This is consistent with the observations obtained in the literature, see [34, 61].
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Table 3: Numerical results of Example 6.1.

ε N (qN
1 (ε), qN

2 (ε), qN
3 (ε)) QN (ε) p̄(QN (ε)) (RN

1 (ε), RN
2 (ε), RN

3 (ε))
2 500 (8.114, 4.680, 4.926) 17.719 21.629 (71.043, 30.209, 43.539)

1000 (8.222, 4.739, 4.963) 17.924 21.816 (71.291, 29.788, 44.238)
5000 (8.281, 4.771, 4.980) 18.033 21.901 (71.900, 29.969, 44.556)

0.2 500 (8.163, 4.706, 4.937) 17.806 21.683 (71.296, 30.191, 43.741)
1000 (8.242, 4.751, 4.975) 17.969 21.877 (71.516, 29.800, 44.466)
5000 (8.297, 4.779, 4.983) 18.059 21.914 (71.823, 29.845, 44.608)

0.02 500 (8.168, 4.708, 4.936) 17.811 21.678 (71.299, 30.164, 43.720)
1000 (8.250, 4.755, 4.973) 17.979 21.867 (71.521, 29.805, 44.429)
5000 (8.299, 4.780, 4.982) 18.061 21.912 (71.824, 29.846, 44.598)

To investigate the smoothing parameter issue further, we fix the sample size to N = 5000, and look
into the computing time, main iterations (defined by GAMS) and function evaluations as ε is reduced. It
turns out that there is no further improvement of approximate solutions, and yet the computing time for
getting a solution significantly increases, see our report in Table 4. Let us explain this phenomena. Our
smoothing function in this example is â(z, ε) = ε ln(1 + ez/ε). The second order derivative of the function is
â′′zz(z, ε) = ez/ε

ε(1+ez/ε)2
. It is easy to verify that â′′zz(z, ε)→ +∞ as ε→ 0 for z < 0. This means the smoothed

SAA problem (6.49) becomes ill-conditioned as ε→ 0. Consequently more computational time and function
evaluations are needed to get a solution although we solve it through its first order equilibrium conditions
(6.50).

Table 4: Numerical results of Example 6.2.

ε Major Iteration Minor Iteration Function Evaluation Computation Time
2 1 1 4 0.140 sec

0.6 1 1 4 0.140 sec
0.2 2 2 5 0.156 sec
0.06 2 2 5 0.172 sec
0.02 2 2 5 0.188 sec
0.006 190 194 3184 232.304 sec
0.002 203 207 3364 274.399 sec

Example 6.2 Consider Example 6.1. Assume now ξ follows a truncated normal distribution with mean
value 0.5 and standard deviation 1, and truncated 0.5 above and below the mean value. Assume also the
strike price of the one-way contract is 27 while all other parameters are the same.

We carry out numerical tests for this example with fixed the smoothing parameter ε = 0.2 and varying
sample size in order to study the convergence of the approximation with respect to the sample size. The
results are displayed in Table 5.

Table 5: Numerical results of Example 6.2.

N (qN
1 (ε), qN

2 (ε), qN
3 (ε)) QN (ε) p̄(QN (ε)) (RN

1 (ε), RN
2 (ε), RN

3 (ε))
500 (7.648, 4.487, 5.079) 17.214 22.397 (89.612, 44.942, 46.923)
1000 (7.745, 4.539, 5.108) 17.393 22.541 (91.659, 46.073, 47.631)
5000 (7.755, 4.544, 5.108) 17.407 22.542 (91.739, 46.109, 47.638)
10000 (7.760, 4.547, 5.112) 17.409 22.550 (91.872, 46.166, 47.662)

The results show that there is no significant improvement when the sample size is changed from 500 to
10000. This reflects the fast convergence of the sample average approximation.

Our conclusion from the preliminary numerical tests is that the smoothed SAA method through (5.37)
might provide a convenient approach to obtain an approximate solution with relatively low precision (due
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to the limitation in reducing smoothing parameter). To obtain a more accurate solution, one may apply
some iterative method such as the well-known bundle method [33] to solve the SAA problem (1.6) directly
(without smoothing) with the obtained approximate solution as a warmstart (initial point).

6.2 A stochastic Nash equilibrium model for electricity markets with network

The stochastic Nash equilibrium model in Section 6.1 is convex and focuses on a single node electricity pool
market. In this section, we consider a nonconvex problem which models generators’ competition for dispatch
in a centrally dispatched wholesale spot market with demand uncertainty and transmission network con-
straints. The aim is to study electricity market competition from a different angle and show the applicability
of model (1.1).

6.2.1 Problem description

Let us consider a market which consists of a set of nodal spot markets connected through transmission grids.
There exists a pool operated by an Independent System Operator (ISO), which serves as a broker, and makes
decisions on the market clearing price and power transactions. The ISO leases the transmission system from
the network owners and controls the power flows in order to maintain the feasibility of the transmission
network.

Over the past few years, game-theoretic models have been extensively used to investigate strategic be-
havior in deregulated electricity markets with network constraints. Hobbs, Metzler and Pang [24] proposed a
strategic gaming model for analyzing an oligopolistic electricity market economy with several dominant firms
in an electric power network, where individual generators’ decision problem was formulated as a mathemat-
ical program with equilibrium constraints (MPEC). Hu and Ralph [26] apparently made the first attempt
to investigate a bilevel game-theoretic model for electricity markets with transmission networks, where the
corresponding bilevel game is recast as an equilibrium problem with equilibrium constraints (EPEC). More-
over, due to nonconvexity of the transmission constraints, they introduced some new concepts such as local
Nash equilibria and Nash stationary points for characterizing the equilibrium conditions of EPEC which
complement the standard concept of (global) Nash equilibria. In the literature, there exist a volume of
game-theoretic models or equilibrium models employed to investigate strategic behavior in electricity mar-
kets with transmission constraints, see Yao, Oren and Adler [63] for using an SEPEC to model an equilibrium
in the spatial market with the demand uncertainties at each node, Wei and Smeers [59] for a generalized Nash
equilibrium model for an oligopolistic electricity market with spatially dispersed generators and consumers,
and Day, Hobbs and Pang [12] for a conjectured supply function equilibrium model of competition among
generators on a linearized DC network.

The stochastic equilibrium model to be discussed in this section follows primarily from Yao, Oren and
Alder’s model in [63] and [64], where the generators anticipate the impact of the transmission line congestion
and take the effect into account in their production decisions. Here we discuss how the model can be fit
to our stochastic Nash equilibrium framework and how the proposed numerical schemes could possibly be
applied to it.

Consider a lossless direct current (DC) network with a set of transmission lines denoted by  L = {1, · · · , L}.
The network underlying the spot market consists of a set of nodes denoted by G = {1, · · · , G} and a set of
generators indexed by i = 1, 2, · · · ,M . In the spot market, we assume that generator i operates the units at
a subset of locations (nodes) Gi ⊂ G for i = 1, 2, · · · ,M . We also assume that at most one generator operates
at a node, and if necessary, we can introduce artificial nodes to meet this assumption [64]. Moreover, we use
a vector of continuous random variables ξ(ω) = (ξ1(ω), · · · , ξG(ω)), with support set Ξ to characterize the
demand uncertainty in the wholesale electricity market where ξg(ω) denotes the uncertainty at node g ∈ G.
As in Section 6.1, we use pg(τg, ξ(ω)) to describe the inverse demand function at node g. That is, if the total
supply to the node is τg, then the market price is pg(τg, ξ) at scenario ξ(ω) = ξ. A significant difference from
the previous model in Section 6.1 is that here the market may have a number of different nodal prices over
the network.

In this game-theoretic model, the generators compete in a noncollaborative manner before the uncertain-
ties are realized, each of which wishes to maximize its individual expected profit by taking the ISO’s decision

24



making process into account. After knowing a particular realization of the demand uncertainty (ξ = ξ(ω))
and receiving individual generator’s bids for supply, the ISO makes a decision on each generator’s dispatch
and the import or export quantity rg(ξ) at each node g ∈ G, and hence the flow on every transmission line
l ∈  L.

Let us first formulate ISO’s decision problem. Given that the realization of the demand uncertainty ξ
and generator i’s production quantity qg at node g ∈ Gi, the ISO determines generators’ dispatch and the
import/export rg(ξ) at every node g ∈ G. These quantities are required to satisfy the network feasibility
constraints, that is, the resulting power flows should not exceed the thermal limits Kl of the transmission line
l in both directions. In this model, we consider a lossless DC approximation of Kirchhoff’s laws. Specifically,
flows on lines can be calculated using power transfer distribution factor (PTDF) Dl,g, which specifies the
proportion of flow on a line l ∈  L resulting from an injection of one-unit electricity at node g ∈ G and a
corresponding one-unit withdrawal at some fixed reference node [10]. The ISO’s objective is to maximize the
total social welfare of the entire network which is defined as the total consumer willingness-to-pay, less the
sum of all generation costs. Mathematically, this is the aggregated area under the curve of the nodal inverse
demand function pg(·, ξ). The ISO solves the following problem parametric on the generators’ production
decision qg, g ∈ G, and ξ ∈ Ξ:

max
rg(ξ), g∈G

∑
g∈G

(∫ rg(ξ)+qg
0

pg(τg, ξ)dτg − Cg(qg)
)

s.t.
∑
g∈G

rg(ξ) = 0,

rg(ξ) + qg ≥ 0, g ∈ G,∑
g∈G

Dl,grg(ξ) ≥ −Kl, l ∈  L,∑
g∈G

Dl,grg(ξ) ≤ Kl, l ∈  L.

(6.51)

Here Cg(qq) is a generator’s total generation cost in producing a quantity qg of electricity at node g, the
first constraint indicates the load and the generation must be balanced at all times which means that all
import and export quantities must add up to zero; the second constraint means that the net consumption
of electricity at node g is nonnegative; the last two constraints mean that the quantities flowing through a
line in both directions should not exceed the thermal limits, see [64] for details.

Let %(ξ), ηg(ξ), λ−l (ξ) and λ+
l (ξ) denote the Lagrange multipliers corresponding to the constraints in

(6.51). The first order necessary conditions (the Karush-Kuhn-Tucker (KKT) conditions) of the ISO’s
problem can be written as:

0 = pg (rg(ξ) + qg, ξ)− %(ξ) + ηg(ξ)−
∑
l∈ L

Dl,g

(
λ+
l (ξ)− λ−l (ξ)

)
, g ∈ G,

0 ≤ ηg(ξ) ⊥ rg(ξ) + qg ≥ 0, g ∈ G,
0 =

∑
g∈G

rg(ξ),

0 ≤ λ−l (ξ) ⊥ Kl +
∑
g∈G

Dl,grg(ξ) ≥ 0, l ∈  L,

0 ≤ λ+
l (ξ) ⊥ Kl −

∑
g∈G

Dl,grg(ξ) ≥ 0, l ∈  L.

(6.52)

Assume that the inverse demand function pg(q, ξ) is decreasing with respect to q for every fixed ξ. It is
easy to verify that the objective function in the ISO’s problem (6.51) is concave with respect to rg, g ∈ G.
Since all of the constraint functions are linear, then the ISO’s problem is a concave program. This implies
that problem (6.51) is equivalent to the KKT system (6.52). In particular, when pg(q, ξ) is is monotonically
decreasing, both (6.51) and (6.52) have a unique solution.

Let us now consider an individual generator’s optimal decision making problem. In the pool, generator
i, i = 1, 2, . . . ,M , determines the output of its generation unit at each node g ∈ Gi before the actual market
demand is known. Assume that each generator aims at maximizing its expected profit and in doing so the
generator anticipates the impact of its production on ISO’s decision making (e.g. on power dispatch, flows
and market clearing price) and its competitors’ response. Consequently we can formulate the generators’
optimal decision making problems as follows: for i = 1, · · · ,M
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max
qg,rg(·),g∈Gi

E

[ ∑
g∈Gi

pg(rg(ξ(ω)) + qg, ξ(ω))qg

]
−
∑
g∈Gi

Cg(qg)

s.t. for a.e. ω ∈ Ω
0 ≤ qg ≤ q̄g, g ∈ Gi,
0 = pg (rg(ξ(ω)) + qg, ξ(ω))− %(ξ(ω)) + ηg(ξ(ω))

−
∑
l∈ L

Dl,g

(
λ+
l (ξ(ω))− λ−l (ξ(ω))

)
, g ∈ G,

0 =
∑
g∈G

rg(ξ(ω)),

0 ≤ ηg(ξ(ω)) ⊥ rg(ξ(ω)) + qg ≥ 0, g ∈ G,
0 ≤ λ−l (ξ(ω)) ⊥ Kl +

∑
g∈G

Dl,grg(ξ(ω)) ≥ 0, l ∈  L,

0 ≤ λ+
l (ξ(ω)) ⊥ Kl −

∑
g∈G

Dl,grg(ξ(ω)) ≥ 0, l ∈  L.

(6.53)

This is a two stage stochastic Nash equilibrium problem with equilibrium constraints: in the first stage,
generators make a decision on their production quantities and in doing so they anticipate the ISO to decide
power flows rg, g ∈ G in the second stage by solving (6.51) which becomes an equilibrium constraint in (6.53)
(through the equivalent formulation (6.52)). Theoretically speaking, the ISO’s problem may have multiple
optimal solutions or equivalently the second stage equilibrium constraints in (6.53) may define multiple
equilibria. By considering the maximization with respect to rg(·) in the formulation we implicitly assume
that each generator is optimistic in anticipating the ISO’s decision outcome. For simplicity of discussion,
we assume that ISO’s decision problem has a unique optimal solution and consequently maximization with
respect to rg(·) can be dropped.

Note also that the equilibrium constraints form a complementarity problem which defines a nonconvex
feasible set and hence problem (6.53) is nonconvex in general. Moreover following our discussion in the
introduction, the two stage stochastic Nash equilibrium problem can be reformulated as a one stage stochastic
Nash equilibrium problem. The objective function of the reformulated problem is the expected value of the
optimal value function of the second stage problem which is usually nonsmooth and nonconvex.

We apply the sample average approximation method to problem (6.53). Let ξ1, . . . , ξN be an i.i.d.
sample of ξ(ω). The sample average approximation of Nash equilibrium problem (6.51) is: find qN :=(
qN1 , · · · , qNG

)
∈ Q1 × Q2 × · · · × QG such that for i = 1, 2, · · · ,M , qNi = {qNg }g∈Gi solves the following

optimization problem:

max
qg,g∈Gi

1
N

N∑
k=1

[ ∑
g∈Gi

pg
(
rg
(
ξk
)

+ qg, ξ
k
)
qg

]
−
∑
g∈Gi

Cg(qg)

s.t. for k = 1, 2, . . . , N,
0 = pg

(
rg
(
ξk
)

+ qg, ξ
k
)
− %

(
ξk
)

+ ηg
(
ξk
)
−
∑
l∈ L

Dl,g

(
λ+
l

(
ξk
)
− λ−l

(
ξk
))
, g ∈ G,

0 =
∑
g∈G

rg
(
ξk
)
,

0 ≤ ηg
(
ξk
)
⊥ rg

(
ξk
)

+ qg ≥ 0, g ∈ G,
0 ≤ λ−l (ξk) ⊥ Kl +

∑
g∈G

Dl,grg
(
ξk
)
≥ 0, l ∈  L,

0 ≤ λ+
l (ξk) ⊥ Kl −

∑
g∈G

Dl,grg
(
ξk
)
≥ 0, l ∈  L,

0 ≤ qg, g ∈ Gi, i = 1, 2, · · · ,M,
0 ≤ q̄g − qg, g ∈ Gi, i = 1, 2, · · · ,M,

(6.54)

where the feasible set of the generation quantity of generator i at node g ∈ Gi ⊂ G is Qg = [0, q̄g].

6.2.2 A three-node network

To explain the numerical schemes outlined in the preceding subsection in detail, we consider a three-node
network connected with three transmission lines as indicated in Figure 1. Demand occurs at each node
but there are only two generators located in node 1 and node 2. Following the notation in the preceding
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Figure 1: A three-node example with two generators.

subsection, G1 = {1} and G2 = {2}, G = {1, 2, 3} and M = 2,  L = {1, 2, 3} with the total number of lines
L = 3. To avoid confusion, we denote the transmission lines by  L = {l1, l2, l3}. Other parameters are
summarized in the following tables:

Table 6: Price functions and cost functions at each nodal market

node g generator i pg(τg, ξ) Ci(qi)
g = 1 1 a1(ξ)− b1(ξ)τ1 α1q1 + β1q

2
1

g = 2 2 a2(ξ)− b2(ξ)τ2 α2q2 + β2q
2
2

g = 3 - a3(ξ)− b3(ξ)τ3 -

Table 7: Power transfer distribution factors (PTDFs) at the market

node g Dl1,g Dl2,g Dl3,g

g = 1 D1,1 D2,1 D3,1

g = 2 D1,2 D2,2 D3,2

g = 3 D1,3 D2,3 D3,3

Kl K1 K2 K3

In Table 7, the power transfer distribution factor Dl,g specifies the proportion of flow on a line l ∈  L
resulting from an injection of one-unit electricity at node g ∈ G and corresponding one-unit withdrawal at
some fixed reference node. In this model, we set node 3 as a reference node, which means Dl,3 = 0 for all
l = 1, 2 and 3. The choice of the reference node only affects the matrix of the power transfer distribution
factors, and the power flows to a certain reference node is not of importance for the global system solution,
but is used in the calculation of the transmission flows and is necessary for a proper understanding of PTDFs,
see [10] for details.

Based on the structure of the system as indicated in Figure 1 and the parameters listed in Tables 6 and
7, the ISO’s decision problem for a particular realization ξ = ξ(ω) can be written as:

max
r1(ξ),r2(ξ),r3(ξ)

3∑
g=1

(∫ rg(ξ)+qg
0

(ag(ξ)− bg(ξ)τg) dτg
)
−
(
α1q1 + β1q

2
1

)
−
(
α2 + β2q

2
2

)
s.t. r1(ξ) + r2(ξ) + r3(ξ) = 0,

r1(ξ) + q1 ≥ 0,
r2(ξ) + q2 ≥ 0,
r3(ξ) ≥ 0,
−Kl ≤ Dl,1r1(ξ) +Dl,2r2(ξ) +Dl,3r3(ξ) ≤ Kl, for l = 1, 2, 3.

(6.55)

Consequently, competition between the two generators can be mathematically modeled as a stochastic Nash
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equilibrium problem: find (q∗1 , q
∗
2) which solves the following problem:

max
qg,g∈Gi

E [(ag(ξ(ω))− bg(ξ(ω)) (rg(ξ(ω)) + qg)) qg]−
(
αgqg + βgq

2
g

)
s.t. for a.e. ω ∈ Ω

0 = ag(ξ(ω))− bg(ξ(ω)) (rg(ξ(ω)) + qg)− %(ξ(ω)) + ηg(ξ(ω))

−
3∑
l=1

Dl,g

(
λ+
l (ξ(ω))− λ−l (ξ(ω))

)
, g = 1, 2,

0 = ag(ξ(ω))− bg(ξ(ω))rg(ξ(ω))− %(ξ(ω)) + ηg(ξ(ω))

−
3∑
l=1

Dl,g

(
λ+
l (ξ(ω))− λ−l (ξ(ω))

)
, g = 3,

0 = r1(ξ(ω)) + r2(ξ(ω)) + r3(ξ(ω)),
0 ≤ ηg(ξ(ω)) ⊥ rg(ξ(ω)) + qg ≥ 0, g = 1, 2,
0 ≤ ηg(ξ(ω)) ⊥ rg(ξ(ω)) ≥ 0, g = 3,

0 ≤ λ−l (ξ(ω)) ⊥ Kl +
3∑
g=1

Dl,grg(ξ(ω)) ≥ 0, l = 1, 2, 3,

0 ≤ λ+
l (ξ(ω)) ⊥ Kl −

3∑
g=1

Dl,grg(ξ(ω)) ≥ 0, l = 1, 2, 3,

0 ≤ qg, g = 1, 2,
0 ≤ q̄g − qg, g = 1, 2.

(6.56)

We carry out a number of numerical tests for solving sample average approximation of (6.56) with the data
specified in Examples 6.3-6.4: In Example 6.3, we test the convergence as the sample size N increases; in
Example 6.4, we perform comparative static analysis (with fixed sample size) on the sensitivity of various
economic variables such as generator’s dispatch, expected profits and the expected market price with respect
to the change of generator 1’s marginal cost. We use mathematical programming codes in GAMS installed
in a PC with Windows XP operating system and solver PATH for solving sample average approximation of
(6.56).

Example 6.3 Consider the inverse demand function pg(qg, ξg) = ag + ξg − bgqg, at node g = 1, 2, 3, where
ξg follows a truncated normal distribution with support [−5, 5], mean value 0 and standard deviation 1. Let
ξ = (ξ1, ξ2, ξ3) (In this case, ξg describes the demand uncertainty at node g while ξ represents all of the
uncertainties. The power flow τg(ξ) depends ξ in general). The other parameters are given in Tables 8 and
9.

Table 8: Price functions and cost functions at each nodal market

node g generator i pg(τg, ξ) Ci(qi)
g = 1 i = 1 25 + ξ1 − 1.2(q1 + τ1(ξ)) 5q1 + q2

1

g = 2 i = 2 26.5 + ξ2 − 1.3(q2 + τ2(ξ)) 2q2 + 1.5q2
2

g = 3 - 27.9 + ξ3 − 1.5τ3 -

Table 9: Power transfer distribution factors (PTDFs) at the network

node g Dl1,g Dl2,g Dl3,g

g = 1 0.5 −0.5 −0.5
g = 2 0.5 −0.5 0.5
Kl 1.8 1.8 1.8

We carry out a number of numerical tests for sample average approximation of (6.56) with sample
sizes 500, 1000 and 2000. The results are displayed in Table 10 where r̄g(qNg ) = 1

N

∑N
k=1 τg(ξ

k), p̄g(qNg ) =
1
N

∑N
k=1 pg(qg + τg(ξk), ξk) for g = 1, 2, 3 and RNi , i = 1, 2, is the sample average of generator i’s profit. The

results show that there is no significant improvement as the sample size increases from 500 to 2000. This is
consistent with the observation in Subsection 6.1.
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It is important to note that (qN1 , q
N
2 ) displayed in Table 10 are obtained from solving sample average

approximation of (6.56) and they are (approximate) weak Nash-C-stationary points of the true problem
(6.56). In order to verify whether they are Nash equilibria or not, we may look into the quasiconvexity of
each generator’s objective function by fixing its rival’s dispatch. It is very difficult to do this in this case
because each generator’s decision problem is a two-stage mathematical program with equilibrium constraints.
Similar comments apply to Example 6.4. In the case when rg(ξ), g = 1, 2, is piecewise linear function of
q1, q2, we can prove that the objective function in (6.56) are piecewise concave provided that βg ≥ bg(ξ)
w.p.1 for g = 1, 2 and subsequently (qN1 , q

N
2 ) is an (approximate) local Nash equilibrium.

Table 10: Numerical results of Example 6.3.

N qN
1 , q

N
2 r̄1(qN

g ), r̄2(qN
g ), r̄3(qN

g ) p̄1(qN
1 ), p̄2(qN

2 ), p̄3(qN
3 ) RN

1 , R
N
2

500 5.407, 4.915 −2.573,−1.003, 3.575 21.560, 21.415, 22.638 60.516, 59.186
1000 5.413, 4.920 −2.575,−1.004, 3.579 21.594, 21.409, 22.632 60.524, 59.182
2000 5.416, 4.922 −2.576,−1.004, 3.580 21.591, 21.406, 22.630 60.528, 59.180

Example 6.4 We now move on to investigate the impact of the change of a single generator’s marginal cost
on the other generator’s dispatch and nodal prices etc. Specifically, we consider generator 1’s cost function
C1(q1) = 5q1 + β1q

2
1 and look into the impact when parameter β1 increases from 0.7 to 1.6. Observe that the

marginal cost is 5 + 2β1q1 and it increases as parameter β1 increases. We list details of other data in Tables
6.4 and 6.4 and leave distribution of ξ as in Example 6.3. The sample size is 1000.

Table 11: Price functions and cost functions at each nodal market

node market g generator i pg(τg, ξ) Ci(qi)
g = 1 1 26.5 + ξ1 − 1.2(q1 + τ1(ξ)) 5q1 + β1q

2
1

g = 2 2 26.5 + ξ2 − 1.2(q2 + τ2(ξ)) 5q2 + 1.2q2
2

g = 3 - 28.0 + ξ3 − 1.5τ3(ξ) -

Table 12: Power transfer distribution factors (PTDFs) at the market

node g Dl1,g Dl2,g Dl3,g

g = 1 0.5 −0.5 −0.5
g = 2 0.5 −0.5 0.5
Kl 1.8 1.8 1.8

Figures 2-4 show how the change of parameter value β1 from 0.7 to 1.6 affects the dispatch and profits of
the two generators and market prices at the three nodes. Figure 2 shows that when β1 = 1.2 the dispatches
of the two generators are equal as the two generators are in a symmetric position. Figure 3 depicts the
change of average nodal prices as β1 increases. Note that when β1 ≤ 1.1, power flow on each line reaches the
line capacity limit (Kl = 1.8) therefore the price at node 3 remains constant. The price at node 2 is slightly
higher than the price at node 1 because generator 2 produces less power at node 2. When β1 > 1.1, power
flow on each line drops below the line capacity limit. Consequently the three nodal prices coincide. Figure
4 depicts the change of expected profits of the two generators.
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Figure 2: Comparative static analysis on the dispatch quantities with respect to the change of β1.

Figure 3: Comparative static analysis on the expected transmission flows with respect to the change of β1.
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Figure 4: Comparative static analysis on the expected node prices with respect to the change of β1.

Figure 5: Comparative static analysis on the expected profits with respect to the change of β1.
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[49] A. Rusczyński and A.Shapiro, Stochastic Programming Models, in Stochastic Programming,
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Appendix

Proof of Proposition 3.1. Part (i). Let ui ∈ IRni be fixed. By definition, the Clarke generalized derivative
[9] of vi(xi, x−i, ξ) with respect to xi at a point xi in direction ui is defined as

(vi)oxi(xi, x−i, ξ;ui) := lim sup
yi→xi
t→0

[vi(yi + tui, x−i, ξ)− vi(yi, x−i, ξ)]/t.

Since vi is continuous in ξ and ξ(ω) is a random vector, then vi is measurable, and by [4, Lemma 8.2.12],
(vi)oxi(xi, x−i, ξ;ui) is also measurable. Since (vi)oxi(xi, x−i, ξ;ui) is the support function of ∂xivi(xi, x−i, ξ),
by [4, Theorem 8.2.14], ∂xivi(xi, x−i, ξ) is measurable. Part (ii). Assumption 3.1 (a) indicates that ∂xivi(xi, x−i, ξ)
is integrably bounded. Together with the measurability as proved in Part (i), this gives the well definedness
of E[∂xivi(xi, x−i, ξ)].

Proof of Proposition 4.1 part (i). The proof is similar to that of [56, Theorem 5.1]. In [56, Theorem
5.1] it is assumed that (4.19) holds for all x, x′ ∈ X and all ξ ∈ Ξ. However in the proof of the theorem,
this condition is used only at a finite number of points x̄1, ..., x̄M ∈ X which form a δ-net of X (that is, for
every x ∈ X , there exists x̄i, i ∈ {1, ...,M} such that ‖x − x̄i‖ ≤ ν). Also, the Hölder condition holds “for
all ξ ∈ Ξ can obviously be weakened to “for almost every ξ ∈ Ξ”. In part (i), this condition corresponds to
(4.17). Under condition (C2), we can find a unified integrable function κ(ξ) and constantγ such that (4.17)
holds at the points x̄1, · · · , x̄M . This can be achieved by setting κ(ξ) = maxMi=1 κx̄i(ξ) and γ = minMi=1 γx̄i
where κx̄i(ξ) and γx̄i denote the κ and γ at point x̄i, i = 1, · · · ,M . The rest of the proof is similar to that
of [56, Theorem 5.1].

Proof of Lemma 6.1. The first part of the conclusion follows from Proposition 6.1 (i). In what follows,
we show that E[∇qF (q, ξ)] is a nonsingular matrix under Assumption 6.1 for all qi, Q−i ≥ 0. From the
definition of ri(qi, Q−i, ξ), we have for i = 1, 2, . . . ,M ,

(ri)′qi(qi, Q−i, ξ) =
{
p(Q, ξ)− C ′i(qi) + qip

′
q(Q, ξ), if p(Q, ξ) < f ;

p(Q, ξ)− C ′i(qi) + (qi − wi)p′q(Q, ξ), if p(Q, ξ) > f .

Hence, for j 6= i,

(ri)′′qiqj (qi, Q−i, ξ) =
{
p′q(Q, ξ) + qip

′′
qq(Q, ξ), if p(Q, ξ) < f ;

p′q(Q, ξ) + (qi − wi)p′qq(Q, ξ), if p(Q, ξ) > f ,

and j = i,

(ri)′′qiqi(qi, Q−i, ξ) =
{

2p′q(Q, ξ)− C ′′i (qi) + qip
′′
qq(Q, ξ), if p(Q, ξ) < f ;

2p′q(Q, ξ)− C ′′i (qi) + (qi − wi)p′qq(Q, ξ), if p(Q, ξ) > f .

Therefore, we can write the matrix E[∇qF (q, ξ)] as the sum of two conditional expectations as

E[∇qF (q, ξ)] = E[∇qF (q, ξ)|p(Q, ξ) < f ]Prob (p(Q, ξ) < f)
+E[∇qF (q, ξ)|p(Q, ξ) ≥ f ]Prob (p(Q, ξ) ≥ f) .

Since the set {ξ|Prob (p(Q, ξ) = f)} has measure zero, we have

E[∇qF (q, ξ)] = E[∇qF (q, ξ)|p(Q, ξ) < f ]Prob (p(Q, ξ) < f)
+E[∇qF (q, ξ)|p(Q, ξ) > f ]Prob (p(Q, ξ) > f) .

Let

Ai(qi, Q−i) = E[p′q(Q, ξ) + qip
′′
qq(Q, ξ)]Prob (p(Q, ξ) < f)

+E[p′q(Q, ξ) + (qi − wi)p′′qq(Q, ξ)]Prob (p(Q, ξ) > f)
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and

Bi(qi, Q−i) = E[2p′q(Q, ξ)− C ′′i (qi) + qip
′′
qq(Q, ξ)]Prob (p(Q, ξ) < f)

+E[2p′q(Q, ξ)− C ′′i (qi) + (qi − wi)p′′qq(Q, ξ)]Prob (p(Q, ξ) > f) .

From Assumption 6.1 and the convexity of p(·, ξ), we have

Ai(qi, Q−i) ≤ E[p′q + qip
′′
qq]Prob (p(Q, ξ) < f) + E[p′q + qip

′′
qq]Prob (p(Q, ξ) > f) ≤ 0

and
Bi(qi, Q−i) = Ai(qi, Q−i) + E[p′q(Q, ξ)]− C ′′i (qi) < 0.

Hence, the matrix E[∇qF (q, ξ)] can be formulated as
B1(q1, Q−1) A2(q2, Q−2) · · · AM−1(qM−1, Q−(M−1)) AM (qM , Q−M )
A1(q1, Q−1) B2(q2, Q−2) · · · AM−1(qM−1, Q−(M−1)) AM (qM , Q−M )

...
...

. . .
...

...
A1(q1, Q−1) A2(q2, Q−2) · · · BM−1(qM−1, Q−(M−1)) AM (qM , Q−M )
A1(q1, Q−1) A2(q2, Q−2) · · · AM−1(qM−1, Q−(M−1)) BM (qM , Q−M )


and its determinant is the same as the following matrix

E[p′q]− C′′1 (q1) −E[p′q] + C′′2 (q2) 0 · · · 0 0
0 E[p′q]− C′′2 (q2) −E[p′q] + C′′3 (q3) · · · 0 0
0 0 E[p′q]− C′′3 (q3) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · E[p′q]− C′′M−1(qM−1) −E[p′q] + C′′M (qM )

A1(q1, Q−1) A2(q2, Q−2) A3(q3, Q−3) · · · AM−1(qM−1, Q−(M−1)) BM (qM , Q−M )


Hence, the determinant equals to

|E[∇qF (q, ξ)]| =
M∑

i=1

Ai(qi, Q−i)
∏
j 6=i

(
E[p′q(Q, ξ)]− C′′j (qj)

)+

M∏
i=1

(
E[p′q(Q, ξ)]− C′′i (qi)

)
.

From Assumption 6.1, we have, for every i = 1, 2, . . . ,M , p′q(Q, ξ) < 0 and C ′′i (q) ≥ 0 for any fixed Q, q ≥ 0
and hence E[p′q]− C ′′i < 0. Therefore we can rewrite |E[∇qF (q, ξ)]| as

|E[∇qF (q, ξ)]| = (−1)M
M∑

i=1

|Ai(qi, Q−i)|
∏
j 6=i

∣∣E[p′q(Q, ξ)]− C′′j (qj)
∣∣+ (−1)M

M∏
i=1

∣∣E[p′q(Q, ξ)]− C′′i (qi)
∣∣ .

Moreover, since for i = 1, 2, . . . ,M , E[p′q] − C ′′i < 0, we have |E[∇qF (q, ξ)]| 6= 0 and hence E[∇qF (q, ξ)] is
nonsingular.
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