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Graph Realizations Associated with
Minimizing the Maximum Eigenvalue of the Laplacian

Frank Göring, Christoph Helmberg, and Susanna Reiss∗

May 15, 2009

Abstract

In analogy to the absolute algebraic connectivity of Fiedler, we study the problem
of minimizing the maximum eigenvalue of the Laplacian of a graph by redistributing
the edge weights. Via semidefinite duality this leads to a graph realization problem
in which nodes should be placed as close as possible to the origin while adjacent
nodes must keep a distance of at least one. We prove three main results for a slightly
generalized form of this embedding problem. First, given a set of vertices partitioning
the graph into several or just one part, the barycenter of each part is embedded on
the same side of the affine hull of the set as the origin. Second, there is an optimal
realization of dimension at most the tree-width of the graph plus one and this bound
is best possible in general. Finally, bipartite graphs possess a one dimensional optimal
embedding.
Keywords: spectral graph theory, semidefinite programming, eigenvalue optimiza-
tion, embedding, graph partitioning, tree-width
MSC 2000: 05C50; 90C22, 90C35, 05C10, 05C78

1 Introduction

Let G = (N,E) be an undirected simple graph with node set N = {1, . . . , n} and edge
set E ⊆ {{i, j} : i, j ∈ N, i 6= j}. For an edge {i, j} we also write ij if there is no
danger of confusion. Given edge weights c ∈ RE the weighted Laplacian of G is the matrix
Lc(G) :=

∑
ij∈E cijEij where Eij is an N × N matrix with value 1 on diagonal elements

(i, i) and (j, j), value −1 on offdiagonal elements (i, j) and (j, i) and value zero otherwise.
If G is clear from the context or if c = 1 (throughout, 1 will denote the vector of all ones
of appropriate size) we simply write Lc or L(G).

Spectral properties of the Laplacian are a central topic in spectral graph theory [2,
3, 6, 19, 20, 22, 24, 29, 32] but also appear in theoretical chemistry [12, 15, 16] and in
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communication networks [25]. While the minimal eigenvalue of Lc is trivial, λ1(Lc) = 0
with eigenvector 1, the second smallest eigenvalue λ2(Lc) and the maximal eigenvalue
λmax(Lc) appear in several bounds on combinatorial graph parameters [21]. The associated
eigenspaces are of interest, as well. Indeed, the eigenvector of λ2, often referred to as Fiedler
vector, is the basis of spectral graph partitioning, see [28] and the references therein. In
[9, 10] Fiedler introduced the absolute algebraic connectivity

â(G) := max{λ2(Lc) : c ∈ RE
+,
∑
e∈E

ce = |E|}, (1)

and exhibited several relations to the connectivity of the graph. This number reappeared
recently in several different contexts [11, 13, 26]. The main interest in [13] was to obtain
insight into structural connections between the eigenspace of (1) and connected G by
studying the (scaled) semidefinite dual to (1),

|E|
â(G)

= maximize
∑

i∈N ‖vi‖2

subject to
∑

i∈N vi = 0,
‖vi − vj‖ ≤ 1 for ij ∈ E,
vi ∈ Rn for i ∈ N.

(2)

Interpreting optimal solutions of (2) as embeddings or, using the terminology of [1], as
realizations of the graph in Euclidean space, several close relations to the separator struc-
ture of G can be proven, e.g., a separator shadow theorem and the existence of optimal
solutions of dimension at most the tree-width of G plus one. In [14] a generalized form
of (2) gave rise to the definition of the rotational dimension of a graph, which is a minor
monotone graph parameter closely in spirit to the graph parameter of Colin de Verdière
[23, 27].

Motivated by these results, this paper is devoted to the study of

min{λmax(Lc) : c ∈ RE
+,
∑
e∈E

ce = |E|}, (3)

or rather its slightly generalized dual with node weights s ∈ RN , s > 0, and edge lengths
l ∈ RE, l > 0,

minimize
∑
i∈N

si‖vi‖2

subject to ‖vi − vj‖2 ≥ l2ij for ij ∈ E,
vi ∈ Rn for i ∈ N.

(4)

Interpreted as a graph realization problem, the nodes should be embedded as close to the
origin as possible, but, like in tensegrities [4, 5], adjacent nodes are separated by struts of
length equal to the edge length. Our three main results for optimal realizations of (4) are
as follows. Given any set S of vertices of G, the barycenter of each component of G− S is
embedded on the same side of the affine hull of the separator as the origin (for a precise
statement see Theorem 9). There exists an optimal realization of dimension at most the
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tree-width of G plus one (Theorem 12) and this bound cannot be improved in general.
Finally, bipartite graphs have a one dimensional optimal embedding (Theorem 13).

The paper is organized as follows. In Section 2 we clarify why (4) is a generalization of
the dual to (3). Some basic properties of (4) are studied in Section 3. Section 4 states the
main results and presents a family of graphs for which the tree-width bound is tight. The
technical parts of the proofs of theorems 9 and 12 are presented in sections 5 and 6. In
Section 7 we conclude the paper with some thoughts on deriving a graph parameter from
(4) in the style of the rotational dimension of a graph.

Our notation is quite standard. We recall that 1 denotes the vector of all ones of
appropriate size, ei denotes the ith unit vector of the canonical basis of Rn, and we use
‖ · ‖ for the Euclidean norm. The inner product of matrices A, B ∈ Rm×n is 〈A,B〉 :=∑

ij AijBij. For vectors a, b ∈ Rn we prefer the notation a>b := 〈a, b〉. If A−B is positive
semidefinite for symmetric matrices A and B, this is denoted by A � B. For I ⊆ {1, . . . ,m}
and a matrix A = [a1, . . . , am] ∈ Rm×n we denote by AI the set {ai : i ∈ I} and by lin(AI)
the linear hull, by aff(AI) the affine hull, and by cone(AI) the convex conic hull of AI . For
a closed convex set C the projection onto C is denoted by pC(·).

2 The primal and dual problem

Throughout, we assume that G = (N,E) has at least one edge. Our starting point is (3),

λ∗ := min

{
λmax(Lc) : c ∈ RE

+,
∑
ij∈E

cij = |E|

}
.

As in [13] we first transform the problem so that its dual may be viewed as an embedding
or realization of G in Rn. The main steps are as follows.

The standard semidefinite programming representation of the eigenvalue problem reads,

λ∗ = minimize λ
subject to

∑
ij∈E

cijEij � λI,∑
ij∈E

cij = |E|,

c ≥ 0, λ free.

(5)

Because E 6= ∅ we have Lc 6= 0 and so Lc � 0 implies λ > 0. Dividing (5) by λ and
maximizing the sum over the scaled weights wij :=

cij
λ

yields the equivalent problem

|E|
λ∗

= maximize
∑
ij∈E

wij

subject to
∑
ij∈E

wijEij � I,

w ≥ 0.

(6)
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The dual program of (6) is

minimize 〈I,X〉
subject to 〈Eij, X〉 ≥ 1 for ij ∈ E,

X � 0.
(7)

Note, as wij = 0 (ij ∈ E) is a strictly feasible solution of (6) with respect to the semidefinite
constraint, the dual problem (7) attains its optimal solution (by semidefinite duality theory
and strict feasibility, see, e.g., [31]).

The positive semidefiniteness of X admits a Gram representation X = V >V with
V ∈ Rn×n. We denote the i-th column of V by vi, i.e., V = [v1, . . . , vn]. Then Xij = v>i vj
and 〈Eij, X〉 = ‖vi‖2 − 2v>i vj + ‖vj‖2 = ‖vi − vj‖2. With this, (7) transforms to

minimize
∑
i∈N
‖vi‖2

subject to ‖vi − vj‖2 ≥ 1 for ij ∈ E,
vi ∈ Rn for i ∈ N.

(8)

So the dual problem of (3) is equivalent to finding a realization of the graph’s nodes in n-
space so that the distances of adjacent nodes are at least one (the distance constraints) and
the sum of the squared norms is minimized. Note that by semidefinite complementarity,
any optimal X and thus V is restricted to the eigenspace of the optimum eigenvalue of
(3), compare Remark 2 of [13].

Motivated by [14], we prefer to study the generalized form (4) of this problem from the
onset. Indeed, setting s = 1 and l = 1 we regain problem (8) from (4). In principle, the
requirements s > 0 and l > 0 could be replaced by s ≥ 0 and l ≥ 0 without altering the
basic arguments but as this would entail some cumbersome special cases, we exclude zeros
for ease of presentation.

Like in [14] it can be worked out that for (4) there is a corresponding eigenvalue op-
timization problem. Tracing back the steps above, use D := Diag([s−1

1 , . . . , s−1
n ]) with

V TV = DXD for an analogue of (7), dualize to obtain

maximize
∑
ij∈E

l2ijwij

subject to
∑
ij∈E

wijDEijD � I,

wij ≥ 0 for ij ∈ E.

(9)

Finally the same scaling argument yields the eigenvalue formulation

minimize λmax(DLcD)
subject to

∑
ij∈E

l2ijcij = |E|,

cij ≥ 0 for ij ∈ E.
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Remark 1 As in [13], the KKT conditions of (4) with the Lagrange multipliers wij of (9)
provide an intuitive physical interpretation. Without feasibility conditions these read

sivi −
∑
ij∈E

wij(vi − vj) = 0 for i ∈ N,

(‖vi − vj‖2 − l2ij)wij = 0 for ij ∈ E.
(10)

Consider each node i ∈ N as having a point mass of size si, and imagine each edge ij being
a mass-free strut of length ij between adjacent points. Now the optimum solution of (4)
corresponds to an equilibrium configuration within a force field that acts with force −σv on
a point of mass σ at position v. The wij of (9) are the forces acting along strut ij. In
particular, the forces are in equilibrium in each point.

3 Basic properties of the embedding

We first consider the barycenter of the embedding. Throughout this text a vector s ∈ Rn
+

is fixed and we frequently need to sum up several weights si over nodes i ∈ A ⊆ N or
calculate weighted barycenters (with weights si) of the embeddings of the nodes in A. For
this we introduce the notations

s̄(A) =
∑
i∈A

si for A ⊆ N

for the weight of the barycenter and

v̄(A) =
1

s̄(A)

∑
i∈A

sivi

for the barycenter of the embedding of the nodes in A.

Observation 2 For an optimal realization [v1, . . . , vn] of (4) the barycenter is in the ori-
gin, i.e., v̄(N) = 0. Hence, any optimal realization is at most (n− 1) dimensional.

Proof. This follows by taking the sum over i ∈ N of the first line in (10) because all wij
cancel out.

Edges, whose distance constraints are inactive or whose weights are zero in optimal so-
lutions are mostly of no importance in the considerations to follow and may be dropped.
This motivates the following definition.

Definition 3 For G = (N,E) with given data s and l let V = [v1, . . . , vn] be an optimal
solution of (4) and wij (ij ∈ E) a corresponding optimal solution of (9). The edge set
EV,l := {ij ∈ E : ‖vi − vj‖ = lij} gives rise to the active subgraph GV,l = (N,EV,l) of G
with respect to V . The strictly active subgraph Gw = (N,Ew) of G with respect to w has
edge set Ew := {ij ∈ E : wij > 0}.
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Note that by complementarity, Ew ⊆ EV,l. Recall that a component of a graph is a maximal
connected subgraph, and so a component of G may split into several components in GV,l

which may again split into several components in Gw. The following result is proved by
the same argument used for Observation 2.

Observation 4 Given optimal solutions to (4) and (9) the barycenter of each component
of the strictly active subgraph as well as of the active subgraph as well as of the graph itself
is in the origin.

The next result states that any optimal embedding of (8) is contained within the unit ball.

Observation 5 All optimal solutions [v1, . . . , vn] of (4) satisfy ‖vi‖ < l̂ := max{lij : ij ∈
E} for i ∈ N .

Proof. Given an optimal solution [v1, . . . , vn], assume, for contradiction, there exists a
vector vk for some k ∈ N with ‖vk‖ ≥ l̂. By Observation 2 we may choose a vector h ∈ Rn,
‖h‖ = 1, with h perpendicular to all vi (i ∈ N). Define a new embedding [v′1, . . . , v

′
n] via

v′i := vi for i ∈ N \ {k} and v′k := l̂h. Because ‖v′i − v′k‖ ≥ ‖l̂h‖ = l̂ for i ∈ N \ {k}, the
new embedding is feasible. In addition, sk‖v′k‖ ≤ sk‖vk‖, so the objective value is at least
as good. The barycenter of the new embedding, however, is not in the origin. Indeed,
h>v̄′(N) = sk l̂/s̄(N) 6= 0, so by Observation 2 the new embedding is not optimal. This
contradicts optimality of the original embedding.

If l = 1 this allows to characterize those nodes that are embedded in the origin.

Observation 6 In an optimal solution [v1, . . . , vn] of (4) for G = (N,E) with l = 1, a
node is embedded in the origin if and only if it is an isolated node in G.

Proof. For an isolated node j ∈ N , vj = 0 is feasible and best possible. Conversely, if
j ∈ N has a neighbor i in G then any feasible solution with vj = 0 satisfies ‖vi‖ ≥ 1. By
Observation 5 this cannot be optimal.

At the end of this section we consider alternative formulations of the objective function of
problem (4). The objective function may be bounded by (see Lemma 8 below)∑

i∈N

si‖vi‖2 = s̄(N)‖v̄(N)‖2 +
∑
i∈N

si‖vi − v̄(N)‖2 ≥ 1

2s̄(N)

∑
i,j∈N

sisj‖vi − vj‖2.

Equality holds if the barycenter of the realization coincides with the origin. Since the
bound does not depend on the absolute positions of the embedded nodes, the minimum of
the bound is also the minimum of the objective function. Hence, considering the problem

minimize
∑

i,j∈N sisj‖vi − vj‖2

subject to ‖vi − vj‖2 ≥ l2ij for ij ∈ E,
vi ∈ Rn for i ∈ N,

(11)

we obtain the following result.
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Observation 7 Each optimal solution of (4) is an optimal solution of (11) with the same
active subgraph.

For s = 1 the objective function of (11) is also known as the variance of the data vi
(see, e.g., [30]), it appears in statistics (see, e.g., [18]) and as the moment of inertia of
rotating rigid bodies in physics (see, e.g., [8]). In the following sections we will frequently
group nodes into clusters and consider the relative positions between these clusters while
keeping the relative positions within each cluster fixed. It is well known from physics that
it then suffices to study the relative positions of the weighted barycenters of the clusters.
We collect these properties in the next lemma and include a proof for the convenience of
the reader.

Lemma 8 Given vi ∈ Rd and weights si > 0 for i ∈ N with finite N partitioned into
N =

⋃̇
I∈P I for some finite family P, there holds

v̄(N) =
1

s̄(N)

∑
I∈P

s̄(I)v̄(I) (12)

and ∑
i∈N

si‖vi − v̄(N)‖2 =

= −s̄(N)‖v̄(N)‖2 +
∑
i∈N

si‖vi‖2 (13)

=
1

2s̄(N)

∑
i,j∈N

sisj‖vi − vj‖2 (14)

=
∑
I∈P

∑
i∈I

si‖vi − v̄(I)‖2 +
∑
I∈P

s̄(I)‖v̄(I)− v̄(N)‖2 (15)

=
∑
I∈P

(∑
i∈I

si‖vi − v̄(I)‖2 +
1

2s̄(N)

∑
J∈P

s̄(I)s̄(J)‖v̄(I)− v̄(J)‖2

)
. (16)

Proof. Equation (12) is verified by direct computation. Equation (13) follows by∑
i∈N

si‖vi − v̄(N)‖2 =
∑
i∈N

si‖vi‖2 +
∑
i∈N

si‖v̄(N)‖2 − 2
∑
i∈N

siv
>
i v̄(N)

=
∑
i∈N

si‖vi‖2 + s̄(N)‖v̄(N)‖2 − 2s̄(N)v̄(N)>v̄(N)

=
∑
i∈N

si‖vi‖2 − s̄(N)‖v̄(N)‖2.
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For (14),∑
i∈N

si‖vi − v̄(N)‖2 =
∑
i∈N

si‖vi‖2 − 2

s̄(N)

∑
i,j∈N

sisjv
>
i vj +

1

s̄(N)

∑
i,j∈N

sisjv
>
i vj

=
∑
i∈N

si‖vi‖2 − 1

s̄(N)

∑
i,j∈N

sisjv
>
i vj

=
1

2s̄(N)

∑
i,j∈N

(
sisj‖vi‖2 − 2sisjv

>
i vj + sisj‖vj‖2

)
=

1

2s̄(N)

∑
i,j∈N

sisj‖vi − vj‖2.

Next, (15) is proved by∑
i∈N

si‖vi − v̄(N)‖2 =
∑
I∈P

∑
i∈I

si‖vi − v̄(I) + v̄(I)− v̄(N)‖2

=
∑
I∈P

∑
i∈I

si‖vi − v̄(I)‖2 + 2
∑
I∈P

∑
i∈I

si(vi − v̄(I))>(v̄(I)− v̄(N))+

+
∑
I∈P

s̄(I)‖v̄(I)− v̄(N)‖2

=
∑
I∈P

∑
i∈I

si‖vi − v̄(I)‖2 + 2
∑
I∈P

(v̄(I)− v̄(N))>
∑
i∈I

si(vi − v̄(I))︸ ︷︷ ︸
=0

+

+
∑
I∈P

s̄(I)‖v̄(I)− v̄(N)‖2.

Finally, (16) follows from using (12) and (14) for the second summand in (15).

4 Main results

The structural properties of optimal embeddings [v1, . . . , vn] of (4) are tightly linked to
the separator structure of the underlying graph. A (node-)separator of a connected graph
G is a subset S ⊂ N of nodes, whose removal disconnects the graph into at least two
connected components. Often we will not discern every single component arising this way
but simply speak of two or more separated sets of nodes. The first result corresponds to
the Separator-Shadow Theorem in [13].

Theorem 9 (Sunny Side) Given a graph G = (N,E), data s > 0, l > 0, an optimal
solution V = [v1, . . . , vn] of (4), and two disjoint nonempty subsets A and S of N such
that each edge of the corresponding active subgraph GV,l leaving A ends in S. Then the
barycenter v̄(A) is contained in S := aff(VS)− cone(VS).
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Figure 1: In an optimal embedding, not all nodes need to lie on the sunny side of the
separator, see Remark 10.

The proof requires some preparation and is therefore deferred to Section 5.

Remark 10 In order to motivate the name “sunny side” denote the projection of the
origin onto aff(VS) by p0, then aff(VS) − cone(VS) = {v − αp0 : v ∈ aff(VS), α ∈ R+}.
If 0 /∈ aff(VS) then this is the half space in lin(VS) containing the origin. If the origin is
viewed as the sun, then the barycenter of VA lies in the sunny half space of the affine hull of
VS, which separates VA from the - eventually empty - rest of the graph. While the Separator
Shadow Theorem of [13] ensures that every single node of at least one of the separated node
sets lies in the shadow of the convex hull of the separator, the current theorem is limited to
the barycenter of the node sets but holds for all separated node sets at the same time. It is
not possible to extend the result to all nodes. This is illustrated in Figure 1, where the node
set S = {3, 4} forms a separator leading to the components A = {1, 2} and B = {5, 6}. In
this optimal embedding for s = 1 and l = 1 the nodes 1 and 6 are not in aff(VS)−cone(VS).

Depending on the separator structure of the graph, there always exist optimal embed-
dings of rather small dimension. In order to state this result, we need the notions tree-
decomposition and tree-width which we recall here in the form given in [7].

Definition 11 Let G = (N,E) be a graph, T a tree, and let N := (Nt)t∈T be a family of
node sets Nt ⊆ N indexed by the nodes t of T . The pair (T,N ) is called a tree-decomposition
of G if it satisfies the following three conditions:

1. N =
⋃
t∈T

Nt;

2. for every edge e ∈ E there exists a t ∈ T such that e ⊆ Nt;

3. if t2 is on the T -path from t1 to t3, then Nt1 ∩Nt3 ⊆ Nt2.
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The width of (T,N ) is the number max{|Nt| − 1 : t ∈ T}. The tree-width tw(G) is the
least width of any tree-decomposition of G.

For example, trees have tree-width one (each edge forms one set Nt, so choose N = E,
and for the tree’s edge set use the edge set of any spanning tree of the original tree’s
line graph). In general, it is NP -complete to determine the tree-width, but any valid
tree-decomposition provides an upper bound.

Theorem 12 For each graph G there exists an optimal embedding of (4) of dimension at
most 1 if tw(G) = 1 and tw(G) + 1 otherwise.

The proof of Theorem 12 is given in Section 6.
Next, we consider some special graph classes. For bipartite graphs the structure of

optimal solutions is particularly simple.

Theorem 13 Let G be bipartite. There exists a one-dimensional optimal solution of (4).
Moreover, if l = 1 then for any optimal solution of (4) and any optimal w of (9), each
non-trivial component of the strictly active subgraph Gw is embedded in the endpoints of a
straight line segment of length one that contains the origin in its relative interior.

Proof. Given an optimal d-dimensional embedding [v1, . . . , vn] of (4) for G = (A∪̇B,E ⊆
{ij : i ∈ A, j ∈ B}), consider the one-dimensional embedding

v′i =

{
−‖vi‖ · h, i ∈ A
‖vi‖ · h, i ∈ B,

for some h ∈ Rn with ‖h‖ = 1. Clearly, the objective value is unchanged and for ij ∈ E
we obtain (use the triangle inequality for the second inequality)

l2ij ≤ ‖vi − vj‖2 ≤ (‖vi‖+ ‖vj‖)2 = ‖v′i − v′j‖2.

So all distance constraints are fulfilled and the new embedding is optimal. Now consider
the case l = 1. For ij ∈ Ew complementarity ensures 1 = ‖v′i − v′j‖2 = ‖vi − vj‖2 =
(‖vi‖ + ‖vj‖)2. This together with observations 5 and 6 shows that the origin is a strict
convex combination of vi and vj. Continuing this argument along the edges of a spanning
tree of each component of Gw completes the proof.

For complete graphs and l = 1 the structure of optimal embeddings is identical to the
λ2-case.

Example 14 (complete graphs) For Kn := ({1, . . . , n}, {{i, j} : 1 ≤ i < j ≤ n}) with
data l = 1 and arbitrary s we show that the unique optimal embedding of (4) is the regular
(n− 1)-dimensional simplex whose weighted barycenter coincides with the origin: We can
handle the objective function of (4) by Lemma 8 and bound it as follows,∑

i∈N

si‖vi‖2 = s̄(N)‖v̄(N)‖2 +
1

2s̄(N)

∑
i,j∈N

sisj‖vi − vj‖2

≥ 0 +
1

2s̄(N)

∑
i∈N

∑
j∈N\{i}

sisj =
s̄(N)2 − ‖s‖2

2s̄(N)
.

(17)
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Figure 2: Graph with tight dimension bound, for d = 3. The optimal solution is not d− 1
but d-dimensional. See Example 15.

Equality holds if and only if v̄(N) = 0 and ‖vi − vj‖ = 1 for i, j ∈ N with i 6= j. Note, for
use in Example 15, that ‖vi‖ = ‖vj‖ whenever the weights si and sj are equal, because the
exchange of two vertices of a regular simplex is a congruence transformation.

We conclude this section by giving a family of graphs for which the tree-width bound
of Theorem 12 is tight.

Example 15 (graphs with tight dimension bound) To each node of Kd append an
additional node and consider the complement of this graph, i.e., set D := {1, . . . , d}, N :=
{1, . . . , 2d}, and

G(d) :=
(
N,
{
ij : i, j ∈ D, i 6= j} ∪

{
ij : i ∈ D, j ∈ N \ (D ∪ {d+ i})

})
. (18)

By construction G(d) has tree-width tw(G(d)) = d − 1. For d > 2 there is a unique
optimal solution [v1, . . . , vn] of (8) (up to congruence) and its dimension is d. In order to
prove this, set Ni := {d+ i} ∪D \ {i} for i ∈ D and introduce weights s′j := 1

d−1
for j ∈ D

and s′j := 1 for j ∈ N \D.
We first bound the objective function using (17) on each weighted sub sum for i ∈ D,

∑
k∈N

‖vk‖2 =
∑
i∈D

∑
j∈Ni

s′j‖vj‖2 ≥
∑
i∈D

1

2s̄′(Ni)

(
s̄′(Ni)

2 −
∑
j∈Ni

s′j
2

)
= d

3d− 4

4(d− 1)
. (19)

By Example 14, equality holds if and only if

∀i ∈ D :
∑
j∈Ni

s′jvj = 0 ∧ ∀j, k ∈ Ni, j 6= k : ‖vj − vk‖ = 1.

Such a realization can be constructed and is uniquely determined up to congruence, because

1. ‖vi‖ = ‖vj‖ for i, j ∈ D by the concluding remark of Example 14,
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2. ‖vi − vj‖ = 1 for i, j ∈ D with i 6= j, so conv(VD) forms a regular simplex with
all vertices having the same distance to the origin (thus for D′ ⊆ D, the barycenter
v̄(D′) is the projection of 0 onto the simplex corresponding to D′),

3. vd+i = −v̄(D \ {i}) for i ∈ D by the choice of s′. Because conv(VNi
) forms a

regular simplex with all edge lengths equal to 1, this relation allows to compute ‖vd+i‖
and ‖vi‖ explicitly, fixing all relative positions uniquely up to congruence. Note, by
v̄(Ni) = 1

d
vd+i + d−1

d
v̄(D \ {i}) we obtain ‖vd+i‖ < ‖vj‖ (j ∈ D) and ‖v̄(D)‖ > 0.

The last fact implies 0 /∈ conv(VD), so the dimension of this realization is d.

5 Proof of Theorem 9

Proof. If v̄(A) ∈ aff(VS) the assertion is trivial and if B := N \ (A ∪ S) = ∅ then
Observation 4 implies v̄(A) = −v̄(S) and therefore v̄(A) ∈ aff(Vs) − cone(Vs). Thus we
assume B 6= ∅ and v̄(A) 6∈ aff(VS). In consequence, |S| ≤ n− 2.

By Observation 7 an optimal solution of (4) is also an optimal solution of (11). Con-
gruence transformations on optimal solutions of (11) influence neither their optimality,
their feasibility nor their tight subgraph. Hence we may assume that there is an optimal
solution V ′ = [v′1, . . . , v

′
n] of (11) congruent to a given optimal solution V = [v1, . . . , vn] of

(4) satisfying the following properties:

0 ∈ aff(V ′S) = lin(V ′S), by invariance of (11) under translations,
∀i ∈ S : [v′i]1 = [v′i]2 = 0, because dim aff(VS) ≤ n− 3,
v̄′(A) ∈ (lin(V ′S) + cone{e1}) \ lin(V ′S), e1 is the direction v̄(A)− paff(VS)(v̄(A)),
v̄′(B) ∈ lin(V ′S ∪ {e1}) + cone{e2} by choosing e2 by a similar argument.

Rephrased in this setting we have to prove that v̄′(A) ∈ lin(V ′S) + cone{v̄′(N)}. For this
it suffices to prove [v̄′(B)]2 = 0 and [v̄′(B)]1 ≥ 0, i.e., v̄′(B) ∈ lin(V ′S) + cone{e1}, because
then v̄′(N) = 1

s̄(N)
(s̄(S)v̄′(S) + s̄(A)v̄′(A) + s̄(B)v̄′(B)) ∈ (lin(V ′S) + cone{e1})\ lin(V ′S) and

so lin(V ′S) + cone{e1} = lin(V ′S) + cone{v̄′(N)}. The relations [v̄′(B)]2 = 0 and [v̄′(B)]1 ≥ 0
will follow from necessary optimality conditions of the realization V ′ in comparison to
modified realizations obtained by feasible rotations of nodes in A.

From the given properties of V ′ we obtain

[v̄′(A)]1 > [v̄′(A)]2 = 0 and [v̄′(B)]2 ≥ 0. (20)

We are interested in the behavior of the objective function, when the v′i (i ∈ A) are rotated
by an orthogonal matrix

R(t) =


1− t −

√
2t− t2 0 0 · · ·√

2t− t2 1− t 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1
...

...
...

. . .

 (21)
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near the value t = 0, because for small enough t the obtained solutions of (11) remain
feasible:

• The distances vi−vj of vectors with i, j ∈ A ∪ S do not change, because the rotation
is a congruence transformation having all vi with i ∈ S as fixed points.

• The distances vi− vj of vectors with i, j ∈ B ∪ S do not change because such vectors
aren’t moved at all.

• The distances vi − vj of vectors with i ∈ A, j ∈ B do not belong to active distance
constraints of (11), because the active subgraph does not contain such edges ij, R(0)
is the identity, and R(t) is continuous in t.

Let f(t) :=
∑
i,j∈N

sisj‖vti − vtj‖2 with vtk =

{
R(t)v′k if k ∈ A and

v′k otherwise.

Using Lemma 8 with P = {A,B, S} we rewrite the objective function of (11) to fit the
partitioning of the nodes,

∑
i,j∈N

sisj‖vi − vj‖2 =
∑
I∈P

(∑
J∈P

s̄(I)s̄(J)‖v̄(I)− v̄(J)‖2 + 2s̄(N)
∑
i∈I

si‖vi − v̄(I)‖2

)
.

Consequently, using [v̄′(A)]2 = 0, optimality of V ′ and feasibility of V t = [vt1, . . . , v
t
n] for

all 0 ≤ t ≤ ε with ε > 0 small enough, we obtain

0 ≤ f(t)− f(0)

=
(
‖v̄t(A)− v̄t(B)‖2 − ‖v̄′(A)− v̄′(B)‖2

)
s̄(A)s̄(B)

=
((

[v̄t(A)]1 − [v̄t(B)]1
)2 − ([v̄′(A)]1 − [v̄′(B)]1)

2
+

+
(
[v̄t(A)]2 − [v̄t(B)]2

)2 − ([v̄′(A)]2 − [v̄′(B)]2)
2
)
s̄(A)s̄(B)

=
(
t2[v̄′(A)]1

2 − 2t[v̄′(A)]1 ([v̄′(A)]1 − [v̄′(B)]1) +

+(2t− t2)[v̄′(A)]1
2 − 2

√
2t− t2[v̄′(A)]1[v̄′(B)]2

)
s̄(A)s̄(B)

= 2[v̄′(A)]1s̄(A)s̄(B)
(
t[v̄′(B)]1 −

√
2t− t2[v̄′(B)]2

)
.

With 2[v̄′(A)]1s̄(A)s̄(B) > 0, see (20), we conclude

[v̄′(B)]1 −
√

2
t
− 1[v̄′(B)]2 ≥ 0 for all 0 < t < ε.

Together with (20) this implies [v̄′(B)]2 = 0 and [v̄′(B)]1 ≥ 0.
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6 Proof of Theorem 12

We will prove the tree-width theorem algorithmically by implicitly exploiting the property
of any tree-decomposition (T,N = (Nt)t∈T ) that for adjacent nodes t and t′ in T the node
set Nt ∩Nt′ is a separator of G (see [7]).

Proof of Theorem 12. Graphs with tw(G) = 1 are trees. For these the theorem follows
from Theorem 13. So we may assume tw(G) > 1.

Given any tree-decomposition (T,N = (Nt)t∈T ) of G and an optimal embedding V =
[v1, . . . , vn] of (4), put Lt := lin(VNt) and let

d∗ := max{dimLt : t ∈ T}

denote the maximum dimension spanned by any bag Nt. Let t∗ ∈ T be a node, for
which d∗ is attained. Starting from V we show how to construct an optimal embedding
V ′ = [v′1, . . . , v

′
n] with v′i ∈ Lt∗ for i ∈ N . Because dimLt∗ ≤ |Nt∗|, the dimension of the

new embedding is bounded by the width of the tree-decomposition plus one. As there is a
tree-decomposition of width tw(G) this proves the theorem.

Consider t∗ as the root of the tree T . Let t̂ ∈ T be a node with Lt̂ 6⊆ Lt∗ , but Lt ⊆ Lt∗
for all other t on the tree-path from t̂ to t∗ (if no such t̂ exists, then vi ∈ Lt∗ for all i ∈ N
and we are done). Let T̂ ⊆ T denote the set of all successors t′ ∈ T for which t̂ is on the
tree-path from t′ to t∗ (so t̂ ∈ T̂ ), put N̂ :=

⋃
t∈T̂ Nt and N̄ :=

⋃
t∈T\T̂ Nt. It suffices to

transform V to an optimal embedding V ′ = [v′1, . . . , v
′
n] with v′i = vi for i ∈ N̄ , v′i ∈ Lt∗

for i ∈ Nt̂ and dim lin(V ′Nt
) = dimLt for t ∈ T , because then this step can be repeated

inductively until there is no node t ∈ T with Lt 6⊆ Lt∗ .
Next let p ∈ T be the (predecessor) node adjacent to t̂ on the tree-path from t̂ to

t∗. By assumption, Lp ⊆ Lt∗ and d̂ := dimLt̂ ≤ d∗. The points of S := Nt̂ ∩ Np

span a (possibly empty) common subspace S := lin(VS) ⊆ Lt∗ ∩ Lt̂ whose dimension
we denote by dS . Choose an orthonormal basis {e1, . . . , edS} of S, extend it to an or-
thonormal basis of Lt∗ by {e1, . . . , edS , . . . , ed∗} and then to an orthonormal basis of Rn

by {e1, . . . , edS , . . . , ed∗ , . . . , en}. Likewise, extend {e1, . . . , edS} to an orthonormal basis
of Lt̂ by {e1, . . . , edS , fdS+1, . . . , fd̂} and this again to an orthonormal basis of Rn by
{e1, . . . , edS , fdS+1, . . . , fd̂, . . . , fn}. Using the orthogonal matrices P := [e1, . . . , en] and

P̂ := [e1, . . . , edS , fdS+1, . . . , fn], the new embedding is defined by

v′i :=

{
vi for i ∈ N \ N̂ ,
P P̂>vi for i ∈ N̂ .

Note that by construction, v′i = vi for i ∈ S and v′i ∈ Lt∗ for i ∈ Nt̂. Due to property
3 of Definition 11 we have S = N̂ ∩ N̄ . Therefore v′i = vi for i ∈ N̄ . If t ∈ T \ T̂ then
Nt ⊆ N̄ and so ‖v′i − v′j‖ = ‖vi − vj‖ for all {i, j} ⊆ Nt. For t ∈ T̂ there holds Nt ⊆ N̂ , so

‖v′i− v′j‖ = ‖PP̂>(vi− vj)‖ = ‖vi− vj‖ for all {i, j} ⊆ Nt. By property 2 of Definition 11,
for each ij ∈ E there is a t ∈ T with ij ∈ Nt, thus V ′ is feasible. Furthermore, ‖v′i‖ = ‖vi‖
for i ∈ N , so the new realization is again optimal. Letting L′t := lin(V ′Nt

) for t ∈ T we see
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that L′t = Lt for t ∈ T \ T̂ and (in slight abuse of notation) L′t = PP̂>Lt for t ∈ T̂ , so
dimL′t = dimLt for t ∈ T , completing the proof.

7 Dimension bounds as graph parameters

Recently, several graph parameters have been introduced that are based on the rank of
certain matrix representations of the graph, [23, 27] or on the existence of certain graph
realizations in low dimensions. For example, Belk and Connelly [1] call a graph G = (N,E)
d-realizable if, given any realization V = [v1, . . . , vn] of the graph in some finite dimensional
Euclidean space, there exists a d-dimensional realization [v′1, . . . , v

′
n] with v′i ∈ Rd (i ∈ N)

and ‖vi−vj‖ = ‖v′i−v′j‖ for all ij ∈ E. They show that this is a minor monotone property
and give excluded minor characterizations for d ∈ {1, 2, 3}. Our proof of the tree-width
theorem also works for this case, so d ≤ tw(G) + 1. This result should be well known, e.g.,
it is implicitly contained in the work of Hendrickson [17] on the molecule problem.

Based on a generalization of maximizing the second smallest eigenvalue of the Laplacian,
Göring et al. [14] introduced the so called rotational dimension of a graph, proved its minor
monotonicity and gave excluded minor characterizations for d ∈ {0, 1, 2}.

Let us proceed in a similar way for the maximum eigenvalue and define for a graph G
and data s ∈ RN with s > 0 and l ∈ RE with l > 0

dλmax
G (s, l) := min {dim lin(VN) : V is optimal for (4)} (22)

with dim ∅ = −1 per definition. Furthermore let

dλmax(G) := max
{

dλmax
G (s, l) : s ∈ RN , s > 0, l ∈ RE, l > 0

}
. (23)

In contrast to the rotational dimension of a graph G, dλmax(G) is not minor monotone: For
a complete graph Kn we have dλmax(Kn) ≥ n− 1 because of Example 14. But each Kn is a
minor of a bipartite graph (subdivide each edge of Kn exactly once), and by Theorem 13,
bipartite graphs G have dλmax(G) = 1. So, at this time, this parameter seems less promising
than the rotational dimension.
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