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Covariance regularization in inverse space
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Abstract: In data assimilation, covariance matrices are introduced in order to prescribe the weights of the initial state, model
dynamics. and observation, and suitable specification of the covariances is known 1o be essential for obtaining sensible state
estimates. The covariance matrices are specified by sample covariances and are converted according to an assumed covariance
structure, Modeling of the covariance structure consists of the regularization of a sample covariance and the constraint of a dynamic
relationship. Regularization is required for converting the singular sample covariance into a non-singular sample covariance,
removing spurious correlation between variables at distant points, and reducing the required number of parameters that specify the
covariances. In previous studies, regularization of sample covariances has been carried out in physical (grid) space, spectral space,
and wavelet space. We herein propose a method for covariance regularization in inverse space, in which we use the covariance
selection model (the Gaussian graphical model). For each variable, we assume neighboring variables, i.e., a targeted variable is
directly related to its neighbors and is conditionally independent of the non-neighboring variables. Conditional independence is
expressed by specifying zero elements in the inverse covariance matrix. The non-zero elements are estimated numerically by the
maximum likelihood using Newton’s method, Appropriate neighbors can be selected with the AIC or BIC information criteria, We
address some techniques for implementation when the covariance matrix has a large dimension. We present an illustrative example
using a simple 3 x 3 matrix and an application to a sample covariance obtained from sea surface height (SSH) observations.
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1 Introduction

In data assimilation, covariance matrices are introduced
in order to prescribe the properties of the initial state,
the system noise, and the observation noise. The inverse
matrices of the respective covariances work as weights
of initial estimates, model dynamics, and observations.
Suitable specification of the covariance matrices is essen-
tial for obtaining sensible estimates, and misspecification
of the matrices may lead to overfitting or underfitting of
data and/or failure of the assimilation altogether (e.g.,
Fukumori, 2001). The present paper deals with a tech-
nique for building covariance matrices in data assimila-
tion.

Figure | shows a procedure for specifying a covari-
ance matrix in data assimilation. The specification process
of covariance matrices consists of two tasks: (1) calcula-
tion of statistics (sample covariance) and (2) modeling of
the covariance structure. From this perspective, we would
like to review techniques for covariance specification that
have been reported previously. In the present paper, we
propose a technique that contributes to the modeling of
the covariance structure.

*Correspondence to: The Institute of Statistical Mathematics, 4-
6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan. E-mail:
genwism.ac.ip

Kalman filter, covarance selection; G i hi

| model

Task 1: Calculation of statistics (sample covariance) |

® Model output/ensemble
® Observation (raw, scaled, detrended)
 Difference between model and observation

Task 2: Modeling of the covariance structure |

# Regularization
1. Physical space
- Diagonal (independence)/Block diagonal
- Correlation models
- Digital filters
- Compact support/moderation function
2. Spectral space
- Harmonics expansion (isotropy)
- Diagonal/Block diagonal
- Compact support
3. Wavelet space
- Diagonal (local average)
- Diagonal + some off-diagonal
4. Inverse space (Present study)
- Diagonal + some off-diagonal
{conditional independence)
o Dynamic constraints

Figure 1. Specification of a covariance matrix in data assimilation.



1.1 Calculation of statistics (sample covariance)

The first task in covariance specification is to calculate a
statistic, that is, to calculate the sample covariance matrix
of a model oulput, observations, or some quantily com-
puted from these values. Model output is often used to
specify a covariance matrix that represents the uncertainty
of the initial state, which is known as a background error
covariance matrix in the literature on variational assimi-
lation. The NMC method (Parrish and Derber, 1992) has
used a pair of model estimates based on different lead
times to model the background error covariance. With
a single model run, the CQ method (Polavarapu er af.,
2005; Jackson et al., 2008) calculates a sample covariance
of the difference between the model outputs separated
by a fixed time. Model ensemble is also used to com-
pute a sample covariance matrix, in which the ensemble
members are generated by assimilating perturbed obser-
vation or imposing perturbed model parameters or ini-
tial/boundary conditions. (See Houtekamer e al. (1996);
Fisher (2003); Buchner (2005); Borovikov ef al. (2005);
Alves and Robert (2005) for background error covari-
ances and Trémolet (2007) for system noise (model error)
covariances.)

Regarding observation noise covariances, sample
covariance matrices are computed from the data, from
the data multiplied by a scale factor (Oke e al., 2002),
or from the detrend data (Ucno er wl., 2007). The differ-
ence between model outputs and observations is used in
the covariance matching method (Fu e af., 1993) and its
extended version (Menemenlis and Chechelnitsky, 2000),
which specifies the covariance matrices for system noise
and observation noise simultaneously for a linear system
and observation equalions.

The sample covariance matrices, however, cannot be
used as they are in many applications, mainly due to the
following three reasons. The first reason is mathematical,
That is, the sample covariance matrices are usually sin-
gular because the number of ensemble members or the
number of time steps is small compared to the number
of state variables or the number of observation sites. Due
to the imbalance between the dimension and the sample
size, calculated sample covariance matrices become rank-
deficient, and therefore singular. In practice, the singular
covariance matrices results in some inconvenience. For
example, since the inverse matrices do not exist, neither
the background term nor the observation term can be eval-
uated in cost functions,

The second reason is that the sample covariances
contain spurious correlations between distant grid points.
The correlations are considered to be physically inconsis-
tent, again due to the limited number of samples. The third
reason is practical and is related to memory capacity. As a
matter of course, a covariance matrix has elements of the
square of the number of variables, which may amount to
10'* in a background error covariance, for example. The
size of the required memories makes the data assimilation
difficult or impossible due to the huge computational cost.

1.2 Modeling of the covariance structure

These three difficulties in sample covariance matrices
motivate the second task in covariance specification,
namely, modeling of the covariance structure. In this task,
we impose a regularization condition and/or a dynamic
constraint to the covariance.

1.2.1 Regularization

Regularization is an attempt to convert a sample covari-
ance matrix into another matrix that is non-singular, does
not suffer from spurious correlations, and can be speci-
fied with a smaller number of parameters than the squared
number of variables. At the same time, the matrix is
expected to maintain to some degree the properties of the
original sample covariance. We briefly review the regular-
ization procedures, focusing on the space in which the reg-
ularization procedures are carried out: (1) physical (grid)
space, (2) spectral (Fourier) space, and (3) wavelet space.

Physical space The simplest way to regularize a covari-
ance matrix is to assume the matrix to be diagonal in phys-
ical space. That is, off-diagonal elements of the sample
covariance are forced to be zero. The diagonalized matrix
is apparently non-singular and is represented by parame-
ters of dimension equal to the number of variables. This
procedure is widely adopted in many data assimilation
experiments. The diagonal assumption, however, not only
discards the spurious correlations for distant points, but
also neglects the realistic correlation structure for close
points of model grids and observation sites.

The second way to regularize a covariance matrix
is to assume the matrix to have elements represented
by a parameterized analytic function that is known to
give positive definite covariance. Such a function can
be selected from covariance function families that are
known in geostatistics, such as the Matém family (e.g.,
Diggle and Ribeiro Jr,, 2007). In data assimilation, a
Gaussian function and autoregressive functions are well-
known correlation functions (e.g., Daley, 1991, p.117).
Frehlich (2006) used structure functions to construct a
spatial-varying observation noise matrix.

Digital filters can be applied to build a covari-
ance that approximates a Gaussian. lterative Lapla-
cian filters (Derber and Rosati, 1989; Egbert er al., 1994;
Weaver and Courtier, 2001) and Gaussian recursive filters
(Lorenc, 1992, 1997; Purser er al., 2003a,b) have been
developed. Digital-filter-based correlations are well suited
for ocean models that have complex lateral boundary con-
ditions, while atmospheric models that have no lateral
boundaries often adopt the spherical harmonic expansion,
as described later herein. In recent studies, digital fil-
ters have been used to dampen high-frequency short-scale
oscillations that are present in sample covariances of very
small ensembles (Keppenne er al., 2008; Raynaud er al.,
2008).

Compactly supported correlation functions, which
represents correlations essentially vanishing beyond



a certain cut-off distance, are used to remove spu-
rious long-range  correlations  (Gaspari and Cohn,
1999, Gaspani efal., 2006, Gneiting, 1999, 2002).
Compactly supported correlation functions are
often used in an ensemble Kalman fiiter (EnKF,
Evensen, 2003} implementation, by taking the
Schur product (the Hadamard product) with ensem-
ble covariances (Houtckamer and Mitchell, 2001,
Hamill et af., 2001). Flow-dependent moderation func-
tions (Bishop and Hodyss, 2007) have been proposed.

Spectral space The second space for the regularization
is the spectral space. Hollingsworth and Linnberg (1986)
and Loénnberg and Hollingsworth (1986) have modeled
correlation functions in terms of cylindrical harmonics
(Fourier-Bessel expansion, (e.g., Daley, 1991, Appendix
()), which was adopted for the local analysis of cor-
relation functions based on the tangent plane to the
sphere. On the sphere itself, spherical harmonics (Leg-
endre expansion) was used to model isotropic corre-
lation functions. With a diagonal matrix in spectral
space, Parrish and Derber (1992) represented isotropic
correlations for observation noise. Courtier ef al. (1998)
used a block-diagonal matrix to model background error
covariances, where the vertical correlation scale depends
on the herizontal scale. The compactly supported cor-
relation functions were also used in spectral space.
Buchner and Charron (2007) pointed out the importance
of spectral localization in the reduction of sampling error.

Wavelet space In the third regularization space, wavelet
space, regularization in physical space and speciral space
can be carried out simultaneously with wavelets, which
are localized in both physical space and spectral space.
In wavelet space, sample covariances were regularized
with diagonal covariance matrices (Fisher and Andersson,
2001; Deckmyn and Berre, 2005) and matrices hav-
ing diagonal elements and some off-diagonal elements
(Nychka et al., 2002; Rhodin and Anlauf, 2007). Similar
to compactly supported correlation functions, wavelets
can filter out spurious noise on sample covariances
(Pannekoucke et al., 2007).

1.2.2  Dynamic constraints

In addition to the covariance regularization, imposing
dynamic constraints is another procedure of the covari-
ance structure modeling. Based on the semigeostrophic
theory, Desroziers (1997) has assumed isotropic correla-
tions in geostrophic space and has transformed the coor-
dinates into real space to obtain anisotropic and flow-
dependent correlations. The balance operator has been
employed to transform a horizontally homogeneous and
isotropic covariance for the unbalanced part of the vari-
ables inlo a covariance of the variables, including the
effects of the balanced part of the variables in accordance
with the dynamic relationship (Gauthicr et al., 1998;
Derber and Bouttier, 1999; Cullen, 2003). Riishejgaard
(1998) has introduced a field term, which is a matrix in

which the elements depend on the difference between the

background state estimates, so that flow-dependency is
taken into account,

1.3 Present study: Regularization in inverse space

In the present paper, we propose an alternative method
for the regularization of covariance matrices in the fourth
space: inverse space. Based on the statistics, we model
an inverse matrix to obtain a valid covariance matrix.
As described below, the inverse matrices are related to
the concept of the conditional independence of variables.
This concept contrasts modeling in physical, spectral,
and wavelet space, where no concept of probability was
included. Assumptions on an inverse matrix can be found
in a study by Chineral (1999), who used a Markov
random field to truncate the inverse covariance matrix of
the Kalman filter.

In Section 2, we review a sample covariance matrix,
which gives a basic statistic of the covariance matrix,
and its relation to the maximum likelihood estimator
(MLE) of the covariance matrix of the assumed Gaus-
sian distribution. To overcome the rank deficiency of the
sample covariance, we parametrize the elements of an
inverse matrix using the concept of a covariance selection
model (Dempster, 1972), which has recently come to be
known as a Gaussian graphical model (Lauritzen, 1996),
as described in Section 3. In Section 4, we present a sim-
ple example using a 3 x 3 covariance matrix. We address
some implementation techniques that are useful especially
for large problems in Section 5. Section 6 shows an appli-
cation to a sample covariance matrix obtained from sea
surface height (SSH) observation, which may used as an
observation noise matrix. In Section 7, we discuss the
properties of the regularized covariances in inverse space,
and conclusions are presented in Section 8.

2 Sample covariance

Let us review the basic concept of sample covariance
matrices. When n-dimensional vector data x;, X2, ---,
xn, are available, the sample mean and the sample covari-
ance are defined, respectively, as

N,
x= > x (1
€ =1
1 N,
S=F (% — %) (x; — %), )

where the prime (') denotes the transpose.

The sample mean and the sample covariance are
known as the MLEs of the mean and covariance of a
Gaussian distribution. Consider a Gaussian distribution of
mean g and covariance X:
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where | 3| denotes the determinant of . When data x;,
X2, -+, Xy, are given, the log-likelihood becomes as
follows (see Appendix A):

Ne
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where tr denotes the trace operator. The MLEs of gz and &
are the sample mean and sample covariance, respectively:
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it N. > n+1 (e.g., Magnus and Neudecker, 1999). The
inequality is a necessary condition for the Hessian matrix
of the log-likelihood given by Eq. (6) to be negative def-

inite, which confirms that (Is, ¥} is a strict local maxi-

mum. In the case of NV, < n, however, although X and S
satisfy the stationary point condition (the gradient vector
becomes zero), the Hessian matrix becomes singular, and
consequently we cannot tell whether (%, S) is a maximum
point, a minimum point, or a saddle point.
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3 Regularization of sample covariance in inverse
space

3.1 Covariance selection models

As described in the previous section, the sample covarni-
ance S (Eq. 2) is not necessary an MLE of the covariance
3 when N, < n. In addition, S becomes singular because
S is an n x n matrix but has a rank of at most N, — 1.
These undesirable properties appear because the number
of free parameters of the covariance model is too large
compared with the number of samples.

To circumvent these difficulties, we assume a struc-
ture on X to reduce its degree of freedom, so that we can
estimate X from small samples. Specifically, we assume
a sparse structure in the inverse space of X, not in the
usual physical (grid) space, by assigning zeros for most
elements of 1. In statistics, models with sparse inverse
covariances are called covariance selection models or
Gaussian graphical models (Dempster, 1972; Lauritzen,
1996). A simple example for three variables is shown in
Figure 2a. In this example, ¢'? and ¢! are sel to zero,
where o/ denotes the (i, j)-elements of -1,

Zero elements in X! are equivalent to the condi-
tional independence of the corresponding pairs of vari-
ables given the remaining variables (e.g., Lauritzen, 1996,
Proposition 5.2). Conditional independence is naturally

(a) Inverse covariance matrix  (b) Undirected graph

g1l 12 0 o o o
n-1_ ( g2 g2 523 ) 1 2 3

0 023 33

Figure 2. Representation of conditional independence between
variables | and 3 given variable 2 as (a) an inverse covariance matrix
and as (b) an undirected graph.

associated with an undirected graph in which the nodes
correspond to the variables. An edge in the graph repre-
sents the interaction between the two nodes that the edge
connects, and no edge represents the conditional indepen-
dence between the two variables given the other variables.
Graphs constructed in this manner are referred to as inde-
pendence graphs ot interaction graphs. As an example,
the inverse covariance shown in Figure 2a is equivalent
to the conditional independence between variables 1 and
3 given variable 2. The conditional independence is dis-
played by the independence graph shown in Figure 2b,
which has two edges between node 1 and node 2 and
between node 2 and node 3 but has no edge between node
| and node 3.

The independence graph captures causal relations
among variables. We explain this characteristic using an
example to clarify the meaning of the model. Suppose
that variable | represents the sales of fans, variable 2
represents temperature, and variable 3 represents air-
conditioner sales. Correlation appears to exist between
variables 1 and 3. However, a real causal relation exists
between variables 2 and 1 and between variables 2 and
3. The correlation between variable 1 and variable 3 is
implied by the two causal relations. The aforementioned
example of a covariance selection model (Figure 2b) is
suitable for explaining this situation. In the independence
graph, while we have two edges between 1 and 2 and
between 3 and 2, there is no edge connecting 1 and 3. This
structure indicates exactly what we explained above.

The remainder of the non-zero elements in £~! are
estimated using the maximum likelihood method to obtain
3:-1 and consequently 3. It is known that the maximum
likelihood estimate ! has the following remarkable
characteristics. That is, the covariance in the physical

-1

space & = (‘2-1) is positive definite (and, therefore,
non-singular) and has elements that are identical to those
of the original sample covariance S in positions where the
non-zero elements were assumed in ! (e.g., Lauritzen,
1996, Theorem 5.3). In the three-dimensional example
with 013 = g3 = 0 (Figure 2a), 3 has elements identical
to S in the positions (1,1), (1,2), (2,1), (2,2), (2,3),
(3,2), and (3, 3), which are consistent with positions at
which non-zero elements were assumed in -1,

3.2 Specification of non-zero elements in the inverse

Now, we propose to apply a covariance selection model
for the regularization of sample covariances. This is justi-
fied as follows. Since variables are defined at grid points



in physical space, it is natural Lo assume local interactions
between neighboring variables that are located at close
points. If the nonzero pattern of ! reflects the neigh-
bor structure of the grid points, the covariance selection
models exactly meets such a requirement.

We construct a covariance selection model X! by
specifying non-zero elements. Before examining local
interaction of variables, we can require that all of the
diagonal elements of X~! be positive, which is a result
of the positive definiteness of X. If we stop here, the
diagonal inverse X! leads to a diagonal covariance X,
which means that each pair of variables is independent
and equivalent to a diagonal assumption in physical space.
This condition can be displayed with a graph consisting of
nodes alone with no edges. Examination of one such node
reveals that it has no edges, as shown in Figure Ja.

Off-diagonal elements of $~! can be introduced
based on the spatial arrangement of variables. That is,
conditional independence can be modeled by an indepen-
dence graph having nodes that are located at grid points at
which variables are defined. Assuming a two-dimensional
grid space, for example, we may naturally assume local
interaction with four variables located at the nearest grid
points in two directions (the zonal and the meridional
directions). This relationship is represented by a graph
having four edges from the centered node to four adja-
cent nodes (Figure 3b). The configuration also indicates
the conditional independence of the variables outside the
four adjacent variables. The inverse covariance ¥ ! has
non-zero elements with regard to the four neighboring
variables and zero elements with more distance variables.

When we include interaction with variables located
at oblique grid points, the oblique nodes also become
neighbors (that is, connected by edges to the central
node) as in Figure 3c. As before, a variable is permitted
to interact with the surrounding eight variables and is
conditionally independent of the variables outside of the
eight variables. More structured models may be assumed
by activating edges between nodes, as shown in Figures
3d-3h, in a similar manner.

In any graph configuration, once we assume non-
zero elements in ™!, we can write the inverse £~ as a
linear combination of fixed matrices as a function of their
coefficients:

T

=7H(B) =) _ Axbr, ©)

k=1
where Ay (k=1,---,m) is a fixed matrix that indi-
cates non-zero elements for interacting pairs of variables,
Bk (k=1,--- ,m) is a scalar coefficient to be estimated,
and 3 denotes a vector composed by a set of coefficients,
( B Om )'. Specifically, Ay (k=1,---,m) can
be taken as a set of matrices, each of which has one
diagonal element with a value of unity, or has two off-
diagonal elements with value of unity for an interacting
pair. Instead of unity, we may assume, without loss of gen-
erality, that the values of the diagonal elements are two.
The latter specification is convenient for constructing an
efficient algorithm (see Section 5).

(a) O neighbor points (b) 4 neighbor points
o o—}—o
(c) 8 neighbor points (d) 12 neighbor points
(e) 20 neighbor points (f) 24 neighbor points
(g) 28 neighbor points

Figure 3. Graphical representation of dependence between vari-

ables. For each panel, the central node corresponds to a variable for

which the direct relationship (denoted by edges) with the other vari-

ables is considered. Figure (a) shows a vaniable that is independent

of the other variables. The other figures show variables that interact

with their adjacent variables located at (b) four, (c) eight, (d) 12, (e)
20, (f) 24, (g) 28, and (h) 36 neighbor points, respectively.

3.3 Maximum likelihood estimation of the parameters

Under the condition that ! = £~! (3) as in Eq. (9), we
estimate p and 3 by maximizing the log-likelihood

N, _
£(n,B) = — = [nlog 27 — log =~ (3)|

+trSL~H(B)
+(x— ) 7 (B) (X - )] (10)
The stationary point of g is again
g =X, (11)

and also becomes the MLE if X is non-singular. Regard-
ing 3, we cannot obtain the stationary points analytically.
We then numerically search optimal 3 that maximizes
- Ne -1
((x,8) = -5 [nlog2r —log | = (B)|
+trSE~1(8)]. (12)

Maximizing the log-likelihood given by Eq. (12) is
equivalent to minimizing a cost function, as shown below:

f(B)=ts="'(8) ~log |7 (B)].  (13)



We find a solution 3 that minimizes f (3) with Newton’s
method, because the gradient vector and the Hessian
matrix of the cost function given by Eq. (13) are obtained
analytically when £~!(3) is parameterized as Eq. (9).
The Newton direction (or the Newton step) AJ is given
by

AB=—[V2f(B)) ' Vf(B). (14)

The gradient vector ¥V f (3) = (9f/80;) and the Hessian
matrix V2 f (8) = (9 f/83;03;) are obtained as

o |

35, ~ USAi -3 (B) Ay, (15)
#f

amom, ~ TEBAZB)A;. (16)

Their derivations are given in Appendices B.1 and B.2
[Egs. (104) and (119)].

Note that the maximum likelihood estimation is
formulated as a convex optimization problem (e.g.,
Boyd and Vandenberghe, 2004, Chapter 4), and hence can
be computed efficiently and rigorously using Newton’s
method by maximizing (globally) the likelihood func-
tion. Recent convex optimization theory shows that this
optimization problem can be solved in polynomial-time
(Vandenberghe er al,  1998;  Boyd and Vandenberghe,
2004; Tsuchiya and Xia, 2007).

3.4 Selection of the number of neighbors

As shown in Figure 3, several covariance selection models
may be applied to obtain a regularized covariance. Since
one regularized covariance is sufficient to conduct a data
assimilation experiment, we select a preferable covariance
among those estimated by different models. One possi-
ble method by which to objectively select a preferable
number of neighbors is to use information criteria (e.g.,
Konishi and Kitagawa, 2007). We select the number of
coefficients m = dim 3 using the Akaike information cri-
terion (AIC, Akaike, [974)

AIC = -2¢(%,3) +2m, (17)
or the Bayesian information criterion (BIC, Akaike, 1977;
Schwarz, 1978) defined as

BIC = —2¢ (i, ,?3) +mlog N., (18)

where

[ = argmax £ (x,3). (19)
B

Among the maximum likelihood models of different num-
bers of neighbors, we can select the best model by finding
the model with the smallest AIC or that with the smallest
BIC.

4 Illustrative example
4.1 Analytical consideration

Let us consider the simplest example, a 3 x 3 sample
covariance matrix:

S11 812 913
S=| 812 s22 sz |. (20)
813 823 Sa3

The sample covariance S is assumed to be computed from
N. (< 3) samples and is therefore singular:

[S] = 511822933 + 2512813823
2n
(22)

2 2 2
— 811833 — 22813 — 833812
= 0.

[t would be desirable to convert S into a regularized matrix
¥.

We consider a covariance selection model shown in
Figure 2, in which variables 1 and 3 are conditionally
independent given variable 2, and a regularized inverse
¥~ has zeros at (1, 3)- and (3, 1)-elements:

h Ba
2B = s B 5 |, (23)
B Ba

where 3= ( 81 32 B3 Bs Bs ) and blanks denote
zero elements. As noted in Eq. (9), the regularized inverse
%-1(B) is represented as a linear combination of five
matrices A, -+, As:

5
7B =) Awk,

(24)
k=1
where
1
A= , A, = ( 1 ) .
1
A3 = N A.‘ = 1 3
1
A; = 1 (25)
1

The log-likelihood given by Eq. (12) becomes

+irSEH(8)] (26)

The optimality condition d1/08; =0 (i=1,---,5) is
equivalent to (see Eq. (15))

trSA; —trE(3) A; =0, @7



fori =1,..- 5. Substituting Eq. (25), we obtain

s —on =0 (28)
829 — 092 = 0 (29}
833 — 33 = 0 (30]
2813 — 2012 = 0 @31
2593 — 2093 =0 (32)

where o;; denotes the (i, j)-element of X (3). That is,
if there exist coefficients 3 that satisfy the optimality
condition, then the constructed covariance matrix X (3)
has values that are identical to the sample covariance S
in the (1,1)-, (2,2)-, (3,3)-, (1,2)-, and (2, 3)- elements
1011 = 811, 022 = S22, 033 = $33, 012 = Sy, and o3 =
s23. Note that the locations of these elements are identical
to those of the elements of ! (3), where non-zeros were
imposed.

Since X (3) is the inverse of 37! (3), the o;; ele-
ments are required to be expressed in terms of 3 as

on = (B2 — 52) /|71 (9)], (33)
on = M8/ |71 (B)], (34)
o = (5162 — 643) / |=71(8)] 35)
o12 = —fafa/ | B! (;3)| , (36)
o =—Mis/ |27, 37
o3 = fuBs/ |27 ()], (38)
where
121 (B)| = Biafs — BB~ B (39)

Equations (33) through (38) are not independent, because
the equations include only five independent variables,

-+ /% In fact, 013 is expressed in terms of 713, 093,
and oa3:
013 = BaBs/ |27 (B)] (40)
B4 35 -1
= pA 41
FEiEE s @ @
712 723 -1
= (212 =1z 42
( ,53)( :‘31)| @) “
)
= TRoR T (43)
0120323
— 12723 44
o (44)

This means that the assumed inverse structure given by
Eq. (23) expresses a covariance of the form

a1 J12 0120’23/0’22
3(B8) = o132 022 023 - (45)
012093/022 023 o33

If the optimality condition is satisfied, combining
Eqgs. (28) through (32) and Eq. (45) yields the MLE of
the covariance

R $11 S12 $12923/822
2= 812 S22 923 , (46)
S12923/922 S23 4933

under the condition that coefficients 3 exist such that

M s _
Bs B2 Bs | =%"L 47)
f5 s

To satisfy the condition given by Eq. (47), the determinant
of X should not vanish:

2
: (512523
‘E‘ = 811822833 + _)
San

#0.

This condition may hold even when the determinant of the
sample covariance vanishes, as shown by Eq. (22).
Let us consider the case in which we further assume

(48)
(49)

2 2
= S11833 — 872933

a matrix
1
Ag = ) (50)
1
with which we parameterize ! as a full matrix:
B B e
2@ = B B Bs (s1)
Be Bs s
using six parameters
B=(0 B B fa Bs Bs). (52

The optimality condition yields an additional equation for
the (1, 3)-element

2813 - 2(}‘13 =0 (53)

as well as Eqs. (28)<(32), which indicate that 3 = S.
The six parameters in 3 yield six independent equations
between the elements of ® and 3:

on = (Bps—-062) /|71 (B)], (54)
o2 = (B16a — 62) / |£71(8)], (55)
o3 = (6152 — 53) / |71 ()], (56)
o1z = (=34 + ds%) / |27 (8)], (57)
o2 = (—p18s + Bale) / |71 (B)], (58)
013 = (BaBs — B2Bs) / |27 (B)!, (59)
where
|Z=1(8)| = 815203 + 2648586 — 162 — 5232 — Ba/7.
(60)

When we combine the two conditions, the existence of
3 requires that |El = |8| # 0. The requirement, however,
cannot be satisfied due to the original assumption given
in Eq. (22), which originates from the rank deficiency
of 8. Therefore, it is essential to impose zero elements
in 7!, which is equivalent to assuming conditional
independence, in order to surmount the problem of rank
deficiency and construct a regularized matrix.



4.2 Numerical example

We use a numerical example of a sample covariance
that is singular, and demonstrate the entire process of
regularization. We consider a 3 x 3 sample covariance

sz( ) o

which is computed from three samples:

0.884 0.780 0.028
0.780 0.876 0.458
0.028 0.458 1.005

x = (0573 0223 -1.366 ), (62)

xz = (0.190 0.930 1.042 ), (63)

x3=( -1.585 —1312 -0578 )", (64)
and the sample mean:

x=(~0274 —0.053 —0301) (65

Since the rank of S is two (which is equal to the number

of samples minus one), S is rank deficient and

|S| = 0.000. (66)

If we assume the inverse of the form of Eq. (23) and

estimate 31.5 by maximizing the log-likelihood given by
Eq. (26), we obtain the inverse

) 5293 —4.715  0.000
1= | —4715 5700 -0684 |. 67
0.000 —-0.684 1.307

Since 37 is found to be regular ( |21 = 7.900), we can
invert Eq. (67) to obtain a regularized covariance

= ( ) (68)

which has a finite determinant: ‘f}‘ =0.127.

Table | summarizes regularized matrices using dif-
ferent models. Model (a) assumes that the three variables
are independent, which leads to a diagonal inverse matrix.
Three parameters, /3.3, are assigned to express the matrix.
Models (b) through (d) contain one edge between the
nodes. Variables | and 2 are independent of variable 3 in
model (b), and similar assumptions are made for models
(¢) and (d). Corresponding inverse matrices are block-
diagonal, having four parameters, 3;.4. Each covariance
matrix, which is the inverse of the inverse, also becomes
block-diagonal. Among the three models that have a sin-
gle edge, model (b) gives the maximum log-likelihood and
is regarded to be better than models (c) and (d). In addi-
tion, model (b) is regarded as preferable to model (a) in
terms of the AIC or the BIC. The other two models, mod-
els (¢) and (d), have large AIC and BIC values compared
with model (a), which indicates that the added edge in
these models is unnecessary.

0.884 0.780 0.408
0.780 0.876 0.458
0.408 0.458 1.005

Models (e) through (g) have two edges. Variables 3
and 2 are conditionally independent, given variable 1 in
model (e), and similar conditions are assumed for models
(f) and (g). Model (f) is described in the first half of
this subsection. Among the two-edge models, model (f)
gives the maximum log-likelihood, but its AIC and BIC
values are larger than those of model (b), which suggests
that model (f) is not better than model (b), which has
only one edge. Despite having two edges, model (g) is
regarded as being worse than the no-edge model, model
(a). Comparing the AIC and BIC values among the various
models, model (b) is selected as the most preferable
covariance that satisfies the regular condition.

S [Implementation

Since vector x corresponds to the state vector or the
observation vector, the vector has a large dimension,
namely, n is large. Accordingly, the number of nonzero
elements m also becomes large. When no neighbors are
assumed, mn is equal to n, and m is usually assumed 1o be
larger than n when neighbors are assumed. In this section,
we address an implementation technique that is especially
useful when n is large.

We assume that the fixed matrices Ay (k=
1,--- ,m) are a set of matrices, each of which has a value
of two (instead of a value of unity, as used in Section 4.1)
in one of the diagonal elements or has two symmetric off-
diagonal elements with values of unity, which form an
interacting pair. When we consider the model shown in
Figure 2, the regularized inverse £~ ! is expressed as a
linear combination of the following five matrices:

) ()

(69)

When Aj has non-zeros in its (p(k),q(k)) and
(q (k) ,p (k)) positions, A can be represented as

Ak = epnyey t €q(r)€pk) (70)

where e; is an n-dimensional unit vector that has unity
in its i-th position and zeros elsewhere. Using Eq. (70),
we can simplify the cost function given by Eq. (13), the
gradient vector given by Eq. (15), and the Hessian matrix



Model

Covariance: 3

\z[ e(x,fa) m AIC  BIC
‘ 1.131 0.884
@ e 1.142 0.876 0.778 —12.394 3 30787 28.083
20 o3 0.995 1.005
1 5.203 —4.715 0.884 0.780
(b] j —4.715 5.342 0.780 0.876 0.167 —10.079 4 28.158 24.553
2d o3 0.995 1.005
1 1.132 ~0.032 0.884 0.028
(©) N 1.142 0.876 0778 —12.392 4 32785 29.179
20 %3 ~0.032 0.996 0.028 1.005
1 1.131 0.884
@ o 1.500 —0.684 0.876 0.458 | 0.593 —11.985 4 31.969 28.364
2003 ~0.684 1.307 0.458 1.005
1 5.205 —4.715 —0.032 0.883 0.779 0.028
(@) A 4715 5.342 0.779 0.8750.025 | 0.166 10078 5 30.156 25.649
2d %3 ~0.032 0.996 0.028 0.025 1.005
| 5.293 —4.715 0.884 0.780 0.408
() /. —4715 5.700 —0.684 0.780 0.876 0.458 | 0.127 —9.670 5 29.340 24.833
2d—o3 0684 1.307 0.408 0.458 1.005
l 1.132 —0.032 0.884 0.013 0.028
(g) A 1.500 —0.684 0.0130.876 0458 | 0.592 —11.983 5 33.966 29.460
20-%3 _0.032 —0.684 1.308 0.028 0.458 1.005

Table I. Summary of the regularized matrices constructed from sample covariance S given in Eq. (61): The columns show the assumed
graphical model, the estimated inverse (3!), the estimated covariance (), the determinant of the covariance (%)), the maximum
log-likelihood, the number of parameters (m), the AIC, and the BIC. Both the AIC and the BIC are minimized by model (b).

given by Eq. (16) as

F(B) =2 B (8)pupq) — log |7 (D)
k=1
of
75 = 28)pira = 2By (72)
o2 f
3508, = 2 sine) B
+2(B)0)90) Batire) - (73)

respectively. Their derivations are given in Appendix C
[Egs. (124), (129), and (136)]. These three equations
indicate that we can avoid the matrix multiplications that
appear in Egs. (13), (15), and (16).

5.1

We can minimize the cost function given by Eq. (71) with
Newton’s algorithm.

Algorithm

Step 1: Select an initial value 3 € R™ and tolerance
£ > (. Set an iteration counter r = 0.

Step 2: Compute the Newton direction A3 that satis-
fies the linear equations

(721 ()] a0 = w1 (p) . 09

Step 3: Quitif 0? (37)) < , where

82 (ﬂ‘”) =-Vf (6‘”); ABT. (75)
Step 4: Update 8 to 8" +") according to
J6(1’+_1] _ _6{‘-) + 2—tA'6(r) (76)
with minimum ¢ € {0,1,- - -} that satisfies
r(87+21ap") < g (87). @)

Step 5: Setr =r + 1 and go to Step 2.

5.2 Remarks

When sample variances differ significantly among vari-
ables, we may regularize the sample correlation matrix R
instead of the sample covariance matrix S for numerical

stability. Here, (R),; is defined as (8),; /,/(8),; (8);;

At Step 1, the initial value 3©) should be selected
such that £ ! (ﬁw} is positive definite. This is a neces-
sary condition under which the right-hand side of Eq. (77),
f (ﬁ{m), is well defined. A convenient way to maintain



the positive definiteness is to assume a diagonal matrix.

I
One example is to select 3@ = ( A0 HO )
such that

m
ST ALY = diagS,
k=1

(78)

where S~/ denotes the generalized inverse of sample
covariance matrix S. Another example, which requires
lower computational cost, is to select 3(°) such that

0 _ n
ZAﬁ = s

where I, is the unit matrix of order n.
At Step 2, the gradient vector V f (,6(')) and the

Hessian matrix V2 f (,6("}) are computed with Egs. (72)
and (73), respectively. These two equations require X, that
is, the inverse of ! (,6('"]). Since the latter is a sparse
matrix, the computation may be tractable even when n
is large. We may use a sofiware packages for sparse
matrices. In addition, we may use the conjugate-gradient
method to obtain each column of ¥,

Equation (74) is a linear equation of order m. Since
m is usually larger than n and the Hessian matrix given
by Eq. (73) is a dense matrix, solving Eq. (74) requires
the most expensive computational cost. When m is large,
the Hessian matrix needs to be distributed over multiple
memories. Since the Hessian matrix is positive definite,
we may use a solver, such as PDPOSV in ScaLAPACK,
which uses the Cholesky decomposition to factor a dis-
tributed positive definite matrix, for parallel processing.

In Step 3, & (,6('} is the Newton decrement, origi-

nally defined as (Boyd and Vandenberghe, 2004, Section
9.5.1)

(7)< s (87) w25 (67) 01 (57

(80)

79

The stopping criterion uses 42 (,6(’)), because 42 (ﬁ("’)
is an estimate of f (ﬁ(r)) - Hgnf(:@)s and &2 (ﬁ{r))

is interpreted as the directional derivative of f (3) at 3"
in the Newton direction (Boyd and Vandenberghe, 2004,
Section 9.5.1). We set the tolerance = = 10710 in the
following applications in Section 6.

At Step 4, the Newton direction A3 is scaled by

t. Using the scale parameter 2%, we conduct a line
search that roughly finds a minimum along the Newton
direction. The scale parameter does not exist in the pure
form of Newton’s method, but the parameter is introduced
to guard against the possibility that the cost function might
increase due to non-quadratic terms in the cost function.

Evaluating Eq. (77) requires log |X~!|. Again, since
¥~ is a sparse matrix, this term can be computed with-
out a huge computational cost. Note that as long as 3" is

updated while satisfying Eq. (77), the positive definiteness
of ¥ (ﬁ(")) is guaranteed. If at least one of the eigenval-

ues takes a value of zero or becomes negative, the second
term of Eq. (71) cannot be defined and consequently the
condition given by Eq. (77) does not hold.

6 Application

We apply the proposed regularization method to
sample covariance matrices constructed from the
TOPEX/POSEIDON (T/P) altimetry observation. The
sample covariance is calculated from the SSH anomalies,
the trend component of which was subtracted (Ucno et al.,
2007). The total number of the time steps is N, = 364
(T/P cycles from September 23, 1992 to August 11,
2002).

In the following two subsections, we regularize
the sample covariance matrices in the equatorial Pacific
Ocean and in the global ocean, respectively. The dimen-
sion of the variable is n = 503, and n = 8585 in the two
applications. In any case, the n x n matrix is rank defi-
cient (its rank is less than N,) and is thercfore singular. In
the first application, we show the overall procedures for
regularization and examine the obtained matrices, while
we aim to demonstrate the feasibility of the regularization
process for a large-dimensional covariance matrix in the
second application.

6.1 Application 1: Equatorial Pacific Ocean

6.1.1 Sample covariance

We regularize a sample covariance matrix obtained for
data points of every L, = 8° in the zonal direction and
Ly =2° in the meridional direction in the equatonial
Pacific Ocean. The number of data points becomes n =
503. Figure 4a shows the sample covariance matrix S
of the detrend observations. Diagonal elements are dom-
inated, but non-diagonal elements also appear to have
meaningful values. Elements in [278, 364] x [278, 364],
denoted by a dashed square in Figure 4a, are enlarged
in Figure 4b. We can identify a pattern of non-diagonal
elements, for example, elements of positive-negative pairs
around (293, 323) and (322, 353), and positive elements
around (290, 350). Diagonal elements, i.c., the variance,
are shown in Figure 4¢c. The meshes outlined in white,
those in 148°-124°W and 28°S-30°N, correspond to the
enlarged area shown in Figure 4b. Figure 4d shows the
elements in the 323-rd row, which correspond to (136°W,
5°N), and are outlined in white. While positive covari-
ances are identified in the meridional direction, strong
negative covariances appear at neighboring observation
points aligned in the zonal direction. The positive-negative
pairs around (293, 323) in Figure 4b correspond to posi-
tive covariances around (144°W, 1°8) and negative covari-
ances around (144°W, 7°N).
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Figure 4. Sample covariance calculated from detrend SSH observa-
tions: (a) sample covariance matrix, (b) elements in [278, 364], (c)
variance (diagonal elements of the covariance matrix), and (d) ele-
ments in the 323-rd row (corresponding to (136°W, 5°N), outlined
in white). The enlarged area in panel (b) corresponds to the dashed
square in panel (a) and the meshes outlined in white in panel (c).

6.1.2 Regularization in inverse space

We regularize the sample covariance matrix shown in
Figure 4. We apply eight covariance selection models
shown in Figure 3, and estimate their parameters by the
maximum likelihood with Newton’s method. Figure 5
shows estimated inverse covariances 3! and correspond-
ing covariances 3. The squares in the inverse represent
prescribed non-zero elements. When no neighbors are
allowed (Figure 5a), the inverse becomes diagonal, and
the corresponding covariance of course becomes diagonal.
When neighbors are assumed. corresponding covariances
have finite values in all elements. When four neighbors are
assumed (Figure 5b), although most of the elements of the
inverse are zero, the corresponding covariance has a pat-
tern similar to that of the sample covariance (Figure 4b),
which includes the negative elements around (325, 350),
for example. The pattern of covariance elements is sim-
ilar to that in the case of eight neighbors (Figure 5c). In
the case of 12 neighbors (Figure 5d). the corresponding
covariance becomes less faint, and larger values exist only
around the elements of nonzero elements of the inverse.
When 20-, 24-, 28-, and 36-neighbor models are assumed
(Figures 5Se, 5f, 5g, and 5h), the covariance pattern appears
to be faint in accordance with the increasing number of
nonzero elements.

6.1.3 Preferable number of neighbors

Among the covariance matrices shown in Figure 5, we
select a preferable covariance with the AIC or BIC. Figure
6 shows AIC and BIC variations as a function of the num-
ber of neighbors, and their actual values are summarized
in Table II. Both the AIC and BIC values decrease signifi-
cantly (approximately 10°) even when the minimum num-
ber of neighbors, namely four, is assumed. This suggests
that non-diagonal matrices are far preferable compared
to the simple diagonal matrix. With the eight-neighbor
model, while the AIC continues to decrease, the BIC
increases, and neighbors located in oblique directions are
considered to be ineffective. We may stop the applica-
tion of the covariance selection models here and select the
four-neighbor model as an appropriate model.

When we apply the 12-neighbor model, both the AIC
and the BIC have a minimum. For the BIC, the value
for the 12-neighbor model is smaller than that for the
four-neighbor model and is smaller than those for with
models having more neighbors. The 12-neighbor model is
found to have the minimum BIC value. The AIC profile is
minimum, which is found to be a global minimum (Table
II), for the 28-neighbor model. From the examination of
the AIC and BIC profiles, one of the following options
may be selected: (1) the four-neighbor model, because the
BIC has the first minimum, (2) the 12-neighbor model,
because the AIC has the first minimum and/or the BIC has
the global minimum, (3) the 28-neighbor model, because
the AIC has the global minimum. Here, we will select the
covariance using the 12-neighbor model (Figure 5d) as
the preferable model among the eight trial models. Figure
7 shows the selected covariance. Band structures from
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Figure 5. Estimated inverse covariances and corresponding covariances obtained with (a) zero-, (b) four-, (c) eight-, (d) 12-, (e) 20-, (f)
24-, (g) 28-, and (h) 36-neighbor models. Only elements in [278, 364] are shown. The squares shown in the inverse matrices represent
prescribed non-zero elements.

the upper-left to the lower-right appear to be emphasized,
while elements between the bands are reduced to small
values, which means that correlations for distant points are
reduced, as shown in Figure 7d. The estimated variances
shown in Figure 7c are identical to those based on sample
statistics (Figure 4c).

6.2 Application 2: Global ocean
6.2.1 Sample covariance and regularized covariances

We apply the covariance selection models to a sample
covariance of the detrend SSH observation in the global
ocean. We use all of the gridded data of spatial resolution
of L, =2° in the zonal direction and L, = 2° in the
meridional direction. The number of data points is equal
to n = 8, 585. For simplicity, we neglect the neighboring
relation between variables across a longitude of 0°. This

assumption would be acceptable because we aim simply
to demonstrate the applicability of the proposed algorithm
(Section 5) to a large-dimensional matrix.

Figure 8 compares the sample covariance S and
regularized covariances 3. that are obtained by assuming
different numbers of neighbors. The variance elements of
32, shown in the left-hand panels of Figures 8b through
81, appear to be identical to those of S (Figure 8a). This
indicates that 3 converged to the optimum value in each
covariance model.

The right-hand side of Figure 8a shows the sample
covariance with respect to the variable at (180°, 0°).
The covariance elements display correlated variables that
are confined in 162°E-162°W and 6°N-6°S, and anti-
correlated variables in 105°-136°W along the equator. In
addition, the stripe structures along the satellite orbit are
identified in off-equatorial to mid-latitude regions in the



Number of neighbors  log ‘El ¢ (i,,ﬁ'l) m AIC BIC
0 418.4  —295336.7 503 591679.3 593574.8
4 54.1 —237047.2 1457 477008.4 482498.9
8 43.6  —235373.2 2375 475496.5 484446.2
12 9.2  —229860.5 3278 466277.0 478629.5
20 -1.7  —228122.3 5028 466300.5 485247.7
24 —-6.7  —227324.6 5863 466375.2 488468.9
28 —=15.0  —225985.6 6716 465403.2 490711.2
36 —228  —224741.8 8374 466231.5 4977874

Table 1. Summary of covariances estimated with the covariance selection meodels: the number of neighbors, log[ﬁl, the maximum

likelihood (£ ()T:, fi) ), the number of parameters (m = dim 3), and the AIC and BIC values for models in which different numbers of

neighbors are assumed. A local minimum of the AIC is obtained for the 12-neighbor model, and the global minimum of the AIC is obtained

for the 28-neighbor model. For the BIC, a local minimum is obtained for the 4-neighbor model, and the global minimum is obtained for
the 12-neighbor model.
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Figure 6. AIC and BIC values as a function of the number of
neighbors in an application for the equatorial Pacific Ocean.

Pacific and Indian Oceans. A spurious covariate structure
that arises due to the small ensemble size appears in the
mid-latitude region in the Atlantic Ocean.

The estimated covariance 3 with zero neighbors is a
diagonal matrix that is identical to diag S, and no covariate
variables are estimated, as shown in Figure 8b. With the
four-neighbor model, correlated variables are estimated
inside a nearly circular region of a radius of approximately
20° (Figure 8c). A similar circular region is also identified
with the eight-neighbor model, but its radius decreases
to 15° (Figure 8d). When 12 neighbors are assumed,
the region for correlated variables becomes an elliptic
form that is spread zonaily from 160°E to 148°W and
is confined meridionally within 6°N to 6°S (Figure 8e).
The 20-neighbor model (Figure 8f) also estimates an
elliptic region that is spread zonally, but that is slightly
more confined in the meridional direction. Such elliptic
regions also appear with the 24- to 36-neighbor models
(Figures 8g through 8i), and the appearance of these
regions remains unchanged. Regardless of the number of
neighbors, the regularized covariances shown above do

not reproduce the anti-correlated variables in the central-
to-eastern equatorial Pacific Ocean, the stripe structure in
the Pacific and Indian Oceans, or the presumed spurious
structure in the mid-latitude Atlantic Ocean.

6.2.2 Preferable number of neighbors

Figure 9 shows the AIC and BIC values as functions of
the number of neighbors, and Table [l summarizes the
results. Both the AIC and BIC values increase drastically
when four neighbors are assumed, compared to the case in
which it is assumed that there are no neighbors. When we
assume eight neighbors, the AIC and the BIC decrease,
but these values are roughly comparable with the four-
neighbor model. As shown in Figures 8c and 8d, both
the four- and eight-neighbor models estimated circular
regions of correlated variables. When 12 neighbors are
assumed, the AIC and BIC values decrease significantly
compared with the eight-neighbor model, that is, the
quantity AIC(8) — AIC(12) (BIC(8) — BIC(12)) is larger
than the quantity AIC(4) — AIC(8) (BIC(4) — BIC(B)).
In addition, when 12 or more neighbors are assumed, the
AlIC and the BIC, respectively, take comparable values
independent of the number of neighbors. This implies that
the 12- to 36-neighbor models commonly estimate the
elliptic regions of correlated variables. Among the models
with 12 or more neighbors, the AIC continues to decrease
as the number of neighbors increases, which suggests that
the 36-neighbor model is the most appropriate model. The
BIC profile, however, shows the first minimum on the 20-
neighbor model, and the second (and global) minimum
on the 28-neighbor model. With the BIC, we can select
the 20-neighbor or 28-neighbor model as the preferable
model.

7 Discussion

We have developed a method for the regularization of
sample covariance matrices that is carried oul in inverse
space. Here, we first address (1) a difficulty in conducting
such a regularization in physical space, (2) a filtering
effect of the regularization on spurious correlation, (3) the
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difference from a matrix approximation with the singular value decomposition (SVD), and (4) a computational cost
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Figure 9. AIC and BIC values as functions of the number of
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modeling. We then discuss the (5) pre-conditioning of
variables using the regularized covariance, (6) a problem
that may occur with a very small number of samples, and
(7) a perspective for larger problems.

7.1 Modeling of independence and conditional indepen-
dence

The most characteristic feature of the regularization in
inverse space is the explicit awareness that a covariance
matrix is a parameter that specifies a Gaussian distribu-
tion. If variables obey a Gaussian distribution, conditional
independence between a pair of variables corresponds to
a zero element of the inverse of the covariance matrix
(e.g., Lauritzen, 1996, Proposition 5.2). Modeling of con-
ditional independence is easy to perform compared to the
modeling of independence, because only the local rela-
tionship between a pair of variables need be taken into
account. For example, the relationship between the three
variables shown in Figure 2, which indicates that variables
1 and 3 are conditionally independent given variable 2, is
difficult to model with usual covariance. Since variables 1
and 3 are not independent (i.e., dependent on each other
through variable 2), we cannot impose an explicit con-
straint (for example, forcing some elements to be zeros)
on the covariance matrix.

In addition, the straightforward concept of specifying
independence may yield an invalid covariance unless the
modeled matrix is diagonal or block diagonal. As an
example of a covariance that is neither diagonal nor block
diagonal, we assume independence between variables 1
and 3. The estimated covariance then becomes

. s11 s12
Y= si2 s s23 (81)
S23 833

By the definition of the Gaussian distribution, 3 should
be positive definite. This condition is equivalent to the



existence of the Cholesky decomposition of 3, but it is
not always satisfied and requires that

2
S12

811822

2
823
522533

<1 (82)
Apparently, this condition does not always hold, depend-
ing on S.

7.2 Filtering of spurious correlation

As noted in the Introduction, compactly supported corre-
lation functions have been used to remove spurious cor-
relations due to the limited number of samples (ensemble
members). Our regularization in inverse space can have
similar effects that filter out the spurious distant correla-
tions.

The regularized covariance given by Eq. (46) corre-
sponds to a correlation matrix

1 S12 812 §23
V811532 /811822 /822833
P 812 1 823
- V811822 v 522933
812 5213 523 1
V511822 /5225833 /S22833
(83)

The correlation matrix P indicates that the correlation
between variables 1 and 3 has a smaller magnitude than
that between variables 1 and 2, because

512 523 _ 3812 523 (84)
V811822 /522533 V811822 | | \/$22833
s
2_|. (85)
V511522

This means that a monotonically decreasing correlation
will be obtained when the direct relationship between vani-
ables is assumed according to the distance between the
grid points. In addition, as described in Section 3, reg-
ularized correlations take values identical to the sample
correlations for nearby grid points, where non-zero ele-
ments are assumed in the inverse matrix. These two prop-
erties are as expected for a filtering function that removes
spurious correlations for distant grid points while main-
taining the original correlation for nearby grid points.
The properties are not always expected in a sample
correlation. The correlation between variables 1 and 3,
s1a/ /311533, which may be contaminated by spurious
correlation, can be larger than that between variables |

and 2, 812/\/311522.

7.3 Comparison with an SVD-approximated matrix

The covarniance selection is considered to be an approach
for approximating a sample covariance matrix. For a
matrix approximation, the singular value decomposition
(SVD) technique has been widely applied. With the SVD,
we decompose a matrix into singular vectors and singu-
lar values, neglect small singular values by forcing them

to be zero, and again multiply the singular vectors and
modified singular values to form an approximated matrix.
The approximated matrix is based on the sample covari-
ance alone and does not take the distance between the grid
points into account. The SVD approximation is, therefore,
not expected to work as a procedure that preferentially
removes spurious correlations for distant points, In fact,
Figure 10 shows an SVD-approximated sample covari-
ance, using 23 leading singular values that are larger than
1072 times the sum of all of the singular values. Corre-
lations for distant points appear to remain (Figure 10d),
while the variances are reduced (Figure 10c) compared to
the original sample variances (Figure 4c).

The dependence of the number of singular values
used in the SVD approximation is shown in Figure |1.
Variances increase gradually with the number of singular
values used, and account for 49% and 94% of the original
sample variance (Figure |1h) when 23 and 155 leading
terms are used (Figures 11f and | 1g). On the other hand,

ovariance elements for the variable at (136°W, 5°N)
pear to be well represented with at least two leading
ingular values (Figures | |b). Even with the two leading
rms, correlations for distant points are also reproduced.
is indicates that the SVD approximation does not work

as a filter of the long-distance correlations.

In addition, an inverse matrix also approximated with
the SVD (referred to as the generalized inverse). The
approximated inverse generally has non-zero values in all
elements. This means that the SVD approximation is not
consistent with the assumption of conditional indepen-
dence, which is adopted in the covariance selection model.

7.4 Reduction of the number of parameters

A covariance matrix has elements of the square of the
number of variables, amounting to 10! in data assimi-
lation. One of the purposes of covariance regularization
is to reduce the number of parameters that specify the
covariance matrix. Among the other regularization meth-
ods reviewed in Section I, the proposed regularization
method in inverse space can significantly reduce the num-
ber of parameters for the matrix specification. When the
four-neighbor model is assumed, the required number of
parameters is approximately four times the number of
variables, which is much smaller than the square of the
number of variables.

The reduced number of parameters in inverse space
also reduced the computational costs in evaluating cost
functions in variational data assimilation. Since the
covariances of background error and observation noise are
evaluated in their inverted forms in cost functions, many
zeros in the modeled inverse matrices significantly reduce
the number of multiplications.

7.5 Pre-conditioning with regularized covariances in
inverse space

The regularized covariances in inverse space can be
used for pre-conditioning (Courtier e al., 1994). In 4D-
Var with a background error covariance matrix B, the
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covariance elements for the variable at (136°W, 5°N), which is
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(g)) correspond to the singular values that are larger than 1072 and
10~2 times the sum of all of the singular values, respectively. The
covariance using all singular values (panel (h)) is identical to the
sample covariance.
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square-root of the matrix BY/2 is usually selected as
a pre-conditioner matrix. Assuming x and X, to be
a state vector and its background estimate (prescribed
mean), respectively, the background cost is represented
as (x —xp)  B~! (x — xp) /2. A new variable u defined
as u=B~1/2(x — x;) transforms the background cost
to u'u/2. That is, the transformed variable u eliminates
an explicit evaluation of B~ in the background cost and
decreases the condition number of the Hessian matrix of
the cost function, which increases the convergence rate of
an iterative process for minimization. In the observation
cost, on the other hand, the state vector x must be evalu-
ated with u, as x = x + BY/2u

With a regularized background inverse covariance
-1, which we here assume to be an approximation of
B~ 1, such a pre-conditioning process, can be apphed
After the preconditioning, the inverse covariance -1



does not appear in the cost function, while ¥'/2u is
required. The latter term can be obtained through the fol-
lowing two steps: (1) Factorize £~ by the Cholesky
decomposition to obtain £1/2, and (2) Solve the equa-
tion u = X2y for v, and the obtained v is B2y,
which is required in the observation cost. The Cholesky
decomposition will be tractable because 3 is sparse. The
linear equation u = 32~ 1/2y can be solved without a huge
cost because 32~1/2 is sparse and triangular.

The pre-conditioning by $1'/2 takes over the proper-
ties of 3, so that it can eliminate spunous correlations that
may be present in the original covariance B.

7.6 Estimated variances and covariances for neighbor-
ing variables

An estimated covariance matrix 3 has values that are
identical to the original sample covariance S at posi-
tions where the non-zero elements were assumed in X.
This means that the estimated variances and covariances
for neighboring variables maintain the sample statistics.
Sample variances and covariances for variables located
at nearby points are expected to take values close to the
true values (e.g., Bishop and Hodyss, 2007, Figure 1(a)),
even when a finite number of samples are used. In the case
of a very limited number of samples, however, the devia-
tion from the true value may become large. We may take
the spatial average (Raynaud et al., 2008) of S or apply a
spatiotemporal filter (Keppenne er al., 2008) to S before
applying the covariance selection model proposed in the
present paper.

7.7 Perspective for large problems

In Section 6.2, we have presented an application of an
n = 8, 585-dimensional covariance matrix that has m =
150, 381 parameters. The number is, however, not large
enough to directly deal with state-of-the-art dynamic mod-
els that may have n = O (107) variables. Although there
is a gap on the order of 107, the upper limit of the pro-
posed method is expected to increase up to 105 by tuning
the implementing procedure. We have succeeded in apply-
ing a four-neighbor model to global SSH observation at
each 1° x 1° grid point, which amounts to n = 34, 300
grid points and m = 101, 310 nonzero parameters.

An alternative method of dealing with large problems
is to divide the entire domain into multiple regions. A
block diagonal structure is then assumed in the covariance
matrix ¥, and, therefore, !, which greatly reduces
the computational cost. The regional approach may be
justified because effective correlating areas are confined,
as shown in the applications (Section 6). The size of
an effective correlating area can be estimated from the
original sample covariance, S (e.g., Pannckoucke ef al,
2008).

8 Conclusion

We have proposed a method for the regularization of
covariance matrices in inverse space with the covari-
ance selection model (the Gaussian graphical model). For

each variable, we prescribed its neighboring variables.
The targeted variable is directly related to the neighbors
and is conditionally independent of the variables beyond
the neighbors. Conditional independence is expressed by
specifying zero elements in the inverse covariance matrix.
The non-zero elements were estimated numerically using
the maximum likelihood with Newton’s method. The gra-
dient vector and the Hessian matrix required in New-
ton’s method were derived analytically for the covariance
selection model. Appropriate neighboring variables can
be selected with information criteria such as the AIC and
the BIC. We have presented a technique for implementa-
tion that is useful when the dimension of the variable is
large. Using the proposed method, the sample covariance
shown in Figure 4 is converted to a regularized covari-
ance shown in Figure 7. In addition, we demonstrated
the regularization of a 8, 585 x 8, 585 sample covariance
having up to 150, 381 parameters, which corresponds to
2° x 2° resolution data of the global ocean obtained by
TOPEX/POSEIDON altimetry. The regularization gives
non-singular covariances and filters out spurious correla-
tions at distant points. In addition, the regularized covari-
ances can be specified by the small number of parameters
compared with the square of the dimension of the vari-
ables. The regularization method in inverse space will pro-
vide a positive contribution in data assimilation, as was
the case for the methods formerly developed in physical,
spectral, and wavelet space,
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A Derivation of log-likelihood (Eq. 6)
We start with Eq. (5):

£(p,X) =N, (—%logQw - %l{)g])3|)

NR
Sy - S i mm). 86)
i=1

The third term multiplied by (—2) can be expanded as

N.
> i — ) B (% — p)

=I.Ne
=3 (i —%) £ (xi — %)

+Ne(x - p) B (x - p), (87



where X is the sample mean given by Eq. (1). The first
term of Eq. (87) can be expressed as

N,
D (% —%)' B (x; — %) = No trSE 1,

i=1

(88)

where 8 is the sample covariance given by Eq. (2). With
Egs. (87) and (88), the log-likelihood given by Eq. (86)

becomes
¢(p, X)) =
+(x—p) 7 (x - p)],

-% [nlog2m — log|2'l| +trsx!
(89)

which we have shown in Eq. (6).

B Derivation of the gradient and the Hessian

We derive the gradient vector given by Eq. (15) and the
Hessian matrix given by Eq. (16) of a function given by

Eq. (13):

f(B)=trS=~ —log|x7!|, (90)
with respect to 3= ( B ]’. Here, ! is
assumed to be parameterized as given in Eq. (9):

2B =Y Awdk, on

k=1

where A (k=1,.--,m) is a fixed matrix (symmetry is
not required). From Eq. (91), the first term of Eq. (90)
becomes

trSE~' = A trSA,. 92)
k=1
B.1 Gradient vector
Differentiating f (3) with respect to 3; (i=1,---,m)
gives
{ 1 dlog|T!
ﬁ atr E S og | | ©93)
a8; a3, as;
With Eq. (92), the first term becomes
atr x-S a
55— = . Z % tr SAx (94)
=tr SA,.; (95)

We expand the second term multiplied by (—1) with the
elements of ©~! as

dlog [£71|
o7,

6‘l0g|E_1| dvec X1
~ d(veemY) 93

(96)

where vec is the vec operator (Section D.1.1). The first
term of Eq. (96) becomes

dlog|x~' 1 a|x| ©7

d(vee=-1) ~ 271 (vec B-1Y )
l _ Ty

=__|E—1{ |= (vec ) (98)

= (vec X', 99

where we used a formula of the derivative of a determinant
(Section D.2.3). The second term of Eq. (96) becomes

dvecEl 9 i
"‘;T - -—vecZA;,ﬁk (100)
=vecA; (101)
Substituting Eqs. (99) and (101), Eq. (96) becomes
dlog |71 N
_f)ﬁ“_ —(VOCE) VOCAi (102)
=tr XA; (103)

where we used a basic connection between the vec opera-
tor and the trace (Section D.2.1).

With Egs. (95) and (103), the gradient vector given
by Eq. (93) becomes

o
A

fori=1,--- ,m.

=trSA; —tr LA, (104)

B.2 Hessian matrix

The Hessian matrix is the derivative of the gradient vector
given by Eq. (104):

_PF 0

opop; o TAS T BA) (109
P

= —B-g;trEA (106)

- (\nec =Y vee A (107)

(0‘;;2 ) vecA;.  (108)

We expand the first term of Eq. (108) with the elements of
matrix ()" as

dvecy  dveeX®  dvec(®) !
g N1 95 (109)
L (vee(x))
The first term of Eq. (109) becomes
: f n -1 -1
dvec B R {[(E,)—l] } 2 [(E;]—]]
O(V(;‘C(S')_l)
(110)
=-2R%, (111)



where & denotes the Kronecker product (Section D.1.2),
and we used a formula of the derivative of an inverse
matrix (Section D.2.4). The second term of Eq. (109) is
represented as

!
dvec(EN1 D ( m )
—_—— = —— vee AL B (112)

98; 85; g
.) m
= -a%vecZA;ﬁk (113)
i k=1
=vec Al (114)

Substituting Eqs. (1 11) and (1 14), Eq. (109) becomes

dvecX'

g = (BeT)vecA] (115)

=—vec AT, (116)
where we used a formula of the connection between the
vec operator and the Kronecker product (Section D.2.2).
Thus, the Hessian matrix given by Eq. (108) becomes

32f YA LAY
=tr (Z'AIY) A, (118)
=tr SA; XA, (119)

C Derivation of the cost function, the gradient, and
the Hessian for a fixed matrix A; given by Eq. (70)

When A is represented as Eq. (70), we can simplify the
cost function given by Eq. (13), the gradient vector given
by Eq. (15), and the Hessian matrix given by Eq. (16).

C.1 Cost function

Using Egs. (9) and (70), the first term of the cost function
given by Eq. (13) becomes

trSE~! = trSZAkﬁk (120)

k=1

m
=S ey + Ca®hin ) Hr (121)
k=1
m m

= Z B tr Sep(k)e;[k) + Z 3y tr Seq[k)e;{k)

k=1 k=1
(122)

=2 B S)gwypiiy + 2 Bk (Syrrarry
k=1

k=1
(123)
m
=2 Bk (S)pryqehy »
k=1

(124)

where Eq. (144) and the symmetry of S were used.

C.2 Gradient vector

Using Eq. (70), the gradient vector given by Eq. (I5)
becomes

37{ — trSA; — tr DA, (125)
=1tr8 (EP{()B:“‘-} + eq(i,e;,(,.))
~ S (epueygs) + ot ) (126)
= tr8ey( ey, + trSeypiye;,
—tr Eep(‘;}e;m —tr Eeq(,-}e;,‘,” (127)
= 8)atirwtiy + Sptiratr = Eagirp) = Epiyaciy
(128)
= 2(8)ptirq0 = 2 By » (129)

where Eq. (144) and the symmetry of S and  were used.

C.3 Hessian matrix

Using Eq. (70), the Hessian matrix given by Eq. (16)
becomes

o%f
a3:00;
=trXA;TA; (130)
= tr [‘L‘ (ep(i)ef,(f;) + eq(i)e;r(il)
z (%(:‘)9:;(:') + e‘*(ﬂ"e;’u})] (30

=trE (e,,(i)e;m Bep()€4(5) + €n)€4() Za(d) ()

+ €q()€p(i) Zep(5) €5y) + eQ(i)e;{i}ze(}U)e;(:ﬁ)) (132)
=t T (250 (Z)ygippis) i) + @) (Bgtiracs) i)
+46) (D) ®hi) + a0 (Bpiat €hiy ) (133)
= (B)gmi) tr Zeprey) + (E)ggiygi) tr Zepwep)

+ (B)piiyn0) B Zeatir€q0) + (Zpiayas) 1 Zeatir€p()
(134)

= (E)gp) g + (Egorat Epiinetiy

+ (Epawt) Faa + Bpyati) (Epinacy (139)

= 2(E) 5000 Fare) 2 Epiran) (E}q{t)p(i‘)l ;6)

where Eqgs. (143) and (144) and the symmetry of £ were
used.

D Mathematical supplement
D.1
D.1.1

Definitions
The vec operator

Let A be an m x n matrix, and let a; be its j-th column:
A=(a a, );then vec A is defined as the mn x



1 vector

a)
az

vee A = (137)

D.1.2  The Kronecker product

Let A be an m x n matrix, and let B a p x ¢ matrix. The
Kronecker product of A and B is defined by the mp x ng
matrix as

auB amB

Az B= ) (138)

am B am,B
where a;; denotes the (i, j)-element of A.

D.2 Formulas

D.2.1 Connection between the vec operator and the
Irace operator

Let A and B be matrices of the same order. Then,

(vecA) vecB = tr A'B (139)

(e.g., Magnus and Neudecker, 1999, Eq. 4 on p. 30).

D.2.2 Connection between the vec operator and the
Kronecker product

Let A, B, and C be three matrices such that the matrix
product ABC is defined. Then,

vec ABC = (C' ® A) vec B (140)

(e.g., Magnus and Neudecker, 1999, Theorem 2 on p. 30).

D.2.3 Derivative of the determinant
Let X be a square non-singular matrix. Then,

d1X|

a(veeX)' (141)

= 1] (vec (X1)')
(e.g., Magnus and Neudecker, 1999, Table 5, p. 179).

D.2.4 Derivative of an inverse matrix
Let X be a square non-singular matrix. Then,

ax-!

_ _xhL -1
Fweexy ~ XD eX

(142)

(e.g., Magnus and Neudecker, 1999, Table 7, p. 184).

D.2.5 Formulas for the unit vector

Let e; be an 1 x 1 vector that has a value of unity in its i-

th location and zeros elsewhere, and A is an n x n matrix.
Then,

eﬁAej = Qij, (143)

tr Ae;e! = a;;, 144)
¥t 4 3

where a;; denotes the (i, j)-element of A.

Proof Let a; be the j-th column of A. Then,
e;Ae; = ea; = a;;, which proves Eq. (143). The right-
hand side of Eq. (144) is equal to that of Eq. (143),
because tr Aeje; = tre;Ae; = e{Ae;. O
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Number of neighbors  log |E\ ‘ (i, ,B) m AIC BIC

0 8B891.2  —5886018.3 8585 11789206.7 11822424.6
4 —-24.7  —4307907.8 25049  B665913.5 8762835.6
8 —758.9  —4177959.6 41234  B8438387.3  B597933.8
12 —2519.3  —3B66364.8 57189  7847107.6  8068388.8
20 —-3266.4  —3734132.7 88726  T645717.4  7989024.6
24 —3434.6  —3704350.7 104190  7617081.5  8020223.5
28 —3856.4  —3629697.3 119682  T498758.7 T961843.9
36 —-4150.0  -3577730.6 150381  7456223.2  8038092.0

Table 1Il.  Summary of covariances estimated with the covariance selection models: the number of neighbors, log ‘El. the maximum

likelihood (£ (i, ﬁi) ), the number of parameters (m = dim /3), and the AIC and BIC values for the models, where different numbers of
neighbors are assumed.



