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Abstract

In this paper, we show that for a large class of optimization prob-
lems, the Lagrange multiplier rule can be derived from the so-called
approximate multiplier rule. In establishing the link between the ap-
proximate and the exact multiplier rule we first derive an approximate
multiplier rule for a very general class of optimization problems using
the approximate sum rule and the chain rule. We also provide a simple
proof to the approximate chain rule based on a fundamental result in
parametric optimization. In the end we derive a mixed approximate
multiplier rule for an equality and inequality constrained optimization
problem and outline an approach to use the mixed approximate mul-
tiplier rule in studying the computational aspect associated with such
a problem.
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1 Introduction

Variational analysis is a part of modern analysis and is mainly motivated by
optimization-related problems. A large part of the literature on this topics is
devoted to the study of the properties of generalized derivatives, their asso-
ciated subdifferentials and derivatives of set-valued mappings. We refer the
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reader to the books by Rockafellar & Wets [19], Mordukhovich [13] [14], Bor-
wein & Zhu [2], Schirotzek [20] and the references therein for a complete and
comprehensive expository on variational analysis, as well as for applications
of the key issues of this theory in finite and infinite dimension.
The main motivation behind defining subdifferentials for arbitrary functions
comes from the convex case. One such subdifferential in the finite dimen-
sional setting is the regular subdifferential (Fréchet subdifferential) which is
a very intuitive concept in the sense that it is quite natural to define such
a notion of a subdifferential when moving away from convexity (details are
in Rockafellar & Wets’s 1998 book). When we will present the definition of
the regular subdifferential in the next section one can see that the regular
subgradient is generated from the definition of the subgradient of a convex
function by adding some small error term to the right hand side. This fact
essentially makes the idea of the regular subdifferential so intuitive. The
next natural question is whether the regular subdifferential is nonempty at
each point of the effective domain of a proper extended-valued function. The
answer is negative even in the case of locally Lipschitz functions. There can
be points on the effective domain where the regular subdifferential is empty
(see [19] for details). The problem is rectified by defining the notion of a
basic subgradient which is the limit of a sequence of regular subgradients.
Thus, a more robust subdifferential called the basic subdifferential emerged
and was first introduced by Mordukhovich [11] in the context of optimal
control problems. The basic subdifferential is non-empty and compact in the
case of locally Lipschitz functions. Further, the basic subdifferential admits
a very nice calculus which unfortunately is not true for the regular subdif-
ferential. Of course, then one may ask why we need to study the regular
subdifferential. First of all, let us note that even though the regular sub-
differential does not satisfy exact calculus rules like its robust counterpart
the basic subdifferential, it admits however an approximate calculus, which
in many cases appears to be more easily verifiable than exact calculus rules.
These approximate calculus rules lead to approximate Lagrange multiplier
rules. We will also try to suggest some usefulness of the approximate mul-
tiplier rule. Our principal aim in this article is to develop an approximate
chain rule for regular subdifferentials and apply it to derive approximate nec-
essary optimality conditions in terms of the regular subdifferential. Further,
we shall also demonstrate using the standard equality and inequality con-
strained optimization problem, that one can develop a mixed approximate
necessary optimality condition which appears to be less restrictive than the
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pure approximate multiplier rule but also preserves the advantages of the
pure approximate multiplier rule. By a mixed approximate multiplier rule
we mean that both the regular subdifferential and the basic subdifferential
appear in the expression of the multiplier rule.
This article is organized as follows. In section 2 we shall describe the neces-
sary tools that we require from nonsmooth analysis and we shall also present
the approximate sum rule and the approximate chain rule followed by section
3 in which will deal with the application of the chain rule in deriving approx-
imate necessary optimality conditions. Further in this section, we shall also
demonstrate that by a sequential application of the approximate Lagrangian
multiplier rules one can actually arrive at an exact multiplier rule. This
explains why possibly one of the main advantages of using approximate op-
timality conditions in finite dimensional nonsmooth optimization is to build
optimization algorithms using the approximate rules since they have more
flexibility built into them. The flexibility of the approximate optimality con-
ditions stems from the fact that in the case of the approximate multiplier
rule, the regular subgradients involved are not evaluated exactly at the refer-
ence point but at some points in the neigborhood of the reference point. In
most practical cases, in the neighborhood of a nonsmooth point one will find
that the function is densely differentiable. Thus, the approximate optimality
condition in many cases would allow us to work with gradient information,
a luxury which we do not have when using the exact nonsmooth Lagrange
multiplier rule. Further in section 3 we also develop a sufficient condition
under which the set of Lagrange multipliers associated with the problem un-
der consideration is nonempty and bounded.We also provide a result showing
that the non-emptiness and the boundedness of the set of Lagrange multipli-
ers guarantee that a certain qualification condition holds under appropriate
conditions. In section 4 we study the mixed approximate multiplier rule for
equality and inequality constrained problem and also attempt to outline the
possible usefulness of studying such a multiplier rule from the computational
point of view.

2 Preliminaries

We begin this section by recalling the definition of the Fréchet normal cone
(or regular normal cone), the limiting Frchet normal cone or the basic normal
cone, the Frchet (or regular) subdifferential and the limiting Frchet subdif-
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ferential or the basic subdifferential.

Definition 1 A vector v ∈ Rn is called a Frchet normal to C at x̄ if

lim sup
x→x̄

〈v, x− x̄〉
||x− x̄||

≤ 0.

The set of all Fréchet normals form a cone called the Frchet normal cone to
C at x̄ and is denoted by NF

C (x̄). Also observe that equivalently one can
show that a vector v ∈ Rn is a Frchet normal to C at x̄ if

〈v, x− x̄〉 ≤ o(‖x− x̄‖), ∀x ∈ C,

where limx→x̄
o(‖x− x̄‖)
‖x− x̄‖

= 0 .

Further we would like to note that the Frchet normal cone is also referred
to as the regular normal cone in the literature. See for example Chapter 6 in
Rockafellar and Wets [19]. It appears that the term regular normal became
popular due to its use in Rockafellar and Wets [19]. The Frchet normal cone
is a closed and convex object but it suffers from the disadvantage that it can
reduce to the trivial cone containing only the zero element, at some points
on the set C. For simplicity henceforth we will always refer to the Frchet
normal cone as the regular normal cone.
This difficulty is resolved by considering the notion of a limiting Frchet nor-
mal cone or the basic normal cone where every vector can be realized as a
limit of a sequence of Frchet normals.

Definition 2 A vector v ∈ Rn is an element of the limiting Frchet normal
cone or the basic normal cone NC(x̄) to the set C at the point x̄ if there exist
sequences {xk} with xk ∈ C and {vk} with xk → x̄, vk → v̄ and vk ∈ NF

C (xk).
In a more compact form this is written as

NC(x̄) = lim sup
x→x̄

NF
C (x),

where as usual the symbol lim sup denotes the limit superior of sets in the
sense of Kuratowski-Painlevé (see for instance the book by G. Beer [1] for
the definition).
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We would like to mention that the limiting Frchet normal cone is also known
as the Mordukhovich normal cone. However for simplicity in the presen-
tation we would just refer to the limiting Frchet normal cone as the basic
normal cone. It is important to note that the basic normal cone is a closed
cone but need not be convex. However this cone is never trivial at any point
on the boundary of the set C and is stable in the sense that its graph is
closed when viewed as a set-valued map. However if x̄ is the interior point
of C then NC(x̄) = {0}. Further the set C is said to be normally regular
at x̄ if NF

C (x̄) = NC(x̄). For more details on this notion see for example
Mordukhovich [13][14]. Associated with the notions of the above two types
of normal cones are the Frchet and limiting Frchet or the basic subdifferen-
tial which we now define below. However we will first provide the original
definition of the Frchet and the basic subdifferential and then present their
equivalent representation in terms of the Frchet normal cone and the basic
normal cone respectively. Our definition will involve extended-real-valued
functions by which we mean functions of the form f : Rn → R∪{+∞}. The
set of points where f is finite is denoted by domf .

Definition 3 Let f be a given extended-real-valued function and let x̄ be
point where f is finite. Then the Frchet subdifferential (or the regular subd-
ifferential) of f at x̄ is given as

∂F f(x̄) = {v ∈ Rn : lim inf
x→x̄, x 6=x̄

f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0}.

We would like to mention here that throughout the paper we will use the term
regular subdifferential instead of Frchet subdifferential. The term regular
subdifferential also seems to have become popular due to its use in Rockafellar
and Wets [?]. Every element of the regular subdifferential is termed as a
regular subgradient. If x̄ is a point where f(x̄) = ∞ then we set ∂F f(x̄) = ∅.
In fact one can show that an element v is a regular subgradient of f at x̄ iff

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖) (2.1)

where
o(‖x− x̄‖)
‖x− x̄‖

→ 0 when x → x̄. Observe that (2.1) represents the

move away from convexity in an interesting way. One can interpret the term
o(||x− x̄||) as an error term which has been added to the right hand side of
the subgradient inequality used for convex functions. Equivalently one can
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represent the regular subdifferential in terms of the regular normal cone in
the following way

∂F f(x̄) = {v ∈ Rn : (v,−1) ∈ NF
epi f(x̄, f(x̄))}. (2.2)

Further it is easy to observe that if f is differentiable then ∂F f(x) = {∇f(x)}.

Definition 4 Let f be a given extended-real-valued function and let x̄ be
a point where f is finite. Then an element v ∈ Rn is said to be a limiting
Frchet subgradient or the basic subgradient of f at x̄ if there exists a sequence
vk → v and sequence xk → x̄,with xk ∈ C, and f(xk) → f(x̄) such that
vk ∈ ∂F f(xk) for each k. The collection of limiting Frchet sugradients or
basic subgradients of f at x̄ is denoted by ∂f(x̄) and is known as the limiting
Frchet subdifferential or the basic subdifferential of f at x̄.

We would however like to mention that for the economy of the presentation
we will always refer to the limiting subdifferential as the basic subdifferential.
It is also important to note that the basic subdifferential is also known as
the Mordukhovich subdifferential. Further noting the representation of the
Frchet subdifferential in terms of the Frchet normal cone as given by (2.2)
we can immediately write down the following representation of the basic
subdifferential in terms of the basic normal cone.

∂f(x̄) = {v ∈ Rn : (v,−1) ∈ Nepif (x̄, f(x̄))}.

For more details and the associated calculus rules of the basic subdifferential
see for example [13] or [19]. The basic subdifferential is always non-empty
at each point for a locally Lipschitz function and coincides with the subd-
ifferential of a convex function if f is convex. Further it is always closed
though need not be convex. For any point x̄ where f is finite it is clear
that ∂F f(x̄) ⊆ ∂f(x̄). At points where f is not finite one defines the basic
subdifferential as the empty set. Further the convex hull of ∂f(x̄) denoted
by co(∂f(x̄)) coincides with the Clarke subdifferential ∂Cf(x̄) of f at x̄ when
f is locally lipschitz. See [4] for details on the Clarke subdifferential.

Another important subdifferential notion is that of the asymptotic subdif-
ferential which corresponds to the horizontal component of the basic normal
cone to the epigraph of the function under consideration at the point of
reference. This is given by the following definition.
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Definition 5 Let f be a given extended-real-valued function and let x̄ be
point where f is finite. Then the asymptotic subdifferential of f at x̄ is given
as

∂∞f(x̄) = {v ∈ Rn : (v, 0) ∈ Nepif (x̄, f(x̄))}.

In some sense the asymptotic subdifferential measures how much a function
has deviated from being locally Lipschitz since if f is locally Lipschitz at x̄
then ∂∞f(x̄) = {0}. In other words it means that the basic normal cone to
the epigraph of a locally Lipschitz function never has a non-trivial horizontal
component. The asymptotic subdifferential is also known in the literature
as the singular subdifferential and was introduced in 1980 by Mordukhovich
[12].

Let us now mention some symbols that we will use throughout the paper.
First of all we will denote by BX the unit ball in the finite dimensional space
X. For any x̄ ∈ X we shall denote by Bδ(x̄) the ball of radius δ with center
at x̄. Further if G : Rn → Rm is a given function and y ∈ Rm then the
function (yG) : Rn → R is given by

(yG)(x) = 〈y, G(x)〉.

We will now present the sum rule which will also play an important role in
proving the approximate chain rule for regular subdifferentials. We present
the result as given in Ngai and Théra [16].

Theorem 1 (Approximate Sum Rule) Let fi : Rn → R ∪ {+∞}, i =
1, . . . , n be lower semicontinuous functions. Let x̄ ∈ domf1 ∩ . . . ∩ fn. Let

ξ ∈ ∂F (f1 + · · ·+ fn)(x̄).

Then for any ε > 0 and any neighborhood V of zero in Rn there exists points

(xi, fi(xi)) ∈ (x̄, fi(x̄)) + εBRn×R,

such that

ξ ∈ ∂F f1(x1) + · · ·+ ∂F fn(xn) + V.

7



Remark 1 In most of the applications one usually sets V = εBRn . Further
it is important to note that in Theorem 1 when one changes the vector ξ
then the points xi, i = 1, . . . ,m, also get changed in general. It is important
to explain at this point why we call this result “the approximate sum rule”
instead of the usual “fuzzy sum rule” introduced by Ioffe [8] and established
in Asplund spaces by Fabian [7], for Fréchet subdifferentials of lower semi-
continuous functions. First of all, let us note that we can write the rule for
any choice of ε > 0. The other aspect which motivates this terminology is
the fact that we move away from the exact point of reference. As we will ex-
plain later on, in many applications this fact would actually allow us to work
with gradient information though we are in reality dealing with a nonsmooth
problem.

Further let us note that in the above results the inclusions at the end of
theorem can also be given as

xi ∈ x̄ + εBRn

and

f(xi) ∈ f(x̄) + εBR.

The above relations hold since BRn×R ⊂ BRn × BR.

After the approximate sum rule, the next natural question is whether one
can have a chain rule for the regular subdifferential. Consider the extended-
real-valued function f given as

f(x) = g ◦G(x),

where g is a lower semicontinuous extended-real-valued mapping and G :
Rn → Rm be a smooth mapping. Then it has been shown for example in
Rockfaller & Wets [19] that for any x̄ ∈ domf one has

∂̂f(x̄) ⊃ ∇G(x̄)T ∂̂g(G(x̄).

However if ∇G(x̄) has full rank, then equality holds in the above expression,
that is

∂̂f(x̄) = ∇G(x̄)T ∂̂g(G(x̄)).
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So what we have is an exact chain rule with the mild condition that the
Jacobian of the inner map G at x̄ has full rank. The next question obviously
is that whether such an exact rule holds if the inner function G is no longer
differentiable. It has been shown for example in Theorem 10.49 in Rockafellar
& Wets [19] that if the inner function G is locally Lipschitz then one has the
following inclusion satisfied,

∂̂f(x̄) ⊃
⋃

y∈∂̂g(F (x̄))

∂̂(yF )(x̄).

On the other hand it is important to note that from the point of view of op-
timization the opposite inclusion is more meaningful. Of course the opposite
inclusion holds if we replace the regular subdifferential by the basic subdiffer-
ential, but it also important to note that from the computational view point
it is simpler to work with a regular subdifferential. So the question now boils
down to the following: what sort of condition actually holds for the regular
subdifferential of a composite function if we want the reverse inclusion to
hold? This leads us to the approximate chain rule which we present below.

Theorem 2 Let G : Rn → Rm be a vector-valued locally Lipschitz function
and g : Rm → R ∪ {+∞} be a proper lower semicontinuous function. Let
ū ∈ Rn be a given point. Define f as follows

f(u) = g ◦G(u).

Let ξ ∈ ∂F f(ū) where G(ū) ∈ domg. Then, for any ε > 0 there exist vectors
η ∈ Rm, u1 ∈ Rn and y ∈ Rm with

(u1, G(u1)) ∈ (ū, G(ū)) + εBRn×Rm ,

y ∈ G(ū) + εBRm ,

g(y) ∈ g(G(ū)) + εBR

and

η ∈ ∂F g(y) + εBRm

such that

ξ ∈ ∂F (ηG)(u1) + εBRn .
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Proof : Reminding that as customary the indicator function of a set C
is the function defined by δC(x) = 0 if x ∈ C, and δC(x) = +∞ otherwise,
we set F (x, u) = g(x) + δGr G(u, x), where Gr G is the graph of the mapping
G. We observe that F as defined is a proper lower semicontinuous extended-
real-valued function which satisfies

f(u) = g ◦G(u) = min
x

F (x, u).

Observe that for a fixed u the value of F (x, u) is either g(G(u)) or infinity
and thus domF is exactly (G(u), u). Hence the minimum value of F (x, u)
is g(G(u)). Let consider ξ ∈ ∂F f(ū). It is simple to observe that (0, ξ) ∈
∂F F (G(ū), ū). Observe that ξ ∈ ∂F f(ū) implies that for any u ∈ Rn

f(u)− f(ū) ≥ 〈ξ, u− ū〉+ o(||u− ū||). (2.3)

Noting that f(u) ≤ F (x, u) for all x ∈ Rm and the fact that f(ū) =
F (G(ū), ū) we have from (2.3)

F (x, u)− F (G(ū), ū) ≥ 〈(0, ξ), (x, u)− (G(ū), ū)〉+ o(||u− ū||)− ||x−G(ū)||2.

Hence

F (x, u)− F (G(ū), ū) ≥ 〈(0, ξ), (x, u)− (G(ū), ū)〉+ o(||(x−G(ū), u− ū)||).

Observing that F (x, u) = g(x) + φ(x, u) with φ(x, u) = δGr G(u, x), we can
write

∂F (G(ū), ū) = ∂F (g + φ)(G(ū), ū).

By applying the approximate sum rule (Theorem 1) we have for any ε > 0
the existence of u1 ∈ Rn, w1 ∈ Rm and y ∈ Rm such that

(0, ξ) ∈ ∂F g(y)× {0}+ ∂F φ(w1, u1) + ε(BRm × BRn), (2.4)

where

y ∈ G(ū) + εBRm ,

g(y) ∈ g(G(ū)) + εBR

and

(w1, u1) ∈ (G(ū), ū) + εBRm×Rn .
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However it is important to note that (2.4) is valid only if all the sets on the
right hand side of (2.4) are non-empty. This is true only if w1 = G(u1) since
φ(x, u) is only finite for points of the type (G(u), u). Let us recall that by
definition, the regular subdifferential is an empty set for all points not in the
effective domain. Hence we have

(G(u1), u1) ∈ (G(ū), ū) + εBRm×Rn .

Thus we have

(0, ξ) ∈ (γ, 0) + (−η, ξ1) + ε(BRm × BRn),

where

(γ, 0) ∈ ∂F g(y)× {0}

and

(ξ1,−η) ∈ NF
Gr G(u1, G(u1)) = ∂F δGr G(u1, G(u1)).

Now by using a coordinate-wise representation we have,

ξ ∈ ξ1 + εBRn (2.5)

and

η ∈ γ + εBRm ⊂ ∂F g(y) + εBRm .

Since (ξ1,−η) ∈ NF
Gr G(u1, G(u1)), from the definition of the regular normal

cone one has one has for all (u, G(u)) ∈ Gr G

〈(ξ1,−η), (u− u1, G(u)−G(u1))〉 ≤ o(||(u− u1, G(u)−G(u1))||).

Since G is locally Lipschitz one has

〈(ξ1,−η), (u− u1, G(u)−G(u1))〉 ≤ o(||u− u1||).

Hence we deduce that

(ηG)(u)− (ηG)(u1) ≥ 〈ξ1, u− u1〉+ o(||u− u1||).

Therefore, we have ξ1 ∈ ∂F (ηG)(u1). Now by applying (2.5) we have

ξ ∈ ∂F (ηG)(u1) + εBRn ,

and the proof is complete. �
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Remark 2 The chain rule for regular subdifferentials have been also studied
in infinite dimension. In this paper we simply want to present an elementary
proof of the approximate chain rule in finite dimension. The key to the proof
is to start with the construction of a simple parametric optimization prob-
lem and then use the approximate sum rule to conclude. For details of the
proof of the approximate chain rule for Fréchet subdifferentials in Fréchet
smooth Banach spaces, we refer to Borwein & Zhu [2]. The proof in the
setting of Asplund spaces is given in Ngai & Théra [16]. In the recent past
an important contribution to the literature of approximate or fuzzy calculus
rules is due to Mordukhovich and Shao [15]. In [15] these authors developed
approximate or fuzzy calculus rules for Fréchet coderivatives and ε-Fréchet
coderivatives. Using these rules they also established approximate sum rule
and approximate chain rule for the Fréchet derivative. If we only focus on
subdifferentials, then a central theme of their work is to estimate each ele-
ment of the ε-Fréchet subdifferential of the sum of two lower-semicontinuous
functions or composition of two functions through an approximate or fuzzy
sum rule and chain rule respectively. It is further important to note that
their results are based on certain fuzzy qualification conditions which are
new even in finite dimensions. Since the Fréchet subdifferential is a sub-
set of the ε-Fréchet subdifferential for any ε > 0, the usual approximate or
fuzzy calculus rules for the Fréchet subdifferential naturally follows. In fact
it appears that the results in Mordukhovich and Shao [15] definitely play an
important role in the study of ε-minimization.

3 An approximate Multiplier Rule

In this section we will focus our attention on the following problem (P2)
which is given as follows

min f0(x) + ρ(F (x)), subject to x ∈ X.

where ρ : Rm → R ∪ {+∞} is a proper lower semicontinuous function,
f0 : Rn → R is a locally Lipschitz function, F : Rn → Rm is a vector-
valued locally Lipschitz function and X is closed subset of Rn. Our aim is to
develop an approximate Largange multiplier rule for the problem (P2) and
also demonstrate that applying the approximate multiplier rule sequentially
one can arrive at the exact Lagrange multiplier rule. This may open up
an way to use the approximate optimality conditions in devising algorithms
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for nonsmooth optimization. Further we will also see by their very nature
the approximate optimality conditions will allow us to use the derivative
information of points in the neighborhood of a reference point.

This class of problems has been studied in Rockafellar [17], [18], Rock-
afellar & Wets [19] and recently by Dutta [6]. Let us notice that Problem
(P2) covers a large class of optimization problems depending on the par-
ticular form of the function ρ. For example, if we consider the problem of
minimizing f0 over the set C := {x ∈ X : F (x) ∈ U}, where U ⊂ Rm,
then by choosing ρ = δU we observe that this problem belongs to the class
of problems defined by (P2). Thus by choosing an appropriate ρ, we can
get various different classes of optimization problems. For example, if we
choose f0(x) = 0 for all x and ρ to be the max function, then we get the
classical minmax problem. Thus problem (P2) covers a very large class of
optimization problems. Another important class of optimization problem
which is not included among the classical optimization problems is the ex-
tended linear-quadratic programming problem given in Rockafellar and Wets
[19]. The extended linear-quadratic programming problem is given by

min〈c, x〉+
1

2
〈x, Cx〉+ θY,B(b− Ax), subject to x ∈ X,

where C is a n×n symmetric positive semidefinite matrix and B is a m×m
symmetric positive semidefinite matrix, A is a m × n matrix , b ∈ Rm and
c ∈ Rn. The set X ⊂ Rn and Y ⊂ Rm are non-empty and polyhedral and
the function θY,B is given as

θY,B(u) = sup
y∈Y

{
〈y, u〉 − 1

2
〈y, By〉

}
.

For more details on the extended linear-quadratic programming problem see
Rockafellar and Wets [19]. A good source for a very detailed study of optimal-
ity conditions for various classes of optimization problems including mathe-
matical programming under equilibrium constraints and multiobjective opti-
mization, is Chapter 5 in Mordukhovich [14]. For example in Theorem 5.28 in
[14], Mordukhovich studies the approximate optimality conditions in terms of
Frchet subdifferential for equality and inequality constrained mathematical
programming problems with lower-semicontinuous objective and constraint
functions. This is however beyond the framework we study here which heavily
depends on the Lipschitz assumption. Though problem (P2) is not explicitly
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mentioned in Chapter 5 of Mordukhovich [14] but the exact necessary opti-
mality condition for any problem in the format of (P2) can be obtained usin
g the methods laid out in Mordukhovich [13] and Rockafellar and Wets [19].
The proof methodology in order to derive necessary optimality conditions in
Mordukhovich largely relies on the extremal principle (see for example Theo-
rem 5.21 in [14] ) while in our case we depend on the approximate optimality
conditions. Thus in the approach of Mordukhovich the extremal principle is
the unifying theme while we want to present a unified approach to a large
class of optimization problems through approximate optimality conditions.
We essentially show that for problems at least in the format of (P2) with
f0 and F locally Lipschitz and ρ lower-semicontinuous and extended-valued
a the gap between the exact optimality condition and the approximate op-
timality condition can be closed and thus hinting towards a possible use
of the approximate necessary optimality conditions to devise algorithms for
nonsmooth optimzation problems, as we had mentio ned above. Hence the
approximate optimality conditions act as a unifying theme in our approach to
the derivation of necessary optimality condition for a large class of optimiza-
tion problems. Our approach is essentially finite dimensional as we heavily
depend on properties of sequences in finite dimension. On the other Mor-
dukhovich [13] and [14] studies the problems in infinite dimensions. Thus
it would be interesting to see whether the approach that we take through
approximate optimality conditions in finite dimensions can be extended to
infinite dimensions or not.

Theorem 3 Let us consider problem (P2) with the assumptions on the func-
tions as stated above. Suppose x̄ is a local minimizer of (P2). Then for any
ε > 0, there exist η ∈ Rm and x1, x2, x3, x4 ∈ Rn satisfying the following
conditions:

1. 0 ∈ ∂̂f0(x1) + ∂̂(ηF )(x3) + NF
X(x4) + εBRn;

2. (x2, ρ(F (x2)) ∈ (x̄, ρ(F (x̄))) + εBRn×R;

3. (x3, F (x3)) ∈ (x2, F (x2)) + εBRn×Rm

4. (x1, f0(x1)) ∈ (x̄, f0(x̄)) + εBRn×R;

5. x4 ∈ x̄ + εBRn;

6. η ∈ ∂̂ρ(y) + εBRm;
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7. y ∈ F (x2) + εBRm;

8. ρ(y) ∈ ρ(F (x2)) + εBR.

Proof : Since x̄ is a local minimizer of the problem we have

0 ∈ ∂̂(f0 + ρ ◦ F + δX)(x̄). (3.1)

Then by applying the approximate sum rule we get for any ε > 0

0 ∈ ∂̂f0(x1) + ∂̂(ρ ◦ F )(x2) + NF
X(x4) +

ε

2
BRn , (3.2)

where

(x1, f0(x1)) ∈ (x̄, f0(x̄)) + εBRn×R

(x2, ρ(F (x2))) ∈ (x̄, ρ(F (x̄))) + εBRn×R

x4 ∈ x̄ + εBRn .

By applying the approximate chain rule in (3.2) we get

0 ∈ ∂̂f0(x1) + ∂̂(ηF )(x3) + NF
X(x4) +

ε

2
BRn +

ε

2
BRn

0 ∈ ∂̂f0(x1) + ∂̂(ηF )(x3) + NF
X(x4) + εBn,

where

(x3, F (x3)) ∈ (x2, F (x2)) + εBRn×Rm

η ∈ ∂̂ρ(y) + εBRm

y ∈ F (x2) + εBRm

ρ(y) ∈ ρ(F (x2)) + εBR.

This proves the result . �
An important issue that one faces at this point is what can be the possible
use of the approximate multiplier rule. In nonsmooth optimization one of
the major bottlenecks is the computation of a subgradient element of a given
function at a given reference point. This difficulty gets more acute, when
the function is nonconvex. On the other hand the approximate multiplier
rule has a built in flexibility where we look at the regular subdifferential
at a point in the neighborhood of the reference point but not exactly at the
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reference point. Since in the above theorem the functions f and F are locally
Lipschitz, by the virtue of the Rademacher theorem we know that they are
densely differentiable in the sense that the set of points where the functions
are not differentiable forms a set of measure zero. Thus once we consider an
ε > 0, then in the ball Bε(x̄) the functions f and F are densely differentiable.
So for the given ε > 0, if we intend to check whether the point x̄ satisfies the
approximate optimality conditions, we might be able to do so by choosing
points where f and F are differentiable. This is a huge advantage since the
regular subdifferential reduces to the gradient at the points of differentiability
of the function. Let us explain this in a slightly more detailed fashion.
Just for simplicity, consider that for problem (P2) we have X = Rn and ρ is a
finite-valued function. Now, let us consider that we are given a point x̄ ∈ Rn

and we would like to know whether it is an approximate critical point of (P2)
or not. In other words we would like to know if corresponding to every ε > 0
we are able to find points x1, x2, x3 and x4 in Rn and vectors η and y in Rm

such that the conditions (1)-(8) are satisfied.
Though this looks formidable, the computational load can be reduced if
one uses the random sampling technique used in Burke, Lewis and Overton
[3]. For a locally Lipschitz function given a point and a ball around it of a
certain radius which is termed as the sampling radius, [3] showed that one
can actually generate a random sample of points which avoids a fixed set
of measure zero almost surely. Now consider the ball Bε0(x̄) and ε0 > 0
is small. Here ε0 is called the sampling radius. Since the points of non-
differentiability of Lipschitz functions forms a set of measure zero we can
first begin by generating a sample of say k points corresponding to each of
the functions f and F where these functions are differentiable. This means
to begin with we consider two samples of size k each. Let for f the sample
be

Sf = {x1
1, x

2
1, . . . , x

k
1}

and for the function F , let the sample be

SF = {x1
3, x

2
3, . . . , x

k
3}.

Thus in our simplified setting we first begin by considering the pair {x1
1, x

1
3}.

For this pair we try to find points x2
1, η and y1 such that

1. ||∇f(x1
1) +∇(η1F )(x1

3)|| ≤ ε0;
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2. (x1
2, ρ(F (x1

2)) ∈ (x̄, ρ(F (x̄))) + ε0BRn×R;

3. (x1
3, F (x1

3)) ∈ (x1
2, F (x1

2)) + ε0BRn×Rm ;

4. (x1
1, f0(x

1
1)) ∈ (x̄, f0(x̄)) + ε0BRn×R;

5. η1 ∈ ∂F ρ(y1) + ε0BRm ;

6. y1 ∈ F (x1
2) + ε0BRm ;

7. ρ(y1) ∈ ρ(F (x1
2)) + ε0BR.

Let us note that though we had started with the points {x1
1, x

1
3}, we could

in fact randomly construct a pair by choosing one from each of the sets. For
example one could choose {x2

1, x
k
3} to start with. The crucial part is that

corresponding to the pair {x1
1, x

1
3}, (say) one has to find points x1

2, η and y1

such that

η1 ∈ ∂̂ρ(y1) + ε0BRm

and

y1 ∈ F (x1
2) + ε0BRm .

So again we come to a point where we need to compute the regular sub-
gradient of the function ρ at y1. Now in many optimization problems the
function ρ is convex or locally Lipschitz. Let us now consider ρ to be locally
Lipschitz. Further consider the open ball Bε0(F (x1

2)). Thus by the virtue
of Rademacher’s theorem ρ is densely differentiable on Bε0(F (x1

2)). Now by
using the approach in [3], let us consider random sample of r points

Sρ = {w1
2, w

2
2, . . . , w

r
2},

at which ρ is differentiable. Then one can estimate η1 and y1 by choosing a
η1 which satisfies

η1 ∈ ∇ρ(wi
2) + ε0BRm (3.3)

for some wi
2 ∈ Sρ and also satisfying

||∇f(x1
1) +∇(η1F )(x1

3)|| ≤ ε0.

Thus y1 can be chosen as wi
2 ∈ Sρ which satisfies (3.3). Now if corresponding

to Sρ we do not find an η we reject the pair {x1
1, x

1
3} and choose another pair
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from Sf and SF and repeat the procedure. If for given pair we are able to
find η and y then we verify the conditions (2), (3), (4) and (7). Further if all
k2 possible pairs chosen from Sf and SF fail to satisfy (1) to (7) as above,
then we can declare that the point x̄ is not approximately critical and move
to a better point through some iterative techniques.
However we would like to mention that this procedure is computationally
intensive even though we are just using gradient information. We shall show
in section 4 that one can develop a different approach to the approximate
optimality conditions which is much less computationally intensive and has
much less conditions to verify.

Lemma 1 Let F : Rn → Rm be a locally Lipschitz vector-valued funcion.
Let the sequence {xk} converge to x̄ and let {ηk} be a sequence converging to
η. Further let ξk ∈ ∂F (ηkF )(xk). Then the sequence ξk is bounded and every
cluster point of ξk is in ∂(ηF )(x̄).

Proof : Since ∂F (ηkF )(xk) ⊆ ∂(ηkF )(xk) we have

ηk ∈ ∂(ηF )(xk) + ∂((ηk − η)F )(xk).

Thus there exists wk ∈ ∂((ηk − η)F )(xk) and vk ∈ ∂(ηF )(xk) such that

ξk = vk + wk.

Using for example Lemma 2 in Jourani and Thibault [10] we conclude that
wk → 0. Further since F is locally Lipschitz the subdifferential map ∂(ηF ) is
locally bounded and hence the sequence {vk} is bounded and thus it is clear
that the sequence {ξk} is bounded. Further since the subdifferential map
∂(ηF ) is graph closed it is clear that every cluster point of ξk is in ∂(ηF )(x̄).
�.
For a more general version of the above lemma in infinite dimensions see
Lemma 3.27 in Mordukhovich [13].

Let us consider problem (P2) and let us mention the exact multiplier rule for
problem (P2) via the following theorem.

Theorem 4 Suppose x̄ is a local minimizer of problem (P2). Further assume
that the following qualification condition (CQ) holds at x̄:

y ∈ ∂∞ρ(F (x̄)) with 0 ∈ ∂(yF )(x̄) + NX(x̄) implies that y = 0.

Then there exists η ∈ ∂ρ(F (x̄)) such that

0 ∈ ∂f0(x̄) + ∂(ηF )(x̄) + NX(x̄). (3.4)
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For a proof of the above result see Dutta [6] and Vinter [21] and for the case
when ρ is additionally convex see Rockafellar & Wets [19].

Theorem 5 Let us consider problem (P2) as given in the beginning of this
section. Let x̄ be a local minimum of (P2). Assume that the qualification con-
dition (CQ) as given in Theorem 4 holds at x̄. Then using the approximate
optimality conditions in Theorem 3 one can arrive at the exact necessary
optimality conditions (3.4) in Theorem 4.

Proof : Using Theorem 3 we can show that for every natural number
ε = 1

k
one can find points xik, i = 1, . . . , 4 converging to x̄ with ρ(F (x2k) →

ρ(F (x̄)), yk ∈ F (x2k) + 1
k
BRm and ηk ∈∈ ∂F ρ(yk) + 1

k
BRm , with ρ(yk) ∈

ρ(F (x2k) + 1
k
BRm , ξ1k ∈ ∂F f0(x1k), ξ3k ∈ ∂F (ηkF )(x3k), ξ4kN

F
X(x4k) and

bk ∈ BRn such that

0 = ξ1k + ξ3k + ξ4k +
1

k
bk. (3.5)

Since the function f0 is locally Lipschitz, one may assume without loss of
generality the sequence {ξ1k} converges to some ξ1 ∈ ∂f0(x̄). To begin with
let us suppose that the sequence {ηk} is bounded we can assume that {ηk}
converges to η.Then we can use Lemma 1 to conclude without loss of gener-
ality that {ξ3k} converges to some ξ3 ∈ ∂(ηF )(x̄). Hence using (3.5) we can
conclude that the sequence {ξ4k} converges to some ξ4 ∈ NX(x̄). Hence we
deduce that

0 = ξ1 + ξ3 + ξ4

as required. We also need to show that η ∈ ∂ρ(F (x̄). Using the fact that
yk ∈ F (x2k) + 1

k
BRm we obtain that yk → F (x̄) Further using the fact that

ρ(yk) ∈ ρ(F (x2k)+
1
k
BRm we obtain that ρ(yk) → ρ(F (x̄). Hence we conclude

that η ∈ ∂ρ(F (x̄) using the fact that ηk ∈∈ ∂F ρ(yk) + 1
k
BRm by passing to

the limit as k →∞.

Now let us consider when {ηk} is an unbounded sequence. Then we may

assume that the sequence { ηk

||ηk||
} converges to some v with ||v|| = 1. Further

using the fact the regular subdifferential is a subset of the basic subdifferential
we can use (3.5) to conclude that

0 ∈ ∂f0(x1k) + ∂(ηkF )(x3k) + NX(x4k) +
1

k
BRn .
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Thus we have

0 ∈ 1

‖ ηk ‖
∂f0(x1k) +

1

‖ ηk ‖
∂(ηkF )(x3k) +

1

‖ ηk ‖
NX(x4k) +

1

k

1

‖ ηk ‖
BRn .

(3.6)
By Lemma 1 we can assume that the sequence θ3k ∈ ∂( ηl

||ηk||
F )(x3k) converges

to some θ ∈ ∂(vF )(x̄). Thus from (3.6) it is clear that −θ ∈ NX(x̄). We will
violate the constraint qualification (CQ) if we prove that v ∈ ∂∞ρ(F (x̄).
Now we shall show that indeed v ∈ ∂∞ρ(F (x̄).
Observe that

ηk ∈ ∂̂ρ(yk) +
1

k
BRm .

By the definition of regular normal vector we have

(ηk,−1) ∈ NF
epi(ρ)(yk, ρ(yk)) +

1

k
BRm+1 .

This shows that(
ηk

‖ ηk ‖
,
−1

‖ ηk ‖

)
∈ NF

epi(ρ)(yk, ρ(yk)) +
1

k

1

‖ ηk ‖
BRm+1 .

Noticing that yk → F (x̄) and ρ(yk) → ρ(F (x̄)), in the limit one has

(v, 0) ∈ Nepi(ρ)(F (x̄), ρ(F (x̄)).

This implies that v ∈ ∂∞ρ(F (x̄)). �

Remark 3 The above theorem essentially shows that using the approximate
necessary optimality condition in a sequential manner one finally converges
to the exact necessary optimality condition for problem (P2) and thus for a
large class of optimization problems. After the proof of Theorem 3 we have
attempted to outline a possible use of the approximate necessary optimality
conditions to develop an algorithm for nonsmooth optimization problems.
The above theorem may be considered as an attempt towards a possible
justification to develop nonsmooth optimization algorithms based on the ap-
proximate multiplier rule.

If the point x̄ is local minimum of the problem (P2) then the set of Lagrange
multipliers associated with x̄ is given as follows,

Λ(x̄) = {η ∈ ∂ρ(F (x̄)) : 0 ∈ ∂f0(x̄) + ∂(ηF )(x̄) + NX(x̄)}.
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An interesting question to ask here is under what condition the above set
is bounded. Since (P2) covers a large class of problems we can obtain a
much general result on the boundedness of the set of Lagrange multipliers
by proceeding along the lines of Theorem 3.2 in Jourani [9].

Theorem 6 Let us consider the problem (P2). Let x̄ be a local minimum of
(P2). Let us assume that the qualification condition (CQ) holds at x̄. Then
Λ(x̄) is a non-empty compact set.

Proof : The non-emptiness of the Λ(x̄) is clear from Theorem 4. Further
proceeding along the lines of the last part of the proof in Theorem 5 we
conclude that if Λ(x̄) is not bounded then (CQ) is violated. �

Following the lines of Theorem 3.2 in Journai [9] it might be tempting to
think that if F is smooth and X is normally regular and the set Λ(x̄) is
non-empty and bounded then (CQ) is satisfied at x̄. However this may not
work in general since in order to prove this fact we need to know whether
∂ρ(F (x̄)) + ∂∞ρ(F (x̄)) ⊂ ∂ρ(F (x̄)). This is not true in general since the
basic normal cone is not convex in general. Thus in order to develop some
sort of converse to the above result we need to introduce certain notions of
subdifferential and normal cone introduced by Clarke [4] (see also Clarke [5]).
The closed convex hull of the basic normal cone to the set X at x̄ is denoted
by N cl

X(x̄). For the lower-semicontinuous function ρ thus one may define the
Clarke subdifferential ∂◦ρ(x̄) as follows,

∂◦ρ(x̄) = {v ∈ Rn : (v,−1) ∈ N cl
epiρ(x̄, ρ(x̄))}

It has been shown for example in Clarke [5]( Proposition 1.2) that

∂◦ρ(x̄) = clco{∂ρ(F (x̄)) + ∂∞ρ(x̄)},

where clco denotes the closed convex hull of a set. We introduce the following
set

Λ◦(x̄) = {η ∈ ∂◦ρ(F (x̄)) : 0 ∈ ∂f0(x̄) + ∂(ηF )(x̄) + NX(x̄)}.

Since (0, 0) ∈ Nepiρ(F (x̄), ρ(F (x̄)) it is clear that 0 ∈ ∂∞ρ(F (x̄)) and hence
Λ(x̄) ⊆ Λ(x̄). This fact allows us to have the following proposition.

Proposition 1 Let x̄ be a local minimum of (P2). Assume that Λ(x̄) is non-
empty and Λ◦(x̄) is bounded. Further assume that F is a smooth function
and X is normally regular at x̄. Then (CQ) holds at x̄.
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Proof : On the contrary let us begin by assuming that (CQ) does not
hold at x̄. This implies that there exists 0 6= η ∈ ∂∞ρ(F (x̄)) such that

0 ∈ ∇F (x̄)T η + NX(x̄), (3.7)

where ∇F (x̄) denotes the Jacobian of F at x̄ and T denotes the transpose of
a matrix. Further since for any µ > 0 we have µη ∈ ∂∞ρ(F (x̄)), from (3.7)
we have

0 ∈ ∇F (x̄)T (µη) + NX(x̄). (3.8)

Since Λ(x̄) is non-empty there exists λ ∈ Λ(x̄) such that

0 ∈ ∂f0(x̄) +∇F (x̄)T (λ) + NX(x̄). (3.9)

Adding (3.8) and (3.9) and noting that X is normally regular at x̄ we have

0 ∈ ∂f0(x̄) +∇F (x̄)T (λ + µη) + NX(x̄).

It is clear that λ + µη ∈ ∂◦ρ(F (x̄)). Hence we have from the above inclusion
λ + µη ∈ Λ◦(x̄). Further it is simple to observe that by making µ → ∞ we
have ||λ + µη|| → ∞. This contradicts the fact that Λ◦(x̄) is bounded. �

It is important to note that if epiρ is normally regular at (F (x̄)), ρ(F (x̄)) then
the relation ∂ρ(F (x̄))+∂∞ρ(F (x̄)) ⊂ ∂ρ(F (x̄)) will hold. Thus in such a case
when F is smooth and X is normally regular at x̄ then the non-emptiness
and boundeness of Λ(x̄) is equivalent to the fact that (CQ) holds at x̄.

4 A Mixed Approximate Multiplier Rule

In this section we will focus our attention on the standard equality and
inequality constrained problem (P) given below:

min f(x)

subject to

gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , k

where f : Rn → R, gi : Rn → R, and hj : Rn → R are locally Lipschitz
functions. Our aim is to show that using the approximate sum rule (Theorem
1) one can actually design a very flexible necessary optimality condition. In
the following theorem we present a mixed optimality condition involving the
regular subdifferential and the basic subdifferential.
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Theorem 7 Consider the above problem (P) with locally Lipschitz data. Let
x̄ be a local minimum of (P). Suppose that the following qualification condi-
tion (Q) holds at x̄.
For λi ≥ 0, i ∈ I(x̄) = {i ∈ {1, · · · , m} such that gi(x̄) = 0}, λi = 0,
i /∈ I(x̄) and µj ≥ 0 for all j = 1, . . . , k with

0 ∈
m∑

i=1

λi∂gi(x̄) +
k∑

j=1

µj(∂hj(x̄) ∪ ∂(−hj)(x̄))

implies that λi = 0, for all i = 1, . . . ,m and µj = 0 for all j = 1, . . . , k.
Then for all ε > 0, there exist points x1, x2 ∈ Bε(x̄) and scalars λ̄i ≥ 0 i =
1, . . . ,m, µ̄j ≥ 0, j = 1 . . . , k such that

(i) 0 ∈ ∂̂f(x1) +
∑m

i=1 λ̄i∂gi(x2) +
∑k

j=1 µ̄j(∂hj(x2) ∪ ∂(−hj)(x2)) + εBRn,

(ii) λ̄igi(x2) = 0.

Proof : Since x̄ solves (P), then x̄ solves the following unconstrained
problem

Min f(x) + δC(x). (4.1)

where

C = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, 2, . . . , k}.

Thus we have
0 ∈ ∂̂(f + δC)(x̄). (4.2)

Further, observe that the qualification condition (Q) is stable in the sense
that there exists ε > 0, such that the qualification condition (Q) holds at
each x ∈ Bε(x̄). This is essentially due to fact that ∂gi for all i = 1, . . . ,m
and (∂hj ∪∂(−hj)) for all j = 1, . . . , k are closed graph set-valued mappings.
Consider such an ε > 0, for which (Q) is stable and apply the approximate
sum rule (Theorem 1) to obtain the existence of elements x1, x2 ∈ Bε(x̄) with
x2 ∈ C, ‖ f(x1)− f(x̄) ‖< ε and

0 ∈ ∂̂f(x1) + NF
C (x2) + εBRn . (4.3)

However since x2 ∈ Bε(x̄), the qualification condition (Q) holds at x2. Hence
from Mordukhovich [14] (Chapter 5) we have

NF
C (x2) ⊆

 ∑
i∈I(x2)

λi∂gi(x2) +
k∑

j=1

µj(∂hj(x2) ∪ ∂(−hj)(x2)) : λi ≥ 0, µj ≥ 0

 .
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Hence there exists scalars λ̄i ≥ 0, i = 1, . . . ,m and µ̄j ≥ 0, j = 1, . . . , k
such that

0 ∈ ∂̂f(x1) +
∑

i∈I(x2)

λ̄i∂gi(x2) +
k∑

j=1

µ̄j(∂hj(x2) ∪ ∂(−hj)(x2)) + εBRn .

Setting λi = 0, i ∈ I(x2) we get the result. �
Let us consider the simpler situation where problem (P) consists of only
inequality constraints. Let x̄ be the local minimum. Let the following quali-
fication condition holds at x̄:

λi ≥ 0, i ∈ I(x̄), λi = 0, i 6∈ I(x̄) and 0 ∈
m∑

i=1

λi∂gi(x̄) =⇒ λi = 0, for all i.

Now consider any ε > 0. Since x̄ is a local minimum, then using Theorem 7
we can show the existence of λi ≥ 0 and points x1, x2 ∈ Rn such that

(a) 0 ∈ ∂̂f(x1) +
∑m

i=1 λ̄i∂gi(x2) + εBRn ;

(b) λ̄igi(x2) = 0, for all ; i = 1, 2 . . . , m;

(c) x1, x2 ∈ Bε(x̄).

Thus a feasible point x̄ of (P) is said to be an ε-approximate critical point
if there exists ε > 0 such that the conditions (a), (b) and (c) are satisfied.
The next natural question is the following. Given a feasible point x̄, can
there be any practical way in which one can check whether x̄ satisfies the
mixed approximate multiplier rule as expressed through the conditions (a),
(b) and (c) above. However in practice it is very difficult to make a check
for all ε > 0. But in practice it is sufficient to check for an ε > 0 sufficiently
small. Below we outline the possibility of such an approach. The idea is to
take an ε0 > 0 sufficiently small and try to find points x1, x2 and scalars
λ̄i ≥ 0 such that (a), (b) and (c) are satisfied. To begin with, observe that
setting ε = ε0, the expression in (a) implies

0 ∈ ∂̂f(x1) +
m∑

i=1

λ̄i∂
0gi(x2) + ε0BRn ,

since ∂gi(x2) ⊆ ∂0gi(x2). Let us choose two points x1 and x2 ∈ Bε0(x̄)
randomly and let f be differentiable at x1. Burke, Lewis and Overton [3]
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show that such a choice can be made almost surely. Once we know that f
is differentiable at x1 we have ∂̂f(x1) = {∇f(x1)}. Hence (a) can now be
written as

0 ∈ ∇f(x1) +
m∑

i=1

λ̄i∂
0gi(x2) + ε0BRn .

In their paper Burke, Lewis and Overton [3] show how one can make use of
gradient information in the neighborhood of a point in order to estimate the
Clarke subdifferential at that point. Let us see how to use the technique in
[3] to estimate ∂0gi(x2), for each i. In order to use the technique in [3], we
consider a sampling radius δ > 0 and consider the open ball Bδ(x2), and then
choose k sample points zi

1, . . . , z
i
k where at each zi

1, . . . , z
i
k the function gi is

differentiable. Burke, Lewis and Overton [3] showed that the following set

Cgi
(x2) = co{∇gi(z

i
1), . . . ,∇gi(z

i
k)}

can be considered as a good estimate of ∂0gi(x2) in a stochastic sense if k is
sufficiently large. For details see Theorem 3.2, Theorem 3.3 and Corollary 3.4
in [3]. Of course for practical purpose, due to limitations of the computing
machine, one can consider an upper bound on the value of k. Thus, for each
i ∈ I(x2), once a sample {zi

1, . . . , z
i
k} is chosen from Bδ(x2), a practical way

by which we can deduce x̄ to be an ε0-approximate critical point is to fixed
scalars λ̂i ≥ 0, i ∈ I(x̄) such that

(e) 0 ∈ ∇f(x1) +
∑

i∈I(x2) λ̂iCgi
(x2) + ε0B,

(f) λ̂i ≥ 0 i = 1, . . . ,m.

The interesting thing to be observed is that we are using only gradient
information and moreover the approach described above seems to be more
advantageous than the approach based on the approximate multiplier rule
since in the current approach we have much less conditions to verify. Of
course we do not reject the point x̄ if the first sample fails to satisfy (e) and
(f) but continue the random sampling procedure further by changing the
points x1 and x2. Further from a computational point of view, for a given ε0,
we can also put an upper bound to the maximum number of times we choose
the points x1 and x2 and thus a corresponding sample of k points from the
Bδ(x2) corresponding to each i ∈ I(x2). Further one can also change the δ
when x2 changes.
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Thus essentially we need to find an element ξi ∈ Cgi
(x2), i ∈ I(x2) and

λ̂i ≥ 0, i ∈ I(x̄) such that∥∥∥∥∥∥∇f(x1) +
∑

i=I(x̂)

λ̂iξi

∥∥∥∥∥∥ ≤ ε0.

Since we have used the techniques of Burke, Lewis and Overton [3] in estimat-
ing the Clarke subdifferential of the constraints functions, one might argue
that one can have an uniform approach by replacing ∂̂f(x1) by ∂0f(x1) since
∂̂f(x1) ⊆ ∂0f(x1). However, we insist that one should keep ∂̂f(x1) since it
not only provides a sharper optimality condition but if x1 is a point where
f is differentiable we can replace ∂̂f(x1) by ∇f(x1), a luxury which is not
available for the Clarke subdifferential and the basic subdifferential. Thus by
keeping ∂̂f(x1) intact we in fact eliminate computational efforts which are
needed to estimate the Clarke subdifferential using the technique of Burke,
Lewis and Overton [3].
Acknowledgement The authors wish to thank professors V. H. Ngai for men-
tioning the possibilty to avoid continuity of ρ in Theorem 13 and Boris Mor-
dukhovich for valuable suggestions and fruitful comments.
Part of this work was done while Joydeep Dutta was visiting the laboratory
XLIM (Department of Mathematics and Informatics) UMR-CNRS 6272, and
he would like to thank the university of Limoges for its support and its hos-
pitality.
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