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Abstract

Sequential optimality conditions provide adequate theoretical tools to justify stopping cri-
teria for nonlinear programming solvers. Approximate KKT and Approximate Gradient Pro-
jection conditions are analyzed in this work. These conditions are not necessarily equivalent.
Implications between different conditions and counter-examples will be shown. Algorithmic
consequences will be discussed.
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1 Introduction

In this paper we study sequential first-order optimality conditions for Nonlinear Programming.
Necessary optimality conditions must be satisfied by the minimizers of optimization problems.

Usually, the theorems that support an optimality condition are of the form: “If the local minimizer
x satisfies CQ, then it satisfies KKT”, where KKT represents the Karush-Kuhn-Tucker conditions
and CQ is a constraint qualification [7, 14, 29]. In other words, usual first-order necessary opti-
mality conditions are of the form “KKT or not-CQ”.

On the other hand, practical methods for solving constrained optimization problems are itera-
tive. One must decide, at each iteration, whether it is sensible to terminate the execution of the
algorithm or not. Since testing true optimality is very difficult, the obvious idea is to terminate
when a necessary optimality condition is approximately satisfied. However, most popular numerical
optimization solvers do not test constraint qualifications at all, although (approximate) KKT con-
ditions are always tested. Many practitioners seem not to be aware that constraint qualifications
exist. This computational practice may be justified by a theoretical property of local minimizers:
Roughly speaking, a local minimizer might not be KKT, but it can always be approximated by a
sequence of “approximate-KKT” points.
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This state of facts leads one to study a different type of optimality conditions. We say that
x satisfies the “sequential optimality condition” defined by the mathematical proposition P when
there exists a sequence {xk} that converges to x and satisfies P({xk}). Usually, a sequential
optimality condition is associated with some quantity εk that must tend to zero. The natural
termination criterion that corresponds to the sequential optimality condition indicates to stop the
execution of the algorithm when εk is sufficiently small.

Sequential necessary optimality conditions are subject to the same requirements as ordinary
(punctual) optimality conditions: They must be satisfied by the minimizers of the problem, and
they should be as strong as possible. Moreover, useful (or algorithmically-oriented) optimality
conditions should be associated with some practical algorithm.

This paper is organized as follows. Approximate KKT conditions are addressed in Section 2.
In Section 3 we present AGP conditions and we state the relationships between these conditions
and the ones analyzed in Section 2. Conclusions are given in Section 4.

Notation.

• IN = {0, 1, 2, . . .}.

• ‖ · ‖ denotes an arbitrary norm.

• If h : IRn → IRm we denote ∇h = (∇h1, . . . ,∇hm).

• IR+ = {t ∈ IR | t ≥ 0}.

• If v ∈ IRn, we denote v+ = (max{v1, 0}, . . . ,max{vn, 0})T .

• If v ∈ IRn, we denote v− = (min{v1, 0}, . . . ,min{vn, 0})T .

• A ⊂ B means that the set A is contained in B.

• B(x, δ) = {z ∈ IRn | ‖z − x‖ ≤ δ}.

• PΩ(x) is the Euclidean projection of x on Ω.

2 Approximate-KKT conditions

We consider the Nonlinear Programming problem in the form

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, (1)

where f : IRn → IR, h : IRn → IRm, g : IRn → IRp are smooth.

Let I ⊂ {1, . . . , p}. We say that I satisfies the Sufficient Interior Property if for all feasible
point x there exists a sequence of feasible points zk such that zk → x and gi(zk) < 0 for all i ∈ I.
(Note that I = ∅ satisfies this property.)

Assume that I satisfies the Sufficient Interior Property. We say that the feasible point x∗ fulfills
the Approximate-KKT condition associated with I (AKKT(I)) if there exists a sequence {xk} that
converges to x∗ and satisfies:

• For all k ∈ IN there exist λk ∈ IRm, µk ∈ IRp+ such that

lim
k→∞

‖∇f(xk) +∇h(xk)λk +∇g(xk)µk‖ = 0, (2)
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µki = 0 for all i such that gi(x∗) < 0, (3)

and

gi(xk) < 0 for all i ∈ I. (4)

For simplicity, we will write AKKT = AKKT(∅) from now on.

Lemma 2.1. A feasible point x∗ satisfies AKKT(I) if, and only if, there exist sequences {xk} ⊂
IRn, {λk} ⊂ IRm, {µk} ⊂ IRp+, {εk} ⊂ IR+ such that xk → x∗, εk → 0 and for all k ∈ IN ,

‖∇f(xk) +∇h(xk)λk +∇g(xk)µk‖ ≤ εk, (5)

µki = 0 for all i such that gi(xk) < −εk, (6)

and

gi(xk) < 0 for all i ∈ I. (7)

Proof. Assume first that xk → x∗ and {xk}, {λk}, {µk} satisfy (2,3,4). Define

J = {j ∈ {1, . . . , p} | gj(x∗) = 0}.

Define, for all k ∈ IN ,

εk = max{‖∇f(xk) +∇h(xk)λk +∇g(xk)µk‖,−gj(xk), j ∈ J}. (8)

By (2), the continuity of g and the definition of J , we have that εk → 0 and (5) holds. Moreover,
(4) is identical to (7).

Now, if gi(xk) < −εk, we have that −gi(xk) > εk and, by (8), −gi(xk) > −gj(xk) for all j ∈ J .
Therefore, i /∈ J , so gi(x∗) < 0. Then, by (3), µki = 0 and, so, (6) holds. This completes the first
part of the proof.

Now, let us assume that there exist sequences {xk} ⊂ IRn, {λk} ⊂ IRm, {µk} ⊂ IRp+, {εk} ⊂ IR+

such that xk → x∗, εk → 0 and (5,6,7) take place. By (5) and (7), we have that (2) and (4) hold.
Suppose now that gi(x∗) < 0. Then, for k large enough, since xk → x∗ and gi is continuous, we
have that gi(xk) < −εk. Then, by (6), µki = 0. Thus, (3) also holds. 2

Lemma 2.1 provides a natural stopping criterion associated with AKKT(I). Given small pos-
itive tolerances εfeas, εopt, εcomp associated with feasibility, optimality (5) and complementarity
(6), an algorithm that aims to solve (1) preserving gi(xk) < 0 for all i ∈ I (7) should be stopped
when

‖h(xk)‖ ≤ εfeas, ‖g(xk)+‖ ≤ εfeas, (9)

‖∇f(xk) +∇h(xk)λk +∇g(xk)µk‖ ≤ εopt, (10)

and

µki = 0 whenever gi(xk) < −εcomp, (11)

for suitable multipliers λk ∈ IRm, µk ∈ IRp+. This is the stopping criterion employed in Algencan
[2] 1 and other Augmented Lagrangian algorithms [9]. Note that (11) can be forced, imposing that

1Algencan is the nonlinear programming solver available in the Tango project www.ime.usp.br/∼egbirgin/tango.
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µki = 0 whenever gi(xk) < −εcomp even if µki = 0 is not the Lagrange multiplier suggested by the
algorithm. After forcing µki = 0 in those cases, we must test (10). Stopping should be decided
when both (9) and (10) hold.

Clearly, if Ismall ⊂ Ibig one has that AKKT(Ibig) implies AKKT(Ismall). The reciprocal is not
true, as the following counter-example shows.

Counter-example 2.1. AKKT(Ismall) does not imply AKKT(Ibig).

Consider the problem

Minimize x subject to g1(x) ≡ −x2 ≤ 0, g2(x) ≡ x ≤ 0

and the point x∗ = 0. Define Ismall = {1}, Ibig = {1, 2}. Clearly, both Ismall and Ibig satisfy
the Sufficient Interior Property. The condition AKKT(Ismall) is satisfied: Take xk = 1/k, µk1 =
k/2, µk2 = 0 for all k ∈ IN .

However, AKKT(Ibig) does not hold. In fact, if g2(xk) < 0 one has that xk < 0. So,
−2xkµk1 + µk2 ≥ 0 and 1 + (−2xk)µk1 + µk2 cannot tend to zero.

The observation and counter-example above show that AKKT(∅) is the weakest optimality con-
dition of type AKKT(I). The consideration of the general AKKT(I) has algorithmic importance
because of its potential application to interior point methods. The classical barrier methods [12]
are the most typical ones to which AKKT(I), with nontrivial I, is applicable.

2.1 AKKT(I) is an optimality condition

We are going to prove that, if x∗ is a local minimizer of (1) and I satisfies the Sufficient Interior
Property, then x∗ satisfies AKKT(I). The proof is based on the convergence properties of the
Internal-External Penalty method given below.

Lemma 2.2. Let {ρk} be a positive sequence that tends to infinity and I1 ⊂ {1, . . . , p}. Let
Ω ⊂ IRn be closed. Assume that, for all k ∈ IN , xk is a global solution of

Minimize f(x) + ρk[
m∑
i=1

hi(x)2 +
∑
i/∈I1

gi(x)2
+]− 1

ρk

∑
i∈I1

1
gi(x)

subject to
gi(x) < 0 ∀ i ∈ I1, x ∈ Ω.

Consider the problem

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω (12)

and assume that I1 is such that there exists a global minimizer z of (12), such that there exists a
feasible sequence {zk} ⊂ Ω that converges to z and satisfies gi(zk) < 0 for all i ∈ I1. Then, every
limit point of {xk} is a global minimizer of f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω.

Proof. The proof of this lemma is a slight variation of the proof of Theorem 4.3.10 of [12]. We
include it here for completeness. Let x∗ be a limit point of {xk}. Let z be a global solution of (12)
and suppose f(z) < f(x∗), such that there exists a feasible z′ ∈ Ω with gi(z′) < 0 for all i ∈ I1 and
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f(z′) < f(x∗). By the definition of xk, the fact that gi(xk) < 0 for all i ∈ I1 and the feasibility of
z′ we have:

f(xk) ≤ f(xk) + ρk[
m∑
i=1

hi(xk)2 +
∑
i 6∈I1

gi(xk)2
+]− 1

ρk

∑
i∈I1

1
gi(xk)

≤ f(z′) + ρk[
m∑
i=1

hi(z′)2 +
∑
i 6∈I1

gi(z′)2
+]− 1

ρk

∑
i∈I1

1
gi(z′)

= f(z′)− 1
ρk

∑
i∈I1

1
gi(z′)

.

Taking limits for a suitable subsequence we have f(x∗) ≤ f(z′), so f(x∗) ≤ f(z). Now let us prove
that x∗ is feasible. By the closedness of Ω, since gi(xk) < 0 for all i ∈ I1, we have that x∗ ∈ Ω and
gi(x∗) ≤ 0 for all i ∈ I1. Now suppose that

∑m
i=1 hi(x

∗)2 +
∑
i 6∈I1 gi(x

∗)2
+ > 0. Then, there exists

ε > 0 such that
∑m
i=1 hi(x

k)2 +
∑
i6∈I1 gi(x

k)2
+ > ε for every k in a suitable subsequence. Thus,

f(xk) + ρk[
m∑
i=1

hi(xk)2 +
∑
i 6∈I1

gi(xk)2
+]− 1

ρk

∑
i∈I1

1
gi(xk)

> f(z′) + ρk[
m∑
i=1

hi(z′)2 +
∑
i6∈I1

gi(z′)2
+]− 1

ρk

∑
i∈I1

1
gi(z′)

+Ak, (13)

where Ak = ρkε + f(xk) − f(z′) − 1
ρk

∑
i∈I1

1
gi(xk)

+ 1
ρk

∑
i∈I1

1
gi(z′) . Since Ak > 0 for sufficiently

large k, (13) holds with Ak = 0 for sufficiently large k, which contradicts the definition of xk. This
proves that x∗ is feasible, hence a global solution of (12). 2

It is interesting to observe that the thesis of Lemma 2.2 does not hold under a weaker hypothe-
sis on I1. If we only assume that every feasible point can be approximated by a sequence such that
gi(zk) < 0 for all i ∈ I1 (zk not necessarily feasible) the convergence of the interior-exterior penalty
method may not occur. Take, for example, the problem of minimizing x subject to x(x− 1) = 0,
−x3 ≤ 0. The global minimizer is x∗ = 0 but the interior-exterior penalty method converges to 1.
See [21] for details.

Theorem 2.1. Let x∗ be a local minimizer of (1) and assume that I ⊂ {1, . . . , p} satisfies the
Sufficient Interior Property. Then, x∗ satisfies AKKT(I).

Proof. Let δ > 0 be such that f(x∗) ≤ f(x) for all feasible x such that ‖x− x∗‖ ≤ δ. Consider the
problem

Minimize f(x) + ‖x− x∗‖22 subject to h(x) = 0, g(x) ≤ 0, x ∈ B(x∗, δ). (14)

Clearly, x∗ is the unique solution of (14). Let xk be a solution of

Minimize f(x) + ‖x− x∗‖22 + ρk(‖h(x)‖22 +
∑
i/∈I

gi(x)2
+)− 1

ρk

∑
i∈I

1
gi(x)

subject to gi(x) < 0 for all i ∈ I and x ∈ B(x∗, δ). By the compactness of B(x∗, δ) and standard
arguments of barrier methods [12], xk is well defined for all k. By the Sufficient Interior Property,
the hypotheses of Lemma 2.2 are fulfilled. Therefore, the sequence {xk} converges to x∗. For k
large enough, one has that ‖xk − x∗‖ < δ, therefore, the gradient of the objective function must
vanish. Thus,

∇f(xk) + 2(xk−x∗) +
m∑
i=1

2ρkhi(xk)∇hi(xk) +
∑
i/∈I

2ρkgi(xk)+∇gi(xk) +
∑
i∈I

1
ρkgi(xk)2

∇gi(xk) = 0
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and
gi(xk) < 0 for all i ∈ I, k ∈ IN. (15)

Let us write λki = 2ρkhi(xk) for all i = 1, . . . ,m, µki = 2ρkgi(xk)+ if i /∈ I, µki = 1
ρkgi(xk)2

if
i ∈ I.

By (15) we have that (4) holds.
Since ‖xk − x∗‖ → 0 we have that

lim
k→∞

‖∇f(xk) +∇h(xk)λk +∇g(xk)µk‖ = 0. (16)

If gi(x∗) < 0, then, for k large enough, gi(xk) < 0. Then, if i /∈ I, we have that gi(xk)+ = 0
and µki = 0. If gi(x∗) < 0 and i ∈ I we have that 1

ρkgi(xk)2
→ 0. Thus, in (16) one has that µki → 0.

By the continuity of gi, (16) continues to be true re-defining µki = 0 for i ∈ I, gi(x∗) < 0. 2

2.2 AKKT(I) is a strong optimality condition

In this section we prove that AKKT(I) implies “KKT or not-CPLD”, where CPLD is the Constant
Positive Linear Dependence constraint qualification.

We say that the feasible point x fulfills the CPLD condition if the following property is satisfied:
If i1, . . . , iq ∈ {1, . . . ,m} and j1, . . . , jr ∈ {1, . . . , p} are such that gj`(x) = 0, ` = 1, . . . , r and
the gradients ∇hi1(x), . . . ,∇hiq (x),∇gj1(x), . . . ,∇gjr (x) are linearly dependent with nonnegative
coefficients corresponding to the gradients of inequalities, then there exists a neighborhood V of
x such that ∇hi1(z), . . . ,∇hiq (z),∇gj1(z), . . . ,∇gjr (z) are linearly dependent for all z ∈ V . The
CPLD condition was introduced in [30] and its status as a constraint qualification was elucidated
in [6].

Every local minimizer that satisfies CPLD necessarily fulfills the KKT conditions [6]. This
means that “KKT or not-CPLD” is a necessary optimality condition. This condition is fulfilled by
any feasible limit point of Algencan [2]. Since CPLD is weaker than the Mangasarian-Fromovitz
constraint qualification (MFCQ) [25], the optimality condition “KKT or not-CPLD” is stronger
than the Fritz-John conditions, which can be expressed in the form “KKT or not-MFCQ” [31].

Here we are going to prove that AKKT(I) is strictly stronger than “KKT or not-CPLD”. Be-
fore proving that AKKT(I) implies “KKT or not-CPLD” let us show that the reciprocal is not
true. In fact, the following example shows that this is the case for an arbitrary constraint quali-
fication CQ. More general constraint qualifications include Guignard’s [20], Abadie’s [1] and the
ones surveyed in [7]. The counter-example below implies that, in particular, “KKT or not-CPLD”
does not imply AKKT.

Counter-example 2.2. “KKT or not-CQ” does not imply AKKT.
Recall that every local minimizer x∗ that satisfies a constraint qualification necessarily ful-

fills the KKT conditions. Consider a nonlinear programming problem whose feasible set is {x ∈
IR2 | x2

1 = 0}. No feasible point satisfies any constraint qualification. To verify this, consider the
objective function f1(x1, x2) = x1. Although all the feasible points are minimizers, the gradient
of f1 is never a linear combination of the constraint gradient, therefore the local minimizers are
not KKT points. This means that, independently of the objective function and the constraint
qualification, all the feasible points satisfy “KKT or not-CQ”. Now, consider the objective func-
tion defined by f(x1, x2) = x2. Since ∇f(x) = (0, 1)T for all x and ∇h(x) is a multiple of (1, 0)T

for all x, it turns out that ‖∇f(x) + λ∇h(x)‖ is bounded away from zero for all x. Therefore,
‖∇f(xk) + λk∇h(xk)‖ cannot tend to zero. Thus, no feasible point satisfies AKKT.
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Theorem 2.2. AKKT(I) implies “KKT or not-CPLD”.

Proof. Assume that x∗ satisfies AKKT(I) and CPLD. Therefore, there exist sequences {xk} ⊂ IRn,
{λk} ⊂ IRm, {µk} ⊂ IRp+, {εk} ⊂ IR+ such that xk → x∗, εk → 0 satisfying (5) and (6). (We
do not need to use (7) at all for this proof.) Therefore, xk, x∗, λk, µk satisfy the conditions used
in Theorem 4.5 of [2] in the context of proving KKT for Algencan. Thus, we can reproduce the
arguments of that theorem to prove that x∗ satisfy KKT. 2

3 Approximate Gradient Projection conditions

Approximate Gradient Projection (AGP) conditions were introduced in [28], where the authors
observed that AGP is the optimality condition that fits the natural stopping criterion for Inexact
Restoration methods [8, 13, 17, 18, 23, 24, 26, 27].

Let γ ∈ (0,∞]. We say that a feasible point x∗ of (1) satisfies the AGP(γ) condition introduced
in [28] when there exists a sequence {xk} that tends to x∗ and satisfies

lim
k→∞

‖PΩk
(xk −∇f(xk))− xk‖ = 0, (17)

where Ωk is the set of points x ∈ IRn defined by:

∇hi(xk)T (x− xk) = 0 for all i = 1, . . . ,m, (18)

∇gj(xk)T (x− xk) ≤ 0 for all j | gj(xk) ≥ 0, (19)

and
gj(xk) +∇gj(xk)T (x− xk) ≤ 0 for all j | − γ < gj(xk) < 0. (20)

Mart́ınez and Svaiter [28] proved that AGP(γ) is an optimality condition (every local minimizer
satisfy it) and that AGP(γ) is equivalent to AGP(γ′) for all γ, γ′ ∈ (0,∞]. For this reason we will
always write AGP instead of AGP(γ). In [28] it was also proved that AGP implies the Fritz-John
condition (KKT or not-MFCQ). The stronger result that AGP implies “KKT or not-CPLD” seems
to be proved for the first time in [17].

If {xk} is a sequence generated by an optimization algorithm, the natural stopping criterion
associated with AGP is given by (9) and

‖PΩk
(xk −∇f(xk))− xk‖ ≤ εopt.

It is easy to prove that AGP implies AKKT [32]. Surprisingly, the reciprocal is not true, as the
following counter-example shows. Therefore, AGP is a stronger optimality condition than AKKT.

Counter-example 3.1. AKKT does not imply AGP.
Consider the problem

Minimize f(x1, x2) subject to h(x1, x2) = 0, g(x1, x2) ≤ 0,

where
f(x1, x2) = −x2,

h(x1, x2) = x1x2,

g(x1, x2) = −x1.
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Define x∗ = (0, 1)T . Let us show first that x∗ does not satisfy AGP.
Assume that xk → x∗. If xk1 > 0, the set Ωk defined by (18,19,20) is the intersection of the

half-space x1 ≥ 0 with the tangent line to h(x1, x2) = h(xk1 , x
k
2) that passes through xk. This line

tends to be vertical when xk approaches x∗. Therefore, PΩk
(xk −∇f(xk)) − xk tends to (0, 1)T .

Analogously, if xk1 < 0, the set Ωk is the half-space x1 ≥ xk1 intersected with the tangent line to
h(x1, x2) = xk1x

k
2 that passes through xk. So, PΩk

(xk −∇f(xk))− xk tends to (0, 1)T . Therefore,
for any sequence xk → x∗, ‖PΩk

(xk − ∇f(xk)) − xk‖ cannot tend to zero. As a consequence, x∗

does not satisfy AGP.
Now, let us show that x∗ satisfies AKKT. Define xk = (1/k, 1)T , λk = µk = k, therefore, for all

k ∈ IN we have ∇f(xk) +∇h(xk)λk +∇g(xk)µk = (0,−1)T + (1, 1/k)T k + (−1, 0)T k = 0. Since
g(x∗) = 0, we have that (2-4) hold, so x∗ satisfies AKKT.

A variation of the AGP condition has been used in the literature in the context of Inexact
Restoration methods [13, 18, 26] and mathematical programming with complementarity constraints
[3] without mentioning that this modification is not equivalent to the original AGP condition given
in [28]. Roughly speaking, the variation consists of including some of the linear constraints of the
problem (1) in the definition of Ωk, imposing that these constraints must be satisfied by xk for
all k ∈ IN . During several years, authors seemed to believe that all these sequential optimality
conditions (including AKKT) were equivalent. We will see here that this is not the case.

3.1 C-AGP condition

Assume that the functions gq+1, . . . , gp in (1) are convex and hr+1, . . . , hm are affine. Therefore,
the set Ω defined by gj(x) ≤ 0 for j = q + 1, . . . , p and hi(x) = 0, i = r + 1, . . . ,m is closed and
convex. We say that x∗ satisfies the Convex-AGP condition (C-AGP) if there exists a sequence
{xk} ⊂ Ω that tends to x∗ and satisfies

lim
k→∞

‖PΩk∩Ω(xk −∇f(xk))− xk‖ = 0, (21)

where Ωk is defined by (18,19,20) for i = 1, . . . , r, j = 1, . . . , q.
If an optimization algorithm generates iterates xk ∈ Ω, the natural stopping criterion associated

with C-AGP requires (9) and

‖PΩk∩Ω(xk −∇f(xk))− xk‖ ≤ εopt.

Let us prove that, under the condition that the constraints in Ω satisfy some constraint quali-
fication, C-AGP is an optimality condition.

Theorem 3.1. Let x∗ be a local minimizer of (1) and assume that, for all x ∈ Ω, the constraints
gi(x) ≤ 0, i = q + 1, . . . , p, hi(x) = 0, i = r + 1, . . . ,m satisfy some constraint qualification. Then,
x∗ satisfies C-AGP.

Proof. We use the technique employed in [28] for proving that AGP is an optimality condition.
Let δ > 0 be such that x∗ is a global minimizer of (1) with the additional constraint ‖x− x∗‖ ≤ δ.
Therefore, x∗ is the unique global minimizer of f(x) + 1

2‖x−x
∗‖22 subject to the constraints of (1)

and ‖x− x∗‖ ≤ δ. Assume that ρk →∞ and let xk be a global minimizer of f(x) + 1
2‖x− x

∗‖22 +
ρk(

∑r
i=1 hi(x)2 +

∑q
i=1 gi(x)2

+) subject to x ∈ Ω and ‖x− x∗‖ ≤ δ. By the theory of convergence
of external penalty methods, since x∗ is the unique global minimizer, it turns out that xk → x∗.
So, ‖xk − x∗‖ < δ for k large enough. Since Ω satisfies a constraint qualification, it turns out that
the KKT conditions of the subproblem must hold. Let

Ak = {i ∈ {q + 1, . . . , p} | gi(xk) = 0}.
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Therefore, for k large enough there exist {µki , i ∈ Ak}, λki , i = r + 1, . . . ,m such that

∇f(xk) + 2ρk[
r∑
i=1

hi(xk)∇hi(xk) +
q∑
i=1

gi(xk)+∇gi(xk)] + (xk − x∗)

+
m∑

i=r+1

λki∇hi(xk) +
∑
i∈Ak

µki∇gi(xk) = 0.

Thus,

(xk −∇f(xk))− [xk + 2ρk[
r∑
i=1

hi(xk)∇hi(xk) +
q∑
i=1

gi(xk)+∇gi(xk)]

+
m∑

i=r+1

λki∇hi(xk) +
∑
i∈Ak

µki∇gi(xk)] = xk − x∗.

By the non-expansion property of projections, we deduce that:

‖PΩk∩Ω(xk −∇f(xk))− PΩk∩Ω[xk + 2ρk[
r∑
i=1

hi(xk)∇hi(xk) +
q∑
i=1

gi(xk)+∇gi(xk)]

+
m∑

i=r+1

λki∇hi(xk) +
∑
i∈Ak

µki∇gi(xk)]‖2 ≤ ‖xk − x∗‖2.

But, by the definition of xk, writing the optimality conditions of the projection minimization
problem, we obtain:

PΩk∩Ω[xk + 2ρk[
r∑
i=1

hi(xk)∇hi(xk) +
q∑
i=1

gi(xk)+∇gi(xk)]

+
m∑

i=r+1

λki∇hi(xk) +
∑
i∈Ak

µki∇gi(xk)] = xk.

Therefore,
‖PΩk∩Ω(xk −∇f(xk))− xk‖2 ≤ ‖xk − x∗‖2 → 0.

This completes the proof. 2

Our next result shows that C-AGP is a strong optimality condition in the sense that it implies
“KKT or not-MFCQ”.

Theorem 3.2. Assume the feasible point x∗ satisfies C-AGP and the Mangasarian-Fromovitz
constraint qualification. Then, x∗ satisfies the KKT conditions.

Proof. In order to simplify the notation, we consider here r = m. The case r < m follows
straightforwardly. By the C-AGP condition, there exists a sequence {xk} such that xk → x∗ and
‖yk − xk‖ → 0, where yk is the solution of

Minimize
1
2
‖y − xk +∇f(xk)‖22 (22)

subject to
∇h(xk)T (y − xk) = 0, (23)
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gi(xk)− +∇gi(xk)T (y − xk) = 0, i = 1, . . . , q, (24)

gj(y) ≤ 0, j = q + 1, . . . , p. (25)

Observe first that, since xk → x∗ and ‖yk − xk‖ → 0, we have:

lim
k→∞

yk = x∗. (26)

Assume that i ≤ q is such that gi(x∗) < 0. Then, there exists c > 0 such that gi(xk)− < −c < 0
for k large enough. Thus, since ‖yk − xk‖ → 0, for k large enough we have:

gi(xk)− +∇gi(xk)T (yk − xk) < −c/2 < 0. (27)

Assume now that j ∈ {q + 1, . . . , p} is such that gj(x∗) < 0. Then, by (26),

gj(yk) < 0 (28)

for k large enough.
By (27) and (28), for k large enough, the indices of the active constraints of (22–25) at the yk

are contained in the set of indices of active constraints of (1) at x∗.
Assume now that λk ∈ IRm, µk

1
, . . . , µk

p
∈ IR+ are such that

∇h(yk)λk +
q∑
i=1

µk
i
∇gi(xk) +

p∑
j=q+1

µk
j
∇gj(yk) = 0, (29)

with µk
i

= 0 if the constraint (24) is not active at yk and µk
j

= 0 if the constraint (25) is not

active at yk. Assume, moreover, that for infinitely many indices k at least one of the coefficients
λk1 , . . . , λ

k
m, µ

k
1
, . . . , µk

p
is non-null. Then, dividing (29) by the maximum modulus of the coefficients,

we may assume, without loss of generality, that the maximum modulus of the coefficients in (29)
is 1 for all k. Then, using compactness and taking limits for k →∞ in (29) we obtain

∇h(x∗)λ+
q∑
i=1

µ
i
∇gi(x∗) +

p∑
j=q+1

µ
j
∇gj(x∗) = 0,

where µ
1
, . . . , µ

p
≥ 0, at least one of the coefficients is non-null and, for all i = 1, . . . , p, µ

i
= 0 if

gi(x∗) < 0. This is not possible since, by hypotheses, x∗ satisfies MFCQ. Therefore, the existence of
λk ∈ IR, µk

1
, . . . , µk

p
∈ IR+ satisfying (29) is not possible. This means that, for all k large enough, yk

satisfies the Mangasarian-Fromovitz constraint qualification corresponding to the problem (22–25).
It turns out that, for all k large enough, the KKT conditions of (22–25) are fulfilled.

Therefore, for k large enough, there exist λk ∈ IRm, µk ∈ IRp+ such that

yk − xk +∇f(xk) +∇h(xk)λk +
∑
i∈Ik

µki∇gi(xk) +
p∑

j∈Jk

µkj∇gj(yk) = 0, (30)

where Ik and Jk are the indices of active inequality constraints at yk. Above we proved that Ik ⊂ I∗
and Jk ⊂ J∗, where I∗, J∗ are the indices of active inequality constraints at x∗ for problem (1). If
the sequences {λk} and {µk} are bounded, then, taking convergent subsequences and taking limits
in (30) we arrive to the KKT conditions at x∗.
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If at least one of the sequences {λk}, {µk} is unbounded, the maximum element Mk of |λki |, i =
1, . . . ,m, µkj , j = 1, . . . , p tends to infinity along some subsequence. So, dividing both members of
(30) by Mk, we get:

(yk − xk +∇f(xk))/Mk +∇h(xk)λk/Mk +
∑
i∈Ik

µki /Mk∇gi(xk) +
p∑

j∈Jk

µkj /Mk∇gj(yk) = 0, (31)

Taking limits along convergent subsequences in (31) we obtain:

∇h(x∗)λ∗ +∇g(x∗)µ∗ = 0,

where µ∗ ≥ 0 and ‖λ∗‖+‖µ∗‖ > 0. This means that x∗ does not satisfy MFCQ, which contradicts
the hypothesis. 2

Counter-example 3.2. AGP does not imply C-AGP.
Consider the problem of minimizing x2 subject to the constraints of the counter-example 3.1.

Let us show that the point x∗ = (0, 1)T does not satisfy C-AGP. If {xk} is such that xk1 ≥ 0 for all
k, the same argument used in counter-example 3.1 may be used to show that (21) cannot hold.

However, x∗ satisfies AGP. To see this, consider the sequence xk = (−1/k, 1)T . In this case,
the projection of xk−∇f(xk) on the set defined by ∇h(xk)T (x−xk) = 0 and ∇g(xk)T (x−xk) ≤ 0
is equal to xk for all k ∈ IN . Therefore, AGP holds.

The result above encourages one to conjecture that C-AGP also implies “KKT or not-CPLD”,
as is the case of the original AGP condition. Surprisingly, this is not true, as the following example
shows.

Counter-example 3.3. C-AGP does not imply “KKT or not-CPLD”.
Consider the problem (1) with n = 2, p = 2, q = 1, f(x1, x2) = x1, g1(x1, x2) = −x2

1 − x2,
g2(x1, x2) = x2

1 + x2. The function g2 is obviously convex and the set of points such that
g2(x1, x2) ≤ 0 clearly satisfy standard constraint qualifications. It is easy to see that the CPLD
condition is fulfilled at x∗ = (0, 0)T since ∇g1(x) +∇g2(x) = 0 for all x. On the other hand, the
KKT conditions do not hold at x∗. Let us show, however, that C-AGP is satisfied. We define, for
all k ∈ IN , xk = x∗. Then, ∇f(xk) = (1, 0)T for all k and xk − ∇f(xk) = (−1, 0)T . Now, the
set Ωk is {x ∈ IR2 | ∇g2(xk)T (x − xk) ≤ 0}, so Ωk is the half-plane x2 ≥ 0. This implies that
Ωk ∩ Ω = {(0, 0)T } = {xk} for all k. Therefore, ‖PΩ∩Ωk

(xk − ∇f(xk)) − xk‖ = 0 for all k. This
means that the C-AGP condition is satisfied at x∗. (Recall that this is not in contradiction with
Theorem 3.2 because x∗ does not satisfy MFCQ.)

Counter-example 3.4. C-AGP does not imply AGP.
The counter-example that shows that C-AGP does not imply “KKT or not-CPLD” may also

be used to show that C-AGP does not imply AGP. In fact, if the point x∗ satisfies AGP, since
AGP implies “KKT or not-CPLD”, this optimality condition would hold at x∗.

3.2 L-AGP Condition

The independence of C-AGP with respect to AGP and the fact that C-AGP does not imply “KKT
or not-CPLD” induces one to think that AGP is, essentially, the strongest sequential optimality
condition that can be achieved by numerical optimization algorithms. However, a stronger AGP-
like condition may be used in a very common situation: When some of the constraints that define
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the feasible set are linear. We say that a feasible point x∗ satisfies the Linear-AGP condition
(L-AGP) if it satisfies the C-AGP condition in the case that gq+1, . . . , gp are affine functions. The
status of L-AGP can be deduced from observations already made in this paper. The counter-
example 3.2 may be used to show that AGP does not imply L-AGP. On the other hand, if a point
x∗ satisfies L-AGP, the corresponding sequence {xk} may be used to show that AGP also holds.
In other words, L-AGP is strictly stronger than AGP. This supports the point of view that, if an
optimization problem possesses linear constraints, it is sensible to preserve feasibility with respect
to them, declaring convergence when the AGP criterion holds with some tolerance. On the other
hand, using the same criterion with respect to general convex constraints does not seem to have
special advantages.

It is worth mentioning that, in [3], the L-AGP condition was used (with the name AGP) in
connection to mathematical programming problems with equilibrium constraints. In that paper it
was shown that, if an algorithm that theoretically converges to L-AGP points goes to a feasible
nondegenerate point, then this point is KKT.

AGP

C−AGP

L−AGP

AKKT

KKT or not−CQ

KKT or not−CPLD

KKT or not−MFCQ

Figure 1: Punctual and Sequential Optimality Conditions

4 Final remarks

Assume that one has a nonlinear programming problem with a set Ilin of linear constraints, a
different set Iconv of convex constraints and a third set Igen of general constraints. Let us say that
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C-AGP is satisfied when (21) holds defining {r+1, . . . ,m}∪{q+1, . . . , p} = Iconv and that L-AGP
holds when one defines {r+1, . . . ,m}∪{q+1, . . . , p} = Ilin. Then, the main results of this paper can
be visualized in Figure 1. In this figure CQ represents any constraint qualification, perhaps weaker
than CPLD (such as quasinormality [7], Guignard’s or Abadie’s). Roughly speaking, Figure 1
shows that L-AGP is the strongest first-order optimality condition currently used to generate
stopping criteria in well established practical algorithms. Of course, stronger optimality conditions
may exist and new practical methods satisfying these conditions may arise as a result of theoretical
and practical research.

The results of this paper may have a practical application in the design of novel optimization
algorithms. We have in mind recent sequential quadratic programming methods [16, 33] whose
implementation details are not consolidated, as well as inexact restoration methods and methods
based on filters.

Moreover, in the last 15 years many algorithms appeared aiming to solve new optimization-like
problems (equilibrium, multiobjective, bilevel, order-value and many others) [4, 5, 10, 11, 15, 19,
22]. Punctual necessary optimality conditions have been encountered for many of these problems
but, frequently, their algorithmic consequences are not clear. We believe that the sequential opti-
mality analysis may be useful in these cases both from the theoretical and the practical point of
view.

Acknowledgements. We are indebted to two anonymous referees for insightful comments and
recommendations.
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