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Abstract

In the Black-Scholes-Merton model, as well as in more general stochastic models in
finance, the price of an American option solves a system of partial differential variational
inequalities. When these inequalities are discretized, one obtains a linear complementar-
ity problem that must be solved at each time step. This paper presents an algorithm for
the solution of these types of linear complementarity problems that is significantly faster
than the methods currently used in practice. The new algorithm is a two-phase method
that combines the active-set identification properties of the projected Gauss-Seidel (or
SOR) iteration with the second-order acceleration of a (recursive) reduced-space phase.
We show how to design the algorithm so that it exploits the structure of the linear com-
plementarity problems arising in these financial models and present numerical results
that show the effectiveness of our approach.
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1 Introduction

This paper concerns the numerical solution of American options pricing problems. Most
options traded on options exchanges world-wide and a large fraction of options traded over-
the-counter are of the American-style, including options on stocks of individual companies,
stock indexes, foreign currencies, interest rates, commodities, and energy. Options books of
a large financial institution may contain options on thousands of different underlying assets,
and perhaps several dozen different contracts (with expiration dates ranging from days to
years, and different strike prices). As the underlying asset prices change throughout the
trading day, the options prices change as well. Re-pricing a large options book in real time
may thus require re-computing thousands of options prices quickly. For such large scale
applications, fast numerical algorithms are essential.

When the prices of underlying assets are assumed to follow a diffusion process, such
as in the classical Black-Scholes-Merton model based on the geometric Brownian motion
process, or in extensions such as Heston’s stochastic volatility model, the pricing function
of an American-style option satisfies a system of parabolic partial differential variational
inequalities. After this system is discretized in space and time, it yields a linear comple-
mentarity problem, which must be solved at each time step. Thus, the fast solution of
linear complementarity problems (LCPs) is of great practical importance in computational
finance. The most popular LCP method at present is the projected SOR iteration, or the
closely related variant, the projected Gauss-Seidel iteration [3]. The standard treatment of
LCPs for American option pricing can be found, for example, in [11] for the simple case of
the Black-Scholes-Merton model and in [6] for several more complicated settings.

Several new active-set methods [2, 10] have recently been proposed for solving these
LCPs more efficiently (interestingly, interior point methods are not well suited for this
application). Some of the most promising results are reported by Borici and Luethi [2], who
developed a variant of the simplex-like method for LCPs with Z-matrices [3].

In this paper, we show that much greater speedups can be obtained with an algorithm
that combines iterations of the projected Gauss-Seidel (or SOR) method with reduced-
space steps. This two-phase approach exploits the fact that the projected Gauss-Seidel
iteration often makes a quick estimation of the optimal active set, while the reduced-space
iteration can dramatically improve upon this estimate and yield a fast rate of convergence.
We illustrate the performance of this algorithm on both the Black-Scholes-Merton model
(using various values of volatility and maturity) and the Heston model [5] with stochastic
volatility. The algorithm studied in this paper is an adaptation of the method recently
developed by Morales et al. [8] for rigid body simulations. By tailoring this approach to
the structure of the linear complementarity problems studied in this paper, the algorithm
achieves speedups ranging from one to two orders of magnitude on the Black-Scholes-Merton
model, and of five to eight times on the Heston model, compared to the projected Gauss-
Seidel method. The savings are particularly significant in models with long time of maturity
or high volatility.



2 Pricing American Options in the Black-Scholes-Merton model

Consider an American put option with strike price K > 0 and maturity time 7" > 0. If
the option is exercised when the underlying asset price is .S, the option holder receives the
payoff ¥(S) = (K — S)" = max(K — S,0). Similarly, the payoff function for an American
call option is ¥(S) = (S — K)™. Let V(¢,5) be the option value at time ¢ € [0,7] when
the asset price is S. We assume that V solves the following partial differential variational
inequality (see, e.g., [7]):
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subject to the terminal condition (payoff at maturity):
V(T,S)=¥(S), Se(0,00),

where o is the volatility of the underlying asset, r is the risk free interest rate, and ¢ is the
dividend yield paid by the underlying asset.

For the convenience of numerical implementation, we let ¢ (z) = U(Ke*) and u(t,z) =
V(T —t,Ke*) —¢(z) (i.e., we make a state variable change x = In(S/K), and transform
the terminal value problem into an initial value problem). Then u(t, z) solves (see, e.g., [4])

%—Au—AwZO, te(0,7], z €Q, (2a)
u>0, te(0,T], z€Q, (2b)
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with the initial condition
u(0,2) =0, x€Q, (2d)

where 2 = R and the operator A is given by
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To numerically solve (2a-2d), we localize the problem to a bounded computational do-
main €2 = [z, Z] and impose a vanishing boundary condition on 9€:

u(t,z) =0, te(0,T], x € {z,z}. (2e)

To construct the variational formulation of (2a-2e), we consider a space Vy of functions
that vanish on the boundary 02 and, together with their (weak) first derivatives, are square



integrable on . Multiplying (2a) by a non-negative test function w € Vy and integrating
over {2, we obtain
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where (-, -) is the inner product in L?(2) and the bilinear form a(-,-) is given by
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Subtracting (4) from (3), we obtain
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for any test function w > 0. We seek a solution u(¢,x) > 0 in V{ which solves (5a) subject
to the following initial and boundary conditions:

u(0,2) =0, z€Q, (5b)

u(t,z) =0, te(0,T], € {z,z}. (5¢)

We apply the linear finite element method to solve (5a-5¢). Divide [z, Z] into m + 1
subintervals, each having length h = (z —z)/(m+1). Let ; = x+1ih, 0 <i < m+1, be the
nodes, and let ¢(z) = (v + 1)1{_1<z<0) + (1 — 2)1fp<z<1y- Define the following piecewise
linear finite element basis functions: ¢y ;(z) = ¢((z — x;)/h). The function ¢y, ;(z) takes
value 1 at node x; and zero at all other nodes. Let V} be the m—dimensional subspace of
Vo spanned by the basis functions {¢p 1, , ®nm}. We seek a finite element approximation
up, to the solution of (5a-5¢) in the space V}, with non-negative time dependent coefficients:

m

un(t,z) = Y ui(t)ni(x), wit) >0, €[0,T].

i=1

Note that by construction, the vanishing boundary condition (5c¢) is automatically satisfied.
The vanishing initial condition (5b) requires that u;(0) = 0 for 1 < i < m. Denote the
coefficient vector of uy, by u(t) = (u1(t), -+ ,um(t))". Consider an arbitrary test function
w > 0 in the space V, with coefficient vector w = (w1, ,wy,,)". Then from (5a) we
obtain

(w—u(t)" - [M-ua(t)+A-u(t)+F] >0, VYw >0, (6)

-
where u(t) = (%7... ,dfjgn) ; M = (M) with Mi; = (én,j, ¢n,i) is the mass matrix;
A = (Ay) with Aj; = a(¢nj, dns) is the stiffness matrix; and F = (F,---, Fy,)" with



F; = a(v, ¢p ;) is the load vector. For the Black-Scholes-Merton model, the matrices M and
A can be computed analytically:
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The matrix A is tri-diagonal but slightly non-symmetric. The load vector F can be easily
approximated by replacing 1 by its linear finite element interpolant.

For the temporal discretization of (6), we use the Crank-Nicolson scheme. It corresponds
to a f-scheme with § = 1/2. Divide [0,7] into N equal subintervals, each with length
k=T/N. Let t; = jk, 0 < j < N, be the temporal nodes. Denote u(t;) by u/. Then we
obtain the following:

(w—u)" - [(M+ kAW — (M — k(1 —0)A)u/~t + kF] >0, Yw >0,

wW=0 w>0 1<j<N.

This is equivalent to the following linear complementarity problem (LCP) in the unknown
vector u’:

(u) " [(M + kAW — (M — k(1 — )A)u’~! + kF] =0, (7a)
(M + kAW — (M — k(1 — 0)A)w/ ! + kF >0, (7b)
uwW=0 uw>0 1<j<N. (7c)

Thus, to price American options in the Black-Scholes-Merton model, we need to solve the
sequence of LCPs (7a-7c¢) at each time step.

3 Pricing American Options in Heston’s Model

In Heston’s stochastic volatility model [5], the asset price process Sy and the variance process
vy := o solve the following two-dimensional stochastic differential equation:

ds; = (’I“ — (])Stdt + \/EStdI/Vl (t),
dvi = k(0 —vi)dt + Ey/rdWa(t).
That is, the volatility o that was assumed to be constant in the Black-Scholes-Merton model

is now stochastic and its square is assumed to follow the square-root diffusion process with
a mean-reverting drift. The two Brownian motions W;, Wy (Wiener processes) driving



the asset price process and the variance process are correlated, with correlation coeflicient

€ [—1,1]. Here £ > 0 is the volatility parameter of the variance process, r > 0 is the risk-
free interest rate, ¢ > 0 is the dividend yield, x > 0 is the rate of mean reversion, and n > 0
is the long run variance level (7 is often denoted as € in the literature). The infinitesimal
generator of the two-dimensional Markov process (S, v¢) solving this stochastic differential
equation is given by:
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The formulation of the variational inequality and its discretization proceeds along the
same lines as in the Black-Scholes-Merton model. The option price V = V (¢, .S, v) is now a
function of two state variables, the asset price S and its variance v, as well as time ¢t. Doing
the same change of variables as in the Black-Scholes-Merton model, localizing the problem
to a bounded computational domain Q = [z, 7] X [v,7] and imposing a vanishing boundary
condition on Jf2, we arrive at the formulation (2) with the two-dimensional differential
operator

% f O%f 1., 0%f 1 . 0f of
Af = 5 8—+p§vavax+§§ vﬁ—l—(r 51})8——1—/&(77 v)% r
and the variational formulation (5) with the bilinear form
1 Ouodw 8u 8w 5 Oudw
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—(r—q-— iv)%w — (kn — kv — 55 )%w + ruw) dvdz.

We discretize spatially using two-dimensional rectangular finite elements. We divide
[z,7Z] into m + 1 equal intervals of length h, = (T — z)/(m + 1) and [v, 7] into n + 1 equal
intervals of length h, = (v —v)/(n 4+ 1). The nodes are (z;,v;) = (z + ihy,v + jhy),
i=0,1,---,m+1,7 =0,1,--- ,n+ 1. The rectangular two-dimensional finite element
basis functions are defined for any ¢ = 1,--- ,m and j = 1,--- ;n as the product of the
one-dimensional basis functions:

Gij (2, 0) = b, i(@)Pn,.(v) = (= i) /ha) (v = v)) /),

where ¢p, ;(-) and ¢(-) are defined as previously. The basis function ¢;; is equal to one at the
node (z;,v;) and zero at all other nodes. There are m x n nodes in [z, Z] x [v,7]. We arrange
the nodes as follows: (x1,v1), (z1,v2), -+, (z1,v), (z2,v1), (x2,V2), -+, (Tm,vyn). Let Vy
be the subspace of Vy spanned by the basis functions {¢;j1<i<m,1<j<n}. We seek a finite
element approximation uy in the space V} with non-negative time dependent coefficients:

n(t,z,v) ZZ wij ()i (x,v), wi;(t) >0,t € (0,77



We discretize temporally by the Crank-Nicolson scheme. Denote u(t) = (u1i(t), -, uin(t),
i (t), - umn(t)) T, and W = u(t;). The resulting discrete linear complementarity
problem has the form (7), as before. The mass matrix is block-tridiagonal and is given by

M Mg 0 41 0
Moy My - hoho | 1 4 . 1
M — 21 Mn , My, = xg Y ; Mig =My = ZMH;
.. .. M12 e 1
0 M1 My 0 14

thus, there is a total of nine non-zero diagonals.

To compute the elements of the stiffness matrix A, we need to compute a(¢y, ¢;;) for
1 <i,k <mand 1< jl <mn, with the bilinear form defined in (8). The integrands in
a(¢ri, ¢ij) are polynomials with the highest order terms 22v? and zv3. For such integrands,
the 2 x 2 Gaussian quadrature rule (tensor product of two-point Gaussian quadrature rules
for each coordinate) is exact and is used in our implementation. For fixed j and [, a(dwi, ¢ij5)
depends only on the difference i — k. Moreover, a(¢xi, ¢ij) = 0 for [i —k| > 1 or |j —1| > 1.
So A is also a block tri-diagonal matrix with tri-diagonal blocks:

A1r A 0
A Agr A
o Agg
0 Agr Ay

with a total of nine non-zero diagonals. It suffices to compute the blocks A1y, Ajs, Aoy with
a total of 3(3n — 2) non-zero values.

4 Description of the Algorithm

The linear complementarity problem (7) has the general form

2T (Bz+b) =0 (9a)
Bz4+b>0 (9b)
z 20, (9¢)

where the m x m matrix B and the m—vector b are constant, and z € R™ is the vector of
unknowns. A variety of algorithms have been proposed for solving problems of this form,
including matrix-splitting methods such as the projected Gauss-Seidel and SOR methods,
pivoting methods, and interior point methods; see, e.g. [3, 6, 12]. The most popular method
in the context of American options pricing is the projected SOR method [11], which includes
a relaxation parameter w that must be selected for the specific application at hand. Since
there is no clear choice for this parameter in our context, we focus our attention on the well
known Gauss-Seidel iteration that is obtained by setting w = 1. This method is given as
follows.



Projected Gauss-Seidel Method
Initialize 2° > 0; set k « 0.
repeat until a stop test is satisfied:
fori=1,...,m
Az =g (bi + X< Bz T+ BUZ?);
2P = max{0, 2F — Az}
end
k—k+1
end repeat

This method is simple to implement and has a small computational cost per iteration on
the problems considered in this paper, but may converge slowly and is difficult to parallelize
due to its sequential nature.

Convergence can be accelerated by employing a two phase method that first applies the
projected Gauss-Seidel iteration to obtain a guess of the active set, and then performs a
reduced-space phase in which the components of z corresponding to the active set are kept at
zero and the other components are chosen so as to satisfy (9a)-(9b). The cycle of projected
Gauss-Seidel and subspace minimization iterations is repeated until an acceptable solution
of the linear complementarity problem (9) is found.

Let us describe this approach in more detail. Suppose that after performing a few
iterations of the projected Gauss-Seidel method, ¢ components of z are zero. (We assume
without loss of generality that these are the first ¢ components of z.) We then improve
this estimate by fixing the first ¢ components of z at zero and computing the remaining
components so that (9a)-(9b) are satisfied. Given this zero structure of z and the fact that
z > 0, conditions (9a)-(9b) imply that the last m — ¢ components of the vector Bz + b must
be zero, i.e.,

P(Bz+b)=0 with P:=[0 I, ]. (10)

The zero structure of z also implies that z = P Pz, and thus (10) can be expressed as
B:+b=0, (11)

where R R
B=PBP", b=Pb, 5= Pz.

Next, we solve the square system (11) to obtain a vector Z;. Since some of the components
of 21 could be negative, which would conflict with (9c), we project Z; onto the nonnegative
orthant by setting

Zy — max(0, 24). (12)

This projection can cause some elements of the new vector Z; to become zero. If so, we
apply the reduced-space phase again to a problem of the form (11), but of smaller dimension.
The reduced-space phase is repeated in this manner until the solution of (11) contains only
a few negative components (say, at most 20), meaning that the active-set prediction changes
little. We denote by 2z° € R™ the iterate computed at the end of the cycle of reduced-space



iterations. (The nonzero components of z¥ are given by the final value of 2, .) The proposed
algorithm is summarized as follows.

Algorithm I: Projected Gauss-Seidel with Reduced-Space Phase

Choose an initial point 2°, a parameter A,. > 0, and set z «— 29 > 0.
repeat
Perform ks iterations of the Projected Gauss-Seidel Method, starting from z° to
obtain an iterate z;
repeat (Reduced-Space Phase)
Define Z to be the subvector of z whose components are positive;
Let m denote the dimension of the vector Z;
Form and solve the m x 7 reduced system (11) to obtain Z;
Set Z, «— max(0, 24);
Set nz < number of zero components in 2, ;
if nz > Age
Set z «— 24
else
Define the new iterate 2% € R™ by placing 2, in appropriate positions
and setting all other elements to zero; break;
end if
end repeat
end repeat

In our experiments, we set kg = 3 and A, = 20. We terminate Algorithm I when two
consecutive Gauss-Seidel iterates differ by less than a prescribed constant; see Section 5.

The success of the method depends crucially on the repeated application of the reduced-
space phase. It greatly accelerates the estimation of the optimal active set and endows the
method with a fast rate of convergence. The technique used in the solution of the linear
system (11) has an important effect on the overall computing time. For the Black-Scholes-
Merton model, it is appropriate to apply a direct factorization technique, since the coefficient
matrix is tridiagonal, whereas for the Heston model it is more effective to employ iterative
linear algebra techniques, as discussed in the next section.

5 Numerical Experiments

In this section we report the results of numerical experiments comparing the projected
Gauss-Seidel (PGS) method and the method proposed in this paper (Algorithm I) on the
Black-Scholes-Merton and Heston models. All computations reported in this paper were
performed on a 32-bit quad-core Intel 2.66GHz system with 4GB of RAM, running RHEL 4.



Tests with Black-Scholes-Merton Model.

We begin by discussing some details of implementation for the Black-Scholes-Merton
model. We set the option price target accuracy level at 1072, which corresponds to valuing
a stock option up to one penny of accuracy (the tick size for exchange traded options),
and make the computational domain large enough, and A small enough, to permit the
comparison of the two linear complementarity solvers. The risk free interest rate is r = 5%
and the dividend yield is ¢ = 0. The PGS method and Algorithm I require an initial guess
for the solution of a linear complementarity problem. For the first time step we set the
initial guess to zero. For the jth time step in (7a-7c), we use the solution u/~! obtained in
the (j — 1)th time step as the initial guess for u/. The PGS method and the new algorithm
were terminated when two consecutive iterates in the projected Gauss-Seidel iteration satisfy
| 251 — 2F|| oo < 1079 (we comment on this choice of stop tolerance below). The tridiagonal
linear systems (11) are solved by LAPACK [1] routine dgtsv.

Tables 1-4 present the results for the two methods applied to Black-Scholes-Merton
models with high volatility (¢ = 0.4) or low volatility (o = 0.2), and with long maturity
(T = 5) or short maturity (I' = 0.5). The first column gives the number of time steps N.
For each method, we report the total computing time (CPU time), the number of iterations
of the projected Gauss-Seidel method (PGS iter) and the at-the-money put option price
(ATM Put), which corresponds to Sy = K = 100. For the new algorithm we also report the
number of reduced-space iterations (Red iter). Since an LCP is solved at every time step,
Tables 1-4 report the average performance over all LCPs solved.

Projected Gauss-Seidel New Algorithm
N || CPU Time | PGS iter | ATM Put || CPU Time | PGS iter | Red iter [ ATM Put
10 0.569 4222 4.51 0.005 20 6 4.51
20 0.584 2158 4.59 0.005 12 3 4.59
40 0.593 1096 4.62 0.008 8 2 4.62
80 0.602 555 4.64 0.012 6 1 4.64
160 0.611 282 4.65 0.019 5 1 4.65
320 0.626 144 4.66 0.034 4 1 4.66

Table 1: Case 1: ¢ =0.2, T =0.5, z = —0.4, . = 0.4, h = 0.00125.

Projected Gauss-Seidel New Algorithm
N || CPU Time [ PGS iter [ ATM Put || CPU Time [ PGS iter [ Red iter [ ATM Put
10 4.420 16273 9.86 0.017 40 13 9.86
20 4.494 8285 10.00 0.021 23 7 10.00
40 4.554 4195 10.07 0.025 14 4 10.07
80 4.595 2117 10.11 0.035 9 2 10.11
160 4.643 1066 10.13 0.049 6 1 10.13
320 4.690 537 10.14 0.082 5 1 10.14

Table 2: Case 2: 0 =0.4, T =0.5, x = —0.8, £ = 0.8, h = 0.00125.

10



Projected Gauss-Seidel New Algorithm
N || CPU Time [ PGS iter | ATM Put [| CPU Time | PGS iter | Red iter | ATM Put
10 14.101 35833 9.45 0.019 30 9 9.45
20 14.544 18529 9.67 0.022 17 5 9.67
40 14.860 9467 9.79 0.028 10 3 9.79
80 15.096 4798 9.84 0.039 7 2 9.84
160 15.201 2420 9.87 0.061 5 1 9.87
320 15.316 1218 9.89 0.102 4 1 9.89

Table 3: Case 3: 0 =02, T=5,2z=—-1.2,2=1.2, h =0.00125.

Projected Gauss-Seidel New Algorithm
N || CPU Time | PGS iter | ATM Put || CPU Time | PGS iter | Red iter [ ATM Put
10 14.507 39644 23.57 0.022 38 12 23.57
20 14.905 20338 24.02 0.026 22 7 24.02
40 15.133 10341 24.24 0.032 13 4 24.24
80 15.319 5227 24.35 0.043 9 2 24.35
160 15.422 2632 24.41 0.064 6 1 24.41
320 15.511 1323 24.45 0.106 5 1 24.45

Table 4: Case 4: 0 =0.4, T =5, x = —2.2, =2.2, h = 0.0025.

We note that the new algorithm is significantly faster than the projected Gauss-Seidel
method. Although the computing time of the new algorithm increases with the number of
time steps NV, the savings in CPU time are quite substantial in all cases. Borici and Luethi
[2] report that their simplex method is between 2 and 9 times faster than the Projected SOR
method in their tests. The speed-ups obtained by Algorithm I are an order of magnitude
higher.

The stop test ||2¥+! — 2|, < 107 may seem overly stringent, and in fact a tolerance
of 10~® was sufficient in Cases 1-3 to achieve one penny of accuracy. However, for Case 4,
it was necessary to reduce the stop tolerance to 1079 so that the PGS method was able to
achieve the required accuracy.

Tests with the Heston Model.

We now compare the performance of the two methods on the Heston model described
in Section 3. The parameters for the model are as follows:

T =0.25, Sp = K =100 (at the money), r =5%, ¢ =0, p=—-0.5, £ =0.1, Kk =4,

Vo=n=006, [z,Z=[-10,0.5], [v,5]=][0.01,0.12], hy = hy = 0.00125.

Since the coefficient matrix in the Heston model is banded, its factorization gives rise to
significant fill-in. It is therefore attractive to use an iterative method in the reduced-space
phase, and we choose the generalized minimum residual method (GMRES) preconditioned
by an incomplete LU factorization; see e.g. [9]. Specifically, we employed GMRES with a
restart parameter of 5, and the modified LU decomposition (MILU) using no fill-in, i.e.,
MILU(0). The PGS method and the new algorithm were terminated when two consecutive
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projected Gauss-Seidel iterates satisfy [|z**! — 2¥||oo < 1076 (this stop tolerance was suffi-
cient in these experiments to achieve one penny of accuracy). The results are displayed in
Table 5.

Projected Gauss-Seidel New Algorithm
N [[ CPU Time | PGS iter [ ATM Put [| CPU Time | PGS iter [ Subs [ ATM Put
10 90.4 1922 4.24 5.9 26 8 4.24
20 96.7 1022 4.30 6.6 16 5 4.30
40 101.0 534 4.33 8.5 11 3 4.33
80 105.3 279 4.35 13.2 9 2 4.35
160 116.4 151 4.36 20.6 7 2 4.36

Table 5: Results on the Heston model.

We should note that the benefits of the MILU(0) preconditioner are quite substantial.
For example, for N = 160 the (average) total time required by the unpreconditioned GM-
RES method to solve the linear systems (11) was 167 seconds, compared to 21 seconds for
the preconditioned GMRES method. (The average number of GMRES iterations decreased
from 180 to 5 by employing preconditioning.) We experimented with various levels of fill-in
and drop tolerances for the incomplete MILU factorization and observed that the choice
MILU(0) (no fill-in) was the most efficient overall.

6 Final Remarks

We presented an algorithm for solving linear complementarity problems arising in American
options pricing models, and have demonstrated that it is highly efficient in practice. The
crucial component in the new algorithm is a (recursive) subspace minimization phase that
greatly accelerates the active-set prediction made by a projected Gauss-Seidel iteration.
The subspace phase can be tailored to the structure of the linear complementarity problem;
we have shown how to do so for the classical Black-Scholes-Merton model as well as for
Heston’s stochastic volatility model.

Acknowledgment. The authors are grateful to Jong-Shi Pang for his comments and advice
during the preparation of this manuscript.
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