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Abstract In this paper we introduce the LeGO (Learning for Global Optimization)

approach for global optimization in which machine learning is used to predict the out-

come of a computationally expensive global optimization run, based upon a suitable

training performed by standard runs of the same global optimization method. We pro-

pose to use a Support Vector Machine (although different machine learning tools might

be employed) to learn the relationship between the starting point of an algorithm and

the final outcome (which is usually related to the function value at the point returned

by the procedure). Numerical experiments performed both on classical test functions

and on difficult space trajectory planning problems show that the proposed approach

can be very effective in identifying good starting points for global optimization.
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Introduction

Many instances of global optimization algorithms require the execution of a procedure

starting from randomly chosen points in a domain or they require choosing suitable

initial values for a finite number of parameters. When dealing with multi–modal prob-

lems, i.e., optimization problems with many local optima which are not global, it is

a common procedure to run several instances of the same algorithm either starting

from different points or using a different set of parameters. Usually the large amount

of data generated during these runs is lost, as the user is typically interested in the

best run only, i.e., the one which has produced the best overall result. To the authors’

knowledge, at least in the field of global optimization, there has been no formalized

attempt of learning from the whole computational procedure. In this paper we present
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a novel approach, which we call LeGO (Learning for Global Optimization), in which

standard machine learning tools are employed in order to learn the unknown relation-

ship between the starting condition (initial point or parameters) and the final value

obtained. The idea underlying LeGO is indeed very simple: first run some instances of

an algorithm which requires an initialization; then from the results of these runs, train

a machine learning tool to be capable of estimating the outcome of future runs. Some

precursors of this idea might be found in the literature. As a quite well known exam-

ple, in (Rinnooy Kan & Timmer, 1987a, 1987b) clustering methods were employed in

order to select promising starting points for Multistart. In those approaches some form

of statistical learning was employed in order to be able to select randomly generated

points as candidate starting points for local searches. In a more deterministic setting

in (Dill, Phillips, & Rosen, 1997a, 1997b; Mangasarian, Rosen, & Thompson, 2005)

methods based on using a first set of function evaluations to build convex underesti-

mators are introduced. Using this information, new, promising, candidate points for

function evaluation are selected. Many other methods make use of past information to

build improved approximation or surrogate models in order to select new candidates.

In (Jin, Olhofer, & Sendhoff, 2002; Jin, 2005) some form of learning is embedded in

evolutionary methods. However we are not aware of previous papers dealing with the

application of machine learning to the problem of deciding a priori whether a starting

point is promising or not and which are general enough to be applicable both to simple

methods like Multistart as well as to more complex and refined global optimization al-

gorithms. A possible exception might be (Ampatzis & Izzo, 2009); however we remark

that while in many cases in the literature machine learning is used to build a suitable

approximation of the objective function which is used to guide the choice of next iter-

ation, here the fundamental difference is that learning is used to make inference on the

relationship between starting points and quality of the final result of an optimization

run, i.e. learning is directly applied to the feasible domain.

What we present in this paper is not a new algorithm, but a framework which can be

adopted in many computational schemes; of course this will not replace standard global

optimization methods. The LeGO approach can be seen as a refinement procedure,

to be carried out in parallel with (and not as a replacement for) global optimization.

In the problems we tested, this learning procedure was successful in improving the

solutions found in previous runs and in generating bunches of very good solutions.

However it is clear that, in particular when dealing with high dimensional spaces,

finite sampling in the feasible region will never be dense enough to guarantee a perfect

learning. So, while retaining the generalization capabilities that machine learning is

usually able to deliver, it is clear that LeGO will not, in general, generate completely

unpredictable and radically different solutions. It will, however, significantly accelerate

the search for good solutions, quickly discarding unpromising ones. So it can be seen

as an acceleration technique.

The paper is structured as follows: in Section 1 the idea of the LeGO approach will

be presented and its possible application to global optimization introduced; we remark

that, although the approach is general enough to be useful for general nonlinear opti-

mization problems, in this paper, in order to focus on the new approach, we choose to

restrict experimentation to box-constrained problems. in Section 2 a brief introduction

to Support Vector Machines as learning tools will be given. In Section 3 we will discuss

numerical results obtained with standard test functions for global optimization: the

aim of these experiments is to show the potential of this new approach on relatively

easy test problems; in Section 4 we tested in a systematic way our approach on a
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standard set of test functions for global optimization and propose some guidelines to

choose relevant parameters; in Section 5 the ideas developed in this paper are applied

to a challenging optimization problem made available to the scientific community by

the Advanced Concept Team at ESA, the European Space Agency. This problem con-

sists in finding optimal trajectories for long range inter-planetary space missions. The

proposed approach displayed excellent behaviour for this hard test problem.

1 General framework

Given an optimization problem

min
x∈S⊆Rn

f(x)

let:

– G() be a procedure to generate starting points (usually embedding a random com-

ponent);

– R(x) be a “refinement” procedure, which receives an input point x and returns a

point in R
n (hopefully in S), like, e.g., a standard local search procedure;

We assume that the computational cost of G is significantly lower than the com-

putational cost of R. Many heuristic techniques for solving optimization problems are

based on multiple runs of procedure R starting from points generated by procedure G.

Formally, the scheme is the following:

f⋆ = +∞ ; /* Initial estimate of the global minimum value * */

k = 0;

repeat

xk = G() ; /* generate a starting point */

; yk = R(xk) ; /* generate a refined solution */

; if f(yk) < f⋆ then

f⋆ = f(yk) , x⋆ = yk ; /* current global optimum estimate */

end

k = k + 1;
until stop condition ;

return (x⋆, f⋆);
Algorithm 1: P(G, R) procedure.

The different runs of procedure R are usually independent from each other. Then,

we might wonder whether it is possible to improve the results of some runs by exploiting

the results of previous runs using a machine learning-based approach.

From a general point of view, machine learning deals with the development of

algorithms and techniques that learn from observed data by constructing mathematical

models that can be used for making predictions and decisions.

Here we focus on supervised learning of classification functions, that is on the

problem of learning an unknown function g : S → {−1, 1} given a set of training

examples {xi, di} ∈ S × {−1, 1}, where the label di denotes the class of the input

vector xi.

With reference to our context, we assume that there exists an unknown relationship

between the starting point xk generated by G and the final point yk determined by

R. We associate the label dk = +1 to the input vector xk if the final function value
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f(yk) is “sufficiently low” and the label dk = −1 otherwise. In this paper, we used a

threshold T to identify sufficiently low function values; this threshold might be chosen

either through prior knowledge on the value of the global minimum or, as it will be

shown later, through a cross-validation procedure.

A starting point xk with associated label dk = +1 represents a “good” starting

point.

We devote a fixed number of runs to generate pairs composed of initial points

and final function values (xk, f(yk)) through the execution of G and R, and hence to

construct the corresponding training set (xk, dk), where the label dk ∈ {−1, 1} indicates

if, given the starting point xk, the refinement procedure leads to a final point yk whose

function value is, respectively, higher or lower than the threshold T . The training set

obtained this way can then be used for training a classifier CLS which, given in input

a point x, returns “yes” (+1) if point x is accepted and “no” (−1) otherwise.

Formally, we might employ the following scheme:

f⋆ = +∞, k = 0;

TS = ∅ ; /* training set initialization */

let T ∈ R ; /* choose a threshold */

repeat

xk = G() ;

yk = R(xk) ;

if f(yk) ≤ T then

TS = TS ∪ {(xk, +1)}
else

TS = TS ∪ {(xk,−1)}
end

if f(yk) < f⋆ then

f⋆ = f(yk) , x⋆ = yk;

end

k = k + 1;
until stop condition for training ;

CLS = train(TS) ; /* train a classifier on data TS */

; repeat
xk = G() ;

if CLS(xk) = +1 then /* is the xk accepted by the classifier? */

yk = R(xk) ; /* execute the algorithm from accepted starting

points */

if f(yk) < f⋆ then

f⋆ = f(yk) , x⋆ = yk;

end

k = k + 1;
end

until stop condition ;

return (x⋆, f⋆)
Algorithm 2: P ′(G, R,CLS) scheme
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2 A brief introduction to classification via SVM

In this section, in order to have a self–contained description of our approach, we briefly

present the Support Vector Machine (SVM) classifiers used in our experiments. For a

general introduction to SVM theory we cite, for example, (Vapnik, 1998; Burges, 1998;

Schölkopf & Smola, 2002).

We refer to the standard classification problem to construct (train) a classifier to

distinguish between two disjoint point sets in a Euclidean space.

Consider the training set

TS = {(xi, di), xi ∈ R
n, di ∈ {−1, 1}, i = 1, . . . , N}

and assume it is linearly separable, that is, there exists a separating hyperplane

H(w, b) = {x ∈ R
n : wT x + b = 0}

such that
wT xi + b ≥ 1 ∀xi : di = 1

wT xi + b ≤ −1 ∀xi : di = −1

(1)

The margin ρ(w, b) of a separating hyperplane H(w, b) is the distance from the hyper-

plane to the closest training points, i.e.,

ρ(w, b) = min
xi,i=1,...,N

|wT xi + b|

‖w‖
.

Linear SVM approach picks out, among linear classifiers, the optimum separating

hyperplane (i.e., the hyperplane having maximum margin). The basic training principle

of SVM, motivated by statistical learning theory (Vapnik, 1998), is that the expected

classification error for unseen test samples is minimized, so that SVM defines a good

predictive model. The optimum hyperplane can be determined by solving the following

quadratic programming problem

min
w∈Rn,b∈R

1

2
‖w‖2

di(w
T xi + b) ≥ 1 i = 1, . . . , N.

(2)

In practice linear classifiers may perform poorly when the data are not linearly

separable, and we need classifiers that produce nonlinear discriminants. The idea un-

derlying nonlinear SVM is to map the input vectors into a high-dimensional space,

called feature space, where the optimal separating hyperplane is constructed. Formally,

denoting by φ : Rn → H , a nonlinear map from the input space to the feature space,

the problem is

min
w∈H,b∈R,ξ∈RN

1

2
‖w‖2 + C

N
∑

i=1

ξi

di(w
T φ(xi) + b) ≥ 1 − ξi i = 1, . . . , N

ξi ≥ 0 i = 1, . . . , N,

(3)
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where ξi for i = 1, . . . , N are the slack variables, and the term

N
∑

i=1

ξi is an upper bound

on the training error. The regularization parameter C > 0 trades off margin size and

training error.

Using Wolfe’s dual theory it is possible to construct the nonlinear SVM classifier

without having to consider the mapping φ in explicit form but only requiring the knowl-

edge of the inner product in the feature space (the inner product kernel). Common

kernels are

– Polynomial k(x, z) =
(

xT z + γ
)p

, where p ≥ 1 and γ ≥ 0,

– Gaussian k(x, z) = exp
(

−γ‖x − z‖2
)

, with γ > 0.

The regularization parameter C > 0 and kernel parameters are usually determined

by a standard cross-validation tuning procedure, which is a widely employed technique

to prevent overfitting.

According to a standard k−fold cross-validation strategy, the training data is di-

vided into k subsets of equal size. Sequentially, one subset is used as validation set

and the remaining k − 1 subsets are employed to train the classifier. In this way,

each training vector is predicted once and the cross-validation accuracy is given by

the percentage of training vectors which are correctly classified. The cross-validation

accuracy so defined is computed in correspondence to a finite set of SVM parameter

vectors. The vector yielding the best cross-validation accuracy is selected and is used

to train the classifier. Note that the cross-validation prediction accuracy can reflect

the performance on classifying unknown data. In our computational experiments de-

scribed later we used Libsvm (Chang & Lin, 2001), a simple, easy to use, and efficient

software for SVM classication and regression. In particular we proceed to the SVM

training using Gaussian kernel; in some tests we performed a cross–validation proce-

dure based on a grid search to estimate the best values of the parameters, i.e., C and

γ. According to this procedure, a dyadic coarse grid search in the parameters space
(

i.e., C =
[

20, 21, . . . , 210
]

and γ =
[

20, 21, . . . , 24
]

)

is performed and the pair (C, γ)

yielding the best cross-validation accuracy is selected.

Finally we remark that we employed nonlinear SVM classifiers based on Gaussian

kernel in order to tackle problems which may require separations with complex bound-

aries. However, in some cases it would be preferable (in terms of prediction accuracy) to

adopt a simpler classifier, e.g. a linear SVM, or other kernel functions. Choosing what

kind of classifier to use deserves in practice particular attention, and can be performed

using again a cross-validation approach. This practical issue has not been investigated

in the numerical experiments, whose aim has been that of pointing out the validity of

the methodology.

3 Numerical Experiments

Although the proposed approach can be applied to different optimization problems and

algorithms, we focused our attention on Global Optimization (GO) problems. Within

this field, we considered two approaches, namely the standard Multistart (MS) and the

Monotonic Basin Hopping (MBH) (see, e.g., (Leary, 2000; Grosso, Locatelli, & Schoen,

2007)), which is a local exploration procedure similar to Iterated Local Search (see,
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e.g., (Lourenço, Martin, & Stülze, 2003)). The basic structure of these algorithms (also

related with the notation of Algorithm 1) is the following:

Multistart (MS) uniformly samples the feasible set (using a suitable operator G) and

then starts a local search from each sampled point (which represents the refinement

procedure R in this case);

Monotonic Basin–Hopping (MBH) randomly generates an initial local minimizer (op-

erator G); performs at each iteration a perturbation of the current local minimizer

x̄; starts a standard local search: if the resulting local minimizer improves the ob-

jective function in x̄, it substitutes x̄, otherwise x̄ is left unchanged. Note that the

perturbation phase is usually characterized by a perturbation radius r which has to

be tuned carefully, being the main responsible of the global exploration capability

of MBH. MBH usually terminates when for a certain number of iterations (denoted

by MaxNoImprove) no improvement has been observed. In this case the refinement

procedure R is a whole MBH run.

We might apply this approach to any global optimization problem, provided a

suitable random generator of feasible starting points and a local optimization method

are available. However, in order to give more evidence to the proposed approach, we

choose to apply LeGO to box–constrained optimization problem only.

In this section we show in detail how LeGO can be applied to a pair of well known

test functions. In the next section we will then perform a more systematic application

on a wider test set.

We performed experiments with the Rastrigin and the Schwefel test functions. The

aim of these experiments is that of checking whether the distribution of the values

returned after training is better than the distribution of the values returned during

the training phase.

In all the computational experiments, the Libsvm package for SVM classification

and regression has been used (see for details (Chang & Lin, 2001)). The procedure used

for training is a standard one proposed by the authors of the package. In particular,

we first scale the data set to the interval [−1, 1]; then we proceed to the SVM training,

using Gaussian kernel and a grid search to estimate the best values to be used as

parameters in the training phase. All these operations can be easily performed by

means of the Libsvm package.

In the following sections, the ratio between the percentages of points (of the whole

data set) included in the training and validation sets respectively, is denoted as %tr/%val.

3.1 Experiments with the Rastrigin test function

The n–dimensional Rastrigin test is defined as

min
x∈Rn

10n +
n

∑

i=1

(x2
i − 10.0 cos(2πxi))

xi ∈ [−5.12, 5.12] , ∀ i ∈ 1, . . . , n

with the global optimum at the origin, with value 0.
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The very high number of local minimizers of this function represents a serious

challenge for the classical Multistart approach, while the problem becomes trivial when

solved by means of MBH.

We started with a few experiments with n = 2. For these experiments, we ran

1 000 Multistart iterations, using L-BFGS-B (Byrd, Nocedal, Lu, & Zhu, 1995) as a

local descent method; the resulting set of 1 000 starting points and 1 000 local optimum

values were used to train a SVM using a data set partitioned as 75%/25%. Setting the

threshold value for acceptation equal to 1, we obtained 61 (out of 750) positive samples.

In Figure 1 we show the level curves of the 2–dimensional Rastrigin function. Crosses

(×) represent positive points (i.e., starting points leading to a local optimum of value

less than the threshold 1), stars (⋆) are negative points. The darker region around the

center of the picture represents the set of starting points which are accepted by the

trained SVM.
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’rast.dat’
’Trained.points’

’training.positive’ using 3:5
’training.negative’ using 3:5

’rast1level.dat’

Fig. 1 Training a 2–dimensional Rastrigin function

From the figure it can be seen that training is quite accurate in identifying a set

which, very likely, will lead L-BFGS-B to the global minimizer.

We then performed 10 000 Multistart runs at dimension n = 10, using a threshold

40 for considering a starting point a positive one and generated 10 000 acceptable start-
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Fig. 2 Empirical distribution function for 10 000 runs with the Rastrigin function at n = 10

ing points after training. In Figure 2 we report the empirical cumulative distribution

function (ECDF) of the optima found starting a local search from each of the 10 000

points accepted by LeGO versus the empirical distribution function obtained running

10 000 local searches from random starting points. We recall that at point x, the value

of an ECDF represents the percentage of observations with values less than or equal to

x. From the figure it is evident how training significantly improves in obtaining better

starting points; the best local optimum observed from points generated by Lego has

value 4.9748 while in 10 000 generic Multistart runs the record was 6.96474. Taking

into account the threshold used for training, the percentage of LeGo runs leading to

an optimum value not larger than 40 was 56.5%, while for standard Multistart these

values were observed in 6.9% cases.

3.2 Experiments with the Schwefel test function

Let us consider now the n–dimensional Schwefel test problem:

min
x∈Rn

n
∑

i=1

−xi sin(
√

|xi|)

xi ∈ [−500, 500] , ∀ i ∈ 1, . . . , n

This is a classical test function whose global optimum value is −418.9829n, atteined

at xi = 420.9687, i ∈ 1, . . . , n. From the point of view of global optimization, also this

problem is quite trivial, as it is a separable one and thus it is sufficient to solve it for

n = 1 and to replicate the one-dimensional optimum in order to find the global one.

However this test turns out to be quite a hard benchmark for those methods which

are unable to exploit separability. In particular, it has been observed in some papers,
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Fig. 3 Acceptance region of LeGO for the Schwefel function with n = 2

like, e.g., in (Addis, Locatelli, & Schoen, 2005), that MBH has serious difficulties in

solving this problem, in particular when the dimension n increases. Examination of the

graphs of Schwefel function for n = 1 or n = 2 reveals that this problem has a multiple

funnel structure, so that simple, repeated, executions of MBH searches started from

randomly selected points is doomed to fail as n increases, unless the number of restarts

is prohibitively large. Of course different strategies should be employed in order to

solve a problem like this, but our aim in this section is not to develop a new method

for the Schwefel test function, but to show that machine learning is useful in improving

the quality of an optimization method. What we would like to show is that after

having executed MBH for a fixed number of times, a learning tool like LeGO might

be successfully employed in order to generate promising starting points for MBH. As

an illustrative example, we show in Figure 3 the region of acceptable starting points

for LeGO after a suitable training.

The Schwefel-10 data

We begin with the analysis of the relatively easy case n = 10. In order to choose

the perturbation radius r for MBH, we performed 1 000 randomly started MBH runs

with MaxNoImprove set to 1 000 We observed that the global optimum was found

with a quite low success rate both for relatively small values of the radius r and with

significantly larger ones. This is not a surprise, as the multi-funnel structure of this

function makes it hard to optimize with MBH. After these initial experiments we

decided to fix the value r = 130 (26% of the box). We performed 1 000 runs to collect
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set positive (%) negative total
train 342 (45.6%) 408 750
valid 113 (45.2%) 137 250
total 455 (45.5%) 545 1000

Table 1 Training and validation sets for Schwefel 10–dim. function, T = −3700

set positive (%) negative total
train 174 (23.2%) 576 750
valid. 48 (19.2%) 202 250
total 222 (22.2%) 778 1000

Table 2 Training and validation sets for Schwefel 10–dim. function, T = −3800

set positive (%) negative total
train 59 (7.9%) 691 750
valid. 14 (5.6%) 236 250
total 73 (7.3%) 927 1000

Table 3 Training and validation sets for Schwefel 10–dim. function, T = −3900

pairs of first local optima – final value (a choice made in order to exploit the correlation

between start and end points). The data set partitioned as 75%/25%. After training

the LeGO SVM with threshold −3700, the situation in the training and validation

data sets was that reported in Table 1.

We obtained a trained SVM which, for the validation set of 250 runs, gave us 76.45%

accuracy, i.e., correct prediction of 191 out of 250 instances. The trained SVM has then

been used to generate 1 000 starting points for MBH. The execution of these 1 000 runs

lead to the global optimum only twice, the same frequency observed running MBH

from randomly generated starting points. However, with the chosen threshold −3700,

it was observed that, after training, the percentage of MBH runs which terminate at an

acceptable local optimum (i.e., one with function value not greater than the threshold)

grows from the original 46% to 76%.

In order to check the influence of the threshold on the SVM prediction capabilities,

we repeated the test lowering the threshold first to −3800, obtaining the result as in

Table 2, and then pushing down further to −3900, with the result reported in Table

3. The trend already observed with threshold −3700 gets more and more accentuated;

in particular, with threshold −3800 the global minimum is found in 9 out of 1 000

trials and the percentage of runs leading to a final value which is below the threshold

changes from 22% to 69%. Pushing the threshold further to −3900 this trend goes

to quite astonishing results: not only the percentage of successful MBH runs (those

leading to a final value not greater than −3900) grows from 7% to 75%, with 98% of

runs below the original threshold of −3700, but also the global minimum is found as

many as 83 times (in 1 000 runs), compared to the original 2 times. All of these results

are reported in Figure 4 where the empirical cumulative distribution functions for the

non trained MBH and the LeGO runs with different thresholds are compared.
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The Schwefel-50 test function

In order to further test the effectiveness of the learning mechanism, we ran similar tests

at higher dimension, testing MBH with the Schwefel function at dimension n = 50.

This is a very hard test case for the MBH method and the global minimum cannot in

general be found. We performed also in this case 1 000 independent MBH runs, with

the same parameters chosen for the case n = 10; this seemed to be a correct choice,

as the symmetry and separability of the objective functions lead us to believe that the

same kind of perturbation should perform similarly for any dimension. This has been

indeed confirmed by running MBH with different perturbation radii and, although the

procedure never found the global minimum, it displayed the best results (-19527.9)

for r = 130; we recall that in this case the global minimum is −20949.145. We kept

MaxNoImprove equal to 1 000. Indeed, extending MaxNoImprove from 1 000 to 5 000

the best value observed was again the same. Performing more MBH runs can give

some improvement: the best result after 10 000 runs is −19764.8 which is quite a

small improvement if compared with a ten-fold increase in computational effort. These

experiments once again confirm that due to the multi-funnel structure of this test

problem, MBH is not the best algorithm. By the way, we notice that a pure Multistart

method is in this case even worse: considering the fact that 1 000 MBH runs required

2 906 000 local searches, we ran 3 000 000 Multistart local optimizations, but the best

observed value was just −15678.0, thus confirming the strong superiority of MBH over

Multistart in these problems.

We started with a threshold value of −18 500, which represents a 23% percentile

of the frequency distribution of the observed local optima values (for n = 10 the 22%

percentile gave a reasonable rate of success). From the trained SVM we obtained the

following statistics:
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set positive (%) negative total

train 169 (25.5%) 581 750

valid. 58 (23.2%) 192 250

total 227 (22.7%) 773 1000

The results are not particularly impressive in this case: in Figure 5, a slight im-

provement is visible, but the behaviour of the trained method is quite similar to the

untrained one.

This might be due to the much higher difficulty of this test case as well as to the

fact that a 50-dimensional box is enormously larger than a 10-dimensional one, so that

learning from a data set containing the same number, 1 000, of instances might be too

optimistic. However, we tried to exploit the information contained in the data set and

we lowered the threshold to −19 000 (a 3.3% percentile); as quite expected, the trained

SVM turned out to be a trivial one (always refuse). We thus exploited the possibility to

give more weight to some observations during the training phase. We choose to assign

weight 5 to positive instances and 1 to negative ones; moreover, in order to avoid the

case of a validation set with no positive instances, we split the data set evenly (i.e.,

50%/%50 ). The obtained accuracy of the trained SVM has been the 96.8% in the

validation set, which, however, was not trivial. With this SVM we generated 1 000

starting local optima and run MBH from these. Using this method we obtained an

improvement in the best local optimum observed. In particular we obtained in one

case −19883.2, in 2 instances −19764.8 and in 11 the value −19646.3. So we were able

to observe, for as many as 14 times, an improvement over the best observed value. This

is remarkable because one of the possible critic to this approach is that it only allows

to replicate the best results of the training phase. This is not the case: the acceptance

region is large enough to include points from which improvements can be attained.

Moreover, the behaviour of the method systematically leads to low function values , as

can be seen in Figure 5 where the results of this experiment are compared with those

of MBH.

More in general, if the selected algorithm during the training phase often reaches a

good region without hitting the global minimum, then through learning we might be

able to reach the global minimum or, at least to improve with respect to the training

phase, if the region of improvement (i.e., the region containing starting points for the

selected algorithm leading to better results) is not ”too far” from the region where good

starting points have been detected in the training phase (which is confirmed by the

improvements attained in the MBH runs over Schwefel-50 but also by the improvements

attained by Multistart reported in the following Section 4). On the other hand, we also

need to point out that the detection of the global minimizer might be impossible if this

lies in a region completely unrelated with the good starting points detected during the

training phase.

4 Systematic numerical experiments

In order to gain confidence on the feasibility of the proposed approach, in this sec-

tion we observe the behaviour of LeGO on standard global optimization test sets.

These experiments will also give us the possibility of outlining a general procedure for

chosing the most relevant parameter of the approach, namely the threshold T used to

distinguish between negative and positive examples.
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Fig. 5 Empirical distribution function for Schwefel n = 50

For what concerns standard test functions for global optimization, the situation

in the literature is quite unsatisfactory. There are indeed collections of test problems,

but most of them are by far too easy to solve by means of modern global optimization

techniques. In order to test the capabilities of the approach proposed in this paper

we looked for a test set which was reasonably difficult to be a challenge for global

optimization methods, but not too difficult to prevent any possibility of learning from

a first, small, set of runs.

After browsing the literature, and discarding the test sets proposed by some of the

authors of this paper, we choose the test set cited in (Vaz & Vicente, 2007). Of these

tests, we decided to exclude all non differentiable ones as well those with too few (less

than or equal to 5) or too many (more than 50) variables. After this selection we were

left with 25 box constrained test problems. Almost of all these problems were trivially

solved with standard MBH runs. So the decision was taken to test the effectiveness of

LeGO with Multistart. We performed a first set of 10 000 Multistart trials for each test

function, using LBFGS-B as a solver. The results are summarized in Table 4, where

problem names refer to those published in (Vaz & Vicente, 2007) and colum “% succ”

represents the observed percentage or runs leading to the global minimum, from which

it is easy to derive the estimated probability of getting to the global minimum with a

single local search: From this table it is evident how easy it is for the most elementary

method for global optimization to find the global optimum in most cases; we can thus

observe the absolute inadequacy of standard global optimization test problems. In order

to run significant experiments, we choose to run LeGO only for the most difficult tests,

namely for 8 instances for which Multistart had at most 1% success rate.

For what concerns training, we choose to use the following procedure, which we

adopted consistently for the 8 difficult instances:
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problem n % succ problem n % succ
ack 10 0.00 em 10 10 0.00
exp 10 100.00 fx 10 10 0.00
gw 20 20 8.69 h6 6 68.58
lm2 10 10 3.79 mgw 10 10 1.00
mgw 20 20 0.14 ml 10 10 0.00
nf3 10 10 100.00 nf3 15 15 100.00
nf3 20 20 100.00 nf3 25 25 100.00
nf3 30 30 100.00 pp 10 100.00
ptm 9 1.99 rb 10 83.80
rg 10 10 0.00 sal 10 10 0.03
sin 10 10 15.98 sin 20 20 4.98
xor 9 60.87 zkv 10 10 100.00
zkv 20 20 100.00

Table 4 Test problems and related percentage of successes for Multistart

1. build the data set from 10 000 Multistart runs using the (uniform random) starting

point associated with the local optimum value found by the local optimization

method employed

2. normalize the data, by means of the svm-scale tool

3. split the data set as 75%/25%;

4. for every possible choice of the threshold parameter T from the 70% to the 90%

percentile (in steps of 5) and for every choice of the weight for positive instances

(as already showed for Schwefel-50 test function), ranging from 2 to 10, svm-train

was run with default parameters;

5. after this grid search in the space of parameters, the classification error was com-

puted on the validation set. A score was obtained through a weighted sum of false

positives and false negatives, with weight 1 for false positives and weight 2 for false

negatives (this way we considered a more dangerous error discarding a good start-

ing point than accepting a bad one). Using this score, the best pair of values for

the threshold and the weight was retained.

After training, for each of the 8 test functions we uniformly generated points until

we obtained 5 000 starting points accepted by svm-predict and 5 000 refused. After this

sampling, we ran Multistart from both sets and collected the results. Some statistics

about such results are reported in Table 5.

It is quite evident from the table that starting a local search from points which

are accepted from the trained svm delivers significantly better results than starting

from points which are refused. It seems, from the table, that only for problem ml 10

the situation is unclear. Indeed this problem is extremely peculiar, as it consists of an

objective function which is pretty constant and close to 0 in most of the feasible set,

with the exception of a very small region around the global optimum, where function

values go to −0.965. In this case it is reasonable to guess that no learning is possible,

as finding the global minimum is just a matter of guessing the correct starting point

within a region of attraction whose volume is almost negligible. We note in passing that

for the ack and rg test cases the best optimum found from accepted starting points is

strictly lower than that found in the training and validation sets.

In order to confirm our impression on the clear advantage in using trained starting

points, we performed a one–sided Kolmogorov–Smirnov test on the empirical distri-

bution function of the 5 000 results obtained starting from accepted and from refused
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Problem set Min. 1st Quartile Median Mean 3rd Quartile Max
ack Accepted 2.04 4.54 4.85 4.74 5.04 5.36
ack Refused 4.59 5.66 6.03 6.06 6.41 7.97
em 10 Accepted -8.88 -6.13 -5.24 -5.16 -4.25 -0.488
em 10 Refused -8.68 -4.96 -4.18 -4.12 -3.31 0.002
fx 10 Accepted -10.21 -2.13 -1.48 -1.97 -1.48 -1.28
fx 10 Refused -10.21 -1.48 -1.48 -1.58 -1.48 -1.15
mgw 10 Accepted 4.4e-16 3.9e-03 8.9e-03 1.9e-02 1.8e-02 3.63
mgw 10 Refused 4.4e-16 1.7e-02 3.2e-02 4.0e-02 5.0e-02 3.63
mgw 20 Accepted -1.3e-15 7.9e-03 2.5e-02 7.4e-02 9.7e-02 7.80
mgw 20 Refused -1.3e-15 2.2e-02 4.4e-02 8.4e-02 1.1e-01 9.42
ml 10 Accepted -1.7e-22 -3.8e-86 -1.0e-132 1.7e-22 3.6e-94 8.6e-19
ml 10 Refused -8.3e-81 -1.2e-160 1.9e-279 1.6e-74 1.2e-152 8.2e-71
rg 10 Accepted 6.96 44.77 57.71 57.54 68.65 127.40
rg 10 Refused 9.95 64.67 80.59 81.15 96.51 224.90
sal 10 Accepted 2.1e-16 13.80 15.10 14.47 16.10 20.90
sal 10 Refused 1.2e-14 17.60 18.90 18.65 20.40 26.60

Table 5 Statistics on the optimal values found from 5 000 points accepted by LeGO and from
5 000 refused ones

points. The null hypthesys we tested was that the optima obtained from accepted

points are stochastically smaller than those obtained from refused one or, equivalently,

that the cumulative distribution function of the optima obtained from accepted values

is pointwise greater than that of optima obtained from refused ones. The test is based

on the statistics

D+ = max
u

(FAcc(u) − FRef (u))

where F (·) indicates the empirical distribution function and the subscripts Acc and

Ref refer to points which are respectively accepted or refused by LeGO. The result of

the test is the following:

problem ack em 10 fx 10 mgw 10 mgw 20 ml 10 rg 10 sal 10

D+ 0.9564 0.3338 0.433 0.4928 0.2762 0.423 0.4486 0.741

In all 8 cases the p–value was negligible (< 2.2e − 16) so that the results are different

with very high level of significance.

In order to further confirm this analysis, in the following figures we present cumula-

tive distribution functions for the function values returned by pure Multistart (dotted

lines), Multistart from points accepted by the classifier (dashed lines), and from points

refused by the classifier (solid lines). As expected, the cumulative distribution func-

tions for pure Multistart usually lie exactly in between those for Multistart from points

accepted and refused by the classifier.
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5 Space trajectory design

Although the experiment made on standard test functions seem to support with strong

evidence the validity of the LeGO approach, in order to obtain further and possibly

more significative confirms, we choose to try the proposed approach on a difficult real-

life problem arising in the design of planet to planet missions. This problem consists

in finding suitable parameter values which are used to define a trajectory for a space

vehicle. The literature on this subject is quite vast – we refer the readers, e.g., to

(Addis, Cassioli, Locatelli, & Schoen, 2009; Izzo, Becerra, Myatt, Nasuto, & Bishop,

2007; Olympio & Marmorat, 2008; Vasile, 2005) for references on this subject. Here

it may suffice to say that this is a family of very hard global optimization problems

with relatively few variables (a few tens at most) but a huge amount of local optima.

Moreover, in general, no higher order information, like gradients, on the problem is

available, so that either derivative-free codes have to be used or, alternatively, finite

differences have to be employed. Luckily, although function evaluation requires the

numerical solution of a system of differential equation, usually this is extremely fast,

so that, apart from the well known numerical difficulties, central or forward finite

difference derivative estimation can be employed. The Advanced Concept Team at ESA,

the European Space Agency, maintains a web site where many instances of trajectory

optimization problems are available, in the form of Matlab or C source code (see

http://www.esa.int/gsp/ACT/inf/op/globopt.htm).

We focus here on the Tandem mission test set, which consists in 24 possible planet

sequences, ending on Saturn, for which the aim is to maximize the mass of the vehicle

at the arrival (or, equivalently, minimizes the fuel mass consumption).

Each sequence is then considered either as a box-constrained problems or a linearly

constrained one, in which the overall travel time is limited to ten years and computed

as a sum of the intermediate trip durations. For the purpose of this paper we made

experiments on the currently best planet sequence (Earth-Venus-Earth-Earth-Saturn)
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for the box constrained case. This problem has 18 variables and the current record

corresponds to a final mass of 1 606.59 kg, starting from a 2 000 kg initial mass.

The first trials, starting from a database of 1 000 MBH runs performed as described

in (Addis et al., 2009), were prepared using the same scheme as before, with a partition

of the starting point set into 500 for training and 500 for validation. Unfortunately, with

these data the first attempts to train an SVM typically lead to a failure, which consisted

in having a SVM which refuses every point, at least for reasonable choices of the

threshold used to distinguish acceptable from unacceptable points. Using a threshold

of very low quality (e.g., close to 0, which corresponds to 100% mass consumption, lead

to a reasonable SVM, but with only moderate usefulness in generating new starting

points. This behaviour might be linked to the fact that these MBH runs are very long

(on average roughly 2 000 steps) and, also due to the extremely rugged surface of the

objective function, there seems to be scarce correlation between starting points and

final value of the objective function. So we tried to use, for learning, the information

collected after a few (we, somewhat arbitrarily, choose 100) steps of MBH. In other

words, procedure G was implemented as a random uniform generation in the box,

followed by 100 steps of MBH. At the end of these 100 steps, we recorded the current

point and trained the SVM based upon this information, coupled with the final label

corresponding to the fact that the final optimum was below or above a threshold.

With these data we obtained the classification results reported in Table 6, using as a

threshold -1400 kg (we transformed the original mass maximization problem into one

of minimization by changing the objective function sign):

Training Validation
Predicted: + - % + - %
Positive 98 3 97.02 81 15 84.38
Negative 7 392 98.25 17 387 95.79

Table 6 Classification results on 1 000 MBH run for space trajectory optimization

After training, we started 50 000 runs of MBH, stopping each of them after 100

iterations and checked, by means of SVM, which of those points were acceptable.

A total of 1 788 points were selected this way and, from each of them, MBH was

restarted up to the natural termination (which, both here and in training, was chosen

to happen after 500 iterations of MBH with no improvement were observed). The

results obtained this way confirm what expected: starting points obtained from LeGO

tend to produce high quality final points. In Figure 6 we report curves representing

the cumulative distribution function of observed local optima; the figure reports an

empirical distribution function obtained from 10 000 independent executions of MBH

and the one corresponding to the 1 788 runs of MBH started from points accepted by

LeGO. It is evident from the figure that LeGO tends to generate very good points,

much better and much more frequently than standard MBH; it is seen from the figure

that only slightly more than 40% of the normal MBH runs lead to optimal values strictly

greater than 0 (which corresponds to consuming all of the mass of the spacecraft). On

the contrary, it can be observed that starting from trained points leads to a final

mass higher than 1 400kg in more than 50% of the runs. By the way, having several

good solutions, not necessarily the global one, is a characteristic usually required by

aerospace engineers, who prefer to have some possibility of choosing among many good

solutions rather than being forced to use the unique global one.
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Fig. 6 Comparison between function values obtained by LeGO and MBH on trajectory plan-
ning

It might be argued that the total effort required in generating 50 000 points by

means of short MBH runs wipes away the savings obtained. However, a count of the

total number of local searches performed reveals this is not the case. To generate

the sample we ran 50 000 of times 100 local searches, which accounts for a total of five

million local searches. To run MBH from the selected 1 788 points we needed 1 342 local

searches per run (on average). The total effort in generating points and executing MBH

from those selected was 7 388 365 local searches. In contrast, the 10 000 pure MBH runs

reported in Figure 6 required a total of 10 255 863 local searches. Thus, not only this

procedure saved roughly 30% of the overall computational costs, but also systematically

produced much better optima. For what concerns CPU times, we observe that usually

points generated by means of the proposed training procedure, tend to be quite good;

on the contrary, starting from a random uniform point, it is quite likely that there will

be no improvements, so that the total number of local searches required is, in quite a

high number of cases, exactly equal to the MaxNoImprove parameter. Thus, starting

a prefixed number of MBH runs, although requiring more local searches, might seem

to be faster than starting an equivalent number of MBH runs from points generated

by the learning method. Of course, the resulting quality will typically be significantly

different, but, in any case, one might wonder whether the whole process is worthwhile.

In the following we summarize the CPU times (measured on an Intel Core 2 Quad

CPU running at 2.66GHz):

– Generation of 1 000 points obtained as MBH runs stopped at the 100-th iteration:

26′22′′

– Executing full MBH runs starting from those points in order to build the training

and validation sets: 665′2′′

– Training via Libsvm: 0′3′′
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– Generation of 50 000 starting points through MBH runs stopped at the 100-th

iteration: 1343′41′′

– Executing full MBH runs from the 1 788 accepted starting points: 2427′48′′

The complete procedure, thus, required 4463′16′′. In order to make a comparison,

performing 10 000 standard MBH runs required 6837′15′′. So it is seen that the whole

procedure based upon training required 71% of the local searches and 65% of the CPU

time with respect to a standard run of MBH which consistently produced results of

much lower quality.

Conclusions and further developments

In this paper we proposed an innovative framework (LeGO) to be coupled with stan-

dard global optimization methods in order to increase their capability of quickly ex-

ploring promising regions. Although the idea is indeed very simple, its success was not

easy to predict. The existence of a quite strong relationship between the starting point

of a complex optimization procedure like MBH and the final optimum value came as

a surprise. In simple minded methods like Multistart this might have been argued, as,

at least in an ideal case, a local search is a deterministic procedure which should lead

to a local optimum belonging to the same region of attraction as the starting point;

so a deterministic dependency exists between starting points and local optima values

and machine learning can be used to approximate this dependency. On the contrary, in

more refined methods like MBH, not only the path followed by the method is, in gen-

eral, “non local” and very long steps, crossing many regions of attraction, are usually

performed, but also the relationship between starting and final point is a non determin-

istic one, as random moves are performed during the algorithm. So the same starting

point might lead to radically different optima. This behaviour might in theory be an-

alyzed, looking at MBH as the realization of a Markov chain in the (hopefully finite)

state space of local optima. Learning can thus be seen as a method to approximate

the probability that the system, started at a specific local optimum, will eventually be

absorbed in a state corresponding to a local optimum whose value is below a threshold.

We did not pursue further this analysis, but we plan to do this in the future; here we

remark that in our experiments we observed that a LeGO approach can be applied

with significant success even in this difficult probabilistic framework.

Although the experiments reported in this paper show, in our opinion, that the

proposed approach has a great potential, many issues remain to be addressed and

will be analyzed in future papers. One deals with LeGO training: as we saw, training

usually has a negligible cost in comparison with optimization; however, as optimization

runs are performed, the size of the available data increases, so that one might wish to

re-train the SVM. However, in this case, soon or late the cost of training might become

very significant. It might be interesting, thus, to develop incremental techniques which

re-train an already trained SVM after new observations become available. If re-training

is efficient enough, we might think of a global optimization procedure with two parallel

processes, one composed of the original optimization method and another one which,

in parallel, trains the SVM and generates new optimization runs from trained points.

Another issue is related to the generation of starting points from a trained SVM: we

used a straightforward acceptance/rejection method, but, thanks to the fact that the

SVM has a known analytical expression, direct random generation methods might be

developed. Another research direction deals with the extension of this approach to
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problems with constraints different from simple bounds on the variables: in principle,

nothing changes in the approach, but the numerical difficulties in generating good

starting points might be significantly higher. Still another research issue deals with the

development of suitable methods to choose the parameters of the SVM – actually we

used a blind grid search, but in some applications knowledge of the problem might

enable us to guess reasonable values, at least for some of the parameters. Finally, for

what concerns the application to space trajectory design, after an initial failure, we

obtained a successful LeGO method by learning from the 100-th iteration of MBH.

The choice of these first 100 local searches was totally arbitrary and more research

should be carried on in order to obtain a reasonable guideline for further application.

One possibility which we are currently exploiting, is that of inserting in the training set

not just the starting point of MBH, but several points encountered during the run (e.g.,

all points which lead to an improvement); this way the training set can be enlarged

with no effort except storage and learning the structure of MBH might become much

easier, with no need of modifying the standard LeGO approach.

In conclusion, we think this paper is a starting point for the development of new

methods which, coupled with global optimization algorithms, can significantly augment

their efficacy.
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