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Abstract

When the matrix of distances between cities is symmetric and cir-
culant, the traveling salesman problem (TSP) reduces to the so-called
symmetric circulant traveling salesman problem (SCTSP), that has ap-
plications in the design of reconfigurable networks, and in minimizing
wallpaper waste. The complexity of the SCTSP is open, but conjectured
to be NP-hard, and we compare different lower bounds on the optimal
value that may be computed in polynomial time. We derive a new lin-
ear programming (LP) relaxation of the SCTSP from the semidefinite
programming (SDP) relaxation in [E. de Klerk, D.V. Pasechnik, and R.
Sotirov. On semidefinite programming relaxation of the traveling sales-
man problem, Siam Journal Optimization, 19:4, 1559-1573, 2008]. Fur-
ther, we discuss theoretical and empirical comparisons between this new
bound and three well-known bounds from the literature, namely the Held-
Karp bound [M. Held and R.M. Karp. The traveling salesman problem
and minimum spanning trees. Operations Research, 18:1138-1162, 1970],
the 1-tree bound, and the closed-form bound for SCTSP proposed in [Van
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PhD thesis, Groningen University, 1992].
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1 Introduction

A (weighted) graph G is called circulant if its (weighted) adjacency matrix is
circulant. Recall that a circulant matrix has the following form:

To r T2 . . Tn—1
Tn—1 To T1 T2
To T1 T2
D= : (1)
T2 . . . To T
T1 T2 . . . To

that is
Dij:Tj—i mod n (i,j:O,...,n—l).

A natural question is whether a given combinatorial optimization problem
becomes easier when restricted to circulant graphs.

For example, the maximum clique and minimum graph coloring problems
remain NP-hard for circulant graphs, and cannot be approximated to within
a constant factor, unless P=NP [3]. It is still an open question if the Hamil-
tonian directed circuit problem restricted to directed circulant graphs remains
NP-hard; see Yang et al [19], Heuberger [10], and Bogdanowicz [1]. On the
other hand, the shortest Hamiltonian path problem is polynomial solvable for
undirected circulant graphs as shown by Burkard and Sandholzer [2]. Likewise,
deciding whether a circulant graph is Hamiltonian may be done in polynomial
time [2].

The symmetric circulant traveling salesman problem (SCTSP) is the problem
of finding a Hamiltonian circuit of minimum length in a weighted, undirected,
circulant graph. As far as we know, the complexity of the SCTSP is still open
(see, e.g., [18], [4]). The best known approximation algorithm for SCTSP is a
2-approximation algorithm ([8],[18]). The bottleneck TSP problem is known to
be polynomially solvable in the circulant case [2].

The study of the circulant TSP is motivated by practical applications, such
as reconfigurable network design [15], and minimizing wallpaper waste [6].

In this paper we compare four lower bounds that may be obtained in poly-
nomial time for the SCTSP problem:

1. we introduce a new linear programming (LP) bound derived from a semidef-
inite programming (SDP) relaxation of TSP due to De Klerk et al. [10].

2. The second lower bound dates back to 1954 and is due to Danzig, Fulkerson
and Johnson [5]. Its optimal value coincides with the LP bound of Held
and Karp [11] (see, e.g., Theorem 21.34 in [13]), and is commonly known
as the Held-Karp bound (HK).

3. The third bound is due to Van der Veen [18] (VAV) and was introduced
in 1992 for the SCTSP. It is given as a closed form expression and may be
computed in linear time.



4. The fourth bound is the well-known 1-tree (1T) bound for TSP (see, e.g.
§7.3 in [4]).

We will show how the bounds 1, 2 and 4 above may be computed more simply for
circulant graphs than for general TSP. Subsequently we will perform theoretical
and empirical comparisons of the bounds.

Outline

This paper is structured as follows. In Section 2 we review the basic concepts
concerning the four lower bounds. In Section 3 we derive the new LP bound
from the SDP formulation in [10]. Numerical comparisons between bounds are
presented in Section 4 and some theoretical results are proved in Section 5.
Conclusions and open problems are listed in Section 6.

Notation and preliminaries

Consider a permutation group on n elements, say G, represented as a multi-
plicative group of n X n permutation matrices in the usual way.

Definition 1. The centralizer ring (or commutant) of the group G is defined as

follows.
1

A={Y €RV" .Y =
{ 7]

Y PTXP, X eR™M} (2)
pPeg

An equivalent definition is
A={Y eR"™": PY =YP VP eg}

The linear mapping X — R(X) := ﬁ > peg PTXP, X € R™" is called
the group average or Reynolds operator; and P € G are the permutation matrices
of the permutation matrix representation of G.

We will repeatedly use the following property of the Reynolds operator:

trace(R(X)Y) = trace(R(Y)X) V X,Y € R™™". (3)

The centralizer ring of G has a structure of a matrix *-algebra, i.e. it is a
subspace of R™*" that is closed under matrix multiplication and taking trans-
poses.

The symmetric circulant matrices may be viewed as the centralizer ring of
the dihedral group D,,, and we will repeatedly use this observation in the rest
of the paper.

We will denote the standard 0-1 basis of the symmetric circulant matrices
by {By :=1,Bs,...,Bs}, where d := |n/2]. Thus:

1 ifi—j=k modn o
(Bk)ij::{o olse J (k=0,...,d, i,j=1,...,n).



The positions of the nonzero entries in By, are sometimes called the k-th stripe,
and we will use this terminology.

Since matrix multiplication is also commutative for circulant matrices, the
basis can be simultaneously diagonalized by a suitable unitary matrix (called
the discrete Fourier transform matrix; see e.g. [9]).

When dealing with circulant matrices, it is usual to introduce some addi-
tional notation. If {¢p,...,t,} is a subset of {0,1,...,d} for some m < d, we
define

Crltr, .. tm) == > _t;By,.
=0
Thus we will informally say that the circulant graph C,(t1,...,t,,) consists of

the stripes tq,...,t,,. In other words, we use the same notation for the circulant
matrix Cp,(t1,...,t,) and the associated weighted circulant graph.

2 Lower bounds for CSTSP

In this section we discuss four lower bounds for SCTSP.

2.1 SDP/LP bound

Let K, (D) denote a complete undirected graph on n vertices, with edge lengths
(also called weights or costs) D;; = Dj; >0, Vi,j =1,...,n, where D is called
the matrix of distances. The Hamiltonian circuit in K, (D) of minimum length
is often called the optimal tour.

It is shown in [12] that the following SDP provides a lower bound on the
length of an optimal tour:

1
minitrace(DX(l))
subject to

X® > 0 k=1,...,d
d

dox® o= g1, (4)
k=1
d .
2k
I+ZCOS( ;F)X(k) = 0, i=1,....d

k=1
Xk e sk =1,....d,

where d = | %] is the diameter of C,, (i.e. standard circuit on n vertices) and J
denotes the all one matrix. Note that this problem involves nonnegative matrix
variables X ..., X(@ of order n.

We will see in Section 3 that, if D is circulant, the SDP formulation (4)
reduces to an LP problem.



2.2 Held-Karp bound (HK)

One of the best-known linear programming (LP) relaxations of the TSP is the
Held-Karp bound, defined as follows.

1
HK = min?crace(DX)

subject to
Xe = 2e,
diag(X) = 0,
0 < X< (5)
Y Xy = 2V0#IC{L,....n},

i€L,j¢T

where e denotes the all-ones vector and J the all-ones matrix, as before. The
last constraints are called sub-tour elimination inequalities and model the fact
that a hamiltonian cycle is 2-connected. There are 2 — 2 sub-tour elimination
inequalities, but even so this problem may be solved in polynomial time using
the ellipsoid method; see e.g. Schrijver [16], §58.5.

We will show how to simplify the LP formulation (5) to an equivalent, smaller
LP when the distance matrix D is circulant.

The following theorem will allow us to restrict the optimization of (5) to the
symmetric circulant matrices.

Theorem 2. Let A denote the centralizer ring of a permutation group G and
let D € A. If we have an optimal solution, X, for problem (5) then there exists
an optimal circulant solution, Y, of LP in (5) (i.e. Y € A).

Proof. The fact that D € A implies that PTDP = D for all P € G.
We will show that if X is optimal for (5) then also Y := R(X) is optimal
for (5). Recall that R(X) is the image of X under the Reynolds operator.
Since Pe = e, PTe = e and Xe = 2e we have:

1 1
R(X)e = el > PXxPTe= el > PXe
9l Peg 91 Peg
1 1
= 622P626226:26
91 Peg 191 Peg

Permuting rows and columns preserves the zero diagonal, therefore diag(X) =
0 implies diag(R(X)) = 0. Moreover, R(X) averages over the permuted entries
of X so that 0 < R(X) < J whenever 0 < X < J.

To show that R(X) is feasible for (5) we still have to prove that R(X) satisfy
the sub-tour elimination constraints.

First notice that if P is a permutation matrix then matrices X and PXP7T
are the adjacency matrices of two isomorphic graphs. Thus the minimum cut in



the graph having X as adjacency matrix equals the minimum cut in the graph
having R(X) as adjacency matrix. Thus we have:

> (PXPT); > 2V0#TC{l,...,n}

1€L,5¢T

Summing over all P € G yields:

S S (PXPT); = 2G| VOATC{L,....n}.

PEeGieT,j¢T

Thus:

> (R(X))i; = 2V0#TC{l,...,n},

i€T,j¢T
and R(X) is therefore feasible for (5). Moreover, R(X) is optimal since
trace(DR(X)) = trace(R(D)X) = trace(DX),
by (3), and this concludes the proof of the theorem. [

Recall that, for the SCTSP, the permutation group G is the dihedral group,
and its centralizer ring is the set of symmetric circulant matrices. By Theorem
2, we may restrict the feasible set of (5) to the symmetric circulant matrices
whose basis is {I = By, B, ..., B4}. Since matrix D has zero on the diagonal
we can ignore By and write:

d d
X:=) a,B, and D:=Y d,B,.
p=1 p=1

The objective in (5) reduces to:

d
min E ndpTp,
p=1

if n is odd. If n is even, the last term becomes %nddxd in stead of ndgx,.

In order to rewrite the sub-tour elimination constraints we will make use of
a {0,1} matrix denoted by Ez. This matrix will have 1 on positions (4, j) and
(j,2) if i € Z, j ¢ T and zeros elsewhere. Notice that:

1
itrace (EzX) = Z Xij.
i€L,j¢T

Then the sub-tour the elimination constraints from (5) are equivalent to:

d
Z ptrace(EzBp) >2 YO #Z C {1,...,n}.

[\D\P—‘



Notice that diag(X) = 0 is implicit because 2o = 0. Moreover, because 0 < X <
J we have 0 <z, <1,p=1,...,d. We have to split the constraint Xe = 2e
into two cases:

e For n odd: Xe=2¢ & 22:1 zpBpe = 2e & 22:1 zp, = 1.

e Forneven: Xe =2e & dede—f—Zi;i rpBpe = 2e & %xd—kzzl; xzp = 1.

We can now write down the simplified equivalent form of (5). For odd n, we

have:
d
min E ndpTp,
p=1

subject to

d
E T, = 1,
p=1

Tp

|V
\_O
=
Il
:—‘
a
=

d
Z ptrace(EzBy) > 2 V0#ZIcC{l,...,n}

l\D\F—‘

For even n, the last term in the objective function becomes %nddxd, and the
first constraint should be replaced by x4 + Zp 1%p = 1.

2.3 Van der Veen bound (VdV)

Let D € R" ™ be a symmetric circulant matrix and let r = (ro,71,...,72|)
be the vector that completely determines the entries of D (i.e. the first d + 1
components on the first row). Recall that |5 |=d.

Assume now that 7o = 0 (which is the case for TSP problem) and assume
that the r;’s are distinct. Define a permutation ® such that ®(0) = 0 and ®
sorts the values of r in ascending order.

Let ged(ty, . - . , tyn) denote the greatest common divisor of given natural num-
bers t1,...,tm. A necessary and sufficient condition for Hamiltonicity of a cir-
culant graph is given by the following theorem.

Theorem 3 (Burkard and Sandholzer [2]). The circulant graph Cp(t1, ... tm),
with vertex set {0,1,...,n— 1}, consists of ged(n, tl, ...y tm) components (m €
{1,...,15]}). Each component is a graph on W vertices. The ver-
tices in component o (= 0,1,...,ged(n,t1,...,tm) — 1) ar

n

k ged(n,ty,. ..t keol,... -1¢.
{(O“F gc (TL, 15 ’ m)) mod n 60’ ’ ’ng(n tla 7tm) } (7)

Moreover, Cy(t1,...,tm) is Hamiltonian if and only if ged(n, t1, ... tm)=1.



Let [ be the smallest integer such that ged(n, ®(1),...,®(l)) = 1. Then Van
der Veen [18] shows that one can construct a Hamiltonian tour only using edges
from stripes ®(1),...,®(1).

Following [18], we define:

GCD(®(k)) = ged(GCD(B(k — 1)), B(k)), k=1,...,1, (8)

and GCD(P(0)) :=n.
Further we can assume without loss of generality (see [18]) that:

n = GCD(P(0)) > GCD(B(1)) > ... > GCD(®(1)) = 1. 9)

Then Theorem 7.4.2 from [18] shows that the following value is a lower bound
for the SCTSP problem.

l
VdV = {(GCD(D(i — 1)) — GCD(®(i)))rag } + roq)- (10)

=1

The term 22:1{(901)((1)(2'— 1))—=GCD(®(i)))ras ()} gives the weight of a shortest
Hamiltonian path obtained via the nearest neighbor rule. The last term reflects
the fact that each Hamiltonian cycle must include a edge of weight at least rg ;).

2.4 1-tree bound (1T)

Another famous lower bound for TSP is the minimum cost 1-tree bound.

Definition 4. Let G=(V,E) denote an undirected graph with edge costs c., for
each e € E and let v € V. Two edges incident with node vy plus a spanning
tree of G\ {v1} is called a 1-tree in G.

Definition 5. Let G = (V, E) denote an undirected graph with edge costs c.,
for each e € E and let v1 € V. Let 6(v1) denote the set of edges incident to vy.
Now, let A = min{cc+cs | e, f € d(v1)} and let B be the cost of a minimum
spanning tree in G \ {v1}. Then A+ B is a lower bound for the TSP on G,
called a 1-tree bound.

For circulant graphs, one may compute the 1-tree bound in a simpler way
than for general graphs, as we will show in Theorem 7. Recall that we can
construct a minimum cost spanning tree using the (greedy) Kruskal algorithm.
This algorithm starts with an arbitrary edge of lowest cost, and recursively
constructs a spanning tree by adding an edge of lowest possible cost to the
current forest so that adding this edge does not form a cycle.

As a consequence of Theorem 3, after using all possible edges from the
lowest cost stripe, we may assume the Kruskal algorithm has constructed x :=
GCD(®(1)) components (i.e. disjoint paths). Moreover, by (7) we can describe
these disjoint paths as:

Pa::{(a—&—k@(l)) modn|keo,1,...,ﬁ—1} a=0,...,z—1. (11)
X



An important observation for our purposes is that these paths cover all the
vertices; any edge that is subsequently added by the Kruskal algorithm will
therefore connect two of these paths.

Now fix v. According to the construction above one has v € P, 04 - Under
the assumption (9), we have (v + ®(i)) mod n € Py1a(i)) mod x, fOr every
i = 2,...,1. Thus, for each 4, the edge {v, (v + ®(¢)) mod n} connects the
paths P, mod « and P(er‘I)(i)) mod z-

Lemma 6. For any k = O""’W@(l)) and for anyi=2,...,l andv €V,
the edge {(v+k®(1)) mod n,(v+k®(1)+P(i)) mod n} connects the paths
Py mod o and P(v—i-fb(i)) mod x-

Proof. By (11), (v+ k®(1)) mod n belongs to P, mod -
For any i € {2,...,1} one has:

(v+k®(1)+®(¢) mod n = ((v+®@G))+EkP(1)) mod n
= ((v+2(4) mod n+k®(1)) mod n.

Since (v + ®(i)) mod n belongs to Py4+3(;)) mod «, using (11) again we
have that (v 4 k®(1) + ®(i)) mod n € Puia() mod o

The lemma expresses the fact that one can always connect two distinct paths
P,, and P,, (a1 # a3) using an edge of cost r4;), for any i = 2,...,[, in more
than one way. Now we can prove the following.

Theorem 7. Let G be a circulant graph on n vertices. Let ®(1) denote the
stripe of minimum nonzero cost. The value of a minimum cost 1-tree equals the
value of a minimum cost spanning tree plus the value of an edge of lowest cost
whenever ®(1) # 5. If n is even and ®(1) = 5, then the value of a minimum
cost 1-tree equals the value of a minimum cost spanning tree plus the cost of an
edge of second lowest cost.

Proof. We will assume ged(n, ®(1)) # 1, since the case ged(n, ®(1)) = 1 is
trivial.

Fix v; € V, and assume no two stripes have the same cost and ®(1) # %.
Because of the circulant structure we have two edges of minimum cost with
an endpoint at v;. Start constructing a minimum spanning tree from v; using
Kruskal’s algorithm (denote the first added edge by e;). Then after adding
the edges of minimum cost Kruskal’s algorithm has constructed ged(n, ®(1))
disjoint paths covering the vertices of G with edges of lowest cost. After this
step any other edge of lowest cost added to the current forest will create a cycle.
Call the path with an endpoint at v; F,, and denote the other endpoint of
this path by ve. Connect the paths obtained before using edges of other costs
(again using Kruskal’s algorithm), but do not allow to connect P,, via vy (this
is always possible according to Lemma 6). When the minimum spanning tree
is constructed add the edge e1 := v1vy. Call the resulting structure 7.



By construction v; has degree 2 in T. The edges that connects vy to T are
e12 end e;. Notice that both have lowest cost. Therefore e; + €12 is minimum
among the sum of the cost of two edges incident to v1, which shows that T is a
1-tree. Since v; was arbitrary chosen we concluded the first part of the proof.

The second part of the proof is similar, and is therefore omitted. [

3 Deriving the new LP bound

In this section we show how to reduce the SDP formulation in (4) to an equiv-
alent LP whenever the distance matrix D is circulant.

The following theorem will allow us to restrict the optimization of (4) to the
symmetric circulant matrices, in the case of the SCTSP.

Theorem 8. Let A denote the centralizer ring of a permutation group G and
let D € A. If we have an optimal solution, XV ...  X®)  for problem (4) then
{R(XM),...,R(X® )} C A is also an optimal solution of (4), where R denotes
the Reynolds operator of the group G.

Proof. The fact that D € A means that D is invariant under the action of the
permutation matrices P € G, that is PTDP = D for all P € G.

We will show that if X(*), k =1,...,n are feasible for (4) then also Y(*) :=
R(X®)) are feasible for (4). For simplicity of notation we will show this for a
fixed k, but everything holds for any £ =1,...,d.

If X(*) > 0 and symmetric, then by permuting rows and columns and adding
elements we obtain again a symmetric, positive matrix, so R(X (k)) > 0 and
R(X®) € 8.

R(X(®) is a linear mapping therefore R(Zi=1 X®)y = ZZ=1 R(X®) and
R(J—1I)= R(J)—R(I). Notice that R(J) = J and R(I) = I. Then we obtain:
Sho RX®) =g -1

Using R(I) = I and linearity of R, from:

d .
2kim
I § ZOOXx® =0, i=1,...,d
+k:1008( - ) =0, 7 ey

we obtain:

d .
2kim
I RX® Y =0, i=1,...,d.
—|-kz::1008( - VR( )= 0, 4 e,

We have seen that R(X®)), k=1,...,d are feasible. Furthermore,
trace(DR(XV)) = trace(R(D) X)) = trace(DX W),

by (3), and this concludes the proof of the theorem. [

10



Now let us restrict the feasible set to the circulant matrices. For each X *)
k=1,...,d we may write

d
X® =3 "2B,, (12)
p=1
where {Bg = I, By, ..., Bq} form the standard basis for the symmetric circulant

matrices, as before.
The matrix of distances D has zeros on the diagonal, and the variables x(()k)
may therefore be set to zero. Since Bz'vs are 0-1 matrices X*) > 0 is equivalent

to x,(,k) >0, k,p=1,...,d; and using (12) we obtain the equivalent form of (4):

min 3 Z;l:1 :L'z(,l)trace(DBp)
st 2 >0, kp=1,....d

d d k (13)
D k=1 Zp=1 xé )B,, =J-1,
[+ Y5 Yy cos(2)af B, = 0, i=1,....d

Let @ denote the discrete Fourier transform matrix. Then we may di-
agonalize the basis matrices via Q*B,Q = AP where A®) .= diag(/\;-p)),
j=0,...,n —1is the diagonal matrix containing the eigenvalues of B,,.

One has:

.
)\gp):Qcos(%) p=1,....d j=0,....n—1, ifnisodd  (14)

and
o
A;p):2cos(%) p=1,...,d—1, j=0,....,n—1, ifniseven  (15)
2mjd
)\;d):cos( e ), 7=0,...,n—1, if nis even. (16)
n

Because of the simultaneous diagonalization of the B;’s, (13) reduces to an LP
problem, as we will now show.
Let us write:

d
D= d;B;. (17)
i=1
One clearly has:
trace(B;B;) =0 if i #j.

Multiplying (17) by B, to the right and taking into account that B}s and D are
symmetric, using the previous relation one obtains:

trace(DB,) = dptrace(Bf,) = cdp, (18)
where ¢ = 2n for p =1,...,d. For n even we have an exception, that is c=n

when p = d.

11



We will now transform each linear matrix equality into n linear inequalities.
To this end, note that J — I = Ei:l B,,. Then using the diagonalization, the

relation:
Z Z 2B, = Z B,

k=1p=1
reduces to:

k=1p=1

where the eigenvalues /\§p) are defined in (14), (15) and (16).
Finally, again using the diagonalization, the d linear matrix inequalities:

4 2ki
I+ZZCO§ e B, =0, i=1,...,d

k=1p=1

reduce to the nd linear inequalities:

(2K
1+ZZA(”> Z7T) ) >0, i=1,....d, j=0,....n—1  (20)
k=1p=1

We can now state the LP reformulation of (13):

min i Zzzl cdparz(,l)
s.t. (k)>0 k,p=1,...,d

k .
Zk IZp 1/\(1)) (k) _ Zp 1)\(?)7 j=0,...,n—1
1+, Y0 j)cos(”j;’f) ()20, i=1,...,d j=0,...,n—1.
(21)

4 Numerical comparison between bounds

In this section we present numerical results for the new SDP/LP bound and the
other bounds stated in Section 2 (i.e: 1T bound, HK bound and VdV bound);
see Table 1. The matrices in Table 1 have dimensions between 6 and 64, and
were generated in such a way as to avoid trivial solutions.

The LP problems were solved using the Matlab® toolbox Yalmip [14] to-
gether with the optimization solver Sedumi [17]. The optimal values of the
SCTSP instances were computed using the Concorde! software for TSP. Due to
the small sizes of the instances, all the values in the tables could be computed
in a few seconds on a standard Pentium IV PC.

A few remarks on Table 1:

e The HK and VdV bounds coincide for all the instances in the table.

IThe Concorde software is available at http://www.tsp.gatech.edu/concorde/

12



matrix  dimension SDP/LP 1T HK vdv optimum SCTSP

D1 54 2,114 2,140 2,157 2,157 2,174
D2 18 2.0837 2.1063  2.1392  2.1392 2.1392
D7 28 29.755 33 38 38 38
D8 27 291.738 294 297 297 297
D10 39 547.868 550 552 552 552
D11 57 2,022.715 2,119 2,181 2,181 2,181
Dtl 12 104.84 107 118 118 118
Dt3 22 75,855.77 170,105 340,100 340,100 340,100
D17 36 4,877.80 4,902 4,916 4,916 4,944
D24 26 1,098.86 1,153 1,240 1,240 1,240
D28 30 272.47 296 310 310 310
Dt4 24 123.91 125 126 126 128
Dt6 24 2,448.08 3,095 3,690 3,690 3,690
Dt8 27 7.2462 8 9 9 9
Dt9 25 270,768.63 400,151 500,145 500,145 500,145
Dt10 25 2,862 4,147 5,140 5,140 5,140
Dt11 25 270,765 400,147 500,140 500,140 500,140
Dt12 12 85.85 86 87 87 87
Dt13 12 87.71 88 90 90 90
Dt14 8 57.17 57 58 58 58
Dt15 8 58.34 58 60 60 60
Dt16 6 43.50 43 44 44 44
Dt18 64 25,583 26,001 27,484 27,484 27,484

Table 1: Numerical comparison of the four lower bounds from Section 2 for
SCTP instances.

e The HK and VdV bounds give the best bounds in all cases, but do not
always equal the optimal value of the SCTSP instance in question.

e The new LP bound is always weaker that the HK and VdV bounds for the
test problems, and is even lower that the 1T bound for a few instances.
Adding the subtour elimination inequalities to the new LP did not result
in better bounds than HK for any of the instances in the table.

The instances from Table 1 are available online at:
http://lyrawww.uvt.nl/~cdobre/SCTSP_instances.rar.

5 A theoretical comparison between bounds

Based on the numerical results presented in the previous section, we may con-
jecture certain relations between the bounds, like VAV = HK > SDP/LP.

On the other hand, we have only been able to prove that VAV > 1T (cf
Theorem 9) and that HK > VdV (cf Theorem 11). It is also well-known (see
e.g. [4]) that HK > 1T. Thus we will obtain the ‘sandwich theorem’ type result

1T <VdV < HK.

Theorem 9. The VAV bound is at least as good as the one tree (1T) bound.

13



Proof. Recall that ®(1) denotes the stripe of lowest cost. From (10) we have
that VdV equals the length of a minimum weight Hamiltonian path plus the
weight of an edge of cost rg(;). Moreover, the weight of a minimum Hamiltonian
path is always greater or equal than the weight of a minimum weight spanning
tree.

The required result now follows from Theorem 7. O

Thus we have VAV > 1T. Further, it was shown by de Klerk et al. ([10])
that, for general TSP, HK does not dominate the SDP bound in (4) or vice
versa. In the case of the circulant matrices we can state the following theorem,
based on the numerical results in Table 1.

Theorem 10. For SCTSP, the new LP relazation (21) does not dominate the
one tree bound, or, by implication, the Held-Karp bound (5).

It was not known before whether the SDP bound (4) can be worse than the
one tree bound; see [12]. It still remains an open question if the Held-Karp
bound dominates the new LP relaxation in the case of SCTSP.

Theorem 11. For SCTSP, the Held-Karp bound (5) is at least as tight as the
Van de Veen bound (10).

Proof. Let G = (V, E) be a weighted circulant graph with edge weights now
denoted by ¢, (e € E), and consider the following equivalent formulation of the
Held-Karp bound (5) (details may be found in [4] §7.3):

HK := min g CeTe
ecE

subject to
Y ome = 2, VSCV, |S]>2
e€8(S)

Z Te = 2 VoeV
e€d({v})
0 < 2.<1 VecE.

We enlarge the feasible set and define a value p* < HK via:
p* := min Z CeTe
e€E
subject to
dowe > 2, VSCV, S#0

e€s(S)
z. > 0 VeckE.
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By LP duality theory we have:

* = max Z 2ys

P#£SCV

subject to

S ys < e VeeE (22)
Slees(s)
ys > 0 Ve€ekE.

We will construct a feasible point of (22) with objective value equal to the value
VdV from (10). It then follows that p* > VdV, and since HK > p* we will
conclude that HK > VdV for circulant matrices.

Notice that if |V| = n, then the dual formulation in (22) has 2" — 2 variables
ys, each corresponding to a nonempty subset of V. Let C{ﬂ k=0,...,1—
1, i =1,..,GCD(®(k)) denote the connected components of the graph Gy, :=
(®(1),...,®(k)). In this case C? represent the vertices of the graph. According
to Theorem 3, CF # le» if (i,k) # (j,1). We will abuse notation by identifying
the connected component with its vertices. Define:

Yoo = T(b%forizl,...,n
1 .
yem = 5( ®(m+41) — Tomy), form=1,...,1-1 andi=1,...,GCD(®(m))
ys = 0 otherwise. (23)

For a fixed m all the values ycm are equal and nonnegative by definition, since
the permutation ® sorts the value of r in ascending order.

According to Theorem 3 we have for each m exactly GCD(®(m)) nonzero
(i-e. strictly positive) ycm variables.
Hence the objective in (22) evaluates to:

-1

Y s = Y 26CD(B(m))yor

P#ASCV m=0
-1
= GCD(D(0)rea) + Y GCD(R(m))(ra(m+1) — To(m))
m=1

-1
= ) _{(GCD(®(m — 1)) — GCD(R(m)))ra(m) }

+GCD(@(l - 1))raq)

l
m=1
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The last equality is due to the fact that GCD(®(1)) = 1.
To show feasibility, first fix an edge e € E with cost rery, with & < 1. Such

an edge connects two components of G, (m =0,1,...,k —1). Then we have:
k—1 k—1
Z ys = 2 Z Yo =Te(1) + Z (T®(m+1) — To(m))
Sle€d(S) m=0 m=1

= To@) T Tak) — To1) = To(k)-

Now fix an edge e € E with cost rgx), with k£ > [. Such an edge connects
at most two components of G,, (m =0,1,...,1—1). Then we have:

-1
Z Ys <2 Z yor =ra1) < To(k)-
Sle€s(S) m=0

Thus we have constructed a feasible point of (22) with objective value equal
to the VAV bound. Therefore HK > VdV. O

6 Summary and concluding remarks

The computational complexity of the symmetric circulant traveling salesman
problem (SCTSP) remains an open problem.

We have therefore compared four lower bounds for SCTSP that may be
computed in polynomial time.

We have been able to show that the Held-Karp bound [11] (see (5)) is as
least as tight as a bound by Van der Veen [18] (see (10)) for SCTSP, and that
the Van der Veen bound in turn is as least as tight as the minimum weight one
tree bound.

Empirically, the Van der Veen bound and Held-Karp bound provided the best
lower bounds for all numerical instances that we tested, and actually coincided
for all the instances. Since the Van der Veen bound may be computed in linear
time, it is clearly the best practical choice of the bounds that we considered.

A new LP bound for SCTSP that we derived from an SDP bound for general
TSP by De Klerk et al. [12] proved to be quite weak in practice, but we were
unable to prove any theoretical relationships with the other three bounds.
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