
Further Study on Strong Lagrangian Duality Property
for Invex Programs via Penalty Functions1

J. Zhang

Institute of Applied Mathematics,

Chongqing University of Posts and Telecommunications,

Chongqing 400065, China

X. X. Huang2

School of Management, Fudan University,

Shanghai 200433, China

Abstract. In this paper, we apply the quadratic penalization technique to derive strong

Lagrangian duality property for an inequality constrained invex program. Our results extend

and improve the corresponding results in the literature.

Key words: Penalty function, Lagrangian duality, coercivity of a function, level-boundedness

of a function, invex function.

1This work is supported by the National Science Foundation of China and Shanghai Pujiang Program.
2Corresponding author.

1



1 Introduction

It is known that Lagrangian duality theory is an important issue in optimization theory

and methodology. What is of special interest in Lagrangian duality theory is the so-called

strong duality property, i.e., there exists no duality gap between the primal problem and

its Lagrangian dual problem. More specifically, the optimal value of the primal problem is

equal to that of its Lagrangian dual problem. For a constrained convex program, a number

of conditions have been obtained for its strong duality property, see, e.g., [5, 1, 6] and the

references therein. It is also well-known that penalty method is a very popular method

in constrained nonlinear programming [3]. In [4], a quadratic penalization technique was

applied to establish strong Lagrangian duality property for an invex program under the

assumption that the objective function is coercive. In this paper, we will derive the same

results under weaker conditions. So our results improve those of [4].

Consider the following inequality constrained optimization prolem:

(P) min f(x)

s.t. x ∈ Rn, gj(x) ≤ 0, j = 1, · · · ,m,

where f, gj(j = 1, · · · ,m) : Rn → R1 are continuously differentiable.

The Lagrangian function for (P) is

L(x, µ) = f(x) +
m∑

j=1

µjgj(x), x ∈ Rn, µ = (µ1, · · · , µm) ∈ Rm
+ .

The Lagrangian dual function for (P) is

h(µ) = infx∈RnL(x, µ),∀µ ∈ Rm
+ .

The Lagrangian dual problem for (P) is

(D) supu∈Rm
+
h(µ).

Denote by MP and MD the optimal values of (P) and (D), respectively. It is known that

weak duality: MP ≥ MD holhs. However, there is usually a duality gap, i.e. MP > MD.

If MP = MD, we say that strong Lagrangian duality property holds (or zero duality gap

property holds).

Recall that a differentiable function u : Rn → R1 is invex if there exists a vector-valued

function η : R×Rn → Rn such that u(x) − u(y) ≥ ηT (x, y) 5 u(y),∀x, y ∈ Rn. Clearly, a

differentiable convex function u is invex with η(x, y) = x − y. It is known from [2] that a

differentiable convex function u is invex if and only if each stationary point of u is a global

optimal solution of u on Rn.
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Let X ⊂ Rn be nonempty. u : Rn → R1 is said to be level-bounded on X if for any real

number t, the set {x ∈ X : f(x) ≤ t} is bounded.

It is easily checked that u is level-bounded on X if and only if X is bounded or u is

coercive on X if X is unbounded (i.e., limx∈X,‖x‖→+∞ u(x) = +∞).

2 Main Results

In this section, we present the main results of this paper.

Consider the following quadratic penalty function and the corresponding penalty problem

for (P):

Pk(x) = f(x) + k
m∑

j=1

g+
j

2
(x), x ∈ Rn,

(Pk) minx∈RnPk(x),

where the integer k > 0 is the penalty parameter.

For any t ∈ R1, denote

X(t) = {x ∈ Rn : gj(x) ≤ t, j = 1, · · · ,m}.

It is obvious that X(0) is the feasible set of (P)., In the sequel, we always assume that

X(0) 6= ∅.
We need the following lemma.

Lemma 2.1. Suppose that there exists t0 > 0 such that f is level bounded on X(t0) and

there exists k∗ > 0 and m0 ∈ R1 such that

Pk∗(x) ≥ mo,∀x ∈ Rn.

Then

(i) the optimal set of (P) is nonempty and compact;

(ii) there exists k∗
′

> 0 such that for each k ≥ k∗
′
, the penalty problem (Pk) has an

optimal solution xk; the sequence {xk} is bounded and all of its limiting points are optimal

solutions of (P).

Proof. (i) Since X(0) ⊂ X(t0) is nonempty and f is level-bounded on X(t0), we see that

f is level-bounded on X(0). By the standard existence theory in optimization, we conclude

that the solution set of (P) is nonempty and compact.

(ii) Let x0 ∈ X(0) and k∗
′ ≥ k∗ + 1 satisfy

f(x0) + 1−m0

k∗′ − k∗
≤ t20.
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Note that when k ≥ k∗
′

Pk(x) = f(x) + k∗
m∑

j=1

g+
j

2
(x) + (k − k∗)

m∑

j=1

g+
j

2
(x)

≥ m0 + (k − k∗)
m∑

j=1

g+
j

2
(x).

Consequently, Pk(x) is bounded below by m0 on Rn. For any fixed k ≥ k∗ + 1, suppose that

{yl} satisfies Pk(yl) → infx∈RnPk(x). Then, when l is sufficiently large,

f(x0) + 1 = Pk(x0) + 1 ≥ pk(yl) = f(yl) + k
m∑

j=1

g+
j

2
(yl)

≥ m0 + (k − k∗)
m∑

j=1

g+
j

2
(yl). (1)

Thus,
f(x0) + 1−m0

k − k∗
≥

m∑

j=1

g+
j

2
(yl) ≥ g+

j
2
(yl), j = 1, · · · ,m.

It follows that

g+
j (yl) ≤

[
f(x0) + 1−m0

k − k∗

]1/2

≤
[
f(x0) + 1−m0

k∗′ − k∗

]1/2

≤ t0, j = 1, · · · ,m.

That is, yl ∈ X(t0) when l is sufficiently large. From (1), we have

f(yl) ≤ f(x0) + 1

when l is sufficiently large. By the level-boundedness of f on X(t0), we see that {yl} is

bounded. We assume without loss of generality that yl → xk as l → +∞. Then

Pk(yl) → Pk(xk) = infx∈RnPk(x).

Moreover, xk ∈ X(t0). Thus, {xk} is bounded. Let {xki
} be a subsequence which converges

to x∗. Then, for any feasible solution x of (P),

f(xki
) + ki

m∑

j=1

g+
j

2
(xki

) ≤ f(x). (2)

That is,

m0 + (ki − k∗)
m∑

j=1

g+
j

2
(x) ≤ f(xki

) + k∗
m∑

j=1

g+
j

2
(x) + (ki − k∗)

m∑

j=1

g+
j

2
(x) ≤ f(x),

namely,
m∑

j=1

g+
j

2
(x) ≤ f(x)−m0

ki − k∗
.
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Passing to the limit as i → +∞, we have

g+
j (x∗) = 0, j = 1, · · · ,m.

It follows that

gj(x
∗) ≤ 0, j = 1, · · · ,m.

Consequently, x∗ ∈ X(0). Moreover, from (2), we have f(xki
) ≤ f(x). Passing to the limit

as i → +∞, we obtain f(x∗) ≤ f(x). By the arbitrariness of x ∈ X(0), we conclude that x∗

is an optimal solution of (P). 2

Remark 2.1. If f(x) is bounded below on Rn, then for any k > 0, Pk(x) is bounded below

on Rn.

The next proposition presents sufficient conditions that guarantee all the conditions of

Lemma 2.1.

Proposition 2.1. Any one of the following conditions ensures the validity of the conditions

of Lemma 2.1.

(i) f(x) is coercive on Rn;

(ii) the function max{f(x), g+
j (x), j = 1, · · · ,m} is coercive on Rn and there exists k∗ > 0

and m0 ∈ R1 such that

Pk∗(x) ≥ mo,∀x ∈ Rn.

Proof. We need only to show that if (ii) holds, then the conditions of Lemma 2.1 hold

since condition (i) is stronger than condition (ii). Let t0 > 0. We need only to show that

f is coercive on X(t0). Otherwise, there exists σ > 0 and {yk} ⊂ X(t0) with ‖yk‖ → +∞
satisfying

f(yk) ≤ σ. (3)

From {yk} ⊂ X(t0), we deduce

gj(yk) ≤ t0, j = 1, · · · ,m. (4)

It follows from (3) and (4) that

max{f(yk), g
+
j (yk), j = 1, · · · ,m} ≤ max{σ, t0},

contradicting the coercivity of max{f(x), g+
j (x), j = 1, · · · ,m} since ‖yk‖ → +∞ as k →

+∞. 2
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The next proposition follows immediately from Lemma 2.1 and Proposition 2.1.

Proposition 2.2. If one of the two conditions (i) and (ii) of Proposition 2.1 holds, then the

conclusions of Lemma 2.1 hold.

The following theorem can be established similarly to ([4], Theorem 4) by using Lemma

2.1.

Theorem 2.1. Suppose that f, gj(j = 1, · · · ,m) are all invex with the same η and the

conditions of Lemma 2.1 hold. Then MP = MD.

Corollary 2.1. Suppose that f, gj(j = 1, · · · ,m) are all invex with the same η and one of

the conditions (i) and (ii) of Proposition 2.1 holds. Then MP = MD.
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