
Sparse Signal Reconstruction via Iterative Support Detection∗

Yilun Wang† Wotao Yin‡

Original Sept 29, 2009; Revise June 11, 2010

Abstract

We present a novel sparse signal reconstruction method “ISD”, aiming to achieve fast reconstruction
and a reduced requirement on the number of measurements compared to the classical `1 minimization
approach. ISD addresses failed reconstructions of `1 minimization due to insufficient measurements. It
estimates a support set I from a current reconstruction and obtains a new reconstruction by solving the
minimization problem min{

∑
i 6∈I |xi| : Ax = b}, and it iterates these two steps for a small number of

times. ISD differs from the orthogonal matching pursuit (OMP) method, as well as its variants, because
(i) the index set I in ISD is not necessarily nested or increasing and (ii) the minimization problem above
updates all the components of x at the same time. We generalize the Null Space Property to Truncated
Null Space Property and present our analysis of ISD based on the latter.

We introduce an efficient implementation of ISD, called threshold–ISD, for recovering signals with
fast decaying distributions of nonzeros from compressive sensing measurements. Numerical experiments
show that threshold–ISD has significant advantages over the classical `1 minimization approach, as well
as two state–of–the–art algorithms: the iterative reweighted `1 minimization algorithm (IRL1) and the
iterative reweighted least–squares algorithm (IRLS).

MATLAB code is available for download from http://www.caam.rice.edu/~optimization/L1/ISD/.

Key words. compressed sensing, l1 minimization, iterative support detection, basis pursuit.
AMS subject classifications. 68U10, 65K10, 90C25, 90C51.

Contents

1 Introduction and Contributions 2

2 Algorithmic Framework 3

3 Preliminary Theoretical Analysis 5
3.1 The Truncated Null Space Property . 5
3.2 Sufficient Recovery Conditions of Truncated `1 Minimization 6
3.3 Stability of Truncated `1 Minimization . 8
3.4 Iterative Behavior of ISD . 10

4 Threshold–ISD for Fast Decaying Signals 11
4.1 A Support Detection Scheme Based on Thresholding . 11
4.2 YALL1 and Warm-Start . 13

∗This research was supported in part by NSF CAREER Award DMS-07-48839, ONR Grant N00014-08-1-1101, the U. S.
Army Research Laboratory and the U. S. Army Research Office grant W911NF-09-1-0383, and an Alfred P. Sloan Research
Fellowship.
†School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, 14853, U.S.A.

(yilun.wang@gmail.com). The author’s part of work was done when he was a doctoral student at Rice University.
‡Department of Computational and Applied Mathematics, Rice University, Houston, Texas, 77005, U.S.A.

(wotao.yin@rice.edu).

1

http://www.caam.rice.edu/~optimization/L1/ISD/

5 Numerical Implementation and Experiments 13
5.1 Reviews of IRL1 and IRLS . 14
5.2 Denoising Minimization Problems . 14
5.3 Transform Sparsity . 15
5.4 Experimental Settings and Test Platforms . 15
5.5 Stopping Tolerance and Smoothing Parameters . 16
5.6 Experimental Results . 16

6 Concluding Remarks 25

1 Introduction and Contributions

Brought to the research forefront by Donoho [13] and Candes, Romberg, and Tao [4], compressive sensing
(CS) reconstructs a sparse unknown signal from a small set of linear projections. Let x̄ ∈ Rn denote a
k-sparse1 unknown signal and b := Ax̄ ∈ Rm represent a set of m linear projections of x̄. The optimization
problem

(P`0) min
x
‖x‖0 s.t. Ax = b, (1)

where ‖x‖0 is defined as the number of nonzero components of x, can exactly reconstruct x̄ from O(k) random
projections. (Throughout this paper, x̄ is used to denote the true signal to reconstruct.) However, because
‖x‖0 is non-convex and combinatorial, (P`0) is impractical for real applications. A practical alternative is
the basis pursuit (BP) problem

(BP) min
x
‖x‖1 s.t. Ax = b, (2)

or min
x
‖x‖1 +

1

2ρ
‖Ax− b‖22, (3)

where (2) is used when b contains little or no noise and, otherwise, (3) is used with a proper parameter
ρ > 0. The BP problems have been known to yield sparse solutions under certain conditions (see [14, 11, 17]
for explanations) and also have recent algorithms such as [3, 23, 20, 16, 15, 27, 30, 29]. It is shown in
[6, 25] that, when A is a Gaussian random or partial Fourier ensemble, BP returns a solution equal to x̄
with high probability from m = O(k log(n/k)) and O(k log(n)4) linear measurements, respectively, which
are much smaller than n. Compared to (P`0), BP is much easier to solve but requires significantly more
measurements.

We propose an iterative support detection method (abbreviated as ISD) that runs as fast as the best
BP algorithms but requires significantly fewer measurements. ISD alternatively calls its two components:
support detection and signal reconstruction. From an incorrect reconstruction, support detection identifies
an index set I containing some elements of supp(x̄) = {i : xi 6= 0}, and signal reconstruction solves

(Truncated BP) min
x
‖xT ‖1 s.t. Ax = b, (4)

where T = IC and ‖xT ‖1 =
∑
i 6∈I |xi| (or solving a least-squares penalty version corresponding to (3)).

Assuming a sparse original signal x̄, if I = supp(x̄), then the solution of (4) is of course equal to x̄. But
this also happens if I contains enough, not necessarily all, entries of supp(x̄). When I does not have enough
of supp(x̄) for an exact reconstruction, those entries of supp(x̄) in I will help (4) return a better solution,
which has a reduced error compared to the solution of (2). From this better solution, support detection will
be able identify more entries in supp(x̄) and thus yield a better I. In this way, the two components of ISD
work together to gradually recover supp(x̄) and improve the reconstruction. Given sufficient measurements,
ISD can finally recover x̄. Furthermore, exact reconstruction can happen even if I includes a small number
of the spurious indices out of supp(x̄). A simple demo in Section 2 below illustrates the above for a sparse
Gaussian signal.

ISD requires the reliable support detection from inexact reconstructions, which must take advantages
of the features and prior information about the true signal x̄. In this paper, we focus on the sparse or

1A k-sparse vector has no more than k nonzero components.

2

compressible signals with components having a fast decaying distribution of nonzeros. For these signals, we
perform support detection by thresholding the solution of (4) and call the corresponding ISD algorithm as
threshold–ISD. We present different thresholding rules including a simple one given along with the demo in
Section 2 and a more efficient one discussed in Subsection 4.1. The latter rule was used throughout our
numerical experiments in Section 5.

To provide theoretical explanations for ISD, we analyze the model (4) based on a so-called truncated
null space property of A, an extension of the null space property originally studied in [9] and later in
[31, 32, 13, 10], which gives the widely used restricted isometry property [5] in certain cases. We establish
sufficient conditions for (4) to return x̄ exactly. When x̄ is not exactly sparse, its exact reconstruction is
generally impossible. We show an error bound between the solution of (4) and x̄. Built upon these results
for a single instance of (4), the following result for ISD is obtained: the chance for (4) to return a sparse
signal x̄ improves if in the new detections at each iteration, the true nonzeros are more than the false ones
by a certain factor. These results are independent of specific support detection methods used for generating
I. However, we yet to obtain a global convergence result for ISD.

While a recovery guarantee has not been obtained, numerical comparisons to state-of-the-art algorithms
show that threshold–ISD runs very fast and requires very fewer measurements. Threshold–ISD calls YALL1
[30] with warm-start and a dynamic stopping rule to efficiently solve (4). As a result, the threshold–ISD
time is comparable to the YALL1 time for solving the BP model. Threshold–ISD was compared to BP,
the iteratively reweighted least squares algorithm [8] (IRLS) and the iteratively reweighted `1 minimization
algorithm [7] (IRL1) on various types of synthetic and real data. IRLS and IRL1 are known for their
state-of-the-art reconstruction rates, on both noiseless and noisy measurements. Given the same number of
measurements, threshold–ISD and IRLS returned better signals than IRL1, which is further better than BP.
Comparing threadhold–ISD and IRLS, the former ran order-of-magnitude faster.

The rest of this paper is organized as follows. In Section 2, the algorithmic framework of ISD is given
along with a simple demo. Sections 3 presents preliminary theoretical results. Section 4 and 5 study the
details of threshold–ISD and present our numerical results, respectively. Section 6 is devoted to conclusions
and discussions on future research.

2 Algorithmic Framework

We first present the algorithmic framework of ISD.

Input: A and b

1. Set the iteration number s← 0 and initialize the set of detected entries I(s) ← ∅;

2. While the stopping condition is not met, do

(a) T (s) ← (I(s))C := {1, 2, . . . , n} \ I(s);

(b) x(s) ← solve truncated BP (4) for T = T (s);

(c) I(s+1) ← support detection using x(s) as the reference;

(d) s← s+ 1.

Since T (0) = {1, . . . , n}, (4) in Step (b) reduces to BP (2) in iteration 0.
Like greedy algorithms such as OMP [26], StOMP [12], and CoSaMP [24], ISD iteratively maintains an

set I of selected indices and updates x. However, ISD differs from greedy algorithms in how I is grown and
x(s) is updated. The index set I in ISD is not necessarily nested or increasing over the iterations. This is
more like CoSaMP, different from OMP and StOMP. At each iteration, after the index set I is computed,
ISD updates all the components of x including both the detected and undetected ones at the same time.
Both these differences are important since they allow ISD to reconstruct certain sparse signals that cannot
be recovered by the existing greedy algorithms.

3

A demo: We generated a sparse signal x̄ of length n = 200 with k = 25 nonzero numbers independently
sampled from the standard Gaussian distribution and assigned to randomly chosen components of x̄. We
let m = 60, created a Gaussian random m × n matrix A, and set b := Ax̄. We implemented Step (c) by a
threshold rule:

I(s+1) ← {i : |x(s)
i | > ε(s)}. (5)

To keep it simple for now, we let
ε(s) := ‖x(s)‖∞/β(s+1). (6)

with β = 5. Note that in Subsection 4.1 below, we will present a more reliable rule to determine ε(s).

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
0th iter. (total,det,c−det,w−det)=(25,12,10,2), Err = 5.10e−001

true signal
true nonzero
false nonzero

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
1th iter. (total,det,c−det,w−det)=(25,27,19,8), Err = 2.43e−001

true signal
true nonzero
false nonzero

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
2th iter. (total,det,c−det,w−det)=(25,31,24,7), Err = 3.59e−002

true signal
true nonzero
false nonzero

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
3th iter. (total,det,c−det,w−det)=(25,25,25,0), Err = 7.97e−016

true signal
true nonzero
false nonzero

Itr k
Nonzeros

Relative Error
Total True Detected Correct False

BP 0 25 12 10 2 5.10e-1
1 25 27 19 8 2.43e-1
2 25 31 24 7 3.59e-2
3 25 25 25 0 7.97e-16

Figure 1: An ISD demo that recovers x̄ with 25 nonzeros from 60 random Gaussian measurements.

With 200 dimensions, it is normally considered difficult to recover a signal with 25 nonzeros from merely
60 measurements (a 2.4x measurement-to-nonzero ratio), but ISD returns an exact reconstruction in merely
four iterations. The solutions of the four iterations are depicted in the four subplots of Figure 1, where the
components of x̄ are marked by • and the nonzero components of x(s) are marked separately by ◦ and �,
standing for true and false nonzeros, respectively. The thresholds ε(s) are shown as green lines. To measure
the solution qualities, we give the quadruplet “(total, det, c–det, w–det)” and “Err” in the title of each
subplot and in the table, which are defined as follows:

• (total, det, c-det, w-det):

– total: the number of total nonzero components of the true signal x̄.

– det: the number of detected nonzero components, equal to |I(s+1)| = (c–det)+(w–det).

4

– c-det: the number of correctly detected nonzero components, i.e, |I(s+1) ∩ {i : x̄i 6= 0}|.
– w-det: the number of falsely detected nonzero components, i.e, |I(s+1) ∩ {i : x̄i = 0}|.

• Err: the relative error ‖x(s) − x̄‖2/‖x̄‖2.

From the upper left subplot, it is clear that x(0), which was the BP solution, contained a large number of false
nonzeros and had a large relative error. However, most of its correct nonzero components were relatively
large in magnitude (as a consequence of x̄ having a relatively fast decaying distribution of nonzeros), the
thresholding method (5) with the threshold ε(0) = ‖x(0)‖∞/5 detected 12 nonzeros, among which 10 were
true nonzeros and 2 were not. In spite of the 2 false detections, the detection yielded T (1) that was good to
let (4) return a much better solution x(1), depicted in the upper right subplot. This solution further allowed
(5), now having the tighter threshold ε(1) = ‖x(1)‖∞/52, to yield 19 detected true nonzeros with 8 false
detections. Noticeably, most of true nonzeros with large magnitude had been correctly detected. The next
solution x(2), depicted in the bottom left subplot, became even better, which well matched the true signal x̄
except for tiny false nonzero components. (5) detected 24 true nonzeros of x̄ from x(2) and 7 false nonzeros,
and x(3) had exactly the same nonzero components as x̄, as well as an error almost as low as the double
precision.

ISD is insensitive to a small number of false detections and has an attractive self-correction capacity. It
is important to generate every I from x(s) regardless what it was previously; otherwise, false detection would
be trapped in I. In addition, the performance of ISD is invariant to small variations in the thresholding
tolerance in (5). On the same set of data, we also tried to set β = 3 and β = 1.5 in (6), and obtained an
exact reconstruction of x̄ in 4 and 6 iterations, respectively.

3 Preliminary Theoretical Analysis

The preliminary theoretical results in this section explain under what conditions the truncated BP model
(4) can successfully reconstruct x̄, especially, from measurements that are not enough for BP. Most of
the results are based on a property of the sensing matrix A defined in Subsection 3.1. Focusing on the
minimization problem (4), Subsections 3.2 and 3.3 study exact reconstruction conditions for sparse signals
and reconstruction errors for compressible signals, respectively. Finally, Subsection 3.4 gives a sufficient
condition for ISD to improve the chance of perfect reconstruction over its iteration. Note that this condition
is not a recovery guarantee, which is yet to be found.

3.1 The Truncated Null Space Property

We start with introducing the truncated null space property (t-NSP), a generalization of the null space
property (NSP). The NSP is used in slightly different forms and different names in [31, 32, 13, 9, 10]. We
adopt the definition in [10]: a matrix A ∈ Rm×n satisfies the NSP of order L for γ > 0 if

‖ηS‖1 ≤ γ‖ηSC‖1 (7)

holds for all index sets S with |S| ≤ L and all η ∈ N (A), which is the null space of A. In (7) and the rest
of this paper, ηS ∈ Rn denotes the subvector of η consisting of ηi for i ∈ S ⊂ {1, 2, . . . , n}, and SC denotes
the complement of S with respect to {1, . . . , n}.

With γ < 1, the NSP says that any nonzero vector η in the null space of A cannot have an `1-mass
concentrated on any set with L or fewer elements. A sufficient exact reconstruction condition for BP is given
in [10] based on the NSP: the true k–sparse signal x̄ is the unique solution of BP if A has the NSP of order
L ≥ k and 0 < γ < 1.

In order to analyze the minimization problem (4) with a truncated `1–norm objective, we now generalize
the NSP to the t-NSP.

Definition 1. A matrix A satisfies the t-NSP of order L for γ > 0 and 0 < t ≤ n if

‖ηS‖1 ≤ γ‖η(T∩SC)‖1 (8)

5

holds for all sets T ⊂ {1, . . . , n} with |T | = t, all subsets S ⊂ T with |S| ≤ L, and all η ∈ N (A) — the null
space of A.

For simplicity, we use t-NSP(t, L, γ) to denote the t-NSP of order L for γ and t, and use γ̄ to replace γ
and write t-NSP(t, L, γ̄) if γ̄ is the infimum of all the feasible γ satisfying (8).

Notice that when t = n, the t-NSP reduces to the NSP. Compared to the NSP, the inequality (8) in the
t-NSP has an extra set limiter T of size t. It is introduced to deal with ‖xT ‖1.

Clearly, for a given A and t, γ̄ is monotonic increasing in L. On the other hand, fixing L, γ̄ is monotonically
decreasing in t. If γ is fixed, then the largest legitmate L is monotonically increasing in t.

3.2 Sufficient Recovery Conditions of Truncated `1 Minimization

We first analyze the model (4) and explain why it may require significantly fewer measurements than BP.
Below we present a sufficient exact reconstruction condition, in which the requirement ‖x̄‖0 ≤ L for BP is
replaced by ‖x̄T ‖0 ≤ L.

Theorem 3.1. Let x̄ be a given vector and T be a given index set satisfying T ∩ supp(x̄) 6= ∅. Assume that
a matrix A satisfies t-NSP(t, L, γ̄) for t = |T |. If ‖x̄T ‖0 ≤ L and γ̄ < 1, then x̄ is the unique minimizer of
(4) for b := Ax̄.

Proof. The true signal x̄ uniquely solves (4) if and only if

‖x̄T + vT ‖1 > ‖x̄T ‖1, ∀v ∈ N (A), v 6= 0. (9)

Let S := T ∩ supp(x̄). Since ‖x̄S‖1 = ‖x̄T ‖1, we have

‖x̄T + vT ‖1 = ‖x̄S + vS‖1 + ‖0 + vT∩SC‖1
= (‖x̄S + vS‖1 − ‖x̄S‖1 + ‖vS‖1)︸ ︷︷ ︸

≥0

+‖x̄T ‖1

+ (‖vT∩SC‖1 − ‖vS‖1).

Therefore, having ‖vS‖1 < ‖vT∩SC‖1 is sufficient for (9).
If ‖x̄T ‖0 ≤ L, then |S| ≤ L. According to the definition of t-NSP(|T |, L, γ̄), it holds that ‖vS‖1 ≤

γ̄‖vT∩SC‖1 < ‖vT∩SC‖1.

The assumption T∩supp(x̄) 6= ∅ in Theorem 3.1 is not essential because otherwise, x̄ is a trivial solution of
(4). In addition if ATC has independent columns, then x̄ is the unique solution. We note that t-NSP(|T |, L, γ̄)
is more strict than what is needed when T is given because (8) is required to hold for all T with |T | = t.

The following lemma states that the t-NSP is satisfied by Gaussian matrices of appropriate sizes. Our
proof is inspired by the work [33].

Lemma 3.1. Let m < n. Assume that A ∈ Rm×n is either a standard Gaussian matrix (i.e., one with
i.i.d. standard normal entries) or there exists a standard Gaussian matrix B ∈ Rn×(n−m) such that AB = 0.
Given an index set T , with probability greater than 1 − e−c0(n−m), the matrix A satisfies t-NSP(t, L, γ) for

t = |T | and γ =
√
L

2
√
k(d)−

√
L

, where

k(d) := c
m− d

1 + log(n−dm−d)
, (10)

d = n− |T |, and c0, c > 0 are absolute constants independent of the dimensions m, n and d.

In ISD, d equals the number of detected entries (including both correct and false detections). d determines
k(d) and in turn the t-NSP parameter γ. Since the sufficient condition of Theorem 3.1 requires γ̄ < 1 (i.e.,
there exists a γ < 1), we see that support detection affects the chance of recovery by (4). Because k(d) plays
a pivoting role here, we analyze its formula (10) at the end of this subsection. Also, we note that the γ given
in Lemma 3.1 is not necessarily tight.

6

Proof. Let the columns of B span N (A), i.e., B ∈ R(n−m)×m and AB = 0, and PT refer to projection to the
coordinates T . Then, Λ = {vT : v ∈ N (A)} = {(PTB)w : w ∈ Rn−m} is a randomly drawn subspace in R|T |
with dimensions up to (n−m). Kashin-Garnaev-Gluskin’s result [22, 18] states that for any p < q, with

probability ≥ 1− e−c0p,

a randomly drawn p-dimensional subspace Vp ∈ Rq satisfies

‖z‖1
‖z‖2

≥ c1
√
q − p√

1 + log(q/(q − p))
, ∀z ∈ Vp, z 6= 0,

where c0 and c1 are independent of the dimensions. Applying this result with q := |T | = n−d and p := n−m,
we obtain

‖vT ‖1
‖vT ‖2

≥
c1
√

(n− d)− (n−m)√
1 + log((n− d)/((n− d)− (n−m))

, ∀v ∈ N (A), v 6= 0.

or
‖vT ‖1
‖vT ‖2

≥ c1
√
m− d√

1 + log n−d
m−d

, ∀v ∈ N (A), v 6= 0.

Let k(d) be defined in (10) where c =
c21
4 . For all S ⊂ T with |S| ≤ L we have

√
k(d)‖vT ‖2 ≤ 1

2‖vT ‖1
and thus

‖vS‖1 ≤
√
|S|‖vS‖2 ≤

√
L√
k(d)

√
k(d)‖vS‖2 ≤

√
L√
k(d)

√
k(d)‖vT ‖2 ≤

√
L

2
√
k(d)
‖vT ‖1,

or equivalently
‖vS‖1 ≤ γ‖vT∩SC‖1,

where γ =
√
L

2
√
k(d)−

√
L
. The lemma follows from the definition of the t-NSP.

Theorem 3.1 and Lemma 3.1 lead to the following theorem.

Theorem 3.2. Let x̄ ∈ Rn and T be given such that T ∩ supp(x̄) 6= ∅. Let m < n and A ∈ Rm×n be given
as in Lemma 3.1. Then, with probability greater than 1− e−c0(n−m), the true signal x̄ is the unique solution
of (4) for b := Ax̄ if

‖x̄T ‖0 < k(d), (11)

where k(d) is defined in (10), d = n − t = n − |T |, and c0, c > 0 are absolute constants independent of the
dimensions m, n, and d.

Furthermore, let dc = |I ∩ supp(t̄)| denote the number of correct detections. Then, (11) is equivalent to

‖x̄‖0 < k(d) + dc. (12)

Proof. In Lemma 3.1, let L = ‖x̄T ‖0 and if L < k(d), then γ < 1. Then, the first result follows from Theorem
3.1. (11) and (12) are equivalent since ‖x̄‖0 = ‖x̄T ‖0 + dc.

Note that when d = 0, condition (11) reduces to the existing result for BP: for the same vector x̄ and A
given in Theorem 3.2 above, with probability greater than 1− e−c0(n−m), x̄ is the unique solution of (4) for
b := Ax̄ if ‖x̄‖0 ≤ cm(1 + log(n/m))−1, namely, the inequality (11) holds for d = 0.

In light of (12), to compare BP with truncated BP, we shall compare k(0) with k(d) + dc. Below we
argue that if there are enough correct detections (i.e., dc/d is sufficiently large), then we get k(0) < k(d)+dc
and it is easier for truncated BP to recover x̄ than BP. To see this, we start with

k(0) = k(d)−
∫ d

0

k′(d) (13)

7

and study k′(d). Because (4) is equivalent to a linear program which has a solution with no more than m
nonzeros, we naturally assume d < m. Then, we obtain

k′(d) := −c

 1

1 + log
(
n−d
m−d

) +
n−m(

1 + log
(
n−d
m−d

))2

(n− d)

 < 0. (14)

On the other hand, we have −1 < k′(d) for the following reasons. First, it is well-known that universal stable
reconstruction (by any methods) requires ‖x̄‖0 < m/2, which we now assume. Second, when BP fails (which
is the case we are interested in), Theorem 3.2 gives us k(0) ≤ ‖x̄‖0. Therefore, we have k(0) < m/2 or

c

1 + log(nm)
<

1

2
. (15)

Plugging (15) into (14) one can deduce −1 < k′(d) < 0, together with (13) which gives

k(0) = k(d)−
∫ d

0

k′(d) < k(d) + d. (16)

(16) means that if d = dc (i.e., there is no false detection), truncated BP does better than BP. For practical
reasons, we do not always have d = dc, but on the other hand, one does not push ‖x̄‖0 to its limit at
m/2. Consequently, (15) is very conservative. In fact, it is safe to assume c

1+log(n
m) < 1/4, which gives

−1/2 < k′(d) < 0 and thus

k(0) = k(d)−
∫ d

0

k′(d) < k(d) +
1

2
d. (17)

Comparing the right-hand sides of (12) and (17), we can see that as long as dc ≥ (1/2)d (i.e., at least half of
the detections are correct), then truncated BP is more likely to recover x̄ than BP. It is easy to extend this
analysis to the iterations of ISD as follows. Since k(d) reduces at rate slower than 1/2, k(d)+dc will increase
as long as dc grows faster in terms of ∆dc/∆d > 1/2 between iterations. Finally, we can also observe that
the higher the sample ratio m/n, the smaller |k′(d)|. Hence, the sufficient reconstruction condition becomes
even easier to satisfy.

3.3 Stability of Truncated `1 Minimization

Because many practical signals are not exactly sparse, we study the reconstruction error of (4) applied to
general signals, which is expressed in the best L–term approximation error of x̄:

σL(x̄)1 := inf{‖x̄− x‖1 : ‖x‖0 ≤ L, x ∈ Rdim(x̄)}.

For a signal x̄ with a fast decaying tail (in terms of the distribution of its entries), this error is much smaller
than ‖x̄‖1. Theorem 3.3 below states that under certain conditions on A, (4) returns a solution with an
`1-error bounded by σL(x̄) up to a constant factor depending only on |T |. The theorem needs the following
lemma, which is an extension of Lemma 4.2 in [10].

Lemma 3.2. Consider problem (4) with a given T , and let z, z′ ∈ F(b). Assume that A satisfies t-
NSP(t, L, γ̄), where t = |T | and γ̄ < 1. Let S ⊂ T be the set of indices corresponding to the largest L
entries in zT . We have

‖(z − z′)T∩SC‖1 ≤
1

1− γ̄
(‖z′T ‖1 − ‖zT ‖1 + 2σL(zT)1) , (18)

where σL(zT)1 is the best L-term approximation error of zT .

8

Proof. We have ‖zT∩SC‖1 = σL(zT)1 and

‖(z′ − z)T∩SC‖1 ≤ ‖z′T∩SC‖1 + ‖zT∩SC‖1
= ‖z′T ‖1 − ‖z′S‖1 + σL(zT)1

= ‖zT ‖1 + ‖z′T ‖1 − ‖zT ‖1 − ‖z′S‖1 + σL(zT)1

= ‖zS‖1 − ‖z′S‖1 + ‖z′T ‖1 − ‖zT ‖1 + 2σL(zT)1

≤ ‖(z − z′)S‖1 + ‖z′T ‖1 − ‖zT ‖1 + 2σL(zT)1.

Equation (18) follows from the above inequality and the definition of t-NSP(t, L, γ̄), which says

‖(z′ − z)S‖1 ≤ γ̄(‖(z′ − z)T∩SC‖1). (19)

Lemma 3.2 leads to the following theorem.

Theorem 3.3. Consider problem (4) for a given T . Assume that A satisfies t-NSP(t, L, γ̄), where t = |T |
and γ̄ < 1. Let x∗ be the solution of (4) and x̄ be the true signal. Then, ‖x∗T ‖1 − ‖x̄T ‖1 ≤ 0, and

‖x∗ − x̄‖1 ≤ 2CT · σL(x̄T)1, (20)

where

CT =
1 + (1 + max{1, |TC |/L})γ̄

1− γ̄
.

Proof. For notation cleanliness, we introduce

S1 := TC = I, S2 := S ⊂ T, S3 := T ∩ SC ,

which form a partition of {1, . . . , n}.
Case 1: |S1| ≤ L. We can find S′ ⊂ S2 such that |S1 ∪ S′| = L. From t-NSP(t, L, γ̄) for A, we get

‖(z − z′)S1
‖1 ≤ ‖(z − z′)S1∪S′‖1 ≤ γ̄‖(z − z′)S3

‖1. (21)

Case 2: |S1| > L. Let S′′ ⊂ S1 denote the set of indices corresponding to the largest L entries of (z−z′)S1
.

From t-NSP(t, L, γ̄) for A,, we have

‖(z − z′)S1‖1 ≤
|S1|
L
‖(z − z′)S′′‖1 ≤

|S1| · γ̄
L
‖(z − z′)S3‖1 (22)

Combining (21) and (22) gives

‖(z − z′)S1
‖1 ≤ max

{
1,
|S1|
L

}
γ̄‖(z − z′)S3

‖1.

This, together with (18) and (19), gives

‖z − z′‖1 = ‖(z − z′)S1
‖1 + ‖(z − z′)S2

‖1 + ‖(z − z′)S3
‖1 (23)

≤ (1 + (1 + max{1, |S1|/L}) γ̄) ‖(z − z′)S3
‖1 (24)

≤ CT (‖z′T ‖1 − ‖zT ‖1 + 2σL(zT)1) . (25)

Finally, let z and z′ denote the true signal x̄ and the solution x∗ of (4), respectively. The optimality of x∗

gives ‖x∗T ‖1 − ‖x̄T ‖1 ≤ 0, from which (20) follows.

Theorem 3.3, states that the reconstruction error of (4) is bounded by the best L-term approximation
error of x̄T up to a multiple depending on γ̄ and |TC |. When t = n, it reduces to the existing result for BP
established in [9]:

‖x∗ − x̄‖1 ≤ 2
1 + γ

1− γ
· σL′(x̄)1, (26)

9

when A satisfies the NSP of order L′ for γ ∈ (0, 1).
To compare truncated BP with BP on their error bounds given in (20) and (26), respectively, we need to

study the tail of x̄. We claim that making correct detections alone is not sufficient to make (20) better than
(26). To see this, assume that γ̄ = γ in both bounds. Support detection makes t = |T | < n and |TC | > 0.
As discussed at the end of Subsection 3.1 above, we get L′ ≤ L. Then, it is unclear whether we have
σL(x̄T)1 < σL′(x̄)1 or the other way. In addition, CT is bigger than (1 + γ)/(1− γ). Hence, the error bound
in (20) can be bigger than (26). Only if the tail decays fast enough in the sense that σL(x̄T)1 � σL′(x̄)1,
can (20) reliably give a smaller bound than (26). This comparison also applies to two instances of truncated
BP, one having a bigger T than the other. For support detection to lead to a reduced reconstruction error,
there must be enough correct detections and x̄ must have a fast decaying distribution of nonzeros. This
conclusion matches our numerical results given in Section 5 below.

3.4 Iterative Behavior of ISD

The results in the above two subsections concern signal reconstruction by (4) not the ISD iterations, and
exact reconstruction requires the t-NSP with a parameter γ̄ < 1. This subsection presents a sufficient
condition for the ISD iterations to yield a decreasing sequence of γ̄.

Theorem 3.4. Suppose that A has the t-NSP(t, L, γ̄) as well as t-NSP(t′, L′, γ̄′) with t′ < t and L′ < L. If
(L− L′) > γ̄(t− t′ − (L− L′)), then γ̄′ < γ̄.

Proof. Let 0 < J ′ < J and 1 < γ < ∞. For given T ′, η′, and S′ that satisfy T ′ ⊂ {1, . . . , n}, |T ′| = t′,
η′ ∈ N (A), η′ 6= 0, S′ ⊂ T ′, |S′| = J ′, γ̄′ = ‖η′S′‖1/‖η′T ′\S′‖1, we have

‖η′T ′\S′‖1 = ‖η′T\S‖1 − ‖η
′
T\S−(T ′\S′)‖1

≥ γ̄−1‖η′S‖1 − ‖η′T\S−(T\S′)‖1
= γ̄−1‖η′S′‖1 + γ̄−1‖η′S−S′‖1 − ‖η′T\S−(T\S′)‖1,

for any S satisfying S ⊇ S′, |S| = J , and S ⊂ T , |T | = t, S − S′ ⊆ T \ T ′. In particular, we choose S such
that S − S′ consists of the largest J − J ′ entries of η′T\T ′ in magnitude.

According to (J − J ′) > γ̄(t− t′ − (J − J ′)), we have

|S − S′| > γ̄|T \ S − (T ′ \ S′)|. (27)

If η′S−S′ 6= 0, then this condition means γ̄−1‖η′S−S′‖1 > ‖η′T\S−(T ′\S′)‖1 and, thus, ‖η′T ′\S′‖1 > γ̄−1‖η′S′‖1.

Otherwise, i.e., η′S−S′ = 0, then we have γ̄−1‖η′S−S′‖1 = ‖η′T\S−(T ′\S′)‖1 = 0. However, we can still

show ‖η′T ′\S′‖1 > γ̄−1‖η′S′‖1 by showing ‖η′T\S‖1 > γ̄−1‖η′S‖1, i.e., the first inequality in the equation

array above holds strictly. To see this, we first get η′T ′\S′ 6= 0 from γ̄−1‖η′S−S′‖1 = ‖η′T\S−(T ′\S′)‖1 = 0,

‖η′T ′\S′‖1 ≥ γ̄−1‖η′S′‖1, γ̄−1 > 0, and η′ 6= 0. Next, we generate S̄ by first letting it be S, second dropping

any one entry in S − S′ (which has a zero value), and picking up a nonzero entry in T ′ \S′. Such S̄ satisfies

‖η′T\S‖1 > ‖η
′
T\S̄‖1 ≥ γ̄

−1‖η′S̄‖1 > γ̄−1‖η′S‖1.

Therefore, we have
(27)⇒ ‖η′T ′\S′‖1 > γ̄−1‖η′S′‖1

Therefore γ̄′ < γ̄.

To understand the result, we assume that BP (ISD iteration 0) fails to reconstruct x̄ so that we can apply
(t, L, γ̄) and (t′, L′, γ̄′) to ISD iterations 0 and 1, respectively. Recall that the numbers of correct and wrong
detections are denoted by dc and dw, respectively. We can see (L−L′) > γ̄(t− t′− (L−L′)) being equivalent
to dc > γ̄dw, meaning that from x(0) ISD must make correct detections at least γ̄ times as many as wrong
detections in order to guarantee γ̄′ < γ̄, which indicates a forward step toward exact reconstruction. The
result can also be applied to two consecutive ISD iterations s and s+ 1 and give the condition ∆dc > γ̄∆dw,
where γ̄ applies to iteration s and ∆dc and ∆dw are the changes of correct and wrong detections in number
from iteration s to s+ 1, respectively.

10

In practice, ISD does not know γ̄, dc, or dw, but ISD needs to know when to stop its iterations. We
suggest two alternatives. The first one uses the (bm/2c+ 1)′th largest component of x(s). According to [1],
this value is proportional to an upper bound of the error. Therefore, once the value is 0 or small enough, we
obtain an (almost) exact reconstruction and can stop the ISD iteration. In addition, we can also stop the
ISD iteration if this value stagnates or shows a steady increase over the past few iterations. Another stopping
rule is based on comparing I(s−1) and I(s). When ISD fails to further improve the solution (including the
case the solution is already exact), I(s) and I(s−1) will be (almost) identical.

4 Threshold–ISD for Fast Decaying Signals

4.1 A Support Detection Scheme Based on Thresholding

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

1.5
n=200, m=60, k=25, Err = 4.53e−001

true signal
true nonzero
false nonzero

(a) The nonzeros of the true signal v.s. the true/false
nonzeros of the reconstructed signal

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4
n=200, m=60, k=25, Err = 4.53e−001

false nonzero
true nonzero
adopted threshold vaue
reference threshold value

(b) The sorted components of the failed reconstruction
and their first significant jump

140 150 160 170 180 190 200
0

0.2

0.4

0.6

0.8

1

1.2

n=200, m=60, k=25, Err = 4.53e−001

false nonzero
true nonzero
adopted threshold vaue
reference threshold value

(c) A zoom-in of Figure (b)

Figure 2: Illustration of support detection from a failed reconstruction by looking for the “first significant
jump”. The failed reconstruction was obtained by BP from Gaussian linear measurements of a sparse
Gaussian signal. “Err” is the relative error in `2 norm.

ISD requires reliable support detection. In this section, we present effective detection strategies for
signals with a fast decaying distribution of nonzero values (hereafter, we call them fast decaying signals),
which include sparse Gaussian signals and certain power–law decaying signals. Our strategies are based on
thresholding

I(s+1) := {i : |x(s)
i | > ε(s)}, s = 0, 1, 2, (28)

11

We term the resulting algorithm threshold–ISD. Before discussing the choice of ε(k), we note that the support
sets I(s) are not necessarily increasing and nested, i.e., I(s) ⊂ I(s+1) may not hold for all s. This is important
because it is very difficult to completely avoid wrong detections by setting ε(s) based on available intermediate
solutions x(i), for i ≤ s. The true solution is not known, and a component of x(i), no matter how big, could
nevertheless still be zero in the true solution. Not requiring I(s) to be monotonic leaves the chance for
support detection to remove previous wrong detections, making it less sensitive to ε(s) and thus making ε(s)

easier to choose.
We study different rules for ε(s). We have seen in Section 2 the simple rule ε(s) = ‖x(s)‖∞/β(s+1) with

β > 0. This rule is quite effective with an appropriate β. However, the proper range of β is case-dependent.
An excessively large β results in too many false detections and consequently low solution quality whilst an
excessively small β tends to cause a large number of iterations. Because the third rule below is more effective,
this first rule is not recommended.

The second rule is a toll–based rule, namely, setting ε(s) so that I(s) has a given cardinality, which increases
in s. We tried cardinality sequences such as 1, 2, . . . and 2, 4, . . . and obtained high quality reconstructions
from a small number of measurements. However, because I(s) grows slowly, threshold–ISD takes a large
number of iterations. In comparison, the third rule below offers a much better balance between quality and
speed.

The rule of our choice is based on locating the “first significant jump” in the increasingly sequence |x(s)
[i] |

(x[i] denotes the ith largest component of x by magnitude), as illustrated by Figure 2. The rule looks for
the smallest i such that

|x(s)
[i+1]| − |x

(s)
[i] | > τ (s), (29)

where τ (s) is selected below. This amounts to sweeping the increasing sequence |x(s+1)
[i] | and looking for the

first jump larger than τ (s). In the example in Figure 2, it is located at [i] = 188. Then, we set ε(s) = |x(s)
[i] |.

Typically, this rule allows (28) to detect a large number of true nonzeros with few false alarms. It is less
arbitrary than the first rule while also leading to faster convergence than the second rule.

The “first significant jump” exists because in x(s), the true nonzeros (the red circles in Figure 2) are
large in size and small in number, while the false ones (the blue diamonds in Figure 2) are large in number
and small in size. Therefore, the magnitudes of the true ones are spread-out while those of the false ones are
clustered. The false ones are the smearing due to the nonzeros in x̄ that are zeroed out in x(s). To explain
this mathematically, let us decompose x(s), which we assume to have m nonzero entries2. Slightly abusing

the notation, we let B = {i : x
(s)
i 6= 0} denote both the set of basic indices and the corresponding square

submatrix of A so we have Bx
(s)
B = b. Let V = BC . From basic algebra, we get x

(s)
B = x̄B + B−1AV x̄V

where x̄B = [x̄U ; 0] for U = B ∩ supp(x̄). Because x̄V tends to have smaller components than x̄U
3 and B−1

has a diluting effect, the components of B−1AV x̄V tend to be much smaller than those in x̄U . Therefore,

x
(s)
U are typically dominated by x̄U and thus have relatively large components.

Here we adopt a very simple method to define τ (s) for different kinds of sparse or compressible signals.
For the sparse Gaussian signals, we set τ (s) simply as m−1‖x(s)‖∞, which is used in the example shown in
Figure 2 and gives no false detection. For the first 5 iterations in the experiments reported in Section 5
below, we made the detection slightly more conservative by increasing τ (s) to 6

s+1τ
(s), s = 0, 1, 2, 3, 4.

Besides sparse Gaussian signals, we also tried the “first significant jump” rule on synthetic sparse and
compressible power–law decaying signals, as well as on the wavelet coefficients of the Shepp-Logan phantom
and the cameraman image in Section 5. The sparse and compressible power–law decaying signals were
constructed by first generating a sequence of numbers obeying the power-decay rule like {i−1/λ}ki=1 followed
by multiplying each entry by a random sign and applying a random permutation to the signed sequence.
We set τ (s) according to λ. For example, when λ = 1/3, one can set τ (s) = ‖x(s)‖∞/m/20; when λ = 0.8,
or 1, one can set τ (s) = ‖x(s)‖∞/m/5; when λ = 2 or 4, one can set τ (s) = ‖x(s)‖∞/m/2. For the wavelet
coefficients of the phantom image and cameraman image, one can set τ (s) = ‖x(s)‖∞/m. Like we did for

2(4) can be reduced to a linear program. It is possible that x(s) has either less or more than m nonzero entries but for most
matrices A used in CS and most signals, x(s) has exactly m nonzero entries with a nonsingular basis B. This assumption offers
technical convenience and is not essential to the argument that follows.

3Roughly, a fast-decaying x̄ can be regarded to consist of a signal part of large components and a noise part of smaller and
zero components. Stability results say that the signal part are mostly included in x̄U .

12

sparse Gaussian signals, for the first 9 iterations in the experiments, we made the detection slightly more
conservative by increasing τ (s) to 8

s+1τ
(s), s = 0, 1, 2, 3, 4, 5, 6, 7. The above heuristics, which worked very

well in our experiments, is certainly not necessarily optimal; on the other hand, it has been observed that
threshold–ISD is not very sensitive to τ (s).

Finally, we give three comments on support detections. First, one can apply other available effective
jump detection methods [28, 21]. Second, any threshold-based support detection rule requires true signals
to have a fast decaying distribution of nonzeros in order to work reliably. It does not work on signals that
decay slowly or have no decay at all (e.g., sparse Bernoulli signals). Third, one should be able to find better
support detection methods for real world signals such as those with grouped nonzero components (cf. the
model-based CS [2]) and natural/medical images (cf. edge-enhanced compressive imaging [19]).

4.2 YALL1 and Warm-Start

The truncated BP model (4) can be solved by most existing `1 algorithms/solvers with straightforward
modifications. We chose YALL1 [30] since it is among the fastest ones whether the solution is sparse or not.
In the numerical tests reported in Section 5 below, we applied YALL1 to all BP, truncated BP, and weighted
`1 problems that arise in threshold–ISD and the compared algorithms.

For completeness, we give a short overview of YALL1. Based upon applying the alternating direction
method to the Lagrange dual of

min
x
{
n∑
i=1

wi|xi| : Ax = b},

the iteration in YALL1 has the basic form:

yl+1 = αAzl − β(Axl − b), (30)

zl+1 = Pw(A∗yl+1 + xl/µ), (31)

xl+1 = xl + γµ(A∗yl+1 − zl+1), (32)

where µ > 0, γ ∈ (0, (1 +
√

5)/2), α = 1 and β = 1
µ . Pw is an orthogonal projection onto the box

Bw , {z ∈ Cn : |zi| ≤ wi, i = 1, . . . , n}. This is a first-order primal–dual algorithm in which the primal
variables x and dual variables y and z (a dual slack) are updated at every iteration. In our numerical
experiments, we stopped YALL1 iterations once the relative change ‖xl+1 − xl‖2/‖xl‖2 fell below a certain
prescribed stopping tolerance.

YALL1 was called multiple times in threshold–ISD to return x(s), s = 0, 1, Because the “first
significant jump” rule does not need a highly accurate solution, a loose stopping tolerance was set in YALL1
for all but the last threshold–ISD iteration. The tolerances used are given in Subsection 5.5 below. To
determine whether a threshold–ISD iteration k was the final iteration, the loose stopping tolerance was put
in place to stop YALL1 and upon stopping of YALL1, I(s+1) was generated and compared to I(s) and I(s−1).
If all three I’s were identical or almost so, any further iteration would likely give the same or a very similar
solution. At this time, we let YALL1 resume from where it stopped and return an accurate final solution till
a tighter tolerance was reached. In other words, threshold–ISD uses coarse solutions for support detection
and returns a fine solution to the user.

To further accelerate threshold–ISD, we warm-started YALL1 whenever possible. Specifically, for each
instance of BP, truncated BP, and weighted `1 problems, YALL1 was started from the solution (x, y, z) of
the previous instance if available.

As a result of applying varying stopping tolerance and warm–start, the total threshold–ISD time, in-
cluding the time of solving multiple truncated BP problems, was almost the same on average as the time of
solving a single BP problem.

5 Numerical Implementation and Experiments

Threshold–ISD was compared to the BP model (2), the iterative reweighted least-squares algorithm (IRLS)
[8], and the iterative reweighted `1 minimization algorithm (IRL1) [7]. IRLS and IRL1 appear to be state-

13

of-the-art in terms of the number of measurements required. These comparisons4 show that threshold–ISD
requires as few measurements as IRLS and meanwhile runs as fast as BP, which is much faster than IRLS.

5.1 Reviews of IRL1 and IRLS

Let us first briefly review the algorithms IRL1 [7] and IRLS [8]. They are both iterative procedures attempting
to solve the following `p minimization problem:

min ‖x‖p s.t. Ax = b (33)

where p ∈ [0, 1]. At the s-th iteration, the IRL1 algorithm computes

x(s) ← min
x
{
n∑
i=1

w
(s)
i |xi| : Ax = b}, (34)

where the weights are set as

w
(s)
i := (|x(s−1)

i + η|)p−1, (35)

and η is a regularization parameter. Initially, x(0) is the solution of the BP problem.
IRLS iteratively minimizes a weighted `2 function to generate x(s):

x(s) ← min
x
{
∑
i

w̃
(s)
i |xi|

2 : Ax = b}, (36)

The solution of (36) can be given explicitly as

x(s) = QsA
T(AQsA

T)−1b (37)

where Qs is the diagonal matrix with entries 1/w̃
(s)
i and the weights are set as

w̃
(s)
i := (|x(s−1)

i |2 + ζ)p/2−1 (38)

and ζ is a regularization parameter. Initially, x(0) is the least-squares solution of Ax = b.
We set p := 0 uniformly in the experiments since it is reported that this value leads to better reconstruc-

tions than p > 0. Notice that if x(s−1) in both (35) and (38) are set equal to x and η = ζ = 0, then following

the convention 0/0 = 0, we have
∑
i w

(s)
i |xi|2 =

∑
i w̃

(s)
i |xi|2 = ‖x̄‖0. This result, though not holding for

η, ζ > 0, indicates that the two objective functions are smooth approximations to ‖x‖0. When η and ζ are

large,
∑n
i=1 w

(s)
i |xi| and

∑
i w̃

(s)
i |xi|2 are close to ‖x‖1 and ‖x‖22, respectively, so they tend to have fewer

local minima. Therefore, η and ζ were both initially large and gradually reduced as s increased. The setting
of these parameters were given in Subsection 5.4 below.

5.2 Denoising Minimization Problems

The measured data is sometimes inaccurate due to various kinds of imprecisions or contaminations. Assume
that b = Ax+ z, where z is i.i.d. Gaussian with zero mean and standard deviation (noise level) σ. When σ
is not big, the unconstrained BP problem (3) is known to yield a faithful reconstruction for an appropriate
ρ depending on σ. We found that (3) could be solved faster and yield a slightly more accurate solution
than the constrained BP problem (2). Therefore, (3) was used in our tests with noisy measurements. In our
figures, we use “L1/L2” for (3).

For IRL1, reweighting was applied to the above noise–aware problem (3), and each of its iteration was
changed from (34) to

x(s) ← min
x
{
n∑
i=1

w
(s)
i |xi|+

1

2ρ
‖b−Ax‖22}, (39)

4More comparisons to other algorithms include certain greedy algorithms are given on the second author’s website.

14

where weights w
(s)
i were generated as before. Given an index set T , threshold–ISD solved the following

truncated `1 version of (3):

x(s) ← min ‖xT (s)‖1 +
1

2ρ
‖b−Ax‖22. (40)

The same ρ was set for the three problems (3), (39) and (40), which were all solved by YALL1 iterations
(30), (31) and (32) with new α := µ

µ+ρ and β := 1
µ+ρ .

For IRLS, however, we did not relax Ax = b in (36) for noisy measurements because the resulting
unconstrained problem is no easier to solve and neither does it return solutions with less error, at least when
the error level σ is not excessively large. Therefore, (36) was solved by IRLS for noisy measurements.

5.3 Transform Sparsity

In many situations, it is not the true signal x̄ itself but its representation under a certain basis, frame, or
dictionary that is sparse or compressible. In such a case, ȳ = Wx̄ is sparse or compressible for a certain
linear transform W . Fwavelets, curvelets, etc. Instead of minimizing ‖x‖1 and ‖xT ‖1, ‖Wx‖1 and ‖(Wx)T ‖1
should be minimized, respectively. Then, the weight variables in IRL1 and IRLS should be updated according
to the components of (Wx) instead of those of x. In case of transform sparsity, the above simple changes
were applied to all algorithms and solvers.

5.4 Experimental Settings and Test Platforms

Nonzeros or Image Name Noise σ Dimension n Sparsity k Measurements m Repetitions

1
Gaussian 0 600 8 16:4:100 100
Gaussian 0 600 40 80:10:220 100
Gaussian 0 600 150 250:10:400 100

2 Gaussian 0 3000 100 200:50:800 100

3
Gaussian 0.0001 2000 100 325 200
Gaussian 0.001 2000 100 325 200
Gaussian 0.01 2000 100 325 200

4 Power–Law at varying rates 0 600 40 or 600 varied 100

5
Shepp–Logan Phantom 0 128× 128 1685 2359:337:6066 10
Shepp–Logan Phantom 0.001 128× 128 1685 2359:337:7414 10

Cameraman 0 256× 256 65536 6553:2621:32763 10

Table 1: Summary of test sets.

The test sets are summarized in Table 1. Our experiment included five different test sets, the first
four of which used various synthetic signals and standard i.i.d. Gaussian sensing matrices A generated by
A=randn(m,n) in MATLAB. The first two sets used noise-free measurements and different amounts of white
noise added to measurements in the third set. With noise, exact reconstruction was impossible, so in the
third set we did not change m but measured solution errors for different levels of noise. The fourth set used
signals with entries following power laws among which a part of the signals had their tails truncated and
thus sparse. As zero–decay sparse signals are just sparse ±1 signals, this set also included sparse Bernoulli
signals. The last (fifth) set used two–dimensional images of different sizes and tested sensing matrices A
that were partial discrete cosine matrices formed by choosing the first and a random subset of the remaining
rows from the full discrete cosine matrices. Since all the operations in threshold–ISD and IRL1 involving A
(which are Ax and A>x) were computed by the discrete cosine transform, A were never explicitly formed or
stored in memory in these two algorithms. On the other hand, IRLS needs explicit matrices A so it was not
tested in the fifth set5. The fifth set also included tests with noise added to the measurements. The images
were assumed to be sparse under the two–dimensional Haar wavelets.

Specifically, the sparse Gaussian signals were generated in MATLAB by

xbar =zeros(n,1); p=randperm(n); xbar(p(1:k))=randn(k,1);

and the sparse Bernoulli signals were generated by the same commands except

5IRLS iterations could be modified to use Ax and A>x rather than A in the explicit form, but for the purpose of this paper,
no modification was done.

15

xbar(p(1:k))=2*(rand(k,1)>0.5)-1;

The power–law decaying signals were generated by

xbar=zeros(n,1); p=randperm(n);

xbar(p(1:n))=sign(randn(n,1)).*((1:n).^(-1/lambda))’;

xbar=xbar/max(abs(xbar));

and replacing the second line by xbar(p(1:k))=sign(randn(k,1)).*((1:k).^(-1/lambda))’ we obtained
the sparse ones. Variable lambda was set to different values (described in Subsection 4.1 above), which
controls the rate of decay. The larger lambda, the lower the rate of decay.

All test code was written and tested in MATLAB v7.7.0 running in GNU/Linux Release 2.6.9–55.0.2 on
a Dell Optiplex GX620 with dual Intel Pentium D CPUs 3.20GHz (only one CPU was used by MATLAB)
and 3 GB of memory.

5.5 Stopping Tolerance and Smoothing Parameters

Performances of all tested code depend on parameters. For fairness, threshold–ISD, IRL1, IRLS, and BP
were stopped upon

‖xl+1 − xl‖2
‖xl‖2

≤ ε, (41)

with different intermediate but the same final stopping tolerances ε.
Test sets 1, 2, and 4: In all tests, threshold–ISD was set to run no more than 9 iterations (with the

reason given below in test sets 1 and 2), in which the first iteration had ε := 10−1 and the rest except for
the last one had ε := 10−2. Smaller ε values did not make solutions or running times better. ε := 10−6 was
set for the final iterations of threshold–ISD. The stopping rule is based on comparing consecutive support
sets I(s) as described in Section 4.2.

ε := 10−6 was also set for BP, all iterations of IRL1. Larger intermediate ε values would make IRL1
return worse solutions. IRL1 had 9 iterations as recommended in [7], but its smoothing parameter η was
initialized to 1 and reduced by half each time, different from but slightly better than the recommendation.

Recommended in [8] for IRLS and for test sets 1 and 2, its smoothing parameter ζ was initialized to 1 and
reduced to ζ/10 whenever (41) was satisfied for ε :=

√
ζ/100 until ζ reaches 10−8 when the final ε = 10−6

became effective. We optimized ε and the stopping value of ζ for the more challenging test 4. For power–
law decaying signals (either sparse or not), ε := 10−3/2

√
ζ and the stopping ζ was set to 10−9; for sparse

Bernoulli signals, ε := 10−1
√
ζ and the stopping ζ was set to 10−10. Again, ε reached 10−6 finally. The above

optimization to IRLS made its frequency of successful reconstruction slightly higher than threshold–ISD in
a couple of tests.

Test set 3: Because of measurement noise and thus reconstruction errors, it was not necessary to impose
a tight tolerance for this set of tests. All the four algorithms had the reduced final ε :=

√
σ/100 uniformly.

Threshold–ISD ran no more than 9 iterations with the same intermediate ε values as in test sets 1, 2, and
4. IRL1 ran 9 iterations with intermediate ε :=

√
σ/100 constantly. For all but the last IRLS iteration,

ε := max{
√
σ/100,

√
ζ/100}.

Test set 5: Threshold–ISD was only compared to BP and IRL1 because matrices A were too large
to form in IRLS. The only parameter change was the final ε := max{10−4, σ/10} for all the three tested
algorithms.

5.6 Experimental Results

Test set 1: Sparse signals containing k = 40, 8, 150 nonzeros were used in this set, and corresponding
results were plotted in Figures Figures 3, 4, and 5, respectively.

Figure 3 depicts the performance of the four tested algorithms. Figure 3(a) shows that threshold–ISD
and IRLS achieved almost the same recoverability, which was significantly higher than that of IRL1 in terms
of the number of required measurements. With no surprise, the recoverability of the BP method was the
worst. Figure 3(b) shows that threshold–ISD was much faster than both IRL1 and IRLS, and was even

16

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
cc

ep
ta

bl
e

re
co

ns
tr

uc
tio

n
fr

eq
ue

nc
ie

s

n=600, k=40, m=80:10:220

BP
ISD
IRLS
IRL1

(a) Recoverability

80 100 120 140 160 180 200 220

0.5

1

1.5

2

2.5

m

R
un

ni
ng

 ti
m

e
(s

)

n=600, k=40, m=80:10:220

BP
ISD
IRLS
IRL1

(b) CPU time

Figure 3: Test set 1 with k = 40: Comparisons in recoverability and CPU time

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
cc

ep
ta

bl
e

re
co

ns
tr

uc
tio

n
fr

eq
ue

nc
ie

s

n=600, k=8, m=16:4:100

BP
ISD
IRLS
IRL1

(a) Recoverability

20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1

1.2

1.4

m

R
un

ni
ng

 ti
m

e
(s

)
n=600, k=8, m=16:4:100

BP
ISD
IRLS
IRL1

(b) CPU time

Figure 4: Test set 1 with k = 8: Comparisons in recoverability and CPU time

250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
cc

ep
ta

bl
e

re
co

ns
tr

uc
tio

n
fr

eq
ue

nc
ie

s

n=600, k=150, m=250:10:400

BP
ISD
IRLS
IRL1

(a) Recoverability

250 300 350 400

0

2

4

6

8

10

12

14

16

18

m

R
un

ni
ng

 ti
m

e
(s

)

n=600, k=150, m=250:10:400

BP
ISD
IRLS
IRL1

(b) CPU time

Figure 5: Test set 1 with k = 150: Comparisons in recoverability and CPU time

17

comparable to BP To sum up, threshold–ISD was not only the fastest one but also the one that required the
least number of measurements.

With the small k = 8 (Figure 4), threshold–ISD had no speed advantage over IRLS but it was still
much faster than IRL1. Quality–wise, threshold–ISD was on par with IRLS and IRL1 and better than BP.
With the larger k = 150, threshold–ISD was much faster than both IRLS and IRL1, and all three achieved
comparable recoverability with 100% starting around m = 300.

Test set 2: This test set used larger signals (n = 3000). Figure 6 shows that threshold–ISD, IRLS, and
IRL1 achieved similar recoverability as they did in test set 1. Because of the relatively large signal size,
IRLS and IRL1 were however much slower than threshold–ISD. The fact that threshold–ISD ran as fast as
BPsuggests that effective support detection accelerates subproblem solution (by YALL1) in threshold–ISD.
The results also show that threshold–ISD was scalable to both signal and measurement sizes.

200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
cc

ep
ta

bl
e

re
co

ns
tr

uc
tio

n
fr

eq
ue

nc
ie

s

n=3000, k=100, m=200:50:800

BP
ISD
IRLS
IRL1

(a) Recoverability

200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

m

R
un

ni
ng

 ti
m

e
(s

)

n=3000, k=100, m=200:50:800

BP
ISD
IRLS
IRL1

(b) CPU time

Figure 6: Test set 2: Comparisons in recoverability and CPU time

Test set 3: This test set compared solution times and errors of the tested algorithms given noisy measure-
ments with three noise levels: σ = 0.0001, σ = 0.001 and σ = 0.01. The corresponding results are depicted
in Figures 7, 8, and 9, respectively, each including three subplots for CPU times, `2 and `1 errors. It is clear
from these figures that threshold–ISD was significantly faster than IRLS and IRL1 and slightly faster than
BP. Threshold–ISD and IRLS were on par on solution quality except that at σ = 0.01, threshold–ISD had
two fails among the total two hundred trials. IRL1 had much more fails, and BP was the worst. Taking
both reconstruction errors and CPU times into consideration, threshold–ISD appeared to the best.

Test set 4: This test set included two subsets. The first subset (Figure 10) used sparse signals with nonzeros
decaying in power–laws at rates λ = 1, 2, 4, as well as sparse Bernoulli signals. The second subset (Figure
11) used two compressible (non–sparse) signals with nonzeros decaying in power–laws at rates λ = 1/3, 0.8,
as well as their sparse tail–removed versions obtained by removing all but the largest k = 8, 40 entries,
respectively.

In the first subset of tests, threshold–ISD, IRL1, and IRLS had better recoverability than BP, but the
advantage diminished as λ increased (i.e., the rate of decay decreased). In cases of zero–decay where the
signals were sparse Bernoulli, all the tested algorithms had similar recoverability. These results match
the conclusion in our theoretical analysis that thresholding–based support detection is effective only if the
nonzeros of signals have a fast–decaying distribution.

The second subset of tests show how the tail of a compressible signal affects its reconstruction. By
comparing Figures 11 (c) with (d) and (e) with (f) (i.e., tail–free v.s. tailed signals), we can observe that it
was much easier for any of the tested algorithms to reconstruct a tail–free sparse signal than a compressible
signal. In addition, because the signal corresponding to λ = 0.8 has a larger tail, the improvement of
threshold–ISD, IRL1, and IRLS over BP was quite small.

18

0 50 100 150 200
0

5

10

15

20

25

30

35

Trials

R
un

ni
ng

 ti
m

e
(s

)

n=2000, m=325, k=100

L1/L2
ISD
IRLS
IRL1

(a) CPU time

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

Trials

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
2−

no
rm

n=2000, m=325, k=100

L1/L2
ISD
IRLS
IRL1

(b) Reconstruction errors in `2 norm

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Trials

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
1−

no
rm

n=2000, m=325, k=100

L1/L2
ISD
IRLS
IRL1

(c) Reconstruction errors in `1 norm

Figure 7: Test set 3 with σ = 0.0001: Comparisons in CPU time and reconstruction errors

19

0 50 100 150 200
0

5

10

15

20

25

30

Trials

R
un

ni
ng

 ti
m

e
(s

)

n=2000, m=325, k=100

L1/L2
ISD
IRLS
IRL1

(a) CPU time

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

Trials

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
2−

no
rm

n=2000, m=325, k=100

L1/L2
ISD
IRLS
IRL1

(b) Reconstruction errors in `2 norm

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

10
1

Trials

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
1−

no
rm

n=2000, m=325, k=100

L1/L2
ISD
IRLS
IRL1

(c) Reconstruction errors in `1 norm

Figure 8: Test set 3 with σ = 0.001: Comparisons in CPU time and reconstruction errors

20

0 50 100 150 200
0

5

10

15

20

25

30

Trials

R
un

ni
ng

 ti
m

e
(s

)

n=2000, m=325, k=100

L1/L2
ISD
IRLS
IRL1

(a) CPU time

0 50 100 150 200
10

−2

10
−1

10
0

Trials

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
2−

no
rm

n=2000, m=325, k=100

L1/L2
ISD
IRLS
IRL1

(b) Reconstruction errors in `2 norm

0 50 100 150 200
10

−2

10
−1

10
0

Trials

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
1−

no
rm

n=2000, m=325, k=100

L1/L2
ISD
IRLS
IRL1

(c) Reconstruction errors in `1 norm

Figure 9: Test set 3 with σ = 0.01: Comparisons in CPU time and reconstruction errors

21

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
cc

ep
ta

bl
e

re
co

ns
tr

uc
tio

n
fr

eq
ue

nc
ie

s

n=600, k=40, m=80:10:220

BP
ISD
IRLS
IRL1

(a) λ=1: acceptable reconstruction frequencies

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
cc

ep
ta

bl
e

re
co

ns
tr

uc
tio

n
fr

eq
ue

nc
ie

s

n=600, k=40, m=80:10:220

BP
ISD
IRLS
IRL1

(b) λ=2: acceptable reconstruction frequencies

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
cc

ep
ta

bl
e

re
co

ns
tr

uc
tio

n
fr

eq
ue

nc
ie

s

n=600, k=40, m=80:10:220

BP
ISD
IRLS
IRL1

(c) λ=4: acceptable reconstruction frequencies

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
cc

ep
ta

bl
e

re
co

ns
tr

uc
tio

n
fr

eq
ue

nc
ie

s

n=600, k=40, m=80:10:220

BP
ISD
IRLS
IRL1

(d) Bernoulli: acceptable reconstruction frequen-
cies

Figure 10: Test set 4 with sparse power–law decaying and Bernoulli signals: Comparisons in recoverability

22

0 5 10 15 20 25 30 35 40 45
10

−3

10
−2

10
−1

10
0

Entries sorted by magnitude

M
ag

ni
tu

de

Sparse power decay signals

λ=1/3
λ=0.8

(a) Sparse signals

0 100 200 300 400 500 600
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Entries sorted by magnitude

M
ag

ni
tu

de

Compressible power decay signals

λ=1/3
λ=0.8

(b) Compressible signals

20 30 40 50 60 70 80

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

m

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
2−

no
rm

n=600, k=8, m=20:5:80

BP
ISD
IRLS
IRL1

(c) λ=1/3: reconstruction errors in `2 norm

20 30 40 50 60 70 80

10
−3

10
−2

10
−1

m

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
2−

no
rm

n=600, k=600, m=20:5:80

BP
ISD
IRLS
IRL1

(d) λ=1/3: reconstruction errors in `2 norm

100 150 200 250 300

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

m

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
2−

no
rm

n=600, k=40, m=80:10:300

BP
ISD
IRLS
IRL1

(e) λ=0.8: reconstruction errors in `2 norm

100 150 200 250 300

10
−1

m

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
2−

no
rm

n=600, k=600, m=80:10:300

BP
ISD
IRLS
IRL1

(f) λ=0.8: reconstruction errors in `2 norm

Figure 11: Test set 4 with sparse and compressible power–law decay signals. The sparse signals were
obtained by removing the tails of the compressible signals. Comparisons in reconstruction errors. Fast
decaying tails required for good performances of threshold–ISD, IRL1 and IRLS.

23

Test Set 5 : Figure 12 depicts the clean 128 × 128 Shepp–Logan phantom and its wavelet coefficients
sorted by magnitude, which have a long tail and a sharp drop near 1600. Threshold–ISD, IRL1, and BP
were tested to reconstruct the phantom from partial discrete cosine measurements both without and with
white noise. The results are given in Figures 13 and 14, respectively. For Figure 13, a reconstruction x̃ was
accepted if its 2–norm relative error ‖x̃(:)− x̄(:)‖2/‖x̄(:)‖2 was within 10−3. Threshold–ISD was both faster
than IRL1 and more accurate than IRL1 and BP in both of the tests.

Figure 15 presents the reconstructed phantoms from noisy measurements corresponding to m = 3370, in
which subplots (b), (d) and (f) highlight the differences between the reconstructions and the clean phantom.
Threshold–ISD gave a much higher signal–to–noise (SNR) ratio.

True image

128 x 128
20 40 60 80 100 120

20

40

60

80

100

120

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Entries sorted by magnitude

M
ag

ni
tu

de

Wavelets coefficients

(b)

Figure 12: Shepp–Logan phantom and its wavelets coefficients sorted by magnitude

2500 3000 3500 4000 4500 5000 5500 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

A
cc

ep
ta

bl
e

re
co

ns
tr

uc
tio

n
fr

eq
ue

nc
ie

s

n=16384, k=1685, m=2359:337:6066

BP
ISD
IRL1

(a)

2500 3000 3500 4000 4500 5000 5500 6000

50

100

150

200

250

300

350

400

m

R
un

ni
ng

 ti
m

e
of

 r
ec

on
st

ru
ct

io
n

(s
)

n=16384, k=1685, m=2359:337:6066

BP
ISD
IRL1

(b)

Figure 13: Noiseless measurements: Acceptable reconstruction frequencies and running times

Figure 16 depicts the clean image “Cameraman” and its sorted wavelet coefficients, which form a long
and slow decaying tail. As expected, threshold–ISD did not return a reconstruction significantly better than
either BP or IRL1 as shown in Figure 17. Even though thresholding in the wavelet domain is not effective
for natural images, we note that the authors of [19], however, have obtained medical images with much
better quality by combining ISD (applied to total variation) with edge detection techniques that replace
thresholding. For this and other reasons, we believe that ISD with effective support detection is potentially
very powerful.

In summary, we compared threshold–ISD with IRLS, IRL1, and BP. Threshold–ISD can be solved as
fast as BP yet achieves reconstruction quality as good as or better than the much slower IRLS. ISD relies
on effective support detection. For threshold–ISD, its good performance requires fast–decaying signals.

24

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

10
−2

10
−1

m

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
2−

no
rm

n=16384, k=1685, m=2359:337:7414

L1/L2
ISD
IRL1

(a)

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

50

100

150

200

250

300

m

R
un

ni
ng

 ti
m

e
of

 r
ec

on
st

ru
ct

io
n

(s
)

n=16384, k=1685, m=2359:337:7414

L1/L2
ISD
IRL1

(b)

Figure 14: Noisy measurements: Reconstruction errors and running times

6 Concluding Remarks

This paper introduces the iterative support detection method ISD for compressive sensing signal recon-
struction. Both theoretical properties and practical performances are discussed. For signals with a fast
decaying distribution of nonzeros, the implementation threshold–ISD equipped with the “first significant
jump” thresholding rule is both fast and accurate compared to the classical approach BP and the state-
of-the-art algorithms IRL1 and IRLS. Due to the limit of thresholding, threshold–ISD does not perform
significantly better than its peers on other types of signals such as images.

However, support detection is not limited to thresholding. Effective support detection guarantees good
performance of ISD. Therefore the future research includes studying specific signal classes and developing
more effective support detection means, for example, by exploring signal structures (model–based CS [2]).

Since minimizing `1 is not the only approach for compressive sensing signal reconstruction, another line
of future exposition is to apply iterative support detection to other reconstruction approaches such as the
greedy algorithms, Bayesian algorithms, dictionary–based algorithms, and many others. We also feel that
the usefulness of the above “first significant jump” rule is not limited to threshold–ISD.

Acknowledgement

The authors want to thank Professor Yin Zhang for making his YALL1 package available to us and Professors
Weihong Guo and Yin Zhang for their valuable comments and suggestions that led to improvements of this
report.

References

[1] M. Babaie-Zadeh, C. Jutten, and H. Mohimani. On the error of estimating the sparsest solution of
underdetermined linear systems. Submitted.

[2] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive sensing. arXiv:0808.3572,
2008.

[3] J. Bioucas-Dias and M. Figueiredo. A new TwIST: two step iterative shrinkage/thresholding algorithms
for image restoration. IEEE Transactions on Image Processing, 16(12):2992–3004, 2007.

[4] E. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate information.
Communications on Pure and Applied Mathematics, 2005(59):1207–1233, 2005.

[5] E. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory,
51:4203–4215, 2005.

25

L1/L2: SNR=8.72dB, Err=3.18e−001, CPU time=27.78 s

Sample ratio:21%
20 40 60 80 100 120

20

40

60

80

100

120

(a)

Difference

Sample ratio:21%

20 40 60 80 100 120

20

40

60

80

100

120
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b)
IRL1: SNR=13.02dB, Err=1.94e−001, CPU time=258.51 s

Sample ratio:21%
20 40 60 80 100 120

20

40

60

80

100

120

(c)

Difference

Sample ratio:21%

20 40 60 80 100 120

20

40

60

80

100

120
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(d)
ISD: SNR=45.04dB, Err=4.86e−003, CPU time=44.15 s

Sample ratio:21%
20 40 60 80 100 120

20

40

60

80

100

120

(e)

Difference

Sample ratio:21%

20 40 60 80 100 120

20

40

60

80

100

120
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(f)

Figure 15: Noisy measurements: Reconstructed phantoms and highlighted errors corresponding to where
m = 3370

26

(a)

0 1 2 3 4 5 6 7

x 10
4

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Entries sorted by magnitude

M
ag

ni
tu

de

Wavelets coefficients

(b)

Figure 16:

1 1.5 2 2.5 3

x 10
4

10
−1

m

R
el

at
iv

e
re

co
ns

tr
uc

tio
n

er
ro

rs
 in

 L
2−

no
rm

n=65536, k=65536, m=6553:2621:32763

BP
ISD
IRL1

(a)

Figure 17: Reconstructing errors where the true signal is the wavelet coefficients of “Cameraman” and the
sensing matrices are partial discrete cosine matrices

27

[6] E. Candès and T. Tao. Near optimal signal recovery from random projections: universal encoding
strategies. IEEE Transactions on Information Theory, 52(1):5406–5425, 2006.

[7] E Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted `1 minimization. Preprint, 2007.

[8] R. Chartrand and W. Yin. Iteratively reweighted algorithms for compressive sensing. In ICASSP 2008,
pages 3869–3872, March 2008.

[9] A. Cohen, W. Dahmen, and R. Devore. Compressed sensing and best k-term approximation. Journal
of the American Mathematical Society, 22(1):211–231, 2009.

[10] I. Daubechies, R. DeVore, M. Fornasier, and S. Gunturk. Iteratively re-weighted least squares mini-
mization: Proof of faster than linear rate for sparse recovery. Information Sciences and Systems, 2008.
CISS 2008. 42nd Annual Conference on, pages 26–29, March 2008.

[11] D. Donoho and X. Huo. Uncertainty principles and ideal atomic decompositions. IEEE Transactions
on Information Theory, 47:2845–2862, 2001.

[12] D. Donoho, Y. Tsaig, I. Drori, and J.-C. Starck. Sparse solution of underdetermined linear equations by
stagewise orthogonal matching pursuit. Submitted to IEEE Transactions on Information Theory, 2006.

[13] D. L. Donoho. Compressed sensing. Information Theory, IEEE Transactions on, 52(4):1289–1306, 2006.

[14] D. L. Donoho and M. Elad. Optimally sparse representation in general (non-orthogonal) dictionaries
via l1 minimization. Proc. Natl. Acad. Sci., 100(5), 2003.

[15] D. L. Donoho and Y. Tsaig. Fast solution of `1 -norm minimization problems when the solution may
be sparse. Information Theory, IEEE Transactions on, 54(11):4789–4812, Nov. 2008.

[16] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in
Signal Processing, 1(4):586–597, 2007.

[17] J.J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Transactions on Information
Theory, 50(1341–1344), 2004.

[18] A. Garnaev and E. D. Gluskin. The widths of a euclidean ball. Dokl. Akad. Nauk SSSR, 277(5):1048–
1052, 1984.

[19] W. Guo and W. Yin. Enhanced compressive MR imaging using mutual information and edge detectors.
In preparation, 2009.

[20] E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for `1-minimization. Submitted to SIAM
Journal on Optimization, 2007.

[21] J. Jung and V. R. Durante. An iterative adaptive multiquadric radial basis function method for the
detection of local jump discontinuities. Appl. Numer. Math., 59(7):1449–1466, 2009.

[22] B. S. Kashin. Diameters of certain finite-dimensional sets in classes of smooth functions. Izv. Akad.
Nauk SSSR, Ser. Mat., 41(2):334–351, 1977.

[23] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. A method for large-scale l1-regularized least
squares. IEEE Journal on Selected Topics in Signal Processing, 1(4):606–617, 2007.

[24] D. Needell and J. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples.
Preprint, 2008.

[25] M. Rudelson and R. Vershynin. Geometric approach to error correcting codes and reconstruction of
signals. International Mathematical Research Notices, 64:4019–4041, 2005.

[26] J. Tropp and A. Gilbert. Signal recovery from partial information via orthogonal matching pursuit.
IEEE Transactions on Information Theory, 53(12):4655–4666, 2007.

28

[27] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruction based on
shrinkage, subspace optimization and continuation. Submitted, 2009.

[28] A. K. Yasakov. Method for detection of jump-like change points in optical data using approximations
with distribution functions. In J. S. Jaffe, editor, Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, volume 2258 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, pages 605–612, oct 1994.

[29] W. Yin. Analysis and generalizations of the linearized bregman method. Technique report 09-02,
Department of Computational and Applied Mathematics, Rice University, 2009.

[30] Y. Zhang. YALL1: Your algorithms for L1. http://www.caam.rice.edu/ optimization/L1/YALL1/.

[31] Y. Zhang. A simple proof for recoverability of l1-minimization: Go over or under? Technical report
05-09, Department of Computational and Applied Mathmeatics, Rice University, 2005.

[32] Y. Zhang. A simple proof for recoverability of l1-minimization (ii): the nonnegativity case. Technical
report 05-10, Department of Computational and Applied Mathmeatics, Rice University, 2005.

[33] Y. Zhang. On theory of compressive sensing via `1-minimization: Simple derivations and extensions.
Technical report 08-11, Department of Computational and Applied Mathmeatics, Rice University, 2008.

29

	Introduction and Contributions
	Algorithmic Framework
	Preliminary Theoretical Analysis
	The Truncated Null Space Property
	Sufficient Recovery Conditions of Truncated 1 Minimization
	Stability of Truncated 1 Minimization
	Iterative Behavior of ISD

	Threshold–ISD for Fast Decaying Signals
	A Support Detection Scheme Based on Thresholding
	YALL1 and Warm-Start

	Numerical Implementation and Experiments
	Reviews of IRL1 and IRLS
	Denoising Minimization Problems
	Transform Sparsity
	Experimental Settings and Test Platforms
	Stopping Tolerance and Smoothing Parameters
	Experimental Results

	Concluding Remarks

