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brooke, Québec, Canada.



Abstract

We consider the inversion of a linear operator with centered Gaussian white noise by MAP
estimation with a Gaussian prior distribution on the solution. The actual estimator is com-
puted approximately by a numerical method. We propose a relation between the stationarity
measure of this approximate solution to the mean square error of the exact solution. This
relation enables the formulation of a stopping test for the numerical method, met only by it-
erates that satisfy chosen statistical properties. We extend this development to Gibbs priors
using a quadratic extrapolation of the log-likelihood maximized by the MAP estimator.



1 Introduction

We consider the inversion of a system of equations where a Gaussian process is superposed
to the image of a linear operator. Problems of this kind appear in many digital imaging
and signal processing applications, among many other engineering domains. The inversion
is naturally computed by means of a regularized estimator, which entails the resolution of a
least squares minimization problem.

The exact formulation of this problem depends on the prior distribution that is assumed
over the domain of the operator to invert. On the one hand, when this distribution is Gaus-
sian, the least squares objective function is compounded to a quadratic penalization term,
yielding a quadratic program. The solution of this program corresponds to the root of the
normal equation, which is usually found by a direct method, such as QR decomposition, or
by a sequential recurrent process. The latter approach is practical even in cases where the
linear operator is not represented in an explicit matrix form. However, for large-scale prob-
lems, the full sequential process can prove prohibitively costly in terms of runtime. One must
then turn to methods for symmetric definite positive linear systems, such as the conjugate
gradient or Lanczos iterations (Kelley, 1995), which may converge to a good estimator at
the cost of fewer operator evaluations. On the other hand, the use of a non-Gaussian prior
distribution1 (Idier, 2001) compounds a nonquadratic, though possibly smooth or convex,
penalization term to the least-squares objective. Numerical methods for nonlinear optimiza-
tion are then the only feasible approach for the task at hand.

In any such application where numerical methods are involved, the question of the stop-
ping test is seldom addressed in full. In the Gaussian prior case, some norm of the residual
of the normal equation is typically used to determine convergence. In the alternate case,
nonlinear solvers all seem to have their own convergence criterion, which relies on measures
of objective descent or stationarity. In both cases, the choice of the stopping tolerance for
the convergence test is of significant incidence to the statistical properties of the estimator.
Indeed, it is known that early termination of the numerical method entails implicit regular-
ization of the estimator that is equivalent to adding a supplemental quadratic penalization
term to the objective being minimized (Engl et al., 1996). This is unacceptable when using
a non-Gaussian prior distribution, as it ruins the specific properties of the estimator brought
by the nonquadratic penalization. For a Gaussian prior, the supplemental penalization in-
flates the bias of the estimator, as it is positively correlated to the weight of the penalization
terms of the least-squares objective. The opposite error with respect to the choice of the
stopping tolerance raises some practical issues, as it augments the runtime of the estimation,
possibly past acceptable levels.

We report herein on a relation between the mean square error (MSE) of an estimator
obtained from a truncated numerical method and a stationarity measure of this estimator
with respect to the least-squares problem. We deduct from this relation a statistical inter-
pretation to the stopping tolerance, which may then be chosen with respect to a tolerated
error level.

The rest of this paper is as follows. Section 2 recalls the properties of the maximum a

1The nonquadratic penalization brought by the use of a non-Gaussian prior distribution on the solution
favors certain desirable properties of the solution, such as the better preservation of high-frequency structures
with respect to quadratic penalization.
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posteriori (MAP) estimator in the case of a Gaussian prior distribution. Section 3 discusses
a variant of this estimator that corresponds to an approximate solution to the least squares
problem and derives a stopping criterion for numerical methods in the Gaussian prior case.
Section 4 extends these results to the case of a non-Gaussian prior distribution. Section 5
offers some concluding remarks.

2 MAP estimation with a Gaussian prior distribution

Let us first recall the inverse problem at hand. We have2

y = Ax+ b,

with y ∈ Rm, x ∈ Rn, A a matrix of dimensions m× n and

b N
(
0, σ2Im

)
.

The distribution of y conditional on x is then Gaussian of expectation Ax and covari-
ance σ2Im, so it is expressed as

fy(y | x) =
1

(2πσ2)m/2
exp

(
−(y −Ax)t(y −Ax)

2σ2

)
.

We also set the prior distribution of x as Gaussian of null expectation and covariance σ2
x(R

tR)−1,
so its density is

fx(x) =
|RtR|

(2πσ2
x)
n/2

exp

(
−x

tRtRx

2σ2
x

)
.

This model allows for the estimation of x by maximizing the log-likelihood of the posterior
density of x with respect to the given y. This MAP estimator solves the least-squares
optimization problem

min
1

2
‖y −Ax‖2 +

λ

2
‖Rx‖2, (1)

with λ = σ2/σ2
x. It therefore satisfies

(AtA + λRtR)x̂ = Nx̂ = Aty, (2)

with N = AtA + λRtR, so we can write

x̂ = N−1Aty. (3)

The minimal mean square error (conditional to y) estimator is known to be

x̂MMSE = E [x | y ]

2In the following a random variable and its realizations will be noted samewise, unless where it would be
confusing.
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(Shanmugan and Breipohl, 1988). In this case, we may show that it corresponds to the MAP
estimator (3) by expressing the probability density of x conditional on y:

fx(x | y ) =
fy(y | x)fx(x)∫∞

−∞ fy(y | x)fx(x)dx
. (4)

Let us develop equation (4) starting with its numerator.

fy(y | x)fx(x) =
1

(2π)n/2|σ2
x(R

tR)−1|1/2(2π)m/2|σ2I|1/2
×

exp

(
− 1

2σ2
(y −Ax)t(y −Ax)− 1

2σ2
x

xtRtRx

)
=

1

(2π)n/2|σ2
x(R

tR)−1|1/2(2π)m/2|σ2I|1/2
exp

(
−y

ty

2σ2

)
×

exp

(
−−y

tAx− xtAty + xtNx

2σ2

)
=

1

(2π)n/2|σ2
x(R

tR)−1|1/2(2π)m/2|σ2I|1/2
exp

(
−y

ty + ytAN−1Aty

2σ2

)
×

exp

(
−x

tNx− ytAN−1Nx− xtNN−1Aty + ytAN−1NN−1Aty

2σ2

)
=

1

(2π)n/2|σ2
x(R

tR)−1|1/2(2π)m/2|σ2I|1/2
exp

(
−y

ty + ytAN−1Aty

2σ2

)
×

exp

(
−(x−N−1Aty)tN(x−N−1Aty)

2σ2

)
. (5)

Therefore, the denominator of equation (4) may be expressed as

fy(y) =

∫ ∞
−∞

fy(y | x)fx(x)dx

=
1

(2π)n/2|σ2
x(R

tR)−1|1/2(2π)m/2|σ2I|1/2
exp

(
−y

ty + ytAN−1Aty

2σ2

)
×∫ ∞

−∞
exp

(
−(x−N−1Aty)tN(x−N−1Aty)

2σ2

)
dx. (6)

Let u = 1
σ
N1/2(x− x̂), for which ∇x(u) = σN−1/2; then equation (6) resolves to

fy(y) =
|σN−1/2|

(2π)n/2|σ2
x(R

tR)−1|1/2(2π)m/2|σ2I|1/2
exp

(
−y

ty + ytAN−1Aty

2σ2

)
×∫ ∞

−∞
e−u

tu/2du

=
|σN−1/2|(2π)m/2

(2π)n/2|σ2
x(R

tR)−1|1/2(2π)m/2|σ2I|1/2
exp

(
−y

ty + ytAN−1Aty

2σ2

)
. (7)
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By putting (5) and (7) together, we get

fx(x | y ) =
1

(2π)n/2 |σ2N−1|
exp

(
−(x−N−1Aty)tN(x−N−1Aty)

2σ2

)
. (8)

Equation (8) effectively describes a Gaussian probability density, with

E [x | y ] = N−1Aty = x̂ and

Var [x | y ] = σ2N−1.

This minimal MSE (conditional on y) is

MSE [x̂ | y ] = E
[
‖x̂− x‖2 | y

]
= x̂tx̂− 2x̂E [x | y ] + E

[
xtx | y

]
= −x̂tx̂+ Tr

[
E
[
xxt | y

]]
= −x̂tx̂+ Tr

[
σ2N−1 + x̂x̂t

]
= Tr

[
σ2N−1

]
.

3 Inexact MAP estimator

The following defines the inexact solution of the normal system (2) as an estimator and
relates its MSE to that of the MAP estimator (further on called the exact MAP estimator).

3.1 Definition and properties

Let us define the inexact MAP estimator as an approximate solution to the normal sys-
tem (2). Formally, the inexact estimator x̃τ satisfies

‖Aty −Nx̃τ‖ = τ.

Without knowledge of the process used to generate such an estimator, we will consider that
all possible estimators x̃τ with respect to y are equiprobable.

Lemma 1 Consider the exact MAP estimator x̂ and fixed inexact MAP estimator x̃τ . We
have

τ 2

‖N‖2
≤ E

[
‖x̃τ − x̂‖2 | y, x̃τ

]
≤ τ 2‖N−1‖2.

Proof We develop

E
[
‖x̃τ − x̂‖2 | y, x̃τ

]
= E

[
‖x̃τ −N−1Aty‖2 | y, x̃τ

]
= ‖N−1(Nx̃τ −Aty)‖2.
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The upper bound is derived as

E
[
‖x̃τ − x̂‖2 | y, x̃τ

]
≤ (‖N−1‖‖Nx̃τ −Aty‖)2 = τ 2‖N−1‖2,

by definition of the inexact estimator. The lower bound comes from

E
[
‖x̃τ − x̂‖2 | y, x̃τ

]
=
‖N‖2

‖N‖2
‖N−1(Nx̃τ −Aty)‖2 =

‖NN−1(Nx̃τ −Aty)‖2

‖N‖2
=

τ 2

‖N‖2
,

which concludes the proof. �

Corollary 1 Consider the exact MAP estimator x̂ and inexact MAP estimator x̃τ . We
then have

τ 2

‖N‖2
≤ MSE [x̃τ | y, x̃τ ]−MSE [x̂ | y ] ≤ τ 2‖N−1‖2. (9)

Proof Develop:

MSE [x̃τ | y, x̃τ ] = E
[
‖x̃τ − x‖2 | y, x̃τ

]
= E

[
‖x̃τ − x̂+ x̂− x‖2 | y, x̃τ

]
= E

[
‖x̃τ − x̂‖2 | y, x̃τ

]
+ 2 E

[
(x̃τ − x̂)t(x̂− x) | y, x̃τ

]
+ E [‖x̂− x‖ | y ]

= E
[
‖x̃τ − x̂‖2 | y, x̃τ

]
+ 2(x̃τ − x̂)t(x̂− E [x | y ]) + MSE [x̂ | y ] .

Therefore, MSE [x̃τ | y, x̃τ ] − MSE [x̂ | y ] = E [‖x̃τ − x̂‖2 | y, x̃τ ], so lemma 1 yields the
inequalities (9). �

3.2 Stopping test for numerical methods

Corollary 1 suggests that the MSE (conditional on y) of an inexact estimator is larger than
that of the exact estimator and bounds the distance between the two. As we solve problem (1)
through system (2) by a numerical method truncated once the norm of the residual reaches
below a tolerance τ , we may set this tolerance in order to obtain a certain MSE. Formally,
to get within a fraction α of the minimal MSE, one should set the tolerance so it satisfies

τ 2‖N−1‖2 ≤ αMSE [x̂ | y ] = ασ2 Tr
[
N−1

]
.

While σ2 may be evaluated readily from the data, computing Tr [N−1] may be a costly
endeavour. However, since the trace of a matrix corresponds to the sum of its eigenvalues,
we have a lower bound for the MSE of the form

MSE [x̂ | y ] = σ2 Tr
[
N−1

]
≥ σ2

(
‖N−1‖+

n− 1

‖N‖

)
= σ2‖N−1‖

(
1 +

n− 1

κ (N)

)
,

as the l2 norm of a symmetric matrix corresponds to its eigenvalue of maximal absolute value
and since matrix N is definite positive. Setting the stopping tolerance to

τ =

√
ασ2

‖N−1‖

(
1 +

n− 1

κ (N)

)
then yields an inexact MAP estimator whose MSE is no more than α larger than the minimal
MSE.
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4 Extension to non-Gaussian priors

We will now extend the results of section 3 to the more general case of a non-Gaussian prior
distribution. As this yields a space-variant stopping criterion, we will consider practical
approaches to setting the tolerance.

4.1 MAP estimation with a non-Gaussian prior

The use of a quadratic penalization for the regularisation of the least-squares estimation
problem (1) suits smooth objects best. However, any discontinuity that might be present in
the object, such as edges between distinct regions in an image, will be significantly smoothed
as estimated under such a penalization. Alternate penalty functions such as the generalized
Gaussian Markov random field function (Bouman and Sauer, 1993) or the l2l1 function (Char-
bonnier et al., 1997) achieve better preservation of discontinuities. The probabilistic frame-
work that enables this alternative regularization strategy is the Gibbs prior distribution of
the object.

The generalization of the estimation problem to a generic penalty function ψ(u) is ex-
pressed as

x̂ = arg minL(x | y ) =
1

2
‖y −Ax‖2 + λR(x), (10)

where

R(x) =
K∑
k=1

νkψ(δt
kx),

ν are penalization weight modifiers for each sub-term and δk are the rows of matrix ∆,
of dimensions K × n. This matrix captures the features of the solution to penalize with
respect to prior information known on the solution. For instance, in image reconstruction
applications, it is typically composed by the concatenation of the identity and of finite
difference operators, expecting the image to be composed of many black pixels and to be
constant by regions.

The (exact) MAP estimator solves problem (10) by satisfying a stationarity condition
over the objective function. Formally,

∇L(x̂) = At(y −Ax̂) +∇R(x̂) = 0.

Such a stationary point is found using numerical procedures for nonlinear optimization, such
as the Newton-Raphson method or a quasi-Newton iteration with a suitable globalization
strategy. Larger-scale problems are often tackled with methods that necessitate neither
the evaluation of Hessian of the objective nor any matrix approximation thereof, such as
a nonlinear conjugate gradient generalization or a limited-memory quasi-Newton update.
These methods are covered in depth by Nocedal and Wright (2000).

4.2 Linear extrapolation of the estimation problem

Whatever the numerical method, the final iterate is only approximately stationary. To de-
termine the quality of inexact MAP estimators obtained as approximate solutions to prob-
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lem (10), we must make some assumptions with regards to x̂. In the following, we restrict
the analysis to penalty functions at least twice differentiable.

Hypothesis 1 Consider x̂, the exact MAP estimator that solves problem (10) and x0 ∈ Rn

close to x̂. We then assume that, for x in a ball of radius ‖x0 − x̂‖ centered on x̂, we have

L(x) ≈ 1

2
‖y −Ax‖2 + λ

(
R(x0) +∇R(x0)(x− x0) +

1

2
(x− x0)t∇2R(x0)(x− x0)

)
.

(11)

This hypothesis is justified by the log-likelihood function maximized as problem (10)
being twice differentiable. It is well known that the behavior of sufficiently smooth function
may be extrapolated faithfully in a small region around its stationary points by a second-
order Taylor development (Nocedal and Wright, 2000). Where this extrapolation holds, we
have

∇L(x) ≈ −At(y −Ax) + λ∇R(x0) + λ∇2R(x0)(x− x0) (12)

= At(y −Ax) + λ
K∑
k=1

δkψ
′(δt

kx0) + λ∆t Dψ [∆x0] ∆(x− x0),

with Dψ [u], the penalty curvature matrix, a diagonal matrix of dimensions K×K for which
element i of the diagonal is equal to ψ′′(ui). By defining

N0 = AtA + λ∆t Dψ [∆x0] ∆ and

z0 = Aty − λ[∇R(x0)−∇2R(x0)x0],

we re-express equation (12) as

∇L(x̂) ≈ N0x̂− z0 = 0.

and thus
x̂ ≈ N0

−1z0,

which yields a closed form of the estimator from a reference point close to it.
Hypothesis 1 also allows us to extrapolate the distribution of x conditional on y. As

we have a single realization of y, the likelihood of x conditional on y corresponds to the
distribution. This implies that, from the extrapolated log-likelihood of equation (11), we
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can retrieve a Gaussian likelihood:

arg minL(x)

= arg max − 1

2
(y −Ax)t(y −Ax)

− λ
(
R(x0) +∇R(x0)t(x− x0) +

1

2
(x− x0)t∇2R(x0)(x− x0)

)
= arg max − 1

2

(
yty − ytAx− xtAty + xtAtAx

)
− λ

(
1

2
∇R(x0)tx+

1

2
xt∇R(x0)−∇R(x0)tx0

)
− λ

2

(
xt∇2R(x0)− xt∇2R(x0)x0 − x0

t∇2R(x0)x+ x0
t∇2R(x0)x0

)
= arg max − 1

2
xt(AtA + λ∇2R(x0))x

+
1

2
xt
(
Aty + λ

(
∇R(x0)−∇2R(x0)x0

))
+

1

2

(
Aty + λ

(
∇R(x0)−∇2R(x0)x0

))t
x

= arg max− 1

2σ2

(
xtN0x− xtN0N0

−1z0 − z0
tN0

−1N0x+ z0
tN0

−1N0N0
−1z0

)
= arg max log exp

(
−(x−N0

−1z0)tN0(x−N0
−1z0)

2σ2

)
− log

(
(2π)n/2

∣∣σ2N0
−1
∣∣)

= arg max
1

(2π)n/2
∣∣σ2N0

−1
∣∣ exp

(
−(x−N0

−1z0)tN0(x−N0
−1z0)

2σ2

)
≈ fx(x | y ), (13)

the last objective yielding an extrapolated form of the probability density of x conditional
on y. This suggests that the extrapolated exact MAP estimator

x̂ = N0
−1z0 = E [x | y ]

minimizes the MSE conditional on y. From the extrapolated form of the density of x
conditional on y(equation (13)), this MSE is expressed as

MSE [x | y ] = σ2 Tr
[
N0
−1
]
.

Definition 1 The inexact MAP estimator x̃τ in the context of a nonquadratic penalization
satisfies

‖∇L(x̃τ )‖ = τ.

With respect to hypothesis 1, this suggests that for reference point x0 close enough to x̂
and τ ≤ ‖x0 − x̂‖, the inexact estimator satisfies

‖z0 −N0x̃τ‖ = τ.

Moreover, for τ small enough, x̃τ itself may be used as “reference point” for the extrap-
olation. This completes the set of arguments that generalize the results of section 3 to
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estimators developed with a non-Gaussian prior distribution, in a small neighborhood of x̂.
The following lemma and corollary are given without explicit proof, as the arguments are
very close to those in the Gaussian prior case, with N and Aty replaced respectively with N0

and z0.

Lemma 2 Let x̂ and x̃τ be the exact and inexact MAP estimators, respectively. For small τ ,
we have

τ 2

‖N0‖2
≤ E

[
‖x̃τ − x̂‖2 | y, x̃τ

]
≤ τ 2‖N0

−1‖2.

Corollary 2 Let x̂ and x̃τ be the exact and inexact MAP estimators, respectively. For
small τ , we have

τ 2

‖N0‖2
≤ MSE [x̃τ | y, x̃τ ]−MSE [x̂ | y ] ≤ τ 2‖N0

−1‖2.

4.3 Stopping test revisited

Corollary 2 may be interpreted as a stopping test for the numerical method used to solve
problem (10). This test involves the Euclidean norm of the extrapolated normal system (12),
which more generally corresponds to the norm of the gradient of the objective, a common
measure of stationarity of the solution in nonlinear programming. To generate an inexact
estimator for which the MSE is decreased to within a fraction α of the minimal MSE, one
should stop at iterate xk such that

‖∇L(xk)‖ ≤ τ =

√
αMSE [x̂ | y ]

‖N0
−1‖2

.

Once again, MSE [x̂ | y ] is hard to evaluate exactly, as matrix N0
−1 is not represented

explicitly. However, a lower bound is determined as

MSE [x̂ | y ] ≥ σ2‖N0
−1‖

(
1 +

n− 1

κ (N0)

)
,

which may be evaluated as ‖N0
−1‖ corresponds to the inverse of the smallest eigenvalue

of N0. The stopping tolerance may then be rewritten as

τ =

√
ασ2

‖N0
−1‖

(
1 +

n− 1

κ (N0)

)
. (14)

It appears from relation (14) that the tolerance selection depends on the reference point
from which the log-likelihood is extrapolated. This entails that the tolerance should not be
computed from any x0, as the penalty curvature matrix Dψ [∆x0] has a significant influence
on ‖N0

−1‖. For instance, edge-preserving penalty functions (such as the GGMRF and l2l1
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functions mentioned earlier) have maximal curvature at u = 0, making the smallest eigen-
value of matrix ∇2R(0) rather large. Therefore, a stopping tolerance computed from this
eigenvalue will be larger than it should to reach the expected MSE.

Therefore, the actual tolerance should be computed from some x0 that resembles x̂ to a
certain degree, in order for the curvature matrix to be close to that at the exact solution. One
could then generate an inexact estimator x̃τ for a value of τ that is small but does not entail
too much computations. The final stopping tolerance would be computed from this pilot
estimator. If it exceeds the initial tolerance, the pilot estimator satisfies the MSE constraint;
otherwise, the nonlinear solver would be restarted from the pilot value and made to reach
stationarity to the final tolerance. Another interesting approach is to compute the reference
point by a fast approximation procedure when such a procedure exists for the application
considered. For example, in context of transmission tomography reconstruction, one may
obtain the reference point by the filtered backprojection algorithm (Kak and Slaney, 1987).

5 Concluding remarks

We have exposed a relation between the defining feature of an inexact estimator and its
conditional MSE. From this, we have formulated a stopping criterion for numerical methods
for solving the estimation problem, based on the stationarity measure of the iterate.

Besides the cavalier treatment of the prior distribution of x under hypothesis 1, the
salient weakness of the development above is the systematic undervaluation of the MSE of
the exact estimator. This yields unduly low stopping tolerances, leading to the execution of
more iterations than necessary to ascertain the statistic properties of the solution we accept.
Yet, for an application of edge-preserving tomographic reconstruction, this exact framework
has proposed sensible tolerances, for which reconstruction runtimes were acceptable with
respect to data and image dimensions.

This said, for applications such as deconvolution in signal and image processing, the trace
of the covariance matrix of the exact estimator can be more easily computed. This should
entail looser converge criteria. We will investigate this issue in depth in an expanded version
of this paper, where the general Gaussian measure model with Gaussian prior will be fully
developed.
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