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Abstract. In this paper we have addressed the problem of unboundedness in the search direction
when the Hessian is indefinite or near singular. A new algorithm has been proposed which naturally
handles singular Hessian matrices, and is theoretically equivalent to the trust-region approach. This
is accomplished by performing explicit matrix modifications adaptively that mimic the implicit mod-
ifications used by trust-region methods. Further, we provide a new variant of modified conjugate
gradient algorithms which implements this strategy in a robust and efficient way. Numerical results
are provided demonstrating the effectiveness of this approach in the context of a line-search method
for large-scale unconstrained nonconvex optimization.
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1. Introduction. In this paper we consider the unconstrained optimization
problem

min
x∈Rn

f(x) (1.1)

where f : Rn → R is assumed to be a twice continuously differentiable and possible
nonconvex. Two popular approaches for handling nonconvexity are line-search and
trust-region methods. Both begin with a second-order Taylor expansion modeling
changes in f(xk) near the current point xk:

mk(s) = sT gk +
1
2
sTHks ≈ f(xk + s)− f(xk) (1.2)

where gk = ∇f(xk) and Hk = ∇2f(xk). When Hk is positive-definite, the unique
global minimizer of the quadratic model is given by sk = −H−1

k gk. If we define λ1 to
be the smallest eigenvalue of Hk, then it can be shown that ‖sk‖ → ∞ as λ1 → 0.
Thus, as Hk approaches a singular system, the corresponding minimizer sk of mk(s)
drifts arbitrarily far away; this increases the probability that the predicted decrease
in the objective, given mk(sk), is irrelevant, and the chance of f(x) being decreased
at such a point, degrading to random; further, if Hk is indefinite, mk(s) is no longer
bounded below, and more sophisticated machinery must be used in conjunction with
the quadratic model, to ensure the resultant trial-step remains sufficiently bounded.
Line-search methods, and trust-region methods were designed to handle this issue [6,
14, 9, 21]. The primary difference is that line-search methods explicitly modify Hk,
while trust-region methods implicitly modify Hk using an explicit constraint on the
step-size.

Mathematically, we can compare the two approaches as follows. Line-search algo-
rithms seek to find a small perturbation Ek of Hk, forming an approximate Hessian
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Ĥk = Hk +Ek where Ĥk � 0. The search direction sk is then determined by solving:

minimize
s∈Rn

mk(s) + Pk(s) , m̂(s) (1.3)

where Pk(s) = (sTEks)/2. Trust-region algorithms, on the other hand, minimize the
original quadratic model, subject to an explicit step-length constraint, for example:

minimize
s∈Rn

mk(s)

subject to ‖s‖2 ≤ δk.
(1.4)

The global minimum for (1.4) can be determined by finding a solution pair (sk, σk)
satisfying

(Hk + σkI)sk = −gk, (Hk + σkI) � 0, σk ≥ 0,
‖sk‖ ≤ δ, σk(‖sk‖ − δ) = 0.

Thus the trust-region solution has a more complex form, and is arguably more difficult
to solve.

Line-search methods are attractive in that they avoid this added complexity and
permit a simpler subproblem to be solved, once an appropriate Hessian modification
has been determined. Common strategies for modifying the indefinite Hessian matrix
can be found in standard texts for optimization such as Nocedal and Wright [21],
Gill, Murray, and Wright [14], and Fletcher [10]; however, it is well-known that these
strategies may be problematic when the Hessian has eigenvalues near zero. For this
reason, many turn to trust-region algorithms where the necessary matrix modification
is naturally and implicitly defined via a step-size constraint. Extensive discussions on
trust-region algorithms can be found in Conn et al. [6] and Nocedal and Wright [21].
More recently, hybrid trust-search methods have also been proposed that either per-
form a line-search on the trust-region subproblem solution [22, 11, 12, 18, 13], or use
an explicit trust-region to determine a suitable weight for near singular vectors with
respect to the Hessian [18, 13] .

For large-scale problems, matrix factorizations may be prohibitive making itera-
tive approaches attractive. Iterative approaches for solving (1.3) and (1.4) are often
based upon applying modified variants of either PCG or Lanczos method to the sys-
tem Hs = −g as suggested in [23, 25, 20, 26, 2, 15, 5, 19, 17, 8, 7]. The following
works [26, 15, 5, 19, 17, 8, 7] all fall into the iterative trust-region, or trust-search
category; while [23, 20, 2] are dedicated to developing iterative matrix modification
strategies for line-search methods.

In this paper we will focus on iterative strategies for constructing valid line-search
directions. Previous mentioned iterative matrix modification strategies are all related
in that the matrix Ek from (1.3) has form

Ek =
∑
j

αjqjq
T
j (1.5)

where qj denotes a sequence of Lanczos vectors (O’Leary [23], Nash [20] and Arioli
et al. [2]). The Lanczos vectors are advantageous for iterative matrix modification as
they avoids restarts and are guaranteed to exist as long as the current CG residual
vector is nonzero. These strategies thus differ primarily in how they select αj . The
unifying feature of all three approaches [23, 20, 2] is their strong motivation to keep
‖Ek‖ small, while avoiding singularity in Ĥk using a fixed nonzero lower bound σ.
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O’Leary [23] and Nash [20] proposed iterative line-search methods based upon classical
matrix modification strategies, that, as mentioned earlier, can be problematic near
singularity. A more dynamic approach was proposed by Arioli et al. [2] where an
adaptive bound was proposed for choosing the lower bound on the modified Hessian.
However, the authors mentioned that it was unclear how best to choose the sequence of
lower bounds σk, and also required that this parameter always be larger than the fixed
nonzero lower bound σ. It is worth noting at this point that all three approaches face
a dilemma in selecting σ appropriately: (1) if chosen too small, the resulting search
direction may be quite poor and dramatically slow convergence, (2) if chosen too
large, then Ĥk cannot converge to H∗ in the limit.

In this paper we present a new inertia controlling matrix-modification strategy
that naturally selects appropriate modifications for the Hessian matrix. The inertia
of the Hessian is controlled (like a trust-region algorithm) based upon the quality
of the previous search direction; for this reason, it is quite possible that a dramatic
modification to the Hessian will be made, even if the smallest eigenvalue of the current
Hessian matrix is large and positive. Similarly the current Hessian may be numerically
singular, but left unmodified. We show that this strategy creates an implicit trust-
region radius that we control in a similar manner to a trust-region. However, unlike
iterative trust-region methods, there is no need to accommodate an explicit step-
size constraint. The end results is that we are free to construct a line-search direction
from a simple modified CG algorithm that handles singularity in the Hessian matrix as
naturally and robustly as corresponding trust-region approaches. Thus more complex
conjugate-gradient based strategies for optimizing a constrained subproblem, such as
those in [26, 15, 5, 19, 17, 8, 7] are unnecessary.

Although we perform a modification in the same space of Lanczos vectors, the
αj ’s are selected in a manner that ensure equivalence convergence properties to that
of trust-region methods. In a perhaps dramatic departure from recent approaches, we
make no effort to bound the size of the modification matrix Ek; in fact, Ek may be
infinitely large whenever Hk is indefinite without effecting the convergence properties
of the algorithm. Further, we make no effort to bound the smallest singular value
of Hk + Ek directly; rather modification to Hk occur whenever to not do so would
adversely affect the resulting search direction. A key feature of our algorithm is that
the modified Hessian can approach a singular system only in as much as the current
corresponding gradient also approaches zero. Thus we ensure that Ĥ−1

k gk remains
bounded.

Proceeding in this manner a new matrix-free algorithm is created that naturally
handles nonconvexity. It combines the concepts of trust-regions, without using an
actual trust-region, to avoid weaknesses of past matrix-modifications strategies in the
presence of singularity. This strategy in practice appears to be much more adaptive to
the local geometry of the problem defined by both first and second order information.
By dynamically controlling inertia in this manner, a natural way to select the lower
bound on the smallest eigenvalue ofHk at each iteration is provided (an issue described
as ”unclear” in Arioli et al. [2]). We further emphasize that the approach we present is
stable with minimal memory requirements in that it does not require explicit vector
storage nor rely on (easily lost) Lanczos vectors orthogonality. Numerical results
demonstrates the effectiveness of this approach in the context of a line-search method
for large-scale unconstrained nonconvex optimization.

Before closing this section, we should note that the concept of implicit trust-
regions is used in a separate context by the very interesting work of Baker et. al [3],
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where the trust-region ratio ”predicted versus actual reduction” is used within the
trust-region subproblem solver to decide when to halt optimization of the quadratic
model. We thus caution readers familiar with this paper that we will make occasional
use the same term to describe our algorithm, however, in a context that is quite
different.

The paper is organized as follows. In Section 1.1 we provide basic notation and
definitions that will be used throughout the paper. In Section 1.2 a short discussion
is given to motivate the new matrix modification strategy in the context of eigenvec-
tors and eigenvalues. In Section 2 we describe the new globally convergent modified
conjugate gradient line-search algorithm. Section 3 contains global and local conver-
gence theory for this algorithm that is equivalent in strength to existing theory for
trust-region algorithms. It will also explain why the proposed algorithm can be seen
as using an implicitly defined trust-region. Section 4 contains numerical results on a
suite of test problems. The final conclusion and some possible future work are given
in Section 5. In the appendix we provide a theorem in the context of the modified
conjugate-gradient algorithm that may be used to prove convergence for our approach
even if the modification matrix Ek has infinite norm.

1.1. Notation. To reduce notational complexity, for the remainder of the paper,
we will drop the k suffix whenever discussing a single subproblem; thus, we will use
g for gk and H for Hk. The ratio of the predicted reduction and actual reduction is
defined by

ρk(s) =
f(xk + s)− f(xk)
mk(s)−mk(0)

(1.6)

where mk(s) is defined in (1.2). Finally, when referring to the Modified Conjugate
Gradient (MCG) algorithm in this paper we imply any conjugate-gradient algorithm
that uses Ek of the form (1.5) to ensure positive-definiteness.

1.2. Motivating a new matrix modification strategy. In this section, we
will illustrate the effectiveness of this matrix modification approach by exploring the
spectral decomposition of H. For notational simplicity in this section, we drop the
suffix k. Let H = V ΣV T where V = [v1, . . . , vn] denote the matrix of the normalized
eigenvectors of H, and Σ the corresponding diagonal matrix of eigenvalues, diag(Σ) =
(σ1, . . . , σn). Then, given a bound δ and setting s = V y, the corresponding trust-
region subproblem transformed into the following problem:

minimize
y∈Rn

mk(V y) = yT ĝ + yTΣy

subject to ‖y‖2 ≤ δ.

where ĝ = V T g and we have made use of the property that ‖V y‖2 = ‖y‖2. Because the
objective is now completely decoupled, the transformed subproblem would completely
decouple into a series of n one-dimensional problems if the trust-region constraint were
similarly decoupled. For this reason we may think of replacing the two-norm with the
infinity norm of y, as the p-vector norms are equivalent.

Thus, instead solve the following related subproblem:

minimize
y∈Rn

yT ĝ +
1
2
yTΣy

subject to −δ ≤ y ≤ δ,



Inertia controlling modified conjugate gradients 5

which may be solved analytically as the solution now completely decouples into a
sequence of n one-dimensional trust-region subproblems:

min
yi

yiĝi +
σiy

2
i

2
, subject to |yi| ≤ δ, for i = 1, . . . , n.

Thus we see that

s∗ = V Σ̂−1V T g,

where

σ̂i =

 σi if σi > 0 and |ĝi/σi| ≤ δ
1/δ if σi ≤ 0 and if gi = 0,
|ĝi|/δ otherwise.

We therefore see that the motivation for modification of Σ is highly dependent upon
the size of gT vi and inversely related to the desired step-length. A similar discussions
may be found in [17]. The approach used in this paper will incrementally build the
solution vector in a similar fashion to the above discussion, however, we will substitute
the conjugate vectors for the eigenvectors, and the normalized CG diagonal for σi.
That is, as with the eigenvectors, we set s = Py, where P denotes a matrix of H-
conjugate vectors. Then we can analytically define our implicit trust-region as

{s = Py : ‖y‖∞ ≤ δ}.

Because the CG vectors are not orthogonal, we do not have the equivalent condition
‖s‖2 = ‖Py‖2. Thus, a well-defined trust-region algorithm cannot be directly applied,
as the size and direction of vectors in the matrix P will change from iteration to
iteration. For this reason we develop an upper bound on the diameter of this region
in terms of the inertia of the modifiedH and the current gradient, that will encapsulate
this region in a natural way. (Note that the actual implicit trust-region used at each
iteration will have a more general form:

{s = Py : y` ≤ y ≤ yu}

where y` and yu are implicitly defined.) Proceeding in this manner we are able to
show that the resultant method (as best we can tell) is one-to-one equivalent with
similar iterative trust-region methods in theoretical strength; for both global and local
convergence properties of (1.1).

2. Algorithm. We can divide the line-search algorithm into outer and inner
iterations. The outer iteration, described in Algorithm 1, performs a line-search
and checks for convergence of 1.1. An inertia controlling parameter λk is modified
each iteration based upon the quality of the search direction and whether or not the
inertia of Hk was modified. In Section 3 we will show that λk is inversely related to
an upper bound on an implicitly defined trust region. The inner iteration, described
in Algorithm 2, is a variant of the modified conjugate-algorithm applied to system
Hks = −gk that controls the inertia of Hk by taking into account the following factors:
(i) the resultant effect on the growth of ŝj , (ii) the size of the current gradient, and
(iii) the quality of the last search direction. To avoid confusion with other modified
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CG methods, for brevity we will refer to this variant as Inertia Controlling Modified
Conjugate Gradients (ICMCG). The outer and inner algorithms together build a line-
search method that incorporates a new matrix-modification strategy possessing the
theoretical strength of a trust-region algoritm; this is shown by demonstrating that
Algorithm 2 is actually modifying Hk according to an implicit trust region.
As in Arioli et al. [2] we enforce a lower bound on the modified Hessian in terms of

Algorithm 1 Line-search with ICMCG
Require: Choose x0, and a sequence {ηk} > 0 satifying ηk → 0;
Require: Set ε > 0, λ0 > 0, and k = 0;

1: while (‖gk‖ > ε) do
2: cgtol = ηk‖gk‖;
3: [sk, isMod] = ICMCG(Hk, gk, λk, cgtol);
4: γk = 1;
5: while (ρk(γksk) < 0.25) do
6: γk = 0.5γk;
7: end while
8: xk+1 = xk + γksk;
9: if (γk < 1) then

10: λk+1 = 2λk;
11: else if (ρk > 0.75) and isMod = 1 then
12: λk+1 = 0.5λk;
13: end if
14: k=k+1;
15: end while

the conjugate vectors of the form:

pTi Ĥpi
pTi pi

≥ σk.

The first distinction of the strategy described in this paper from existing strategies is
that we make σk proportional to ‖gk‖ via the relation σk = λk‖gk‖; this allows σk to
approach 0 in the limit, so long as λk is bounded. This can be seen in Steps (4)–(10)
in Algorithm 2. Second, the scale term λk is used to refine the rate at which σk goes to
zero according to progress made during the previous iteration of the outer algorithm.
This helps tailor the choice of σk to the specific problem being solved.

Thus in Steps (9)–(13) of Algorithm 1, λk is modified in a similar manner to
the trust-region radius in a trust-region algorithm. In Section 3 we show that the
parameter λk has an inverse relationship with the implicit trust-region used to prove
convergence of the outer iterations. Essentially, when the predicted ratio is good,
λk is decreased, and conversely, when the predicted ratio is bad, λk is subsequently
increased. The inner iterations of Algorithm 2 solve the Ĥksk = −gk within a scale
term ηk of the current norm of the objective gradient. We later prove that convergence
is at least linear if ηk is bounded away from 0, and superlinear if ηk converges to 0.

As a result of the following inequality

pTi Hpi
pTi pi

> λk‖gk‖ (2.1)

we see that the modified Hessian can approach a singular system only in as much as
the current corresponding gradient also approaches zero. This ensures that even if
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‖H−1
k ‖ approach infinity, the step sk must still converge to 0 in the limit (which is

necessary for fast convergence). Note that Algorithm 2 can easily be adapted to use
a preconditioner if available, as in regular PCG (precondioned conjugate gradient)
methods. To permit the algorithm to be as general as possible, we only require that
the modification term δ satisfy the bound

δ ≥ (λk‖gk‖‖pi‖2 − pTi Ĥpi)/rTi ri.

in Step 7 of Algorithm 2 with equality on the very first iteration. Thereafter, the
modification matrix δrir

T
i may be as large as desired. (In Appendix we provide a

theorem demonstrating that if δ = ∞ whenever indefiniteness is detected and i >
0, then ICMCG will terminate with sk = ŝi and ri+1 = 0. Though we do not
recommend such an extreme variant of ICMCG in practice, we do emphasize that all
the convergence properties stated and proved in Section 3 will continue to hold.

Algorithm 2 Inertia Controlling Modified Conjugate Gradients (ICMCG)
1: function[sk, isMod] = ICMCG(H, g, λ, cgtol)
2: Ĥ = H, p0 = −g;
3: Set ŝ0 = 0, r0 = p0, isMod = 0, and i = 0;
4: while(‖ri‖ > cgtol) do
5: if (pTi Ĥpi ≤ λk‖gk‖‖pi‖2) then
6: Set δlow = (λk‖gk‖‖pi‖2 − pTi Ĥpi)/rTi ri;
7: if i = 0 then choose δ = δlow else choose δ ≥ δlow end
8: Ĥ = Ĥ + δrir

T
i ;

9: isMod = 1;
10: end
11: αi = rTi ri/p

T
i Ĥipi;

12: ŝi+1 = ŝi + αipi; ri+1 = ri + αiĤsi;
13: βi+1 = rTi+1ri+1/r

T
i ri; pi+1 = −ri+1 + βi+1pi;

14: i = i+ 1;
15: end
16: Set sk = ŝi
17: endfunction

3. Convergence results. In this section we show that the update strategy for
λk in Algorithm 1 facilitates an implicit trust-region and can be used to adaptively
control the size of sk based upon the progress made during the previous line-search.
As best as we can tell, there is a one-one correspondence match existing convergence
theorems for trust-region methods with that of Algorithm 1. In this section, we have
mainly high-lighted for completeness, way to modify existing proofs to obtain the same
convergence properties. Before stating the results, we first state some useful properties
of the conjugate gradient algorithm that are needed for later proofs. In Lemma 3.1,
we provided some known properties of modified conjugate-gradient algorithms that
use the space of Lanczos vectors to perform the matrix modifications.

Lemma 3.1 (Arioli et al. [2]). Suppose a MCG is applied to the linear system
Hks = −gk using the Lanczos (or residual) vectors to ensure pkĤpk > 0. Then in
exact arithmetic the algorithm converges to a point ŝ satisfying

Ĥŝ = −gk
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in less than n iteration. Further, the following properties hold for 0 ≤ j < i:

pTi Ĥpj = 0, (3.1)
ŝTi ri = 0, (3.2)
pTj ri = 0, (3.3)

rTi gk = −rTi ri. (3.4)

Finally, if Hk is not modified, then

m(ŝi) ≤ m(ŝi−1) (3.5)

Because of Lemma 3.1 we are assured that all the nice properties of CG will naturally
hold for the modified system Ĥs = −gk; essentially, it says that applying regular CG
to Ĥs = −gk, we would generate the same sequence of vectors. We also state the
following additional properties considering the modified conjugate-gradient algorithm.

Lemma 3.2. Suppose that Algorithm 2 is applied to the sytem Hks = −gk with
inertia monitoring parameter λ. Then the following properties hold at each iteration:

pTi Ĥpi ≥ λ‖pi‖2‖gk‖, (3.6)
‖ri‖ ≤ ‖pi‖, (3.7)

m(ŝi) ≤ m(ŝi−1) (3.8)

where mk(s) = sT gk +
1
2
sTHks. Further ŝi solves the subspace subproblem

minimize
ŝ∈Rn

m̂(ŝ) = ŝT gk +
1
2
ŝT Ĥŝ

subject to ŝ ∈ span(p0, . . . , pi−1).
(3.9)

That is, ŝi denotes the unconstrained minimizer of the modified quadratic m̂(ŝ) within
the subspace spanned by the conjugate-vectors, and where m̂(s) is a special form of
(1.3) and

∑
j δjrjr

T
j is used as Ek(s).

Before proving the lemma, note that only (3.6) is unique to the approach proposed in
this paper. All other properties stated in Lemma 3.2 are common properties shared by
all modified-conjugate gradient algorithms that use Lanczos (or equivalently residual
vectors) to shift toward positive-definiteness. We now give the proof of the lemma.

Proof. That piĤpi is bounded in (3.6) follows by construction of Algorithm 2.
We next observe that by (3.4),

‖pj‖22 = (−rj + βjpj−1)T (−rj + βjpj−1) = ‖rj‖2 + β2
j ‖pj−1‖2 ≥ ‖rj‖22,

proving (3.7). The proof of (3.8) can be shown as follows.
By (3.5) we know that m̂(ŝi+1) ≤ m̂(ŝi) and since

m̂(ŝi+1) = m̂(ŝi + αipi) = m̂(ŝi) + αi(Ĥŝi + gk)T pi + α2
i

1
2
pTi Ĥpi,

Thus, we obtain the quantity

αi(Ĥŝi + gk)T pi +
1
2
α2
i p
T
i Ĥpi ≤ 0.



Inertia controlling modified conjugate gradients 9

Note similarly that

m(ŝi+1) = m(ŝi + αipi) = m(ŝi) + αi(Hkŝi + gk)T pi + α2
i

1
2
pTi Hkpi,

Hence we only need show that

αi(Hkŝi + gk)T pi + α2
i

1
2
pTi Hkpi ≤ αi(Ĥŝi + gk)T pi +

1
2
α2
i p
T
i Ĥpi.

Trivially pTi Hkpi ≤ pTi Ĥpi. Hence, since

αi(Ĥŝi + gk)T pi = αi(Hkŝi + gk)T pi + αi(Eŝi)T pi

we need only show that ŝTi Epi ≥ 0, where E =
∑i
j=1 δjrjr

T
j . By (3.3) we know

ŝTi Epi = δi(pTi ri)ŝ
T
i ri = 0,

since ŝTi ri = 0 as CG always keeps the current solution vector and current residual
vector orthogonal. The proof of (3.9) is a well-known property of the conjugate-
gradient algorithm (for example see [6]) which necessarily holds for the modified sys-
tem Ĥs = −gk, as unmodified CG applied to this system would generate the same
sequence of conjugate vectors.

Lemma 3.1 illustrates several properties of modified conjugate gradient algorithms
that use the Lanczos vector (which is always a multiple of the CG residual rk) to
ensure positive-definiteness. Properties (3.1)–(3.4) ensure that conjugacy is not lost,
even if Ĥ were modified at each CG iteration. Second, the corresponding sequence of
modified CG solution vectors si decrease the modified quadratic model monotonically
at each iteration. Further, because piT Ĥpi is bounded below by λk‖pi‖2‖gk‖ for all i,
we can show that the CG vector sk is bounded in terms of λk as stated in Theorem 3.3.

Theorem 3.3. Let sk denote the search direction obtained by Algorithm 2. Then

‖sk‖ ≤
n

λk
(3.10)

Proof. Let ŝi denote the corresponding ith iteration of Algorithm 2. We will begin
by showing that

‖ŝi‖ ≤
i

λk
, (3.11)

and the result then follows from Lemma 3.1. That is, the magnitude of the ith iterate
of Algorithm 2 is less than 1/λk times the number of Algorithm 2 iterations completed
thus far. Equation (3.11) is shown by induction on i. It is obvious when i = 0; now
assume that it is true at iteration j, that is,

‖ŝj‖ ≤
j

λk
(3.12)

From (3.4), we have:

ŝj+1 = ŝj + αjpj = ŝj +
rj
T rj

pjT Ĥpj
pj = ŝj −

rj
T gk

pjT Ĥpj
pj
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And from (2.1) and (3.12), and (3.7), we have

‖ŝj+1‖ ≤ ‖ŝj‖+
‖pj‖‖rj‖‖gk‖
λk‖pj‖2‖gk‖

= ‖ŝj‖+
‖rj‖
λk‖pj‖

≤ j

λk
+

1
λk

=
j + 1
λk

This completes the proof by inductions.
Note that what the proof Theorem 3.3 actually showed is that at each iteration of
Algorithm 2 the solution vector, ŝi, can grow by at most a factor of 1/λk. Notice
further that this is not a strict upper bound, and hence only loosely defines where
the true trust-region lives. This important result together with several desirable
properties of the algorithm given later that are very similar to those in trust region
methods show that the algorithm proposed in this paper is theoretically equivalent to
the trust-region approach. Nevertheless, this new approach does not have to explicitly
deal with the issues associated with the bounds of trust regions
Before we consider the global convergence of Algorithm 1, we give one more lemma.
This useful lemma is very similar to the result from a trust region method that the
total predicted decrease is at least a fraction of the that obtained at the Cauchy point
[6, 21].

Lemma 3.4. Let sk be the search direction calculated by Algorithm 2. Then we
have:

m(0)−m(sk) ≥ ‖gk‖
2

min
(

1
λk
,
‖gk‖
‖Hk‖

)
(3.13)

Proof. Because sk = ŝi and m(ŝi) ≤ m(ŝi−1) by Lemma 3.1, it suffices to show
this bound for m(ŝ1).
Since α0 = gTk gk/g

T
k Ĥgk we have

m(ŝ1) = m(−α0gk) = −α0g
T
k gk +

1
2
α2

0g
T
kHkgk

=
(gTk gk)2

gTk Ĥgk

[
−1 +

(gTkHkgk)
2gTk Ĥgk

]
(3.14)

Now either Hk is modified on the first iteration, or remains the same. If Hk is
unmodified, then, from (3.14) we have

m(ŝ1) ≤ − ‖gk‖4

2gTkHkgk
≤ − ‖gk‖4

2‖Hk‖‖gk‖2
= − ‖gk‖

2

2‖Hk‖
≤ −‖gk‖

2
min

(
1
λk
,
‖gk‖
‖Hk‖

)
,

implying (3.13) holds. If Hk is modified, then the following must hold:

gTkHkgk/g
T
k gk ≤ λk‖gk‖ and gTk Ĥgk/g

T
k gk = λk‖gk‖.

And hence, because of (3.14), we have

m(ŝ1) =
‖gk‖
λk

[
−1 +

gTkHkgk
2‖gk‖3λk

]
≤ −‖gk‖

2λk
,

which again implies (3.13) holds.
The following two lemmas ensure that at each iteration sk is a valid line-search

direction and thus sufficient decrease is guaranteed in a finite number of line-search
iterations.
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Lemma 3.5. Suppose that sk is obtained from Algorithm 2, and gk is not 0. Then

sTk gk < 0.

Proof. This follows naturally from (3.9) in Lemma 3.2 which states that sk is
the unconstrained minimizer of the m̂(s) in the space of computed conjugate gradient
vectors. If sTk gk > 0, then

m̂(−sk) < m̂(sk),

contradicting (3.9). If sTk gk = 0 then m̂(sk) = sTk Ĥsk ≥ 0. However, this is a
contradiction since CG applied to Ĥs = −g generates the identical sequence {sk}
satisfying

m̂(sk) ≤ m̂(sk−1) ≤ . . . ≤ m̂(s1) = min
α
m̂(αg) < 0,

as g is nonzero.
It is known that a trust-region method does not strictly decrease f(x) at each

iteration; however, by adding a line search we ensure f(x) is decreased sufficiently at
every iteration. The following lemma is used to show that the line-search will converge
in a finite number of iterations.

Lemma 3.6. Assume that sk is obtained from Algorithm 2. Then the line-search
in Algorithm 1 converges in a finite number of iterations. That is, there exists an αk
such that

ρ(αksk) ≥ 0.25 (3.15)

Furthermore, we have:

m(αksk) ≤ αk
[
sTk gk +

1
2

max(0, sTkHksk)
]
< 0. (3.16)

Proof. Because m(s) denotes the second-order Taylor expansion of f(x) at xk, we
necessarily have the following

lim
αk→0

ρk(αksk) = 1.

for any direction sk. Thus the line-search in Algorithm 1 will find an αk satisfying
(3.15) in a finite number of iterations.
Furthermore we have

m(αksk) = αk

[
sTk gk +

αk
2
sTkHksk

]
≤ αk

[
sTk gk +

αk
2

max(0, sTkHksk)
]

≤ αk
[
sTk gk +

1
2

max(0, sTkHksk)
]

since αk ∈ (0, 1]. From Lemma 3.5 we know that sTk gk < 0. If sTkHksk ≤ 0, then

αk

[
sTk gk +

1
2

max(0, sTkHksk)
]

= αks
T
k gk < 0.
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If sTkHksk > 0, then

αk

[
sTk gk +

1
2

max(0, sTkHksk)
]

= αkm(sk) < 0,

by (3.13).
Thus, (3.16) holds.

Lemma 3.6 implies that the line search used is well defined. Now we are able
to give our convergence theorem and its proof. The proof is derived using minor
modifications to the proof of the trust-region convergence proof given in [21].

Theorem 3.7. Assume that ‖Hk‖ ≤ β for some constant β, f is continuously
differentiable and that that L(x) = {x : f(x) < f(x0)} is bounded. Then we have

lim
k→∞

inf ‖gk‖ = 0 (3.17)

Proof. Suppose for contradiction that there is a ε > 0 and integer K such that

‖gk‖ ≥ ε for all k > K. (3.18)

The inertia controlling parameter λk is either bounded or unbounded. First suppose
that λk is unbounded. Then there exists an infinite convergent subsequence ki satis-
fying ρ(ski

) < .25. We will show that this cannot happen. To simplify the proof, the
subindex i is omitted. First note that

|ρ(sk)− 1| =
∣∣∣∣ (f(xk)− f(xk + sk)− (mk(0)−mk(sk))

mk(0)−mk(sk)

∣∣∣∣
=
∣∣∣∣f(xk + sk)− f(xk)−m(sk)

mk(0)−mk(sk)

∣∣∣∣ . (3.19)

From the Taylor theorem, we have:

f(xk + sk)− f(xk) = gk
T sk +

∫ 1

0

(∇f(xk + tsk)− gk)T skdt

Then

|f(xk + sk)− f(xk)−m(sk)| =
∣∣∣∣12sTkHksk −

∫ 1

0

(∇f(xk + tsk)− gk)T skdt
∣∣∣∣

≤ β

2
‖sk‖22 + C(sk)‖sk‖,

where lim‖sk‖→0 C(sk) = 0. By Theorem 3.3 we then have

β

2
‖sk‖22 + C(sk)‖sk‖ ≤

n

2λ2
k

(βn+ 2C(sk)λk)

Thus using Lemma 3.4, (3.19), and (3.18) we have

|ρ(sk)− 1| ≤ n(βn+ 2C(sk)λk)

‖gk‖min
(
λk, λ2

k

‖gk‖
‖Hk‖

) ≤ n(βn+ 2C(sk)λk)

εmin
(
λk, λ2

k

ε

β

) .
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Thus

lim
λk→∞

|ρ(sk)− 1| = 2nC(sk)/ε.

However, because the subsequence is convergent by assumption, C(sk)→ 0 as k →∞.
Contradicting the assumption that ρ(sk) < .25 for all k in subsequence.

Now suppose that λk is bounded. That is, there exists an M such that λk ≤ M
for all k. Then by the design of Algorithm 1, there must exist a subsequence {xki

}
and an integer K such that ρ(ski

) > 0.25 and αki
= 1 for all ki > K. Therefore, we

have:

f(xki
)− f(xki+1) = f(xki

)− f(xki
+ ski

)

≥ 1
4

(m(0)−m(ski
))

≥ 1
8
‖gki
‖min

(
1
λk
,
‖gki
‖

‖Hki
‖

)
≥ 1

8
εmin

(
1
M
,
ε

β

)
> 0.

This implies that limki→∞ f(xki
) = ∞ because f(xk) monotonically decreases. This

contradicts the assumption that the level set is bounded. Therefore there cannot exist
such an ε bound on ‖gk‖ and the theorem follows.

Theorem 3.7 implies that Algorithm 1 will converge after a finite number of it-
erations. So far we have shown that λk serves as an upper bound on an implicit
trust-region radius, giving Algorithm 1 convergent properties similar to a trust-region
method. As in trust-region algorithm, with slightly stronger assumption we can prove
the stronger results, that ‖gk‖ → 0 for the entire sequence.

Lemma 3.8. Assume that ‖Hk‖ ≤ β for some constant β, ηk ∈ (0, 1/4), f is
Lipschitz continuously differentiable, and that the level set L(x) = {x : f(x) < f(x0)}
is bounded. Then we have

lim
k→∞

‖gk‖ = 0 (3.20)

Proof. Note that a parallel result in the context of classical trust-region methods
is shown in [21] in Theorem 4.8. As in the proof of Theorem 3.7, it is straightforward
to perform minor modifications to adapt the proof of Theorem 4.8 to our context
(with ρ = .25). Therefore, to avoid a nearly redundant proof, we point the interested
readers to [21].

Next we wish to show that, if xk is sufficiently near a local minimizer satisfying
the second-order sufficient conditions hold, then λk in Algorithm 1 is bounded and
Algorithm 2 eventually reduces to ordinary CG; that is, for k sufficiently large, con-
dition (2.1) is always satisfied. To do so we will need the following two lemmas that
will be used in proving Theorem 3.12. The first lemma shows that whenever xk is
sufficiently close to x∗, the step-size generated by Algorithm 2 is O(‖gk‖).

Lemma 3.9. Suppose that x∗ is an accumulation point of {xk} where xk is
obtained from Algorithm 1. Then, if the second-order sufficient conditions hold at x∗,
there exists a δ1 > 0 and a constant C1 such that when ‖xk − x∗‖ ≤ δ1, we have:

‖sk‖ ≤ C1‖gk‖ (3.21)
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Proof. Since the second-order sufficient conditions hold at x∗, there exists µ > 0
bounding the smallest eigenvalue of Hk from below in a neighbourhood of x∗. Further,
since Ĥk = Hk +Ek with Ek � 0, the smallest eigenvalue of Ĥk is also bounded by µ
in this neighborhood. Therefore, when xk is in this neighbourhood, we have:

‖sk‖ ≤ ‖Ĥ−1
k ‖‖Ĥksk‖

≤ 1
µ

(‖gk‖+ ‖Ĥksk + gk‖)

≤ 1
µ

(1 + ηk)‖gk‖

Thus, the lemma holds.
In the second lemma we show that whenever xk is sufficiently close to x∗, the

distance from xk to x∗ is O(‖gk‖2). To prove this lemma we will need a slightly
stronger assumption, that f(x) is twice Lipschitz continuous.

Lemma 3.10. Suppose that x∗ is an accumulation point of {xk} where xk is
obtained from Algorithm 1. Then, if the second-order sufficient conditions hold at x∗

and f(x) is twice Lipschitz continuous in an open neighborhood of x∗, there exists a
δ2 > 0 and a constant C2 such that when ‖xk − x∗‖ ≤ δ2, we have:

‖xk − x∗‖ ≤ C2‖gk‖ (3.22)

Proof. From the Taylor theorem, we have:

gk − g∗ = H∗(xk − x∗) +
∫ 1

0

(∇2f(x∗ + t(xk − x∗))−H∗)(xk − x∗)dt (3.23)

Similar to the proof of Lemma 3.9, there exists the smallest eigenvalue µ > 0 of H in
a neighbourhood of x∗. Thus, from (3.23), when xk is the neighbourhood, we have:
Therefore,

‖gk‖ ≥ ‖H∗(xk − x∗)‖ −
∥∥∥∥∫ 1

0

(∇2f(x∗ + t(xk − x∗))−H∗)(xk − x∗)dt
∥∥∥∥

≥ µ‖xk − x∗‖ −
L

2
‖xk − x∗‖2

where L is a Lipschitz constant. Thus, the above inequality becomes:

‖gk‖ ≥ (µ− L

2
‖xk − x∗‖)‖xk − x∗‖

Therefore, the lemma holds for any choice of δ2 < 2µ/L.
For the reader’s convenience, we now quote a lemma concerning convergence of an
inexact Newton methods.

Lemma 3.11 (Nocedal et al. [14]). Consider the iteration xk+1 = xk + sk, where
sk satisfies

‖Hksk + gk‖ ≤ ηk‖gk‖, (3.24)

and x∗ is an accumulation point of {xk}. Suppose that Hk is positive definite at x∗,
and 0 ≤ ηk < 1. Then, if the starting x0 is sufficiently near x∗, the entire sequence
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{xk} converges to x∗ and the convergence is linear at least, and superlinear if ηk
converges to 0.

We now show that the inertia constraint (2.1), like the radius of a trust-region,
is asymptotically inactive and that λk is bounded from above (note this is similar to
showing that the trust-region radius is bounded away from zero). Furthermore, under
certain standard assumptions, convergence of Algorithm 1 is superlinear.

Theorem 3.12. Suppose that x∗ is an accumulation point of {xk} where xk is
obtained from Algorithm 1. Then, if the second-order sufficient conditions hold at x∗

and f(x) is twice Lipschitz continuous in an open neighborhood of x∗, the following
properties hold:

• λk in Algorithm 1 is bounded, and there exists an integer K such that Equation
(2.1) holds for all k > K,

• The main sequence {xk} converges at least linearly to x∗, and superlinearly
if ηk → 0.

• The actual to predicted reduction ratio ρk converges to 1.
Proof. The proof is divided into two steps. We will first show that the main

sequence {xk} converges to x∗ by proving that for k sufficiently large

‖xk − x∗‖ ≤ C2‖gk‖.

That is, eventually the bounds in Equation (3.22) holds for the entire sequence. Be-
cause ‖gk‖ → 0 by Lemma 3.8, this will conclude the first part of the proof.

Let δ = min(δ1, δ2) where δ1 and δ2 be defined as in Lemma 3.10 and Lemma 3.9.
Then because of Lemma 3.8, there exists an integer K such that for all k > K,

‖gk‖ ≤
δ

C1 + C2
,

where constants C1 and C2 are defined from Lemma 3.10 and Lemma 3.9 respectively.
Let j denote any iterate in the convergent subsequence such that ‖xj − x∗‖ < δ and
j > K. Then

‖xj+1 − x∗‖ ≤ ‖xj − x∗‖+ ‖sj‖ ≤ (C1 + C2)‖gj‖ ≤ δ.

This implies two things: (1) we can now apply the theorem recursively to xj+1, and
(2) ‖xj+1 − x∗‖ ≤ C2‖gj+1‖ concluding the first part of the proof.

We will now prove the remain results. Because ∇2f(x∗) is positive definite at x∗,
there exists a constant µ > 0 bounding the eigenvalues of ∇2f(x) from below, in an
open neighborhood of x∗. A Taylor series for f(x) about xk gives

f(xk + sk)− f(xk) = m(sk) + o(‖sk‖2) (3.25)

By design of Algorithm 2 we have the following bound for each sk:

‖Ĥksk + gk‖ ≤ ηk‖gk‖. (3.26)

Since Ĥk = Hk + Ek with Ek � 0, the smallest eigenvalue of Ĥk is always greater
than or equal to the smallest eigenvalue of Hk. Thus there must exist an integer K2

such that for all k > K2 we have that ‖Ĥksk‖ ≥ µ‖sk‖. Therefore, because of (3.26),
when k is sufficiently large,

µ‖sk‖ − ‖gk‖ ≤
∣∣∣‖Hsk‖ − ‖g‖∣∣∣ ≤ ‖Hsk + g‖ ≤ ηk‖gk‖, (3.27)
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which by reordering gives

‖gk‖ ≥
µ‖sk‖
1 + ηk

. (3.28)

From Lemma Lemma 3.4, (3.26), and Theorem 3.3, when k is big, we have:

m(0)−m(sk) ≥ 0.5‖gk‖min
(

1
λk
,
‖gk‖
‖Hk‖

)
(3.29)

≥ 0.5
µ‖sk‖
1 + ηk

min
(
‖sk‖
n

,
µ‖sk‖

(1 + ηk)‖Hk‖

)
(3.30)

Therefore, there exists a constant C3 such that

m(0)−m(sk) ≥ C3‖sk‖2 (3.31)

Then (3.25) implies that ρk converges to 1 which in turn, implies λk is bounded, since
by construction of Algorithm 1, λk can only be increased if ρk < 1/4. Therefore, since
‖gk‖ → 0, for k sufficiently large

‖gk‖λk < µ.

implying that

pTHp > µ‖p‖2 > λk‖gk‖‖p‖2, (3.32)

and (2.1) is thus inactive. Hence for k sufficiently large, Hk will cease to be modified,
and chosen CG residual tolerance in Step 2 of Algorithm 1 implies we may apply
Lemma 3.11 to obtain the remaining assertions of this theorem.

4. Numerical Results. In this section we report numerical results for ICMCG
on unconstrained CUTEr test problems [4, 16]. When using modified CG one may
either explicitly store the vectors in the summation of (1.5) corresponding to nonzero
αj or rely on conjugacy and Lanczos orthogonality relations as discussed in [23, 20, 2].
In general, Lanczos orthogonality is quickly lost as soon as an eigenvalue of the Lanczos
tridiagonal converges [24], and as stated in [2] we feel caution should be used when
relying on such relations; in the Lanczos algorithm it can be shown that the extreme
eigenvalues of the Lanczos tridiagonal quickly converge, which is ideal if one is seeking
eigenvalues, but problematic if one is relying on conjugacy.

In the Appendix we show that if δ = ∞ whenever i > 0, then Algorithm 2 con-
verges immediate with a residual value of 0. However, choosing δ in this manner is
permitted by construction in the ICMCG line-search algorithm. This implies that
all existing theory still holds if ICMCG terminates the CG process whenever indef-
initeness is detected, as long as at least one iteration has been completed. Hence,
the ICMCG algorithm never need store any Lanczos vectors other than those nec-
essary for running CG itself. We have found, however, that storing a small number
of the Lanczos vectors explicitly (for the numerical results presented in this section
a maximum of 5 vectors were stored) and exiting from the ICMCG algorithm early
whenever this maximum number of matrix modifications is reached works extremely
well. Because a smaller value of δ yields greater predicted decrease in the quadratic
model, for these 5 vectors we always set δ = δlow in Algorithm 2. We experimented
using a larger number of vectors, up to 40, and found that there was very little in
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name n status cpu(s)
arwhead 5000 S/S 0/0
brybnd 5000 S/S 1/1
cosine 10000 S/S 0/1
cragglvy 5000 S/S 1/1
curly10 10000 M/S 2400/19
curly20 10000 M/S 3700/20
curly30 10000 M/S 4500/44
dqdrtic 5000 S/S 0/0
dqrtic 5000 S/S 0/1
engval1 5000 S/S 0/1
freuroth 5000 S/S 0/1

name n status cpu(s)
liarwhd 10000 S/S 0/1
nondia 9999 S/S 1/1
nondquar 10000 S/S 17/4
scosine 10000 S/S 0/1
scurly10 10000 M/S 190/4
scurly20 10000 M/S 94/4
scurly30 10000 M/S 75/4
sinquad 10000 S/S 2/6
srosenbr 10000 S/S 0/1
tridia 10000 S/S 0/1
woods 10000 S/S 1/2

Table 4.1
Numerical results for some a subset of the unconstrained CUTEr problems. The fourth column

of each table provides corresponding CPU times (rounded to the nearest whole second) for Algo-
rithm 1 with and without preconditioning. Here ”S” stands for solved, while ”M” for maximum
iterations reached.

the way of performance gain, when more that 5 vectors were used in the Hessian
modification per subproblem. We would like to stress that vectors corresponding to
Hessian modification are heavy in the components along the small eigenvalue sub-
spaces, and hence, over a small number of subproblems, by exploiting these directions
via matrix modifications, we quickly move to a region where the Hessian is nearly
positive-definite (or goes unbounded).

We applied the Algorithm 1 to all the unconstrained CUTEr test problems using
a SAS translation of the CUTEr test problems. Within the SAS implementation of
this algorithm, a preconditioner is used to increase the rate of convergence when near
a minimizer. We have found that though a majority of the unconstrained CUTEr
problems are quite amenable to CG approaches, and can be solved easily without a
preconditioner, a preconditioner can ensure quick rates of convergence near a solution
for all test problems. To illustrate the effects of test runs both with and without
preconditioning, we provide a sample of the numerical results in Table 4. Note that
in order to obtain the fast convergence rates offered by Lemma 3.11 it is necessary
to solve the linear system to higher and higher degrees of accuracy. Numerically
this means that the CG algorithm can hit the maximum allowed number of CG
iterations prior to achieving the desired accuracy, which in turn can substantially
slow down convergence. We highlight some of CUTEr problems, to demonstrate that
preconditioner is sometimes (but not always) necessary to achieve fast convergence
when sufficiently near a minimizer. Overall, with preconditioning turned on, we were
able to solve all of the unconstrained CUTEr test problems in less than 7 minutes
with the current SAS implementation of this algorithm.

5. Conclusions and Future Work. In this paper we have addressed the prob-
lem of unboundedness in the search direction when the Hessian is indefinite or near
singular. We have developed a strategy that performs explicit modifications to the
Hessian that have the same characteristics as the implicit ones used by classical trust
region algorithms. The effect of these modifications is that the search direction is
forced to remain within an implicit trust region which is defined by setting an adap-
tive lower bound on the smallest eigenvalue of H. This lower bound is in similar
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manner to the trust-region radius within trust region algorithm. We have shown that
the success of the proposed approach depends on the fact that the adaptive parameter
is directly proportional to the current gradient of the objective function. This is the
only matrix modification strategy we know of that ensures that the modified Hessian
always converges to H* (whether or not H* is singular), while the resulting inter-
mediate step-sizes always remain bounded. Further we showed the resulting search
direction lies within an implicit trust-region. From our numerical experiments we
have observed that when H* is indeed singular, faster convergence rates can always
be obtained when the modified Hessians are allowed to approach a singular matrix at
the limit. We have demonstrated that this near singularity is benign with respect to
the corresponding search direction as long as the rate by which the modified Hessians
approach singularity is controlled by the rate that the current gradient gk approaches
zero.

An alternate issue, that we have found numerically relevant, though occurring
with far less frequency, is the equivalence of the ”hard-case” in trust-region algorithms
for line-search methods. Note that, in exact arithmetic, no algorithm that constructs
it search direction from the Krylov subspace

K(g,H) = span{g,Hg,H2g, . . .}
can claim to handle the hard-case, when the eigenvector v1 corresponding to the
smallest eigenvalue λ1 is orthogonal to g, i.e. an extreme example of this case is any
stationary point which does not also satisfy the second-order necessary conditions for
being minimizer. This is because v1, a critically needed search direction in this case,
lives in an orthogonal subspace to the subspace where the search direction is being
constructed: K(g,H). It is our belief that it is precisely the hard-case which separates
numerical performance of trust-region algorithm from what in most case should be
nearly equivalent, Levenberg-Marquardt methods. In a second soon to be release
sister paper, we will discuss ways to handle this second (far less critical) draw-back
of line-search methods by incorporating results from paper [1] for obtaining accurate
estimates of v1 with little additional computational overhead. We have also extended
the ICMCG algorithm to constrained optimization and have found that it perform
equally well in this context; it our intent to further release a third paper outlining
how this may done in a robust and efficient manner.

6. Appendix. In this section, we provide a theorem in the context of the mod-
ified conjugate-gradient algorithm to emphasize a key philosophical point behind the
algorithm described in this paper: when indefiniteness is corrected along a single di-
mension, it is preferable to err on the side of the matrix modification being too large,
than too small.

Theorem 6.1. Suppose a MCG is applied to the system Hs = −g generating
the sequence of vectors sk, pk (H-conjugate vector), and rk. Suppose pTj Hpj > 0 for
j < k, but pTkHpk ≤ 0. If we define Hδ = H + δrkr

T
k , then

lim
δ→∞

Hδ(sk + α(δ)pk)→ −g,

where α(δ) = (rTk rk)/pTkHδpk denotes the corresponding CG weight. Then as δ →∞
‖Hδ‖ → ∞ while sk + α(δ)pk → sk.

Thus the large modification to H has little incremental effect on the current search
direction. However as δ approaches its minimum modification value

δmin = −(pTkHpk)/(rTk rk)2
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then

lim
δ→δmin

sk + α(δ)pk →∞.

Thus a small modification to H corresponds to a large modification to sk.
Proof. First note that CG gives us the following two relations: pT r = rT r and

rT s = 0 because of Lemma 3.1. Next note that

lim
δ→∞

α(δ) = lim
δ→∞

rT r

pTHp+ δ(rT p)2
= lim
δ→∞

rT r

pTHp+ δ(rT r)2
= 0.

Expanding Hδ(s+ α(δ)p) + g we get

Hδ(s+ α(δ)p) + g = Hs+ g + α(δ)Hp+ δ(rT s)r + δα(δ)(rT p)r
= α(δ)Hp+

[
−r + δα(δ)(rT r)r

]
However,

lim
δ→∞

δα(δ) =
δrT r

pTHp+ δ(rT r)2
=

1
rT r

.

And, since limδ→∞ α(δ)Hp = 0, we have that

lim
δ→∞

Hδ(s+ α(δ)p) + g = 0 + [−r + r] = 0.

However, when δ approaches its minimum modification value

δmin = −(pTkHpk)/(rTk rk)2

then, Hδ(sk + α(δ)pk) approach a singular matrix

lim
δ→δmin

sk + α(δ)pk = lim
δ→δmin

−H−1
δ (sk + α(δ)pk)gk →∞.

The first unexpected property states that in the context of modified CG, when-
ever indefiniteness is detected, given an ε > 0 there always exists a sufficient large
modification matrix Ek such that the next residual vector rk+1 satisfies

‖rk+1‖ ≤ ε.

An important result of this theorem is understanding that the size of the residual
vector, while crucial to convergence in the positive-definite case, can be made arbi-
trarily small for any CG iteration where indefiniteness is detected. Moreover, as this
modified residual vector goes to 0, the corresponding modified CG search direction
sk+1 converges to sk. Ultimately this means that a small residual in the indefinite
case is not necessarily a good indicator that sk will be a good search direction. This
theorem thus helps highlight the crux of the problem with current line-search modifi-
cation strategies and points towards a new goal: determine a modification matrix Ek
so that Hk + Ek is positive-semidefinite and

β1‖g‖ ≤ (Hk + Ek)†g ≤ β2‖g‖,
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for some appropriate choice of β1, β2 ≥ 0.
This theorem also provides insight into why small Hessian modification can be

detrimental in the context of line-search algorithms. Let us consider

sk+1 = sk + α(δ)pk

from Theorem 6.1. Suppose that we wish to use sk+1 as our search direction. Further
suppose that we are sufficiently close to a global minimizer of f(x) so that f(xk) <
f(x) for all ‖x − xk‖ ≥ 1. This implies that for a line-search algorithm to achieve
sufficient reduction in f(x) at the current point xk, we must have that the search
direction sk+1 is scaled so that

‖γsk+1‖ = ‖γsk + α(δ)pk‖ ≤ 1.

Since ‖α(δ)pk‖ → ∞ as δ → δmin by Theorem 6.1, we must have the γ → 0 as
δ → δmin. This implies that in the limit, for arbitrarily small modifications,

sk+1 ≈ ηpk,

for some η providing sufficient decrease. Thus we are numerically discarding all pre-
vious conjugate gradient vectors, and placing all our emphasis on a single dimension.
Alternatively, as δ → ∞ sk+1 = sk, which is arguably a much preferred search di-
rection by Lemma 3.2 it denotes the unconstrained minimizer of the quadratic model
with the span of conjugate-gradient vectors {p0, . . . , pk}.
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