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Abstract

This paper studies the vector optimization problem of finding weakly ef-
ficient points for maps from R

n to R
m, with respect to the partial order

induced by a closed, convex, and pointed cone C ⊂ R
m, with nonempty inte-

rior. We develop for this problem an extension of the proximal point method
for scalar-valued convex optimization problem with a modified convergence

sensing conditon that allows us to construct an interior proximal method for
solving POV on nonpolyhedral set.
Keywords: Interior point methods, vector optimization, C−convex, posi-

tively lower semicontinouos.

1 Introduction.

Let C be a closed, convex, and pointed cone in R
m, with int(C) 6= ∅, where int(C)

denotes the interior of set C. Then C induces a partial order �C in R
m, given by

y �C y′ if and only if y′ − y ∈ C, with its associate relation ≺C , given by y ≺C y′ if
and only if y′ − y ∈ int(C). Our goal is to analize methods to find a weakly efficient
minimizer of the following problem

(V OP ) C − min{F (x) : x ∈ Ω}
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where Ω is a nonempty convex closed set in R
n and F : R

n → R
m ∪ {+∞C} is a

proper, positively lower semicontinouos (plsc) C−convex map.

Recently, Bonnel et al. in (2005) and Ceng and Yao in (2007) considered the ex-
tension to vector-valued optimization of several iterative methods for scalar-valued
methods. In those extensions, they define the iterates in the vector-valued case by
considering the order �C in Y , where Y is a real Banach space, mimicking, when-
ever possible, the role of the usual order in R in the corresponding algorithm for
scalar-valued optimization. In the meantime, we admit the possibility that F takes
value +∞C .

The last decade has seen considerable progress in the theory of the proximal point
methods for scalar-valued problems, all of them based on generalized distances
(Auslender and Teboulle, 2006; Kaplan and Tichatschke, 2004, 2007). Thus, we
give next a brief description of this method. Consider the following convex mini-
mization problem:

inf{f(x) : x ∈ Ω}, (1)

where f : R
n → R

m ∪ {+∞} is a proper, lower semicontinuous convex function.
The proximal point method generates a sequence {xk} ⊂ R

n corresponding to the
recursion

gk+1 + βk∇1d(xk+1, xk) = 0. (2)

where gk+1 ∈ ∂εk
f(xk), {βk} is a bounded exogenous sequence of positive real num-

bers (called regularization parameters), ∇1d(·, y) denotes the gradient map of func-
tion d(·, y) with respect to the first variable, d is some proximity measure, and xk

the current iterate.

With the choice d(x, y) = 2−1‖x − y‖2 and εk = 0, one recovers the proximal
algorithm, whose origins can be traced back to the 1960s (see, e.g., Moreau, 1965;
Martinet, 1970, 1972; Rockafellar, 1976). In this case, the sequence {xk} produced
by the above algorithm does not necessarily belong to int(Ω). Thus the proximal
term d(x, y) will play the role of a distance-like function, satisfying certain properties,
see Section 2, which will force the iterates of the produced sequence to stay in int(Ω),
and thus automatically eliminate the constraints.

It has been proved in (Auslender and Teboulle, 2006) that the sequence {xk} gen-
erated by the proximal point method (2) belongs to int(Ω) and converges to the
solution of problem (1), pursuant to certain properties.

In the so-called inexact versions of the method, xk need not be the exact solution
of the subproblem in (2), but only an approximate solution of it. Clearly, the
inexact version is essential if one wants the convergence results to hold for actual
implementations of the method. Inexact version were proposed as early as 1976 (see
Rockafellar, 1976), in which the kth subproblem was allowed to be solved within
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a prescribed tolerance εk, and it was demanded that
∑∞

k=0 εk < ∞. Similar error
criteria, always requiring summability of the tolerances, appeared in several papers
later on.

Kaplan and Tichatschke in (2007, 2008) use a Bregman function with a modified
“convergence sensing condition” that enables them to construct a generalized prox-
imal method for solving (1) on sets that are not necessarily polyhedrals. For this,
they admit a successive approximation of the operator ∂f and an inexact calculation
of the proximal iterate. This method generates sequences {xk} ⊂ R

n and {θk} ⊂ R
n

corresponding to the recursion

θk+1 ∈ Qk(xk+1) + βk∇1Dĥ(x
k+1, xk) (3)

where {βk} is a bounded exogenous sequence of positive real numbers, Dĥ is the

Bregman distance induced for ĥ = h + η and ∂f ⊂ Qk ⊂ ∂εk
f .

It has been proved in (Kaplan and Tichatschke, 2007) that if h, η, θk and εk satisfy
certain properties, the sequence {xk} generated by the proximal point method (3)
belongs to int(Ω) and converges to some solution of problem (1).

The above discussion refers, of course, to the proximal method for scalar-valued
convex optimization. The essence of this paper consists of the extension of both the
exact proximal method (2), εk = 0, and inexact counterpart (3) to the vector-valued
optimization problem introduced at the beginning of this section. Basically, in the
exact case the kth subproblem will consist of finding weakly efficient minimizers of

F (x) + βkd(x, xk)ek (4)

restricted to the set Ωk ⊂ Ω defined as Ωk = {x ∈ Ω : F (x) �C F (xk)}, where d is a
proximal distance on int(Ω), ek is an exogenously selected vector belonging to intC
and such that ‖ek‖ = 1.

For our inexact version, we consider the positive polar cone C∗ ⊂ R
m, given by

C∗ = {z ∈ R
m : 〈y, z〉 ≥ 0 for all y ∈ C}, and the indicator function IΩk

, of set Ωk,
defined as above. We take an exogenous sequence {zk} ⊂ C∗, with ‖zk‖ = 1 for all
k ∈ N, and define, at iteration k, the function fk : R

n → R
m ∪ {+∞} as

fk(x) = 〈F (x), zk〉 + IΩk
. (5)

Then we take as xk+1 any vector x ∈ Ω such that there exists θk ∈ R
n, εk ∈ R+

satisfying
θk+1 ∈ Qk(x) + βk〈ek, zk〉∇1d̃(x, xk), (6)

where ∂f ⊂ Qk ⊂ ∂εk
f and d̃ is a convenient proximal distance.

We will establish that any sequence generated by either our exact or inexact ver-
sion converges to a weakly efficient minimizer of F on Ω under the following two
assumptions:
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(i) F is C−convex on Ω, i.e., F (λx + (1− λ)x′) �C λF (x) + (1− λ)F (x′) for all x,
x′ ∈ Ω and all λ ∈ [0, 1].

(ii) The set (F (x0)−C)∩ F (Ω) is C−complete; i.e., for every sequence {ak} ⊂ Ω,
with a0 = x0, such that F (an+1) �C F (ak) for all k ∈ N, there exists a ∈ Ω
such that F (a) �C F (ak) for all k ∈ N.

In the absence of assumption (ii), we establish convergence results, namely, that
the generated sequence is a minimizing one for our problem, meaning that {F (xk)}
approaches the set of infimal values of F , in a sense explicited in Propositions 4.2
and 4.3 of Section 4.

The paper is organized as follows: Section 2 introduces and recalls some required
preliminary material. Section 3 formally states the problem. The exact version of
the method is analyzed in Section 4. Section 5 develops the inexact version.

2 Preliminaries

We adopt the following convex analysis notation (Rockafellar, 1970). For a proper
convex and lsc function f : R

n → R∪ {+∞}, its effective domain is set by dom f =
{x : f(x) < +∞}, and for all ǫ ≥ 0 its ǫ−subdifferential at x is defined by ∂ǫf(x) =
{g ∈ R

n : ∀ z ∈ R
n, f(z) + ǫ ≥ f(x) + 〈g, z − x〉}, which coincides with the usual

subdifferential ∂f = ∂0f whenever ǫ = 0. We set dom ∂f = {x ∈ R
n : ∂f(x) 6= ∅}.

For any closed convex set S ⊂ R
n, IS denotes the indicator function of S, ri(S)

its relative interior, O+(S) its recession cone, and NS(x) = ∂IS(x) = {ν ∈ R
n :

〈ν, z − x〉 ≤ 0 ∀ z ∈ S} the normal cone to S at x ∈ S.

Now, we recall some useful properties from convex analisys and on nonnegative
sequences.

Lemma 2.1 [Rockafellar, 1970; Corollary 6.5.2] Let S1 be a convex set. Let S2 be

a convex set contained in S1 but not entirely contained in the relative boundary of

S1. Then ri(S2) ⊂ ri(S1).

Lemma 2.2 [Rockafellar, 1970; Theorem 27.4] Let f be a proper convex function,

and let S be a nonempty convex set. In order that x∗ be a point where the infimum

of f , as related to S, is attained, it is sufficient that there exists a vector y∗ ∈ ∂f(x∗)
such that −y∗ is normal to S at x∗. This condition is necessary, as well as sufficent,

if ri(dom f) intersects ri(S), or if S is polyhedral and ri(dom f) merely intersects S.
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Lemma 2.3 [Polyak, 1987; Lemma 2.2.2] Let {ξk}, {υk} and {ζk} nonegative se-

quences of real numbers satisfying ξk+1 ≤ (1+υk)ξk+ζk and such that
∑∞

k=1 ζk < ∞,
∑∞

k=1 υk < ∞. Then, sequence {ξk} converges.

2.1 Proximal distances

In this part we remember definitions on appropriate proximal distance d and we use a
slightly modified of the definition induced proximal distance, H, given in (Auslender
and Teboulle, 2006).

Definition 2.1 A function d : R
n × R

n → R+ ∪ {+∞} in called a proximal

distance with respect to an open nonempty convex set S ⊂ R
n if for each y ∈ S it

satisfies the following properties:

(P1) d(·, y) is proper, lsc, convex, and continuously differentiable on S;

(P2) dom d(·, y) ⊂ S and dom∇1d(·, y) = S, where ∇1d(·, y) denotes the gradient

map of function d(·, y) with respect to the first variable;

(P3) d(·, y) is level bounded on R
n, i.e., lim

‖x‖→∞
d(x, y) = +∞;

(P4) d(y, y) = 0.

As in (Auslender and Teboulle, 2006), we also denote by D(S) the family of functions
d satisfying Definition 2.1.

The next definition associates to each given d ∈ D(S) another function satisfying
some convenient properties.

Definition 2.2 Given S ⊂ R
n, open and convex, and d ∈ D(S), a function H :

R
n × R

n → R+ ∪ {+∞} is called the induced proximal distance to d if H is

finite valued on S × S and for each y, z ∈ S satisfies

H(y, y) = 0 (7)

〈∇1d(z, y), x − z〉 ≤ H(x, y) − H(x, z) ∀x ∈ S. (8)

We also write (d,H) ∈ F(S) to specify the triple [S, d,H] that satisfies the premises
of Definition 2.2.
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Remark 2.1 Likewise, we will write (d,H) ∈ F(S) for the triple [S, d,H] whenever

there exists H which is finite valued on S×S, satisfies (7)-(8) for any x ∈ S, and is

such that ∀x ∈ S one has H(x, ·) level bounded on S. Clearly, one has F(S) ⊂ F(S).

Now, we need to make a further assumption on the induced proximal distance H,
mimicking the behaviour of norms. For this, we introduce F(S) which is a subset
of F(S).

Definition 2.3 Given S ⊂ R
n, open and convex, and (d,H) ∈ F(S), we denote

by F∗(S) the set of pairs (d,H) such that function H satisfies the following two

additional properties:

(P5) If {yk} ⊂ S is a bounded sequence in S and ȳ ∈ S such that lim
k→+∞

H(ȳ, yk) = 0,

then lim
k→+∞

yk = ȳ;

(P6) If {yk} ⊂ S converges to y, then at least one of the relations

lim
k→+∞

H(y, yk) = 0, (9)

lim
k→+∞

H(ȳ, yk) = +∞, ∀ ȳ 6= y, ȳ ∈ S (10)

holds true.

Remark 2.2 The last definition is a weaker version convergence sensing condition

than that given in (Auslender and Teboulle, 2006) and was introduced by Kaplan and

Tichatschke in (2007), for the Bregman function. Note also that with this definition

we could also work on nonpolyhedral sets.

In the context of proximal distances, two known choices for d include either Bregman
distance (see, e.g., Auslender and Teboulle, 2006; Chen and Teboulle, 1993; Kiwiel,
1997) or ϕ−divergences (see, e.g., Auslender and Teboulle, 2006; Teboulle, 1992,
1997). These works have concentrated on the ground set S being polyhedral and
in particular when S is the nonnegative octant in R

n. More recent works have also
proposed Bregman-like distances, which introduces a weakened convergence sensing
condition (see Kaplan and Tichatschke, 2007, 2008) which enables the work on a
nonpolyhedral set.
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2.2 Vector optimization problem and related results

We consider maps G : R
n → R

m ∪{+∞C}
1, where C ⊂ R

m is a closed, convex, and
pointed cone with nonempty interior, which defines a partial order “�” in R

m.

We denote by dom G = {x : G(x) 6= +∞C} the effective domain of G. We say
that G is proper if dom G 6= ∅.

We extend by continuity every z ∈ C∗ \ {0} to R
m ∪ {−∞C , +∞C}, by putting

〈±∞C , z〉 = ±∞ (see [Bolintinéanu, 2000] for more details).

Lemma 2.4 [Bolintinéanu, 2000; Lemma 2.2] For all e ∈ int(C), we have

inf{〈e, z〉 : z ∈ C∗, ‖z‖ = 1} = dist(e, Rm \ C).

Lemma 2.5 [Bolintinéanu, 2001; Lemma 2.7] Let z ∈ int(C∗). Then

inf{〈z, y〉 : y ∈ C, ‖y‖ = 1} ≥ dist(z, Rm \ C∗).

Proposition 2.1 [Luc, 1989] Let G : R
n → R

m ∪{+∞C} be a map. G is C-convex

if and only if 〈G(·), z〉 is convex for every z ∈ C∗.

Definition 2.4 [Luc, 1989] Let G : R
n → R

m ∪ {+∞C} be a map. We say that

G is positively lower semicontinuous if 〈G(·), z〉 is lower semicontinuous for

every z ∈ C∗.

We associate a given set T ⊂ R
m ∪ {−∞C , +∞C} the following sets:

i ) the infimal set :

C − INF(T ) = {y ∈ T :6 ∃w ∈ T \ {y} such that w �C y}

ii ) the weakly infimal set :

C − INFw(T ) = {y ∈ T :6 ∃w ∈ T such that w ≺C y}

Now, given a vector optimization problem of the form

(P ) C − min
{

G(x) : x ∈ U
}

(11)

where U ⊂ R
n.

1The extended space R
m ∪ {−∞C ,+∞C} was introduced in (Bolintinéanu, 2000).
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Definition 2.5 A point x∗ ∈ R
n is called:

i ) Efficient (or Pareto) if x∗ ∈ U and G(x∗) ∈ C − INF(G(U));

ii ) Weakly Efficient if x∗ ∈ U and G(x∗) ∈ C − INFw(G(U)).

We denote the sets of efficient (resp., weakly efficient) solutions as C−arg min{G(x) :
x ∈ U} (resp., C − arg minw{G(x) : x ∈ U}).

It is easy to verify that

C − arg min{G(x) : x ∈ U} ⊆ C − arg minw{G(x) : x ∈ U}.

Theorem 2.1 [Luc, 1989] Assume that U ⊆ R
n is a convex set and G : U →

R
m ∪ {+∞C} is a C-convex proper map. Then

C − arg minw{G(x) : x ∈ U} =
⋃

z∈C∗\{0}

arg min{〈G(x), z〉 : x ∈ U}.

3 The problem

Let F : R
n → R

m ∪ {+∞C} be a proper, C-convex, positively lower semicontinu-
ous map and Ω a convex closed set, with nonempty interior. Consider the vector
optimization problem

(V OP ) C − min

{

F (x) : x ∈ Ω

}

. (12)

This problem consists of finding a feasible point x∗ such that F (x∗) is weakly efficient

for F (Ω), i.e., such that

6 ∃x ∈ Ω : F (x) ≺ F (x∗).

Unless otherwise specified, the following general assumptions on (VOP) will be used.

Assumption A

A1 Ω ⊆ domF .

A2 ∃ z̃ ∈ C∗ such that −∞ < 〈F (x), z̃〉, for all x ∈ Ω.
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Remark 3.1 In practical situations, Assumption A2 could be difficult to verify.

Thus, it is worth pointing that Graña et al. in (2008; Corollary 3.1) establish a

result that implies A2, i.e.,

If F (Ω) is closed and

C∗ ∩ int([O+(conv(F (Ω)) )]∗) 6= ∅,

then for all z ∈ C∗ ∩ int([O+(conv(F (Ω)) )]∗) we have that

−∞ < 〈F (x), z〉, ∀x ∈ Ω.

Remark 3.2 Let us consider, for any u ∈ int(Ω), the set Ωu := {x ∈ Ω : F (x) �
F (u)}, note that:

i) ∅ 6= Ωu ⊆ Ω;

ii) u ∈ Ωu ∩ Ω;

iii) F C-convex, implies convexity of Ωu;

iv) F positively lower semicontinuous, implies closedness of Ωu;

v) ri (Ωu) ⊆ int(Ω), by items (i) − (iv) and Lemma 2.1.

Proposition 3.1 Let d ∈ D(int(Ω)) and for all u ∈ int(Ω) consider the vector

optimization problem

P (x) C − min{F (x) + d(x, u)e : x ∈ Ωu} (13)

where e ∈ int(C). Then for each u fixed, the set C − argminw{F (x) + d(x, u)e : x ∈
Ωu} is nonempty, and it is a subset of int(Ω).

Proof. By assumption A2, there exists z ∈ C∗ and M ∈ R such that

M < 〈F (x), z〉 ∀x ∈ Ω. (14)

Now define the following problem

min Fz(x) + 〈e, z〉d(x, u)

subject to x ∈ Ωu

(15)

where Fz : Ω → R ∪ {+∞} is defined by

Fz(x) = 〈F (x), z〉.
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Note that (14) is valid in particular for all x ∈ Ωu ⊆ Ω. So

M + 〈e, z〉d(x, u) ≤ Fz(x) + 〈e, z〉d(x, u) ∀x ∈ Ωu.

As the level sets of d(·, u) are bounded on R
n, by (P3), we have that the level sets

of Fz are also bounded.

Note that, from (P1), d(·, u) is lower semicontinuous, convex, and 〈e, z〉 > 0, because
e ∈ int(C) and z ∈ C∗ \ {0}, as we then obtain that Fz + 〈e, z〉d(·, u) is lower
semicontinuous and convex. Therefore, the mimimization in (15) reduces to compact
set and the minimum is attained. In view of Theorem 2.1, we have

C−argminw{F (x)+d(x, u)e : x ∈ Ωu} =
⋃

z∈c∗\{0}

arg min{Fz(x)+〈e, z〉d(x, u) : x ∈ Ωu}

(16)
thus

C − argminw{F (x) + d(x, u)e : x ∈ Ωu} 6= ∅. (17)

Now we prove that

C − argminw{F (x) + d(x, u)e : x ∈ Ωu} ⊂ int(Ω). (18)

We will prove (18) by contradiction. Assume that ∃ ẑ ∈ C∗ \ {0} such that

∅ 6= arg min{Fẑ(x) + 〈e, ẑ〉d(x, u) : x ∈ Ωu} 6⊆ int(Ω). (19)

On the other hand, from the first order optimality conditions, for each x ∈
arg min{Fẑ(x) + 〈e, ẑ〉d(x, u) : x ∈ Ωu}, we have

0 ∈ ∂(Fẑ + 〈e, ẑ〉d(·, u) + IΩu
)(x).

Now, since Ωu ⊂ Ω and int(Ω) ⊂ dom Fẑ∩dom d(·, u), so ri (dom IΩu
)∩ri (dom Fẑ)∩

(dom d(·, u)) 6= ∅, we have that the subgradient of the sum is equal to the sum of
the subgradients, see, e.g., [Rockafellar, 1970; Theorem 23.8], i.e.

∂(Fẑ + 〈e, ẑ〉d(·, u) + IΩu
)(x) = ∂Fẑ(x) + 〈e, ẑ〉∇1d(x, u) + NΩu

(x) (20)

where NΩu
(x) denotes the normal cone of Ωu in x.

Since dom∇1d(·, u) = int(Ω), it follows that x ∈ int(Ω) and NΩu
(x) = 0. Then the

zeros of ∂Fẑ + 〈e, ẑ〉∇1d(·, u) + NΩu
belong to int(Ω), in contradiction with (19). So

(18) must hold. �
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4 An exact interior proximal method (EIPM)

The method under consideration generates a sequence {xk} ⊂ int(Ω) corresponding
to the recursion: given a current iterate xk (x0 ∈ int(Ω) arbitrarily chosen), find
xk+1 ∈ int(Ω) such that

xk+1 ∈ C − argminw{F (y) + βkd(y, xk)ek : y ∈ Ωk} (21)

where d is a proximal distance with respect to int(Ω), βk satisfies 0 < βk < β̃ for
some β̃ > 0, the vector ek belongs to int(C) and ‖ek‖ = 1, and Ωk := {x ∈ Ω :
F (x) � F (xk)}.

Thanks to the Proposition 3.1, the basic algorithm above is well defined.

We now make the following assumption on the map F and the initial iterate x0.

Assumption B

The set

(

F (x0)−C

)

∩F (Ω) is C-complete, meaning that for all sequences {ak} ⊂ Ω,

with a0 = x0, such that F (ak+1) � F (ak) for all k ∈ N, there exists a ∈ Ω such that
F (a) � F (ak) for all k ∈ N.

Define the set of lower bounds of the initial section by E, i.e.

E := {x ∈ Ω : F (x) � F (xk) ∀ k ∈ N}.

Observe that, by assumption B, E is nonempty.

Proposition 4.1 Let H be an induced proximal distance to d, and let {xk} be a se-

quence generated by (EIPM). If (d,H) ∈ F(Ω) and assumption B above are satisfied,

then we have the following:

(i) H(x̄, xk+1) ≤ H(x̄, xk) for all k and every x̄ ∈ E.

(ii) {xk} is bounded with all its limit points being a weakly efficient solution of the

VOP.

Proof. (i) Since (d,H) ∈ F(Ω), by Remark 2.1 and (8) taking y = xk, z = xk+1 and
x = x̄ get

〈∇1d(xk+1, xk), x̄ − xk+1〉 ≤ H(x̄, xk) − H(x̄, xk+1). (22)

As xk+1 solves the vector optimization problem in (21), by Theorem 2.1 there exists
zk ∈ C∗ \ {0} such that xk+1 solves the problem

min Fk(x) + βk〈ek, zk〉d(x, xk)

subject to x ∈ Ωk

(23)
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where Fk : Ω → R ∪ {+∞} is defined by

Fk(x) = 〈F (x), zk〉.

Since the solution of (23) is not altered through the multiplication of zk by positive
scalar, we can assume, without loss generality, that ‖zk‖ = 1 for all k ∈ N. As
ri (dom(Fk)) ∩ ri (dom(d(·, xk))) ∩ ri (Ωk) 6= ∅, according to Lemma 2.2, it follows
that xk+1 satisfies the first order optimality conditions for problem (23); i.e., there
exists uk ∈ R

n such that

uk ∈ ∂(Fk + βk〈ek, zk〉d(·, xk))(xk+1) (24)

and
0 ≤ 〈x − xk+1, uk〉 (25)

for all x ∈ Ωk. Since xk+1 ∈ int(Ω) and from (24) we have

uk = vk + βk〈ek, zk〉∇1d(xk+1, xk) (26)

for some
vk ∈ ∂Fk(x

k+1). (27)

Now take x̄ ∈ E. By definition of E, x̄ belongs to Ωk for all k ∈ N. Combining (25)
with x = x̄ and (26), we have

0 ≤ 〈v̄k, x̄ − xk+1〉 + βk〈ek, zk〉〈∇1d(xk+1, xk), x̄ − xk+1〉

≤ Fk(x̄) − Fk(x
k+1) + βk〈ek, zk〉〈∇1d(xk+1, xk), x̄ − xk+1〉

= 〈F (x̄) − F (xk+1), zk〉 + βk〈ek, zk〉〈∇1d(xk+1, xk), x̄ − xk+1〉

≤ βk〈ek, zk〉〈∇1d(xk+1, xk), x̄ − xk+1〉, (28)

using (27) in the second inequality. Now, as x̄ belongs to E, we have F (x̄) −
F (xk+1) � 0. Besides, zk belongs to C∗\{0} and therefore 〈F (x̄)−F (xk+1), zk〉 ≤ 0,
giving the fourth inequality.

By (22), (28) and βk〈ek, zk〉 > 0, we have

0 ≤ 〈∇1d(xk+1, xk), x̄ − xk+1〉 ≤ H(x̄, xk) − H(x̄, xk+1) (29)

Implying,
H(x̄, xk+1) ≤ H(x̄, xk).

(ii) {H(x̄, xk)} is nonegative and, from (i) decreasing, for all x̄ ∈ E, hence conver-
gent, for all x̄ ∈ E.
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Since {H(x̄, xk)} is decreasing, we have that H(x̄, xk) ≤ H(x̄, x0) and therefore {xk}
is bounded by Remark 2.1.

Now, we show that the cluster points of {xk} are weakly efficient of V OP .

Since {xk} is bounded, it has cluster points. Let x̂ be a cluster point of {xk} and
let {xjk} be a sequence convergent to it.

Define Fz : R
n → R as Fz(x) = 〈F (x), z〉, we claim that

Fz(x̂) ≤ Fz(x
k) ∀ z ∈ C∗ ∀ k ∈ N. (30)

In fact, as F is positively lower semicontinuous and C- convex, Fz is lower semi-
continuous and convex so that Fz(x̂) ≤ lim

k→∞
Fz(x

jk). Since F (xk+1) � F (xk) for all

k ∈ N, we have Fz(x
k+1) ≤ Fz(x

k) for all k ∈ N so that lim
k→∞

Fz(x
jk) = inf{Fz(x

k)}.

Thus (30) holds, which implies

F (x̂) � F (xk) ∀ k ∈ N, (31)

because F (xk) − F (x̂) ∈ (C∗)∗ = C.

On the other hand, take zk as chosen in (23). Since ‖zk‖ = 1 for all k, there exists
a cluster point of {zk}, say z̄, which is a limit of the sequence {zjk

}. As C∗ is closed
it follows that z̄ belongs to C∗. Thus, we have

〈F (x) − F (x̂), zjk
〉 ≥ 〈F (x) − F (xjk+1), zjk

〉
= Fjk

(x) − Fjk
(xjk+1)

≥ 〈vjk
, x − xjk+1〉

= 〈ujk
, x − xjk+1〉 − βjk

〈ejk
, zjk

〉〈∇1d(xjk+1, xjk), x − xjk+1〉
≥ −βjk

〈ejk
, zjk

〉〈∇1d(xjk+1, xjk), x − xjk+1〉
≥ −βjk

〈ejk
, zjk

〉(H(x, xjk) − H(x, xjk+1))
(32)

for all x ∈ Ωjk
, using (31) in the first inequality, (27) in the third, (26) in the fourth

equality, (25) in the fifth inequality, and (8) in the sixth.

Note that, since {βk} ⊂ R is bounded, and ‖zk‖ = ‖ek‖ = 1, we have that
{βk〈ek, zk〉} ⊂ R is bounded.

Now, we will prove that x̂ is a weakly efficient solution of it VOP by contradiction.
Assume there exists x̄ ∈ Ω such that

F (x̄) ≺ F (x̂). (33)

It follows from (33) that, x̄ ∈ E and {H(x̄, xk)} is a sequence convergent.
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Taking (32) with x = x̄, we get that the limit of the rightmost expression in (32) as
k → ∞ vanishes, and therefore

〈F (x̄) − F (x̂), z̄〉 ≥ 0. (34)

Since {zjk
} ⊂ C∗, ‖zjk

‖ = 1 and z̄ is limit of {zjk
}, it follows from Lemma 2.4 that

z̄ 6= 0. Then, (34) contradicts the fact that z̄ ∈ C∗ \ {0} and (33). Therefore, x̂
must be a weakly efficient solution of V OP . �

Theorem 4.1 Let (d,H) ∈ F∗(Ω) and let {xk} be a sequence generated by (EIPM).
Then, sequence {xk} converges to a weakly efficient solution of the VOP.

Proof. Since that {xk} is bounded, by Proposition 4.1, we consider two subsequences
of this with

lim
k→∞

xjk = x̂, lim
k→∞

xlk = x∗.

Note that x̂ and x∗ ∈ E.

We make use of (P6), setting y := x∗, yk := xlk and ȳ := x̂.

If (9) is valid, then lim
k→∞

H(x∗, xlk) = 0, and since the whole sequence {H(x∗, xk)}

converges, one gets
lim
k→∞

H(x∗, xk) = 0

Now, applying (P5) with ȳ := x∗, yk := xjk , we obtain x∗ = x̂.

But if (10) holds true and x̂ 6= x∗, then lim
k→∞

H(x̂, xlk) = +∞, which contradicts the

convergence of {H(x̂, xk)}.

Then {xk} converges to a weakly efficient solution of V OP . �

Remark 4.1 The smaller set F∗(Ω) is only necessary to ensure the convergence of

the sequence to some weakly efficient solution of V OP .

Remark 4.2 Let e ∈ int(C) be fixed, and let xk be the kth iterate of a sequence

generated by EIPM. Then xk ∈ C − arg minw{F (x) : x ∈ Ω} if and only if

inf{t ∈ R : ∃x ∈ Ω such that F (x) � F (xk) + te} = 0.

The proof of the above remark is obvious when using the definition of a weakly
efficient solution and the continuity at 0 of the map t 7→ F (xk)− te−F (x) for each
fixed x ∈ dom(F ).
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Next we discuss a few issues related to assumption B, i.e., the C−completeness
hypothesis. First, note that, in scalar minimization problems (m = 1, c = [0, +∞)
), when the set of minimizers is not empty, every section (F (x0)−C)∩F (Ω) is C−
complete. We also have the following observation (see Luc, 1989; Lemma 3.5).

Remark 4.3 Each of the following is a sufficient condition for assumption B:

1. The set (F (x0) − C) ∩ F (Ω) is compact.

2. The set (F (x0) − C) ∩ F (Ω) is weakly compact.

3. The set (F (x0) − C) ∩ F (Ω) has a lower bound (i.e., there exists some a ∈ Ω
such that, for all x ∈ Ω verifying F (x) � F (x0), we have F (a) � F (x)) and

the cone C has the Daniell property (i.e., any decreasing net having a lower

bound converges to its infimum).

In practical situations, assumption B could be difficult to verify. Thus, it is inter-
esting to establish some convergence results, albeit weaker than Proposition 4.1, for
situations in which this assumption fails to hold. This is the content of the following
two propositions.

Proposition 4.2 Let F : R
n → R

m∪{+∞C} be a proper C−convex map, positively

lower semicontinuous. If (d,H) ∈ F∗ and sequence {xk}, generated by (EIPM)
(without assuming that B holds) has a cluster point, then it is convergent to a weakly

efficient solution of VOP.

Proof. By assumption, there exists a convergent subsequence {xjk} of {xk} whose
limit is some x̂ ∈ Ω. Since sequence {F (xk)} is C−nonincreasing, we have that,
for all z ∈ C∗, sequence {〈F (xjk), z〉} is nonincreasing and, since the scalar convex
function 〈F (·), z〉 is lower semicontinuous, we obtain that 〈F (x̂), z〉 is a lower bound
for {〈F (xjk), z〉}. Since this result holds for all z ∈ C∗, we get that F (x̂) � F (xjk)
for all k ∈ N, implying that F (x̂) � F (xk). From this point on, the argument
continues as in the proof of Proposition 4.1 after (31). �

Proposition 4.3 Let F : R
n → R

m∪{+∞C} be a proper C−convex map, positively

lower semicontinuous. Assume (d,H) ∈ F∗ and that int(C∗) 6= ∅. Let {xk} be a

sequence generated by (EIMP). Supose {xk} is unbounded and that the set of finite

cluster points of {F (xk)} is nonempty. Then sequence {F (xk)} converges to an

element of the weakly infimal set, C − INFw{F (Ω)}, of VOP.
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Proof. Note first that our assumption implies that {xk} is not convergent. Consider
a subsequence {F (xjk)} convergent to some ȳ ∈ R

m. We want to prove that the
whole sequence {F (xk)} converges to ȳ ∈ R

m. Note that ȳ belongs to F (Ω). For
every z ∈ C∗, sequence {〈F (xk), z〉} is convergent to 〈ȳ, z〉 as it is nonincreasing
and admits a subsequence converging to 〈ȳ, z〉. On the other hand, since {F (xk)}
is C−nonincreasing, and C is closed, it follows that ȳ is a C−lower bound for this
sequence. Next we take some z ∈ int(C∗), and, using Lemma 2.5, we get

〈F (xk) − ȳ, z〉 ≥ dist(z, Rm \ C∗)‖F (xk) − ȳ‖ (35)

for all k ∈ N. Since the left-hand side of (35) goes to zero as k → ∞, and dist(z, Rm\
C∗) > 0, we obtain that {F (xk)} is convergent to ȳ.

If ȳ 6∈ infw{F (Ω)}, then there exists x̄ ∈ Ω with F (x̄) ≺ ȳ. Using the same argument
as in the proof for Proposition 4.2, we get that ȳ ≺ F (xk) for all k ∈ N. Then, we
can establish the convergence of {xk} to a weakly efficient solution of VOP with the
same argument as in the proof for Proposition 4.1 from (31) on. This contradicts
the assumption that {xk} is unbounded, establishing the result. �

5 An inexact interior proximal method (IIPM).

In this part, we consider a generalized proximal method for solving VOP which
admits both a sucessive approximation of the subdifferential of the scalar represen-
tation, ∂(〈F (·), z〉 + IΩk

), and inexact calculation of the proximal iterates.

The method under consideration generates sequences {xk} ⊂ int(Ω) and {wk} ⊂ R
n

corresponding to the recursion: given a current iterate xk (x0 ∈ int(Ω) is arbitrarily
chosen), find (xk+1, wk+1) ∈ int(Ω) × R

n such that

wk+1 ∈ Qk(xk+1) + βk〈ek, zk〉∇1d̃(xk+1, xk) (36)

where ∂(〈F (·), zk〉 + IΩk
) ⊂ Qk ⊂ ∂εk

(〈F (·), zk〉 + IΩk
), Ωk = {x ∈ Ω : F (x) �

F (xk)}, d̃ is a double regularization, i.e. d̃ = d1 + d2, with di ∈ D(int(Ω)) i = 1, 2,
βk ∈ (0, β̃], β̃ < +∞, ek ∈ int(C) with ‖ek‖ = 1, and zk ∈ C∗, ‖zk‖ = 1 and
infx∈Ω〈F (x), zk〉 > −∞.

We have ∂f(x) = ∂0f(x) ⊂ ∂fε(x) for all convex f : R
n → R ∪ {+∞}, all x ∈ R

n,
and all ε ∈ R+. Thus, following the proof of Proposition 3.1, as d̃ ∈ D(int(Ω)), we
obtain that for xk ∈ int(Ω) the inclusion

0 ∈ ∂(〈F (·), zk〉 + IΩk
)(x) + βk〈ek, zk〉∇1d̃(x, xk)

is solvable. So, for any wk+1 ∈ R
n, the existence of the point xk+1 that the pair

(xk+1, wk+1) satifies (36) is guaranteed; moreover, xk+1 ∈ int(Ω) is secured.
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To analyze the convergence of sequence {xk} to a solution of VOP, an additional
assumption is required.

Assumption C

C1
∞
∑

k=1

δk < ∞, where δk := max{ ‖wk+1‖
βk〈ek,zk〉

, εk

βk〈ek,zk〉
} ;

C2 For each x ∈ Ω, there exist constants α(x) > 0, c(x):

H2(x, ν) + c(x) ≥ α(x)‖x − ν‖, ∀ ν ∈ int(Ω)

where H2 is the induced proximal distance to d2.

From (Kaplan and Tichatschke, 2004) it follows that condition C2 is valid, in par-
ticular, for H2 = Dhj

, j = 1, 2, 3, the Bregman distance defined by hj, j = 1, 2, 3,
where

• h1(x) =
∑n

i=1 |xi|
ρ with ρ > 1;

• h2(x) =
∑n

i=1(xi ln xi − xi);

• h3(x) =
∑n

i=1(xi ln(exi − 1)).

Proposition 5.1 Let Hi be an induced proximal distance to di, i = 1, 2, and let {xk}
be a sequence generated by (IIPM). If (di, Hi) ∈ F(Ω), i = 1, 2 and assumptions B,

C above are satisfied, then we have the following:

(i) The sequence {H̃(x̄, xk)} is convergent for every x̄ belonging to E, the set of

lower bounds of the initial section, where H̃ = H1 + H2;

(ii) {xk} is bounded with all its points being weakly efficient solutions of VOP.

Proof: (i) From (36) there exists qk+1 ∈ Qk(xk+1) satisfying

〈qk+1 + βk〈ek, zk〉∇1d̃(xk+1, xk), x − xk+1〉 ≥ −‖wk+1‖‖x − xk+1‖, ∀x ∈ Ω (37)

Since (di, Hi) ∈ F(Ω), for i = 1, 2, we have, due to Definition 2.2

〈∇1d̃(xk+1, xk), x − xk+1〉 ≤ H̃(x, xk) − H̃(x, xk+1). (38)
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This yields

H̃(x, xk+1) − H̃(x, xk) ≤
1

βk〈ek, zk〉
〈qk+1, x − xk+1〉

+
‖wk+1‖

βk〈ek, zk〉
‖x − xk+1‖, ∀x ∈ Ω. (39)

As ∂(〈F (·), zk〉 + IΩk
) ⊂ Qk ⊂ ∂εk

(〈F (·), zk〉 + IΩk
), one gets, for x̄ ∈ E, that

0 ≥ 〈F (x̄), zk〉 − 〈F (xk), zk〉 ≥ 〈qk+1, x̄ − xk+1〉 − εk.

Thus
〈qk+1, x̄ − xk+1〉 ≤ εk. (40)

and, as consequence of C2, we have

‖x̄ − xk+1‖ ≤
1

α(x̄)

[

H2(x̄, xk+1) + c(x̄)
]

≤
1

α(x̄)

[

H̃(x̄, xk+1) + c(x̄)
]

(41)

Now, we take (39) with x = x̄, and inserting the above two inequalities lead to

H̃(x̄, xk+1) − H̃(x̄, xk) ≤
δk

α(x̄)
H̃(x̄, xk+1) +

(

1 +
c(x̄)

α(x̄)

)

δk. (42)

Assumption C1 provides that δk/α(x̄) < 1/2 for k ≥ k0 sufficiently large. Therefore,

1 ≤

(

1 −
δk

α(x̄)

)−1

≤ 1 +
2δk

α(x̄)
< 2, ∀ k ≥ k0,

and (42) results in

H̃(x̄, xk+1) ≤

(

1 +
2δk

α(x̄)

)

H̃(x̄, xk) + 2

(

1 +
c(x̄)

α(x̄)

)

δk. (43)

Because
∑∞

k=1 δk < ∞, Lemma 2.3, applied to (43), guarantees that {H̃(x̄, xk)}
converges for every x̄ that belongs to the set of lower bounds of the initial section.

(ii) Since {H̃(x̄, xk)} converges, we have

H̃(x̄, xk) ≤ M̃ ∀ k ∈ N

where M̃ := supk≥0 H̃(x̄, xk).

As {xk} ⊂ int(Ω) and H̃(x̄, ·) is level bounded on int(Ω), by Remark 2.1, we have
that {xk} is bounded.
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Since {xk} is bounded, it has cluster points. We will prove next that all of them are
weakly efficient solutions of V OP .

Let x̂ be a cluster point of {xk} and let {xjk} be a sequence convergent to it.
Following the proof of Propositon 4.1, we obtain that

F (x̂) � F (xk) k ∈ N. (44)

On the other hand, since ‖zk‖ = 1 for all k, there exists a cluster point of {zk}, say
z̄, which is a limit of sequence {zjk

}. Since C∗ is closed, it follows that z̄ belongs to
C∗. Thus, we have

〈F (x) − F (x̂), zjk
〉 ≥ 〈F (x) − F (xjk+1), zjk

〉 ∀x ∈ Ω. (45)

Now, due to the convexity of function 〈F (·), zk〉 + IΩk
and qk+1 ∈ Qk(xk+1) ⊂

∂εk
(〈F (·), zk〉 + IΩk

)(xk+1), relation (37), considering k = jk, it implies that

〈F (x) − F (xjk+1), zjk
〉 ≥ −βjk

〈ejk
, zjk

〉〈∇1d̃(xjk+1, xjk), x − xjk+1〉

−‖wjk+1‖‖x − xjk+1‖ − εjk
∀x ∈ Ωjk

. (46)

From (45), (46), Definition 2.2 and Assumption C we have

〈F (x) − F (x̂), zjk
〉 ≥ βjk

〈ejk
, zjk

〉
(

H̃(x, xjk+1) − H̃(x, xjk)
)

−‖wjk+1‖‖x − xjk+1‖ − εjk
(47)

≥ βjk
〈ejk

, zjk
〉
[

H̃(x, xjk+1) − H̃(x, xjk)

−δjk+1(‖x − xjk+1‖ + 1)
]

∀x ∈ Ωjk
. (48)

Now, assume that x̂ is not a weakly efficient solution of V OP , i.e., that there exists
x̄ ∈ Ω such that F (x̄) ≺ F (x̂).

Since x̄ ∈ E, we have that {H̃(x̄, xk)} is a convergent sequence. Therefore, combin-
ing (48) with x = x̄, the boundeness of sequences {βk〈ek, zk〉} and {xk}, and zjk

→ z̄
and δk → 0, as k → ∞, we obtain that

〈F (x̄) − F (x̂), z̄〉 ≥ 0. (49)

By the same argument in Proposition 4.1, z̄ 6= 0 and it is clear that (49) contra-
dicts the fact that z̄ ∈ C∗ and the assumption that F (x̄) ≺ F (x̂). Thus, such an
assumption is false, and x̂ must be a weakly efficient solution of V OP . �

Theorem 5.1 Let (di, Hi) ∈ F∗(Ω), i = 1, 2, and let {xk} be a sequence generated

by (IIPM). Then, sequence {xk} converges to a weakly efficient solution of VOP.

Proof: Because the proof of this theorem is analogous to the proof of Theorem 4.1,
we omit it. �
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