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Abstract. As an energy market transforms from a regulated market to a deregulated one, the
demands for a power plant are highly uncertain. In this paper, we study a two-stage robust opti-
mization formulation and provide a tractable solution approach for the problem. The computational
experiments show the effectiveness of our approach.
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1. Introduction

For a thermal plant to generate power for its customers, there are two phases: 1) Unit commit-
ment, i.e., deciding which generator should be on-line to generate power. 2) Economic dispatch,
i.e., deciding the output for each on-line generator. The objective is to minimize total cost (or
equivalent to maximize total profit) while satisfying customer demands and generator physical
constraints. The physical constraints can be summarized as follows (e.g., see [16]).

• Once a thermal unit generator is started up (or shut down), it will stay on (or off) for a
minimum amount of time, referred as the minimum-up (or -down) time, before it can be
shut down (or started up) again.
• Once a thermal unit is on, the output for the unit should be between a certain range. For

instance, it should be between the minimum and the maximum output levels.
• There are start-up and shut-down costs for unit operations. These two costs mainly include

labor and maintenance costs.
• The heat rate profile is a non-decreasing convex function. Accordingly, the fuel cost can be

written as a non-decreasing quadratic function of the generation level. For instance, let the
fuel cost c(x) = c0x

2 + c1x+ c2, where x represents the generation level. Parameters c0, c1,
and c2 are non-negative.

Currently, energy markets in US are transforming from regulated markets to deregulated ones.
The demands for utility companies are highly uncertain (e.g., see [10]). Under a deregulated market,
there are day-ahead and real-time markets. On the day-ahead market, a utility company decides
the commitment for each power generation unit for the next day based on the forecasted demand.
On the real-time market, the utility company adjusts the output level for each unit, at each time
unit (e.g., each operating hour), so as to satisfy the actual demand. If it is necessary, the utility
company will sell or buy power through Independent System Operator (ISO) energy markets.

Due to the demand uncertainty, significant research progress has been made on stochastic pro-
gramming approaches to solve the problem with the objective of minimizing total expected cost.
Readers are referred to [15], [6], [7], [8], [12], [14], among others, for detailed two-stage and multi-
stage stochastic programming formulations and decomposition methods to solve the problem.

In this research, we study the two-stage robust version of the problem to address the case that the
distribution of the demand for the next day is unknown. The main results of robust optimization
techniques are described in [2] and [3]. These techniques have been applied to solve different
problems such as inventory theory [4, 5], network design [1], and lot-sizing [1]. However, to the
best of our knowledge, there is no previous research on robust optimization for unit commitment
problems. In this paper, we study the robust unit commitment problem in which the demand at

1



2 MUHONG ZHANG† AND YONGPEI GUAN‡

each time unit is uncertain and within an uncertainty set. The objective is to minimize the total
power generation cost under the worst case scenario.

The remaining part of this paper is organized as follows. Section 2 describes the mathematical
formulation of the robust unit-commitment problem. Section 3 studies the solution approach to
solve the problem. Section 4 provides discussions and extensions on the problem. Finally, Section 5
reports the computational results and Section 6 concludes our study.

2. Mathematical formulation

Nominal model. Let us start with the nominal model of the unit commitment problem, where
the demand of each time period is known. In our study, we assume that there are N generators.
The planning horizon is T time units and the demand at each time unit t is dt. In the case that the
electricity output does not match the demand, the utility company can buy (or sell) the shortage
(or excess) through ISO. The corresponding unit buying and selling prices at time t are τt and γt
respectively.

For each generator i, we assume the minimum-up time is Gi and the minimum-down time is
Hi. We also let µi and ξi be the start-up and shut-down costs for generator i. Once a generator
(e.g., generator i) is on, the output of the electricity is within the interval [`i, ui], i = 1, . . . , N .
For the fuel cost, in this section, we start with using one linear piece to approximate the quadratic
cost function. We approximate the cost function cit(x) = ait + βit(x− `i) of generator i at time t.
Without loss of generality, for each generator i, we can assume

(1) γt < βit < τt, t = 1, ..., T.

The nominal unit commitment problem is to determine the on/off times and electricity output
of each generator with the objective of minimizing the total power generation cost. We present the
nominal model after introducing the following decision variables.

yit: Binary decision variable to indicate if generator i is on at time t. yit = 1 if yes and 0 o.w.
oit: Binary decision variable to indicate if generator i is started up at time t. oit = 1 if yes and

0 o.w.
vit: Binary decision variable to indicate if generator i is shut down at time t. vit = 1 if yes and

0 o.w.
xit: The amount of electricity generated by generator i at time t.
zt: The amount of electricity to sell at time t to ISO.
wt: The amount of electricity to buy at time t from ISO.

For the nominal model, demands dt, t = 1, ..., T , are given. The corresponding formulation is

min
T∑
t=1

N∑
i=1

(µioit + ξivit + αityit + βitxit) +
T∑
t=1

(τtwt − γtzt)

s.t. `iyit ≤ xit ≤ uiyit, i = 1, ..., N, t = 1, ..., T(2)
N∑
i=1

xit + wt − zt = dt, t = 1, ..., T(3)

−yi(t−1) + yit − yik≤ 0, i = 1, . . . , N, t = 1, . . . , T, and 1 ≤ k − (t− 1) ≤ Gi(4)

(UC) yi(t−1) − yit + yik≤ 1, i = 1, . . . , N, t = 1, . . . , T, and 1 ≤ k − (t− 1) ≤ Hi(5)

−yi(t−1) + yit − oit≤ 0, i = 1, . . . , N, t = 1, . . . , T(6)

yi(t−1) − yit − vit≤ 0, i = 1, . . . , N, t = 1, . . . , T(7)

xit, zt, wt ≥ 0, yit, oit, vit ∈ {0, 1}, i = 1, ..., N, t = 1, ..., T,
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where αit = ait − βit`i. In the above formulation, the objective is to minimize the total cost
that includes start-up cost, shut-down cost, fuel cost and the cost for the trading between the
utility company and ISO energy markets. Constraints (2) represent the electricity output range of
generator i if it is on at time t. Constraints (3) describe the power flow balance at each time unit.
Constraints (4) are minimum-up time constraints that describe the minimum-up time required for
generator i if it is started up. Accordingly, constraints (5) are minimum-down time constraints
that describe the minimum-down time required for generator i if it is shut down. Constraints (6)
and (7) indicate the start-up and shut-down operations for each generator i.

Two-stage robust model. When we decide the unit commitment on the day-ahead market and
allow demand uncertainty on the real-time market, we need to decide the setup of the generators
(y, o, v) on the first stage and (x, z, w) on the second stage after realizing the demand d. Then,
in the first stage, the objective becomes minimizing the total cost with the consideration of the
worst case scenario due to demand uncertainty. In the robust model, we assume that the demand
realization is in a non-empty given uncertainty set D. The robust optimization formulation of the
first stage can be described as follows.

min
y,o,v

T∑
t=1

N∑
i=1

(αityit + µioit + ξivit) + max
d∈D

min
(x,z,w)∈M

T∑
t=1

(
N∑
i=1

βitxit + τtwt − γtzt

)
(RUC) s.t. (4), (5), (6), (7),

yit, oit, vit ∈ {0, 1}, i = 1, ..., N, t = 1, . . . , T,

where

M = {(x, z, w) : `iyit ≤ xit ≤ uiyit, i = 1, ..., N, t = 1, ..., T
N∑
i=1

xit + wt − zt = dt, t = 1, ..., T

xit, zt, wt ≥ 0, i = 1, ..., N, t = 1, . . . , T}.

In our robust model, we consider the uncertain demand for each operating hour t is among a
range between a lower bound dt and an upper bound dt. And there is a demand budget restriction

that
T∑
t=1

πtdt ≤ π0. A special case for this is that the total demand is less than certain value during

the planning horizon. For instance,
T∑
t=1

dt ≤ π0. Thus, the corresponding polyhedron uncertainty

set is

(8) D = {d :
T∑
t=1

πtdt ≤ π0, dt ≤ dt ≤ dt, t = 1, . . . , T}.

For further probability proposition of this uncertainty set, readers are referred to [1].

3. Solution method

In this section, we describe the solution method to solve RUC. First, we analyze the optimal value
function ft(dt) for the subproblem at the second stage once the first stage decision variable (y, o, v)
is fixed. Under this case, the problem RUC is decomposed into T subproblems. Corresponding to
each time period t, we have
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ft(dt) = min
N∑
i=1

βitxit + τtwt − γtzt

s.t. `iyit ≤ xit ≤ uiyit, i = 1, ..., N,(9)
N∑
i=1

xit + wt − zt = dt,(10)

xit, zt, wt ≥ 0, i = 1, . . . , N.

In the optimal solution for the subproblem corresponding to time period t, we have z∗t =

(
N∑
i=1

`iyit − dt)+, w∗t = (dt −
N∑
i=1

uiyit)+, where x+ = max{x, 0}.

Proposition 1. The value function ft(dt) is piecewise linear and convex.

Proof: Without loss of generality, assume

(11) β1t ≤ β2t ≤ . . . ≤ βNt
From constraints (9) and (10), based on the cost relationship shown in (1), we can first observe

that

• If dt ≤
N∑
i=1

`iyit, then in the optimal solution, each generator generates at its lower bound

and sells the over generated power in the amount of
N∑
i=1

`iyit − dt to ISO. Accordingly, the

total cost

(12) ft(dt) = φt0(dt) =
N∑
i=1

βit`iyit − γt(
N∑
i=1

`iyit − dt) = ϕt0(y) + γtdt,

where ϕt0(y) =
N∑
i=1

βit`iyit − γt
N∑
i=1

`iyit.

• If dt ≥
N∑
i=1

uiyit, then in the optimal solution, each generator generates at its upper bound

and purchases the shortage part in the amount of dt −
N∑
i=1

uiyit from ISO. Accordingly, the

total cost

(13) ft(dt) = φt(N+1)(dt) =
N∑
i=1

βituiyit + τt(dt −
N∑
i=1

uiyit) = ϕt(N+1)(y) + τtdt,

where ϕt(N+1)(y) =
N∑
i=1

βituiyit − τt
N∑
i=1

uiyit.

• For the general case, assuming (
N∑
i=θt

`iyit +
θt−1∑
i=1

uiyit) ≤ dt ≤ (
N∑

i=θt+1

`iyit +
θt∑
i=1

uiyit), θt =

1, . . . , N , the total cost
(14)

ft(dt) = φtθt(dt) =
N∑

i=θt+1

βit`iyit +
θt−1∑
i=1

βituiyit +βθtt(dt−
N∑

i=θt+1

`iyit−
θt−1∑
i=1

uiyit) = ϕtθt(y) +βθttdt,

where ϕtθt(y) =
N∑

i=θt+1

βit`iyit +
θt−1∑
i=1

βituiyit − βθtt

N∑
i=θt+1

`iyit − βθtt

θt−1∑
i=1

uiyit.
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From (12), (13) and (14), we can observe that φtθt(dt), θt = 0, . . . , N + 1, is a linear function of
dt. Based on (1) and (11), we also have that

γt < β1t ≤ β2t ≤ . . . ≤ βNt < τt.

Together with φtθt(
N∑

i=θt+1

`iyit+
θt∑
i=1

uiyit) = φt(θt+1)(
N∑

i=θt+1

`iyit+
θt∑
i=1

uiyit) =
N∑

i=θt+1

βit`iyit+
θt∑
i=1

βituiyit,

we have that the value function ft(dt) is piecewise linear and convex. Therefore, the conclusion
holds. 2

Since the value function ft(dt) is piecewise linear and convex, the following corollary holds.

Corollary 1. The value function ft(dt) = max
θt=0,...,N+1

φtθt(dt).

Based on the conclusion obtained in Proposition 1 and Corollary 1, RUC can be reformulated
as follows:

min
y,o,v

T∑
t=1

N∑
i=1

(αityit + µioit + ξivit) + max
d∈D

T∑
t=1

ft(dt)

=
T∑
t=1

N∑
i=1

(αityit + µioit + ξivit) + max
d∈D

T∑
t=1

( max
θt=0,...,N+1

φtθt(dt))

s.t. Constraints (4), (5), (6), (7),

y ∈ BN×T , o ∈ BN×T , v ∈ BN×T .

Then we can introduce a new continuous decision variable ω for the second stage as follows:

min
y,o,v

T∑
t=1

N∑
i=1

(αityit + µioit + ξivit) + ω

s.t. w ≥
T∑
t=1

max
θt=0,...,N+1

φtθt(dt) for all d ∈ D,

Constraints (4), (5), (6), (7),

y ∈ BN×T , o ∈ BN×T , v ∈ BN×T , ω ∈ R.

In the optimal solution, for a given (y, o, v), since φtθt(dt) and φt′θt′
(dt′) are mutually independent,

we have

(15) ω = max
θt,1≤t≤T

{
max

T∑
t=1

φtθt(dt) : d ∈ D

}
.

For a given θt, 1 ≤ t ≤ T , and the corresponding uncertainty set D as defined in (8), the dual of
(15) can be described as follows

min π0ζ +
T∑
t=1

(dtηt − dtρt) +
T∑
t=1

ϕtθt(y)

(Dual) s.t. πtζ + ηt − ρt ≥ ψtθt , 1 ≤ t ≤ T,
ζ, η, ρ ≥ 0,
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where ψtθt is the coefficient of dt in function φtθt(dt). That is, ψtθt = γt if θt = 0, ψtθt = τt if
θt = N + 1, and ψtθt = βθtt if 1 ≤ θt ≤ N. We also notice that ϕtθt(y) is a constant number here
for the dual problem once t, θt and y are given.

Therefore, if the vector θ = (θ1, . . . , θT ) is given, we can add the dual constraints to the first
stage master problem. Note here the dual constraints are linear. In this case, there are exponential
number of combinations of θt, 1 ≤ t ≤ T , which corresponds to exponential number of dual
constraints. In our approach, we add the constraints gradually by running a separation algorithm.
Next, we will describe a separation algorithm to discover the θ value given a solution of the master
problem. It is hard to determine the θ value directly, we will use the fact that the value function
is piecewise linear.

Separation. The separation problem of (15) can be stated as:

Given a solution (y, o, v, w), does there exist (θ1, ..., θT ) and d ∈ D, such that w <
T∑
t=1

φtθt(dt)?

According to Proposition 1, the value function ft(dt) is piecewise linear and convex. Therefore,
both ft(dt) and dt can be represented as a linear combination of two consecutive breakpoints.

For instance, if θt is given, then dt = λ(
N∑
i=θt

`iyit +
θt−1∑
i=1

uiyit) + (1 − λ)(
N∑

i=θt+1

`iyit +
θt∑
i=1

uiyit) and

ft(dt) = λft(
N∑
i=θt

`iyit +
θt−1∑
i=1

uiyit) + (1− λ)ft(
N∑

i=θt+1

`iyit +
θt∑
i=1

uiyit) for some λ : 0 ≤ λ ≤ 1. Based

on this, we can formulate the separation problem as a mixed integer program.

Let binary decision variable τti = 1 if θt = i, and 0, otherwise. Let λti be the proportion of the

function with respect to function value at φtθt(
N∑
j=θt

`jyjt +
θt−1∑
j=1

ujyjt).

Then the separation problem (SP) can be formulated as

zsp = max
T∑
t=1

N+1∑
i=1

λti

 N∑
j=i

βjt`jyjt +
i−1∑
j=1

βjtujyjt


+λt0

 N∑
j=1

βjt`jyjt − γt

 N∑
j=1

`jyjt − dt

+
(SP) +λt(N+2)

 N∑
j=1

βjtujyjt + τt

dt − N∑
j=1

ujyjt

+
s.t. dt =

N+1∑
i=1

λti

 N∑
j=i

`jyjt +
i−1∑
j=1

ujyjt

(16)

+λt0

 N∑
j=1

`jyjt −

 N∑
j=1

`jyjt − dt

+
+λt(N+2)

 N∑
j=1

ujyjt +

dt − N∑
j=1

ujyjt

+ , ∀1 ≤ t ≤ T,
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λti ≤ τt(i−1) + τti, ∀1 ≤ t ≤ T, 1 ≤ i ≤ N + 1,(17)

λt0 ≤ τt0,(18)
λt(N+2) ≤ τt(N+1),(19)
N+1∑
i=0

τti = 1, ∀1 ≤ t ≤ T,(20)

N+2∑
i=0

λti = 1, ∀1 ≤ t ≤ T,(21)

d ∈ D,(22)
λti ≥ 0, τti ∈ {0, 1}.

In the above formulation, the objective function indicates that ft(dt) can be written as a linear
combination of the values at breakpoints. Constraints (16) represent that the demand can be
represented as a linear combination of the demand values at breakpoints. Constraints (17) indicate
that the value corresponding to i will not be used (i.e., λti = 0) if neither θt = i − 1 nor θt = i.
Constraints (18) and (19) represent the relationship corresponding to the two extreme points.
Constraints (20) represent that the objective value can only be located in one linear piece segment.
Finally, constraints (21) and (22) represent the linear combination and feasible region for the
demand respectively. For any solution (λ, τ) of SP, we can obtain θt = {i : τti = 1}, 1 ≤ t ≤ T .

Based on the above analysis, we can summarize the detailed steps of our algorithm in the
remaining part of this section. This algorithm is slightly different from Benders’ decomposition as
shown in [11]. The overall problem to be solved can be described as follows:

min
T∑
t=1

N∑
i=1

(αityit + µioit + ξivit) + ω

(RUC’) s.t. ω ≥ π0ζ
θ +

T∑
t=1

(dtηθt − dtρθt ) +
T∑
t=1

ϕtθt(y), ∀θ ∈ Θ,

πtζ
θ + ηθt − ρθt ≥ ψtθt , ∀θ ∈ Θ, 1 ≤ t ≤ T,

Constraints (4), (5), (6), (7),

y ∈ BN×T , o ∈ BN×T , v ∈ BN×T , ω ∈ R, ζ ∈ R|Θ|+ , η ∈ R|Θ|×T+ , ρ ∈ R|Θ|×T+ ,

where Θ = {(θ1, ...θT ) : θt ∈ {0, 1, ..., N + 1}, t = 1, ..., T} is the set of θ.

The detailed steps of our algorithm are shown as follows.

Initialization: Find set Θ1 ⊆ Θ (Θ1 may be an empty set).

Let X1
R = {ω ∈ R, y, o, v ∈ BN×T : ω ≥ π0ζ

θ +
T∑
t=1

(dtηθt −dtρθt )+
T∑
t=1

ϕtθt(y), πtζθ +ηθt −ρθt ≥

ψtθt , ∀θ ∈ Θ1, 1 ≤ t ≤ T, constraints (4), (5), (6), (7)}. Set r = 1.

Iteration r:
Step 1: Solve the relaxation of RUC’:

(M r) zr = min

{
T∑
t=1

N∑
i=1

(αityit + µioit + ξivit) + ω : (y, o, v, ω) ∈ Xr
R

}
.
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a. If the master problem M r is infeasible, stop. The original RUC is infeasible.
Note here in our problem setting, M r is always feasible since RUC always has a
feasible solution.

b. If M r is unbounded, find a feasible solution pair (ωr, yr, or, vr) with ωr < ∆ for
some small value ∆. In our problem, the total cost is always bounded by 0.

c. Otherwise, record the optimal solution (ωr, yr, or, vr).

Step 2: Solve SP to obtain the optimal θt, denoted as θrt , for 1 ≤ t ≤ T . According to
our problem setting, we know that θrt exists and the problem is bounded. That is, zrsp
is finite.

a. Based on the optimal value τti obtained from SP, let θrt = i if τti = 1.
b. Optimality test. If zrsp ≤ ωr, stop. (yr, or, vr) is an optimal solution of RUC.

c. Violation. If zrsp > ωr, then the constraint ω ≥ π0ζ
r+

T∑
t=1

(dtηrt−dtρrt )+
T∑
t=1

ϕtθr
t
(y)

is violated. Update Θr+1 = Θr ∪ {θr} and

Xr+1
R = Xr

R ∩

{
(y, o, v, ω) : ω ≥ π0ζ

r +
T∑
t=1

(dtηrt − dtρrt )(23)

+
T∑
t=1

ϕtθr
t
(y), πtζ

r + ηrt − ρrt ≥ ψtθr
t

1 ≤ t ≤ T

}
.

d. Update r = r + 1.

4. Discussions and extensions

Turn on/off inequalities. The turn on/off inequalities described in [9] and [13] can be utilized
to strengthen the formulation. The turn on inequalities can be described as follows:

t∑
j=max{1,t−Gi+1}

oij ≤ yit, ∀1 ≤ i ≤ N, 1 ≤ t ≤ T.

This inequality lies in the fact that if generator i is off in time period t, it could not have be started
up during the last Gi period (including time period t) because of the minimum-up constraints. If
generator i is on in time period t, it could have been started up at most once during the last Gi
time periods (including time period t), because generator i cannot be started up and shut down,
respectively, within Gi time periods.

Similarly, the turn off inequalities can be described as follows:
t∑

j=max{1,t−Hi+1}

vij ≤ 1− yit, ∀1 ≤ i ≤ N, 1 ≤ t ≤ T.

Multiple linear piece approximation. We can also extend our study to investigate using a
multiple piece piecewise linear function to approximate the quadratic non-decreasing fuel cost
function. Corresponding to each pair (i, t), assume there are L linear pieces. The slopes for each
piece are βit = β1

it ≤ β2
it ≤ . . . ≤ βLit and the breakpoints are `0i (i.e., `i), `1i , . . . , `

L
i (i.e., ui). Then

the value function corresponding to the jth piece is

c(xit) = aj−1
it + βjit(xit − `

j−1
i ),

where aj−1
it = aj−2

it + βj−1
it (`j−1

i − `j−2
i ) with a0

it = ait.
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Then, we can observe that once the first stage decision (y, o, v) is given, for a given dt, each
online generator i will produce `r(i)i where r(i) is an integer and 0 ≤ r(i) ≤ L, except one generator
(e.g., generator k) generates the amount between `

r(k)
k and `

r(k)+1
k , 0 ≤ r(k) ≤ L − 1. We also

notice that βr(i)it ≤ β
r(k)+1
kt if r(i) > 0 and β

r(i)+1
it ≥ β

r(k)+1
kt if r(i) + 1 ≤ L for each i 6= k and

yit = 1. Thus, ft(dt) is still a piecewise linear convex function. For instance, if
∑N

i=1 `
r(i)
i yit ≤ dt ≤∑k−1

i=1 `
r(i)
i yit + `

r(k)+1
k ykt +

∑N
i=k+1 `

r(i)
i yit, it can be described as follows:

(24) ft(dt) =
N∑
i=1

(ar(i)it − αit)yit + β
r(k)+1
kt (dt −

N∑
i=1

`
r(i)
i ).

The number of linear pieces can reach NL + 2. Therefore, we can still apply our algorithm to
obtain the optimal solution for the corresponding robust unit commitment problem.

5. Computational experiment

In this section, we present the numerical experiments of the proposed algorithm. In the ex-
periments, we assume that there are N = 30 generators and T = 24 time periods. The upper
and lower bounds d and d̄ of demand in each time period is randomly generated in the following
way. First, d̂ and d̃ are randomly generated in the interval [0, 40] and [0, 20], respectively. Then
d = (d̂ − d̃)+ and d̄ = d̂ + d̃. The budget restriction of the uncertainty set D can be described
as
∑T

t=1(dt − d̂t)/d̃t ≤ π0. We can control the conservatism of the robust optimization approach
by controlling π0. Note π0 is between −T and T . When π0 = −T , the only possible scenario is
that all demands are at the lower bounds. When π0 = T , the demand of each time period can
take any value within the interval of the lower and upper bounds. Costs are randomly generated
in the following way. The turn on/off costs µi and ξi of unit i are in the interval [0, 30]. The unit
buying and selling prices γt and τt at time t are in the intervals [0, 20] and [γt, γt+ 50], respectively.
The generation cost parameters βit and αit are in the intervals [γt, τt] and [0, 20], respectively. All
the experiments are performed by ILOG CPLEX 10.2, at Pentium Dual Core 2.40GHZ with 2GB
memory. The computational results are summarized in the following table. All the results are the
average of 10 random instances. We report the optimal objective value, the number of iterations
of our approach, and the average computational time.

π0 Objective Value Number of Iterations CPU Time (seconds)
6 8863 22 27.2
9 9109 25 32.5
12 9337 30 43.9
15 9486 28 28.0
18 9546 29 34.5

From this experiment, we observe first that as π0 increases, the uncertainty set becomes larger
and more scenarios are taking into the consideration. The corresponding objective value increases
as the problem becomes more conservative. Second, in these experiments, the size of Θ is 3224.
However, in the experiments, the optimal solution can be achieved within 30 iterations. This shows
that the algorithm is efficient for this unit commitment problem.

6. Conclusion and future research

In this paper, we proposed a robust optimization approach to address demand uncertainty for
the unit-commitment problem under a deregulated energy market. In our approach, we developed
a robust integer programming formulation and the corresponding algorithm to solve the problem.
Our study shows that the problem is tractable and the computational results verify the effectiveness
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of our proposed approach. In the future study, we will further study the problem by incorporating
ramping as well as transmission constraints into our model.
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