A heuristic to generate rank-1 GMI cuts

Sanjeeb Dash Marcos Goycoolea*
Mathematical Programming Group School of Business
IBM T. J. Watson Research Center Universidad Adolfo Ibafez, Chile
sanjeebd@us.ibm.com marcos.goycoolea@uai.cl

October 14, 2009

Abstract

Gomory mixed-integer (GMI) cuts are among the most effective cutting planes for
general mixed-integer programs (MIP). They are traditionally generated from an opti-
mal basis of a linear programming (LP) relaxation of an MIP. In this paper we propose
a heuristic to generate useful GMI cuts from additional bases of the initial LP relax-
ation. The cuts we generate have rank one, i.e., they do not use previously generated
GMI cuts. We demonstrate that for problems in MIPLIB 3.0 and MIPLIB 2003, the
cuts we generate form an important subclass of all rank-1 mixed-integer rounding cuts.
Further, we use our heuristics to generate globally valid rank-1 GMI cuts at nodes of a
branch-and-cut tree and use these cuts to solve a difficult problem from MIPLIB 2003,
namely timtab2, without using problem-specific cuts.

1 Introduction

Gomory mixed-integer (GMI) cutting planes (or cuts), introduced by Gomory [23], are
considered to form one of the most important classes of cutting planes for solving gen-
eral mixed-integer programs (MIP). These cuts were not widely used till Balas, Ceria,
Cornuéjols, and Natraj [5] showed how to use them in an effective manner. Earlier, Geof-
frion and Graves [22] successfully combined GMI cuts with linear programming (LP) based
branch-and-bound to solve an MIP arising in a practical application, but did not system-
atically study the effect of GMI cuts on a wide range of MIPs. After the work of Balas et.
al. [5], subsequent computational studies [10, 8] confirmed the usefulness of GMI cuts in
solving practical MIPs.

Following these papers, GMI cuts are typically generated from rows of an optimal simplex
tableau associated with an LP relaxation of an MIP, usually in rounds. A round of GMI
cuts consists of generating GMI cuts from rows of an LP relaxation tableau and augmenting
the relaxation with the cuts violated by the basic solution defined by the tableau. Some
factors inhibiting extensive generation of GMI cuts in solving MIPs are that after many
rounds of cuts from optimal tableau rows, one often obtains high-rank GMI cuts which are
invalid [26] because of floating-point computations with limited accuracy, or which are very

*Supported by FONDECYT Grant 11075028.

dense or have large variation in coefficient magnitudes, thus leading to hard-to-solve LP
relaxations when these cuts are added. We say that a valid inequality or cutting plane has
MIR rank 1 (abbreviated as rank 1) if it can be derived as a mixed-integer rounding (MIR)
cut from the original linear constraints defining the MIP (which are said to have rank 0).
A valid inequality has rank k£ > 0 if it can be derived as an MIR cut from inequalities with
rank k£ — 1 or less, but cannot be derived as an MIR cut from inequalities with rank k — 2
or less.

Balas and Perregard [6] proposed a method to generate strengthened lift-and-project cuts
from simplex tableau rows, and their method was implemented by Balas and Bonami [4]
with encouraging results. An important aspect of their approach is that they start off
with a row of an optimal simplex tableau, but move to a different simplex tableau by
pivoting steps, from which they generate a stronger GMI cut. In other words, they use rows
of multiple non-optimal tableaus to generate GMI cuts. However, they use non-optimal
tableaus only to strengthen the GMI cuts from the optimal tableau, and not as a source
of additional rank-1 GMI cuts. In particular, once the first round of GMI cuts are added,
their procedure subsequently generates cuts with potentially higher rank. See the recent
computational study [31] by Wesselmann for a comparison of different ways of generating
GMI cuts, including ideas proposed by Ceria, Cornuéjols, and Dawande [13], and Andersen,
Cornuéjols, and Li [2].

Marchand and Wolsey [25] showed that MIR cuts (or GMI cuts derived from linear
combinations of defining constraints that can be different from optimal tableau rows) are
useful in solving problems in the MIPLIB 3.0 library [9]. Fischetti and Lodi [19] recently
obtained strong lower bounds for the pure integer programs (with an objective function to
be minimized) in MIPLIB 3.0 by optimizing over the Chvétal closure, i.e., by iteratively
generating violated rank-1 Gomory-Chvatal cuts derived from the linear constraints defining
the integer programs. Balas and Saxena [7], and Dash, Giinliik, and Lodi [17] subsequently
showed that one can obtain strong lower bounds for the MIP instances in MIPLIB 3.0
by approximately optimizing over the MIR closure (the set of points satisfying all rank-1
MIR cuts). Approximate optimization over the MIR closure associated with an MIP is
performed by iteratively generating violated rank-1 MIR cuts. However, given an arbitrary
point, finding a violated MIR cut is NP-hard [12]. In the papers of Balas and Saxena, and
Dash, Giinliik, and Lodi, an auxiliary MIP is solved to find a violated MIR cut, and this
process can be very time-consuming.

The papers discussed above show that rank-1 MIR cuts can be used to obtain strong
lower bounds for practical MIPs, and Balas and Perregard [6] show that rows of some non-
optimal tableaus can be used to strengthen GMI cuts from optimal tableau rows. We show
that for MIPLIB 3.0 problems the family of rank-1 GMI cuts derived from non-optimal
tableaus of the initial LP relaxation of an MIP form a very useful subclass of all rank-1
MIR cuts, and give a heuristic to find violated cuts from this subclass. Given an MIP with
initial linear relaxation L := min{cz : Az = b,z > 0} and a non-basic solution z* of L, our
method explores feasible and infeasible bases whose columns are contained in the support
of *, and adds all GMI cuts based on rows of the corresponding tableaus that are violated
by z*. If A is sparse and has m rows, and z* is non-basic with m + ¢ nonzeros for small ¢,
than (1) our method often finds a basis of L such that GMI cuts based on the corresponding
tableau rows are violated by z*; (2) the time to find such a basis is small and comparable to

the time for a round of GMI cuts based on an optimal tableau of L; (3) such GMI cuts help
to obtain a significantly better lower bound on the optimal value compared to one round
of GMI cuts derived in the usual way. We iterate this process, and generate multiple bases
and corresponding rank-1 GMI cuts.

The effect of multiple rounds of GMI cuts has been studied in the literature (for example
by Balas et. al. [5], and in [14]); however GMI cuts generated in these papers are not
restricted to be rank-1 cuts beyond the GMI cuts generated in the first round. As discussed
earlier, high-rank GMI cuts generated via multiple rounds of cuts often lead to numerical
difficulties, some of which are avoided by our method, allowing us to generate many rounds
of rank-1 GMI cuts. Our method is also much faster than the MIP-based separation methods
in the papers of Balas and Saxena, and Dash, Gunliik and Lodi, but is not much weaker for
MIPLIB 3.0 instances in terms of the quality of lower bounds obtained by iterated generation
of violated GMI cuts. More specifically, for 54 out of the 65 instances in MIPLIB 3.0 our
default heuristic closes 60.79% of the integrality gap, on the average; the corresponding
numbers in the papers of Dash, Giinliik, and Lodi [17] and Balas and Saxena [7] are 62.53%
and 76.52%, respectively. A single round of GMI cuts only closes 25.29% of the integrality
gap. Further, we are able to apply our heuristic to the MIPs in the MIPLIB 2003 library
[1] not contained in MIPLIB 3.0 and close 39.68% of the integrality gap, on the average, as
opposed to 18.37% if one round of GMI cuts is used.

As we only generate cuts from bases or tableaus of the original LP relaxation of an
MIP, our heuristics can be used to generate globally valid rank-1 GMI cuts in a branch-
and-cut setting, even for problems which have general integer variables. We demonstrate
that our heuristics are indeed effective at finding violated cuts and significantly reducing
the size of the branch-and-cut tree for some MIPLIB problems. In particular, we are able
to solve timtab2 from MIPLIB 2003, a problem which was previously solved only using
problem-specific cuts (see [11] and the MIPLIB 2003 web page).

The paper is structured as follows. In Section 2 we discuss the standard way of generating
GMI cuts and in Section 3 we describe the main idea behind our method of choosing suitable
non-optimal bases to generate GMI cuts. In Section 4, we discuss how to incorporate our
cutting plane technique in a branch-and-cut setting, and also how to use branch-and-bound
to find suitable bases for generating GMI cuts. In Section 5, we give some important
implementation details and discuss our computational results in Section 6. Finally, we
conclude in Section 7 with a discussion on the limitations of and possible improvements to
our technique. We also briefly discuss how our techniques can be used in the context of
nonlinear programming problems.

2 The GMI cut
Consider a general MIP given in the form
M :=min{cz:z € R}, Az =b, z; € Z Vi € S}, (1)

where S C {1,...,n}. We assume A has m rows and has full row rank, i.e., the rank of A
is m, and therefore, m < n. We assume all data is rational. For a number ¢ € R, we define
t=1t—[t].

Assume that the equation
n
> aizi =, (2)
i=1

is implied by Az = b. Further assume that § is not integral, i.e., B=p8- |B] # 0. The
gomory-mized-integer (GMI) cutting plane or inequality for (2) is

Z d—jxi—f- Z :;%65$1+1A Z aiaci—% Z a;x; > 1, (3)

iES,&¢<B iES,@iZB ’Biﬁs,ai>0 _’Bigs,ai<0

and is satisfied by the solutions of M. We refer to the equation) ;- | a;z; = /3 as the base
constraint of (3). Note that every integer variable x; such that a; is integral gets a coefficient
of 0 in (3) because d; = 0.

Let L; be the linear program

Ly := min{cz : Az = b,z > 0}, (4)

the standard LP relaxation of (1). An n X n sub-matrix B of linearly independent columns
in A is referred to as a basis (or basis matrix by others) of A, or a basis of Ly. If B is a
basis of A, then A can be written as (B, N) where N is the set of remaining columns. Let
Z={1,...,n} and let T C T be the set of indices of columns in B. Let Zy = T\ Zp be
the set of indices of all other columns. The variables x; with j € Zp are called basic and all
others non-basic with respect to B. We define zp (resp. zx) to be the vector of variables
such that the sth variable in zp (resp. zn) corresponds to the ith column in B (resp. N).
Given a basis B of A, the system of equations Az = b is equivalent to the system

zp+ B 'Nzy = B b, (5)

This is the tableau associated with B. Each row of system (5) is known as a tableau row.
We say that a solution z* of Az = b is basic with respect to B if 2’y = 0 and z = B~ .
We say that a basic solution z* is feasible if ; > 0. If L has an optimal solution, then it
has an optimal solution which is basic for some basis B.

Tableaus and basic solutions are important in the context of GMI cuts. Observe that
the kth row of the tableau (5) is of the form

Tj+ Z a;T; = ,B (6)

1€LN

where z; is the kth basic variable, @ is the kth row of B~!N, and 8 = (B 'b);. If z* is
a feasible solution of (4) which is basic with respect to B, then z] = 0 for all ¢ € Ty and
T = (. Thus, the GMI cut with base inequality (6) is violated by z* if j € S and 7 is not
integral. We say that the GMI cuts with base inequality (6) for £k = 1,...,m are based on
B.

We refer to the step of adding the violated GMI cuts based on a basis B simultaneously
as a round of GMI cuts, following Balas et. al. [5]. They showed that adding GMI cuts
in rounds is very effective for MIPLIB 3.0 [9] problems. In [5, Figure 1], the authors

demonstrate that adding all violated GMI cuts based on a basis is more effective than

4

adding a fraction of the violated cuts. From now on, we will assume a round consists of all
violated GMI cuts. Recent work in [20], [15], and [21] provides additional evidence of the
value of adding GMI cuts in rounds for MIPLIB 3.0 problems. In [15] the authors show
that an optimal solution of the relaxation obtained by adding all GMI cuts based on an
optimal basis B of L; satisfies all group cuts (interpolated group cuts in [20]) derived from
individual tableau rows of L; corresponding to B. In [21], Fukasawa and Goycoolea show
that adding knapsack cuts based on rows of the optimal tableau of L; (i.e., cuts which use
both upper and lower bounds on the variables) does not yield improved bounds over that
obtained by adding all GMI cuts for most MIPLIB 3.0 problems.

In Algorithm 1 we formalize the notion of a round of GMI cuts given a basis B and
solution z* of an LP relaxation of M. In a departure from Balas et. al. [5], we do not
require that z* be basic with respect to B, nor that B be an optimal basis of the LP
relaxation. If B is an optimal basis and z* is basic with respect to B then Step 5 can be
eliminated from Algorithm 1.

Algorithm 1: A round of GMI cuts
Input: A vector z* satisfying Az* = b, a basis B of A, and a set of indices S C 7
identifying the integer variables.
Output: A list of GMI cuts
for each basic integer variable z; (j € SNZp) do
Compute the associated tableau row z; + ZiEIN a;xzi = f

1
2
3 if B is not integral then

4 Compute the corresponding GMI cut.
5 if the GMI cut is violated by x* then
6 L Store the cut in a list to be returned to the user.

Applying Algorithm 1 to an optimal basis B of L; and the associated basic solution z*,
and adding all the generated cuts to L1, we obtain a linear program of the form

Ly = min{cz : Az =b, Cz > d, z > 0},

where C' and d represent the GMI cuts. If Ly is written in equality form by adding slack
variables, then the cut-generation process can be repeated using an optimal basis and as-
sociated solution of Lo, as described in Algorithm 2.

We refer to a GMI cut whose base constraint can be derived as a linear combination of
constraints defining Li, and not other GMI cuts, as a rank-1 GMI cut. Clearly all GMI
cuts obtained in Algorithm 2 from L; are rank-1 cuts. The GMI cuts obtained from L9 and
subsequent relaxations of M may not be rank-1 cuts.

In this paper we explore new ways of generating rank-1 GMI cuts. We diverge from
Algorithm 2 from ¢ = 2 onwards. Instead of deriving GMI cuts from an optimal tableau of
L; for i > 2, we instead attempt to find a basis B of L; such that GMI cuts based on B are
violated by the solution of L; for 4 > 2. This procedure is described in Algorithm 3. Note
that Step 7 of Algorithm 3 may not find violated cuts, whereas Step 5 of Algorithm 2 will
always find cuts.

Algorithm 2: A traditional GMI cutting plane algorithm

w N =

N O o

©

10

Input: An MIP with constraints Az = b,z > 0 where integer variables have indices

in S CZ. A number of iterations MAX_ITER.

Output: A set of cuts and a solution z*.
A A beb c+c, T+ z.
fori=1,..., MAX ITER do

Solve L; := min{¢z : AZ = b,z > 0} and obtain an optimal basis B and

associated solution T*.

if ¥ is not integral then
Use Algorithm 1 with input z*, A, b, B and S to obtain a list of GMI cuts.
Eliminate slack variables in the GMI cuts to get cuts in the x variables alone.
Update A, b, ¢ and Z to incorporate the new cuts and related slack variables.

else
L Go to Step 10.

Eliminate slack variables and return z* and cuts in original variables.

Algorithm 3: Our proposed GMI cutting plane algorithm

w N =

o N O ok

©

10

11

Input: An MIP with constraints Ax = b,z > 0 where integer variables have indices

in S CZ. A number of iterations M AX_ITER.

Output: A set of rank-1 GMI cuts and a solution z*.
A+— A b« b, c+c, T+ x.
fori=1,..., MAX_ITER do

Solve L; := min{¢Z : AZ = b,7 > 0} and obtain an optimal basis B and
associated solution Z*.
if * is not integral then
Use z* as a “guide” to derive a basis B of L.
Project out slack variables from z* to obtain z* in the original space.
Use Algorithm 1 with input z*, A,b, B and S to obtain a list of GMI cuts.
Update A,b,¢ and z to incorporate the new cuts and slack variables.

if T* is integral or Algorithm 1 failed to produce violated cuts then
L Go to Step 11.

Eliminate slack variables and return z* and cuts in original variables.

The key step in Algorithm 3 is Step 5, where a new basis B of L; is chosen based on
a solution z* obtained from L; using a two step-procedure. In the first step, we use z*
to select a subset of columns in A within which to search for a basis B. It is important
that the selected subset of columns actually contains a basis of A. In the second step, we
construct a basis from this subset. In Section 3 we describe a simple scheme to select a
subset of columns in A, and focus on describing different ways of constructing a basis B
from this subset. In Section 4 we describe a different way of performing the first step.

3 Alternate bases

In this section we are concerned with Step 5 of Algorithm 3. That is, given an optimal
solution z* of the linear program

L; = min{cz : Az =0b, Cx > d, z > 0} (7)
for 7 > 2, we would like to obtain a basis B, not necessarily feasible, of the linear program,
Ly = min{cz : Az = b, z > 0},

such that Algorithm 1 with input A, b, B, S and z* returns some cuts violated by z*. In
the previous section, we described L; as arising from L; via the addition of GMI cuts; thus,
in that context, the rows of Cx > d defined constraints satisfied by all integral solutions
of Li. In what follows, we will not use this fact. In Section 4, we will let Czx > d stand
for constraints which may not be satisfied by all integral solutions of L; (in particular,
branching constraints).

It suffices to describe our procedure when i = 2 in (7). We first write Ly in standard
form. That is, if C has ¢ rows, we add ¢ slack variables s = (s1,...,s;) and let

Ly = min{cz : Az = b, z > 0}, where

A:[é _?], EZ(?)’ 5:(2)’ ¢ = (c,0).

As A has full row-rank, so does A.

Let Z* = (z*, s*) be a basic feasible solution of Ly, and let B be the corresponding basis.
Recall that Z = {1,...,n} is the index set of variables in L;. The basis B consists of both
variables in L1, and slack variables corresponding to the inequalities in Cz > d. Let Tg C T
be the indices of the variables in L; which are basic with respect to B. In our simplest
implementation of the first step described at the end of the previous section, we search for
a basis B of L within Az, the columns in A with indices in Z3.

Clearly B has rank m + t and has the form

= | Az 0
o[2]

where I’ has ¢ rows and is a submatrix of the ¢ x ¢ identity matrix. Therefore Az has rank
exactly m. Thus, the columns of Az contain a basis B of A. We depict the relationships

between the different bases above in Figure 1. Any GMI cut based on B is valid for L,
though such a cut need not be violated by z*.

15
f—/%
B
f—/%
A
C -l
%/—J
B

Figure 1: The relationship between B and B

3.1 The feasible basis heuristic

Consider the solution z* defined above, the set 75, and the associated sub-matrix Az of A.
Let % and cp denote the vectors obtained by taking the components of z* and ¢ contained
in Zj, respectively. Clearly, 27 defines a feasible solution of min{cgy : Agy = b,y > 0},
and therefore a basic, optimal solution of the above LP yields a basis B for L; such that
I C Ip. We define a heuristic to perform Step 5 of Algorithm 3 motivated by the above
observation. Instead of deleting columns from A to obtain the above LP, we instead let

P'={czx: Az =b,x > 0,2, =0Vi ¢ Iz}

and simply solve the problem min{cz : z € P’} to obtain a basic optimal solution z’ and
corresponding basis B of L;. Though there always exists an optimal basis with Zgp C T3,
a standard LP solver may in fact return a basis containing some of the variables which
are fixed to zero, in the presence of degeneracy. Since this procedure is guaranteed to
obtain a feasible basis, we call this procedure the Feasible Basis heuristic or FEAS. We also
experimented with solving min{0z : € P'} to obtain a different feasible basis, but did not
notice a significant difference in results.

In Figure 2 we depict the optimal solution Z of L; in the direction ¢, the point z*
obtained after adding a GMI cut (and solving Ls), and the point z’ obtained by FEAS. In
this figure, the dotted line refers to the first GMI cut, and the dashed line to a GMI cut
obtained from B. Note that the point z* lies on a facet of the polyhedron P, depicted by
the thick line. Assume the slack variable for the corresponding constraint is non-basic in Lo
(i.e., the corresponding column is not in B). In P’, we fix this slack to 0; in other words, we
only look for solutions to L; which lie on the face P’. The point z’ in the figure is a basic
optimal solution of min{cz : x € P'}. In this figure, z* is violated by the second GMI cut.

Figure 2: The relationship between z,z* and 2’

If z* is a basic solution of Ly, or equivalently, |Zz| = m, then P’ = {z*}. This suggests
that if Z5 is not much larger than m, then extreme points in P’ are somehow “similar” to
z*, and generating GMI cuts from such points might be a fruitful way of separating z*. We
make this notion more precise in Section 3.2.

Observe that an infeasible basis of P/ may also yield a violated GMI cut. An example
of this is depicted in Figure 3, where the point z’ is a basic infeasible solution, and yet the
associated GMI cut (represented by the dashed line), is violated by z*.

In Section 3.2, we explain why any basic solution of P’ (feasible or infeasible) is likely
to yield some violated GMI cuts when the constraint matrix A is very sparse, as is the case
with many practical MIP instances.

°\

Figure 3: A GMI cut from an infeasible solution z’

3.2 Sparsity and degeneracy

Let 2’ be a basic (possibly infeasible) solution of min{cz : x € P'}, defined in the previous
section, with associated basis B and non-basic columns N. Denote the ¢th tableau row for
this basis as (zB)i+)_ ez, @ijTj = Bi, where (zg); is an integer variable, B™*N = (a@;;), and
B = B71b. Assume f; is non-integral and let N'(i) = {j € Iy : a;; # 0}. N (i) NZg =0,
then the GMI cut derived from this tableau row has nonzero coefficients only for variables
which have value 0 in z* and is thus violated by x*. This is because (zp); has a cut coefficient
of zero, and thus the only nonzero cut coefficients correspond to z;(j € Zy \ Zp).

Can such a tableau row exist? We argue that this can happen when |Zz \ Zg| is small
relative to m, and when the constraint matrix A is very sparse. The second condition is
often true for practical MIPs with many constraints and variables, including the MIPLIB
problems. As for the first condition, for problems in MIPLIB 3.0, |Z3|/|Zg| is 1.1 on the
average, and 1.05 for the MIPLIB 2003 problems, where B is the optimal basis of Lo, the
LP relaxation after adding one round of GMI cuts.

Since z* is feasible for Ly, it satisfies each tableau row for the basis B. Let aj stand for
the kth column of A. Then Az* = b implies that

Bzp + Z zpa, = b.
]CEIB\IB

Let n, = B~tay, = (@;)™,. Then the equation above and Bz'y, = b imply that

gy —ap = Y T (8)
kEIB\IB

In other words, ' differs from z* in the sth component of Zp if and only if EkEIB\IB Zy Qi
is nonzero.

Observe that |Zz\ Zg| < t. If the number of nonzeros in each vector n, with k € Zz\Zp
is less than m/t, then there are fewer than m nonzeros in the tableau columns with indices
in Zz \ Zg. This implies that some tableau rows satisfy the condition N'(i) NZz = (); See
Figure 4 for an illustration of this condition. If these rows correspond to basic integral
variables with non-integral values in /3, then there exist GMI cuts based on B which are
violated by z*. This analysis did not assume that B is feasible, just that B~ 'ay is sparse,
for k€ Zz\Ip.

Even if the columns B~ ay, with k € Z5\ Zp are not too sparse, a GMI cut based on the
ith tableau row may be violated if z; = 0 for many k € Zz \ Zp (as z* is a basic solution
of Lo, the above condition can hold only in the presence of degeneracy). More generally,
as (z' —z*); = 0 if j € Zj5, equation (8) implies that if maxyez \7,{7}} is small, then so
is ||z’ — 7*|| and a GMI cut based on the ith tableau row violated by z’ is likely to be
violated by x*. These arguments suggest the following two ideas to find a suitable B.

1. Find B such that B~'ay is sparse for k € T\ Zp -

2. Find B such that keZz\Tp Lk 15 small.

10

Figure 4: An example of a sparse tableau

3.3 The sparse basis heuristic

As suggested above, we next consider a heuristic to find an m X m basis B of a rectangular
matrix A € R™ ¥ for some k > m such that B~ 1N is sparse. More precisely, we let A = A B
One approach to this problem is to solve the related problem: find a basis B such that B~!
is sparse. This latter problem has recently been studied in [29]. If B! is sparse, than
B~!N is sparse assuming A (or N) is sparse.

We use a heuristic different from the one proposed in [29], where the authors use bi-
partite matchings in auxiliary graphs to find an appropriate B. We consider the sparse
LU factorization approach of Suhl and Suhl [30] which is based on a combination of the
Markowitz criterion [27] for reducing fill-in during pivoting and threshold pivoting for nu-
merical stability. In particular, we consider the LU implementation in QSopt 1.0 [3] written
by David Applegate and based on the Suhl and Suhl paper. We modify the code so that
it takes as input a rectangular matrix (namely A) instead of a square matrix and returns
a factorization of A as A = LU, where L is a square, lower triangular matrix with ones on
the diagonal, and U is rectangular and upper triangular. That is, U = (U’ U"), where U’ is
a non-singular upper triangular matrix, and U” is a rectangular m x (kK — m) matrix. The
Markowitz criterion helps in keeping U sparse. Finally we define B = LU’ and therefore

B*lN — (Ul)flLle — (Ul)flUll.

Our hope is that as U’ and U" are sparse (U')1U” will be sparse. In general, the basis
B generated by this approach need not be a feasible basis. We refer to this heuristic as
SPARSE.

When we apply SPARSE to Lo obtained after the first round of GMI cuts, the basis
found has the property that N (i) NZz = 0 for some tableau row in 31 out of 54 MIPLIB
3.0 problems in our test set, and 17 out of 20 problems in MIPLIB 2003.

3.4 The greedy heuristic

Given non-negative weights on the columns of a full row-rank matrix A € R™*"_ in poly-
nomial time one can obtain a maximum weight basis B of A via the greedy algorithm for
matroids [18]: start off with an empty set of columns B, sort the columns of A by decreas-
ing weight, and iterate through the sorted columns of A adding them to B if they are not

11

linearly dependent on the columns already in B. At the end of this iterative process, B will
have m columns and form a basis of A.

This motivates a heuristic GREEDY which assigns large weights to columns of A which
we want to be present in the basis, and small weights to the remaining columns of A. We
sort the variables by decreasing value of z} for ¢ € Z5 (recall that all variables are assumed
to have a lower bound of 0, and no upper bounds). We then use the greedy algorithm to
select a maximum weight basis B’. We thus attempt to choose B such that ZkeI,;\IB zy
is as small as possible, precisely the criteria suggested at the end of Section 3.2.

For practical MIPs which have inequality constraints, and need slacks to be expressed
in standard form, we distinguish between the slack and structural variables in the original
constraints. In order to get a sparse basis, we assign a weight of wz] for some large w > 1 if
x; is a slack variable. One drawback of this idea is that it may lead to too many continuous
(slack) variables in the basis B, leaving few integral variables in B, and thus allowing the
generation of only a small number of GMI cuts based on B.

3.5 The random basis heuristic

It is possible that the bases returned by the heuristics FEAS, SPARSE, and GREEDY do not
yield GMI cuts violated by z*, in which case Algorithm 3 terminates. To let Algorithm 3
proceed when the above heuristics fail, and also to test if these heuristics truly yield useful
bases (yielding violated GMI cuts) of A with columns in Z3, we are interested in generating
a random basis of A, i.e., sampling from a uniform distribution over all bases of A. This
seems to be a hard problem, and a polynomial-time method to generate a random basis of
A seems not to be known.

We instead implement a simple randomized algorithm. We assign weights drawn uni-
formly from [0, 1], and then apply the greedy algorithm discussed in the previous section.
This algorithm does not generate a basis uniformly at random: consider the matrix

1211
A‘[0012]

with possible bases

11 2 1 11 2 1 11
e R e R P L PR E e bt

Assigning random weights from [0, 1] to the columns of A implies that the greedy algorithm
iterates through each permutation of the columns of A with equal probability. However,
there are 24 such permutations, but 5 possible bases, and thus not all bases are equally likely
to be generated by the greedy algorithm. In particular, Bs will be chosen with probability
4/24 while each of the remaining bases will be chosen with probability 5/24. The above
heuristic is easy to implement and is also quite useful as we discuss in Section 6. We repeat
the generation process (up to a default limit of 5 times) till a basis yields violated cuts.

N

4 Branching

Recall that the constraints Cx > d in Lo were not required to be valid for M in order for
the GMI heuristics described in Section 3 to work. In particular if the constraints in Cz > d

12

include branching constraints obtained at nodes of a branch-and-bound tree, the heuristics
described earlier can still be used to obtain globally valid rank-1 GMI cuts from each node.
In fact, assume Z is a basic solution of the LP relaxation at a branch-and-bound node. Let
Cz > d represent the constraints which are only locally valid at that node of the tree (this
will include the branching constraints), and let Az = b,z > 0 be the original constraints.
Using Algorithm 1, with input Z and an appropriate basis of L1, we can generate cuts which
are globally valid and may separate z.

Branching can also be used in a very different way. Consider system Lo, an optimal
basis B and its corresponding solution z*. In Section 3 we presented a number of heuristics
which seek to obtain a basis B of L; contained in the columns with indices in Zz. Once
Tp is determined, these heuristics did not use B or z* in generating GMI cuts. Thus, the
heuristics presented could be made to work on any set Z' C Z such that the corresponding
columns contain a basis of Li. In this section we deviate from the previous procedure by
considering such sets Z' different from Z5, and then using the heuristics described earlier
to find a basis.

Let My be the MIP obtained by adding back the integrality constraints of Lo. That is,

My =min{cz: Az =b, Cx >d, x >0, z; € ZVi € S}. (9)

We explore the branch-and-bound tree of My for a limited number of nodes. For this, we
solve the LP relaxation at each node and branch as usual, always exploring the node with
the minimum bound (i.e, best-bound branching). At each node of the search tree, we let
Cz > d correspond to the rank-1 GMI cuts in (9) and the branching constraints defining
the node. Let the node solution be # with associated basis B. Then the heuristics described
in Section 3 will search for a basis B of L; contained in the columns in Z5 (= Z), but will
check if the corresponding GMI cuts separate z*, the root solution, not Z. In Figure 5, z*
is contained in the interior of the LP relaxation of an MIP. As z* does not lie on a face of
the LP relaxation, our previous heuristics will not find a basis as there is no basis of L,
contained in Z5. However, if we consider the nodes defined by z; < 0 and z; > 1 with the
node solutions depicted by Z, we see that there are vertices of the LP relaxation (denoted
by z') lying on the same faces as Z (for the branch z; < 0, Z = z') and thus our previous
heuristics will find some basis contained in 7.

The intuition behind exploring the node with the minimum bound is that we will explore
the node “most similar” to the root. Since this algorithm works by exploring the branch-
and-bound tree in order to gather cuts for the original root problem, we call this the BRANCH
AND GATHER heuristic, abbreviated as BG. When using this algorithm we can use any subset
of the heuristics described in the previous section in order to find bases contained in the
columns in Zz. In our default implementation, we use FEAS and GREEDY and branch for
5 nodes.

5 Implementation details

For simplicity, we have so far assumed that the original problem M is in standard form,
i.e., it has the form described in (1). In practice, (a) some variables can have nonzero upper
and lower bounds; (b) some variables can be free; (c) some constraints are inequalities; and

13

Figure 5: The branch and gather heuristic

(d) some constraints are range constraints. After adding slack variables, we can assume
problems have the form
max{cz:z € P,z; € ZVi € S}

where z € R, S C {1,...,n}, and P is defined as
P={zeR':Az=b, | <z <u}, (10)

for some [,u € R®. We assume that for any index 7 between 1 and n, I; can be —oo and
u; can be +0o0. In order to convert tableau rows into a constraint with all variables non-
negative, we first discard all tableau rows with nonzero coefficients for free variables. We
then perform variable substitutions of the form z = u; —z; or z} = x; —[; to get an equation
of the form """ | a;z; = B, where the substitutions for variables with both upper and lower
bounds are as described in Section 4.1 of [16], and depend on the point to be separated. We
assume that the non-infinite bounds for any integer variable are integral; otherwise upper
(lower) bounds of integer variables are rounded down (up). This ensures that z remains
an integer variable if z; is integral. If an MIP is presented with a non-integral upper or
lower bound on a variable, the strengthened bound can be viewed as a rank-1 MIR cut;
our heuristics may then generate some rank-2 GMI cuts. However, the MIPLIB problems
in our test set have integral bounds on integer variables.

In general, when given a tableau row based on an optimal solution, one usually computes
a GMI cut if the corresponding basic variable is of integer type and if the right-hand-side
is fractional. This is guaranteed to yield a violated cut as the corresponding non-basic
variables have zero value. In our application, we try to separate a solution z* which is
basic with respect to B, but is non-basic with respect to B, where Zg C Zg. Therefore we
generate GMI cuts based on B even when a basic integer variable has integral value.

In our default separation algorithm, denoted as DEF, the first heurstic invoked is FEAS.
If it does not find any violated cuts then SPARSE is invoked, then GREEDY, then RANDOM
up to 5 times, and finally BG with a limit of 5 nodes.

14

6 Computational Results

In this section we present lower bounds for problem instances in MIPLIB 3.0 [9] and MIPLIB
2003 [1] obtained by running our code with different basis generation heuristics with a time
limit of one hour. In the case of MIPLIB 3.0, we ignore instances which do not have any
integrality gap, namely dsbmip, enigma and noswot, and instances where one round of GMI
cuts close 100% of the integrality gap, namely air03, 10teams, and mod010. We also omit
instances for which Dash, Giinlik, and Lodi [17] and Balas and Saxena [7] report that
optimizing (approximately) over the MIR closure does not change the bound from the LP
relaxation value. These are marksharel, markshare2, pkl, stein27 and stein4s. In other
words, we omit instances where there is no scope for improvement over and above one
round of GMI cuts and are left with 54 instances out of 65 from MIPLIB 3.0.

There are some instances in MIPLIB 2003 for which no integer solution is known, namely
liu, momentumd, stp3d, and t1717, and we omit them. We also omit disctom, as it has no
integrality gap, and manna81, where GMI cuts close 100% of the integrality gap. We are
left with 20 instances from MIPLIB 2003 not contained in MIPLIB 3.0.

In Tables 1 and 2, we compare our results on MIPLIB 3.0 problems obtained by the
algorithm DEF with those obtained in [17] and [7] by solving MIP models to find violated
MIR cuts. To make the comparison with [17] as fair as possible, we run our code using
the same hardware and software settings, i.e., we use the same machine, operating system,
compiler (g++ version 4.1.3 on a 1452 MHz powerpc running AIX 5.1), and the same version
of ILOG CPLEX (release 9.1). The resuts in [7] were obtained on a different machine type
and operating system, but with a similar version of CPLEX (release 9.0) and around the
same timeframe. In all other tables, we use a faster machine (a 4208 MHz powerpc) and
ILOG CPLEX 11.2.

Table 1 contains results for the pure integer problems in MIPLIB 3.0, and Table 2 con-
tains results for the mixed-integer problems. In column 2 we give the percentage integrality
gap closed by one round of GMI cuts, i.e., cuts from the optimal tableau of L; (henceforth
referred to as 1Gmi). In columns 3,4 and 5, we give, respectively, the number of generated
cuts, percentage integrality gap closed, and running time (in seconds; it includes LP resolve
time after adding cuts), respectively, for DEF, and in columns 5,6 and 7, we give the same
information for the code in [17]. In columns 8 and 9 we give, respectively, the percentage
integrality gap closed in [7] and the time to do so. The numbers in columns 4 and 5 indi-
cate that for many problems, especially the smaller ones, our heuristic often obtains bounds
comparable to those in [17] in much less time. For example, for cap6000, gt2, p0282, fiber
and pp08a, DEF closes a significant fraction of the remaining integrality gap after the first
round of GMI cuts, and obtains a comparable bound to those in [17] and [7] in a fiftieth of
the time or less. Further, we improve on the best-known bounds for the objective function
value over the MIR closure for mkc, harp2 and rentacar.

A point to note is that as our heuristics primarily involve solving L.Ps, our code is not
affected very much by the quality of the components of the IP solver we use related to cuts,
branching etc., but is mainly affected by the LP solver component. Thus, on average, the
bounds we obtain in Tables 1 and 2 are not very different from the bounds we obtain with
CPLEX 11.2 in Table 4. We close, on average, 60.79% of the integrality gap for MIPLIB 3.0
problems using CPLEX 9.1, and 62.16% using CPLEX 11.2. In fact, most of the difference

15

% gap time % gap time| % gap time
instance | 1GMI | # cuts closed DEF | # cuts closed MIR| split split
air04 8.08| 7992 19.37 3745.26 294 9.18 3,600 91.23 864,360
air05 4.65| 6275 12.92 3601.46 246 12.38 3,600 61.98 24,156
cap6000 |41.65 34 6241 14.65 316 49.77 3,600 65.17 1,260
fast0507 | 1.66| 2030 1.71 4257.80 318 1.66 3,600| 19.08 304,331
gt2 76.50 99 96.61 0.29 256 98.38 2,618| 98.37 599
harp2 |22.43| 1136 67.31 240.81 523 58.48 108| 46.98 7,671
1152lav | 1.55| 2362 48.65 402.71 128 6.41 3,600| 95.20 496,652

lseu 7.74 61 84.63 0.12 350 91.84 3,600| 93.75 32,281
mitre 82.86| 1031 100.00 59.51| 1126 100.00 1,396 |100.00 5,330
mod008 |20.89 90 62.50 0.62 203 98.95 201| 99.98 85

nw(04 66.08 192 100.00 84.74 270 93.30 3,600 |100.00 996
p0033 |56.82 53 83.18 0.10 110 87.42 2,552| 87.42 429
p0201 |16.89 773 61.28 6.66 990 74.31 3,600 74.93 31,595
p0282 3.70 431 96.85 3.55| 1419 99.55 3,600| 99.99 58,052
p0548 |41.04 501 94.26 2.67| 1317 96.11 3,600| 99.42 9,968
p2756 0.46 466 96.85 17.05 671 57.57 3,600 99.90 12,673
seymour| 8.35| 12551 20.79 3613.54 559 8.35 3,600 61.52 775,116

Table 1: IPs of MIPLIB 3.0.

arises from one problem, namely bell5; with CPLEX 11.2 we close 74.83% of the integrality
gap as opposed to 23.65% using CPLEX 9.1. This variation is not because of the difference
in solvers; just changing the random seed or generating a few more bases via RANDOM yields
a much better bound with CPLEX 9.1.

Table 3 contains the percentage gap closed with DEF for problems in MIPLIB 2003, and
the columns have the same meaning as the first four columns in Tables 1 and 2. For these
instances, the initial LP relaxation and the subsequent ones obtained after adding cuts are
quite a bit harder to solve than in the case of MIPLIB 3.0 instances. Note that for 11 out
of 20 problems, the time limit is reached. For a few instances, the time limit is reached
before FEAS stops generating cuts, and we do not even invoke any other heuristics.

In Table 4, we report on the average integrality gap closed with different combinations
of heuristics. As in the earlier tables, “1aMI” stands for one round of GMI cuts. We also
give the average gaps closed in the papers of Dash, Giinlik, and Lodi [17] (indicated by
“DGL”) and [7] (indicated by “Balas-Saxena”). These two papers do not contain results for
MIPLIB 2003. We then report on each of the heuristics used in isolation. For the problems
in MIPLIB 3.0, FEAS seems to be the best, while SPARSE seems to be the weakest heuristic,
though by a small margin. However, this ordering of the heuristics does not hold for the
MIPLIB 2003 problems, where GREEDY is the best and RANDOM is the worst performing.
We suspect that for the small instances in MIPLIB 3.0, any basis in Z5 yields useful cuts,
but that is not the case for the larger instances in MIPLIB 2003. In the latter case, the
heuristics which use the ideas in Section 3.2, namely SPARSE and GREEDY, are better than
the other two heuristics.

The hybrid heuristic ALL, stands for all the basic heuristics (not BG) executed in the same
order as in DEF, though RANDOM is executed only once. Turning off the different heuristics
in ALL, yields bounds somewhat consistent with the ranking of the different basic heuristics;

16

% gap time % gap time|% gap time
instance 1GoMi | # cuts closed DEF | # cuts closed MIR| split split
arki001 29.26 293 35.47 394.84 133 33.94 3,600| 83.05 193,536
bell3a 60.15 130 74.03 0.82 404 99.60 3,600| 65.35 102
bells 14.53 49 23.65 0.32 629 92.95 3,600 91.03 2,233
blend2 16.36 28 21.43 2.07| 2815 30.63 3,600| 46.52 552
dano3mip 0.10f 1104 0.28 3688.43 124 0.10 3,600| 0.22 73,835
danoint 1.73| 1942 1.73 235.69| 1044 1.73 3,600 8.20 147,427
demulti 45.34 446 91.37 12.40| 3866 97.81 3,600|100.00 2,154
egout 55.93 85 98.67 0.30 264 100.00 10]100.00 18,179
fiber 64.26 5561 98.12 14.78 329 94.70 3,600| 99.68 163,802
fixnet6 10.87 602 86.58 15.55| 4766 93.38 3,600| 99.75 19,577
flugpl 11.74 10 11.74 0.01 28 80.23 3,600|100.00 26
gen 60.23 190 91.81 10.50 115 100.00 825|100.00 46
gesa2 27.22 292 85.61 45.46| 1378 99.70 3,600| 99.02 22,808
gesa2_o 30.12 345 58.84 7847| 1640 96.05 3,600| 99.97 8,861
gesa3 45.75 850 92.59 119.48 892 74.83 3,600 95.81 30,591
gesa3_o 49.11 870 93.39 108.54| 1382 70.82 3,600| 95.20 6,530
khb05250 |74.91 141 99.46 3.49 555 100.00 146|100.00 33
mas74 6.67 81 8.46 0.63 12 6.68 0| 14.02 1,661
mas76 6.42 117 10.34 1.13 11 6.45 0| 26.52 4,172
misc03 5.86 571 20.56 6.15 992 37.71 3,600(51.70 18,359
misc06 10.73 69 86.15 34.46| 2074 99.84 792|100.00 229
misc07 0.72 975 2.12 11.08| 1678 11.25 3,600 20.11 41,453
mkc 5.18| 21149 49.30 2058.05| 4259 13.42 3,600| 36.16 51,519
mod011 17.11| 2685 32.19 3628.13| 1673 17.41 3,600| 72.44 86,385
modglob 17.09 257 75.30 8.59| 7060 80.04 1,677| 92.18 1,594
pp08a 52.36 263 93.75 3.12| 1687 95.76 3,600| 97.03 12,482
pp08aCUTS | 30.94 347 83.27 21.52| 2126 88.74 3,600| 95.81 5,666
qiu 1.76| 4690 25.89 3715.85| 2142 29.19 3,600| 77.51 200,354
qnetl 14.27 943 79.31 437.03 784 66.22 3,600|100.00 21,498
qnetl o 26.62 698 93.47 196.73 587 83.78 3,600/100.00 5,312
rentacar 29.05 308 44.95 1123.07 265 23.40 3,600 0.00 0
rgn 4.71 176 99.59 0.54| 1142 99.60 3,600|100.00 222
rout 0.32| 1008 35.48 180.27| 9393 22.60 3,600| 70.70 464,634
setlch 38.11 673 83.59 30.66 694 76.47 3,600 89.74 10,768
swath 17.12 843 33.96 64.99| 1476 33.93 3,600| 28.51 2,420
vpml 9.09 255 89.78 5.10 386 96.30 387(100.00 5,010
vpm2 12.48 295 61.25 8.03 427 7171 243| 81.05 6,012

Table 2: MIPs of MIPLIB 3.0.

17

% gap time
instance 1aMI | # cuts closed DEF
alclsl 18.41| 1898 54.32 3578.97
aflow30a, 11.88 516 46.82 98.09
aflow40b 5.33 741 33.47 1163.44
atlanta-ip 1.08] 8490 1.08 3853.58
glass4 0.00 590 0.00 1.51
momentuml |38.17| 1867 41.14 4169.05
momentum?2 |40.65| 4234 40.66 3845.24
msc98-ip 44.58| 48073 46.79 3601.84

mzzvll 11.43| 19069 24.70 3701.73
mzzv42z 12.01| 14133 51.83 4199.74
net12 6.89| 14773 13.58 3631.19

nsrand-ipx | 36.24 766 80.47 1545.22
opt1217 19.12| 22944 32.28 3601.71

protfold 5.04| 13145 11.70 3648.65
rd-rplusc-21 | 0.00| 2558 0.00 1491.32
rol13000 7.03| 2293 51.94 1880.39
sp97ar 7.60| 2239 28.43 3649.03

timtabl 23.59| 1269 77.80 21.62
timtab2 18.02 2269 69.18 47.65
tr12-30 60.27| 1170 87.31 42.15

Table 3: Performance on MIPLIB 2003 problems

turning off the best heuristic leads to the biggest drop in the lower bounds. The heuristics
seem to be better by a significant margin than any individual one when combined together.
Further, running RANDOM up to five times whenever a point needs to be separated yields a
fairly good bound which is better than any of the heuristics individually (for MIPLIB 3.0),
but is weaker than ALL, by a nontrivial margin. We therefore claim that we can get a better
bound by combining our heuristics than we can get by simply generating the same number
of random bases at each iteration. The row indicated by DEF gives the performance of the
default heuristic DEF (it includes BG for 5 nodes and RANDOM up to 5 times). Finally,
“DEF+ BG100” stands for the bounds obtained when we allow BG in DEF to generate up
to 100 nodes per invocation.

In Table 5, we give some performance details of our individual heuristics (other than Bg,
which is a hybrid). In columns 2-4, we report on the effect of a single round of cutting-
plane generation after adding GMI cuts from the initial tableau. In other words, we are
generating cuts to separate x*, the basic optimal solution of Ly. In column 2, we give the
average gap closed. Note that jus one round of any of our heuristics yields a non-trivial
improvement over 1GMI. In column 3, we give the average of the ratio of the number
of violated cuts generated by a heuristic to the number of violated cuts from 1aMmi. For
example, on the average, for MIPLIB 3.0 problems, FEAS generates about 80% the number
of violated cuts as compared to 1GMI. In column 4, we give a measure of taleau density.
This is the average number of nonzero entries corresponding to nonzero variables in 7z
in a tableau row associated with a basic integer variable minus one (for the basic variable
corresponding to the row). This number is zero for the tableau rows returned by 1GwmI.

18

MIPLIB 3.0 MIPLIB 2003
laMI 26.09 18.37
DGL 62.53 -
Balas-Saxena 76.52 -
FEAS 43.96 27.64
SPARSE 38.56 29.25
GREEDY 42.62 31.03
RANDOM 41.67 25.78
RANDOMD 48.10 29.75
ALL 52.39 35.51
ALL-FEAS 48.51 35.49
ALL-SPARSE 50.52 34.10
ALL-GREEDY 51.90 33.38
ALL-RANDOM 51.13 35.05
DEF 62.16 39.68
DEF+BG100 64.58 40.82

Table 4: Average performance on MIPLIB problems

The remaining columns give results from running the heuristics for multiple rounds
subject to a time limit of one hour. In columns 5-7, we give, respectively, the number of
generated bases (= rounds) and measures of average time to generate a basis, and average
time to resolve the Ip after adding the generated cuts. The number in column 6 is computed
as follows: for each problem instance, we compute the average time per round to generate
cuts (this consists of the time to find a basis, compute the associated tableau, and generate
the violated cuts) normalized by the time to generate the first round of GMI cuts (computing
the tableau + cut generation). We then average this number across all problems in MIPLIB
3.0 and MIPLIB 2003. The number in the last column is computed similarly, by taking the
ratio of the average LP resolve time to the LP resolve time after adding GMI cuts for a
problem, and then averaging this ratio.

On the average, each round of FEAS takes just 15% more time than 1GMI, whereas
a round of SPARSE takes just 2% more time. Our implementation of GREEDY is more
expensive. The point of this column is to demonstrate that the time for an invocation of
FEAS or SPARSE is comparable to the time to generate the first round of GMI cuts, and not
too much more with GREEDY. In contrast, a round of cutting-plane generation via solving
an auxiliary MIP, as in [17] and [7], can be significantly more expensive. Finally, the average
LP resolve time is within a factor of 5 for all heuristics. In our implementation, we do not
delete cuts, and hence LP resolves in later rounds are more expensive per added cut than
in earlier rounds. On the other hand, we usually find and add fewer violated cuts in later
rounds, and thus the ratio can be less than one.

One way to interpret columns 5-7 is as follows: on the average FEAS is 4.23 (= 1.15
+ 3.12) times as time-consuming per round as 1GMI, and runs for 34.20 rounds; thus
FEAS consumes about 144.67 = 34.20*4.23 times the running time of 1GMIto improve the
integrality gap closed from 26.09% to 43.96% (see Table 4). On the other hand, SPARSE
improves the gap closed to 38.56%, but is only about 18 times as expensive as 1GMI. In the

19

MIPLIB One round Many rounds

3.0 bound # cuts density | # bases time/round time/lp
lewmr 26.09 1 0 1 1 1
FEAS 31.23 0.80 2.49 34.20 1.15 3.12
SPARSE 30.84 0.55 2.86 10.00 1.02 0.74
GREEDY | 32.40 0.67 7.93 26.83 5.20 4.45
2003

lemr 18.37 1 0 1 1 1
FEAS 20.78 0.79 2.75 24.11* 1.46* 6.43*
SPARSE 21.65 0.55 2.52 17.60 1.35 3.85
GREEDY 21.17 0.69 3.14 31.25 2.82 7.40

Table 5: Detailed statistics on all MIPLIB problems

last three columns for FEAS with MIPLIB 2003 problems (marked by a *’), we omit the
instance opt1217 as it skews these numbers significantly: for this instance FEAS generates
1803 bases.

6.1 Branch-and-cut

We now measure the effect of adding our cuts as globally valid cuts in a branch-and-cut tree
for a few instances. Though a branch-and-cut algorithm often generates fewer nodes than
a pure branch-and-bound algorithm (with the same branching rules) in achieving a given
lower bound on the optimal solution, it often takes much more time to do so. The extra
time spent in cut generation and solving harder linear programs is often counter-productive.
This effect is especially pronounced for the small and easy problems in MIPLIB 3.0, many
of which can be solved in a few hundred nodes and a fraction of a second. For example,
CPLEX 11.2 solves p0201 in 107 nodes and 0.14 seconds and p0282 in 427 nodes in 0.09
seconds. Our default algorithm DEF takes over 10 seconds just to generate rank-1 GMI
cuts at the root node for p0201 (this is with CPLEX 11.2, and not with CPLEX 9.1 as in
Table 1).

Thus our moderately expensive cutting plane algorithm is unlikely to be effective except
where many thousands of nodes are needed to solve an MIP to optimality. We therefore
only consider problems from MIPLIB 2003 not contained in MIPLIB 3.0 (these are harder
in general), and focus on a few problems where our cut generation heuristics are not too
time-consuming, i.e., DEF terminates in less than an hour in Table 3 and yet improves
the lower bound compared to the first round of GMI cuts. These problems are aflow30a,
aflow40b, nsrand-ipz, roll3000, timtabl, timtab2 and tri2-30. We also consider alcisi for
the first experiment discussed below; if FEAS alone is used to generate cuts, it yields a
significantly better bound than one round of GMI cuts, yet terminates in less than an hour.
We perform three different experiments to measure the effectiveness of our cuts.

In our first experiment, we check if there are any problems from the list above for
which branch-and-cut (with our cuts) is preferable to branch-and-bound. To do this, we
apply Algorithm 3 with FEAS until we do not find any violated cuts (MAX_ITER is set to
infinity). Starting from the augmented problem, we then perform branch-and-bound for 30

20

minutes and compare its behaviour with branch-and-cut for 30 minutes where we add cuts
generated by FEAS at nodes of the branch-and-cut tree. We use CPLEX function calls to
execute branch-and-bound via its default branching strategy. We execute branch-and-cut
with the same settings, except that we use CPLEX cut callbacks to invoke FEAS. In both
cases, we turn off all CPLEX cutting planes, presolve routines, and the dynamic search
routine. The reason for the last choice is that CPLEX automatically turns off dynamic
search during banch-and-cut when user-defined cuts are added. Note that CPLEX may
execute our cut generation heuristic even at the root node (say after fixing variables based
on reduced costs).

The specific metrics of comparison are the time and number of nodes required to close a
given integrality gap. The purpose of this experiment is two-fold. Firstly, we want to verify
that we can generate globally valid cuts at nodes of a branch-and-cut tree which reduce the
number of nodes needed to attain a given lower bound. Secondly, we want to check if our
cuts help to increase the lower bound faster than pure branch-and-bound for any problems
in MIPLIB 2003. For 5 out of the 8 problems we considered, the answer to the second
question is true, and is false for the aflow problems, and for roll3000.

In Figure 6(a), we plot the integrality gap closed as a function of time for both branch-
and-cut (denoted by ‘bc’) and branch-and-bound (denoted by ‘bb’) on timtabl, whereas
in Figure 6(b) we plot the number of nodes explored as a function of time. WE use a
logarithmic scale for time, and for the number of nodes. The time instants at which we
measure the nodes and gap closed are approximately equal for the ‘bb’ and ‘bc’ curves,
and is the same across the two figures. Clearly the lower bound improves at a faster
rate for branch-and-cut than for branch-and-bound on timtabi, while the number of nodes
increases at a slower rate, and is more than a hundred times smaller at the end of 30 minutes.
Therefore our cuts clearly help in reducing the search tree size and the time required to
obtain a given lower bound for timtabi. A similar behaviour can be observed for timtab2.

timtabl timtabl
85 T T 1le+07

80 bc ---x---- X 4
L 1e+06

100000

nodes

10000

gap closed

1000 f "

100 L
10 100 1000

Figure 6: Performance on timtabl

On the other hand, for roll3000 (see Figure 7) by the time one node has been fully
explored by branch-and-cut at the end of about 50 seconds with a resulting integrality gap
of about 30%, branch-and-bound explores almost a 1000 nodes and closes about 40% of the
integrality gap. Subsequently, the rate of growth of nodes in branch-and-bound is slightly
smaller than the rate of growth of nodes in branch-and-cut (possibly because of the better

21

bound). Thus, at the end of 30 minutes, a significantly better lower bound is obtained via
branch-and-bound even though about 50,000 nodes are explored as opposed to 561 nodes
in the case of branch-and-cut. Clearly, our cut generation process is too expensive for this
problem. A similar behaviour can be observed in the case of aflow30a and aflow/0b.

roll3000 rolI3000
46 T T 100000 T T
bb —— bb ——
44 | b - 1 be -
42 |+ i 10000 ¢
3 o7 | 1000
E 38 |- B § x’__xx
o 36 s 8
S / 100 F X
> gl X,, B /x”
32 | mmmmmmmmee O X -~ 7 10 P
- X
30 - "
28 Il Il 1 ", Il Il
10 100 1000 10 100 1000
time time

Figure 7: Performance on roll3000

The situation is more confused for the remaining three problems. As can be seen in
Figure 8, for alclsl and tr12-30, the gap closed by branch-and-cut is worse for some time,
and then becomes better towards the 30 minute mark. In the second problem, it is clear
early on (from the slope of the gap closed versus time curve) that branch-and-cut will
outpace branch-and-bound eventually, but not so in the case of alc1si

alclsl tr12-30
70 T T 85 T T
bb —— bb —— X
65 - bc -—-x--- X/X f be ---x---- e
80
60 7 T X

gap closed
gap closed

70 +

65 & p—

60 | |
10 100 1000

time

Figure 8: Performance on alclsl and tr12-30

The above experiment suggests that branch-and-cut with rank-1 GMI cuts generated at
all nodes of the search tree may be competitive with branch-and-bound for some problems
from MIPLIB 2003, at least with the CPLEX 11.2 MIP solver, and starting from the same
root node. However, it is not clear what will happen once we allow CPLEX to generate
its own (potentially high rank cuts) at the root and also employ dynamic search during
branching. In our second experiment, we consider the problems in the first experiment and
analyze the quality of bounds obtained by the rank-1 GMI cuts generated at the root by
our heuristics. In Table 6, we give the number of nodes (rounded to the nearest hundred)

22

Instance DEF time | CPLEX nodes time | CPLEX+ nodes time
tr12-30 42 0 1 0 1
timtabl 22 18,300 53 10,100 35
timtab2 48 2,719,500 18,475 492,700 4,541
nsrand-ipx 1545 153,300 5372 24,400 745

Table 6: Number of nodes required to recover bound using different CPLEX settings

and time CPLEX — with default settings — takes in order to obtain the same bound as that
obtained by DEF without branching. For only three problems (timtab1, timtab2, nsrand-
ipz) is the time we take to generate our bound competitive with the time taken by CPLEX.
For timtabl, DEF takes 22 seconds before it terminates. CPLEX, with default settings,
takes 53 seconds and explores 18,400 nodes before it obtains the same lower bound. As
we know that GMI cuts are useful for this instance, we also compare the time taken if we
let CPLEX aggressively generate all cuts (“set mip cuts all 2”). Henceforth, we refer to
CPLEX with default settings simply as CPLEX, and CPLEX with aggressive cut generation
as “CPLEX+7”. For timtab2, DEF is substantially better than CPLEX, or CPLEX+. On
the other hand, for ¢r12-30, CPLEX takes less than a second (and performs no branching)
in order to achieve the same bound DEF takes 42 seconds to attain.

From the first and second experiments, it is clear that for timtabl and timtab? it is likely
that branch-and-cut with rank-1 GMI cuts generated by our heuristic will take less time
to find the optimal solution than CPLEX branch-and-bound (or more precisely cut-and-
branch). In our final experiment, we compare our branch-and-cut code with CPLEX and
CPLEX+. We use the “DEF+BG100” setting (discussed in Table 4) at the root, and the
“DEF-BG” setting at nodes of the branch-and-cut tree. As before, we turn off presolve and
all solver cuts in our branch-and-cut enumeration.

We are able to solve timtabl via branch-and-cut in 1593 seconds and 7500 nodes (this
number is rounded to the nearest hundred) as compared to 3689 seconds and 2,246,200
nodes with CPLEX (and 4092 seconds and 2,495,400 nodes with CPLEX+). We also solve
timtab2 in about 332,000 seconds, i.e., in about 92 hours, and with 265,900 nodes. This
latter problem is not easy to solve. It was first solved in [11] by exploring about 17 million
branch-and-bound nodes with CPLEX 9 using 2745 hours of CPU time and with problem-
specific cuts provided by Christian Liebchen, one of the formulators of the problem [24]. It
was later solved in 2008 in 22 hours on a standard PC by Liebchen and Swarat by a problem
specific branch-and-cut method (see the MIPLIB 2003 web page). Therefore, our solution
of timtab2 is the first time it has been solved without problem specific techniques. Note
that timtabl and timtab2 both involve general integer variables and thus the techniques in
[5] to generate globally valid GMI cuts cannot be employed. By solving a problem we mean
that CPLEX terminates the branch-and-bound process because it establishes a gap of at
most 0.01% (the default value) between the incumbent integer solution and lower bound.
The “optimal solution values” we obtain for the two problems above match those reported
in MIPLIB 2003.

Though we explore 265,900 nodes in solving timtab2, the total number of rank-1 cuts
added by our cut generator during the branch-and-cut process is only around 27,000 out of
which 2,500 are added at the root node. In other words, much fewer than one cut is added

23

per node. In general, as the rank-1 cuts only use constraints of the original linear relaxation
and do not use the branching constraints, we expect that there will be fewer violated rank-1
cuts deeper in the tree. We did not try out ideas such as imposing a skip factor — not
generating a new round of cuts before processing a number of nodes of the search tree — as
proposed for GMI cuts in [5] (though we do not know if CPLEX imposes this).

7 Conclusions

In this paper we presented a heuristic to generate rank-1 GMI cuts and showed that, for
many MIPLIB problems, they can be used to obtain strong lower bounds, which are com-
parable to the bounds obtained by approximately optimizing over the MIR closure in [7]
and [17]. Therefore, the rank-1 GMI cuts form a useful sub-class of the rank-1 MIR cuts.
Further, we can often obtain these comparable bounds in a hundredth of the computing
time.

We also used our heuristics to generate globally valid rank-1 GMI cuts in a branch-and-
cut setting for problems which have general integer variables, and demonstrated that our
heuristics are effective at finding violated cuts and significantly reducing the size of the
branch-and-cut tree for some MIPLIB problems. A smaller branch-and-cut tree does not
necessarily lead to less computing time. We solved timtabl and timtab2, two non-trivial
problems from MIPLIB 2003, in significantly less time than the state-of-the-art MIP solver,
CPLEX 11.2 (it cannot solve timtab2 in 15 million nodes). However, it is clear from the
branch-and-cut experiments in the previous section that much additional work needs to be
performed before truly practical implementations of our heuristics can be obtained.

A major issue which needs additional study is the rank of the cuts to be used. Even
though the current consensus seems to be that high rank cuts should not be used, it is not
clear that only rank-1 cuts should be used. We feel that allowing the original constraint
system to be augmented by very sparse cuts, especially bound implications (e.g, z; > 1),
before generating non-optimal bases and associated cuts may be a good idea. Further,
our cut generation heuristics can be speeded up by standard techniques such as saving
previously generated non-optimal bases and corresponding factorizations. Finally, we did
not use common techniques such as limiting the density or coefficient magnitude variation
of tableau rows to be used to generate cuts, nor did we perform any cut management, such
as deletion of inactive cuts.

A major criticism of our approach could be that they involve the generation of a large
number of GMI cuts read from many tableaus. As the generation of GMI cuts in floating-
point arithmetic is known to be error-prone (see Margot [26]) and can lead to invalid cuts,
the use of a large number of tableaus in our method obviously increases the likelihood of
invalid cuts. In [14], along with Cook and Fukasawa, we show that numerically safe GMI
cuts can be generated in floating-point arithmetic. Further, using the potentially weaker
numerically safe cuts does not lead to a significant loss in the quality of lower bounds
obtained vis-a-vis the unsafe cuts, nor is there a noticeable increase in the density of the
safe cuts, at least for the MIPLIB problems tested in [14]. Based on these results, we are
convinced that even if some of the cuts generated in the experiments in this paper turn out
to be invalid, it is likely that if these invalid cuts were replaced by numerically safe GMI
cuts, there would be no significant change in lower bounds.

24

An interesting extension of the work in this paper we are currently exploring is in the
context of nonlinear programming problems which have nonlinear objectives/constraints in
addition to many linear constraints. We could consider a solution of the entire system of
constraints, and then search for bases of the sub-system of linear constraints and generate
GMI cuts based on these bases. For ibienstl, an MINLP with a convex quadratic objective
and linear constraints available in Hans Mittelmann’s library MIQPIib [28], we can obtain
GMI cuts in this manner and a resulting lower bound in 3 seconds which CPLEX takes
about 30 seconds and more than 100 nodes to attain.

References

[1] T. Achterberg, T. Kock, and A. Martin. MIPLIB 2003. Operations Research Letters
34(4) 361-372, 2006.

[2] K. Andersen, G. Cornuéjols, and Y. Li. Reduce-and-Split Cuts: Improving the Perfor-
mance of Mixed Integer Gomory Cuts. Management Science 51 1720-1732, 2005.

[3] D. Applegate, W. Cook, S. Dash, and M. Mevenkamp. QSopt linear programming
solver. Available at www.isye.gatech.edu/~wcook/qsopt, 2004.

[4] E. Balas and P. Bonami, New variants of lift-and-project cut generation from the
LP tableau: open source implementation and testing, in Proceedings of IPCO 2007
(M. Fischetti, D. P. Williamson, eds.), Lecture Notes in Computer Science 4513, pp.
89-103, 2007.

[5] E. Balas, S. Ceria, G. Cornuejols, and N. Natraj. Gomory cuts revisited. Operations
Research Letters 19 1-9, 1996.

[6] E. Balas and M. Perregaard, A precise correspondence between lift-and-project cuts,
simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming, Mathe-
matical Programming 94 221-245, 2003.

[7] E. Balas and A. Saxena. Optimizing over the split closure. Mathematical Programming
113 219-240, 2008.

[8] R. Bixby, Z. Gu, E. Rothberg, and R. Wunderling. The sharpest cut: The Impact of
Manfred Padberg and his work, chapter 18 (Mixed-Integer Programming: A Progress
report), pp. 309-323. MPS-SIAM Series on Optimization, 2004.

[9] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated mixed
integer programming library: Miplib 3.0. Optima 58 12-15, 1998.

[10] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. Mip: Theory and
practice - closing the gap. In System Modelling and Optimization, pp. 19-50, 1999.

[11] M. R. Bussieck, M. C. Ferris, and A. Meeraus, Grid-Enabled Optimization with GAMS.
Informs Journal On Computing 21(3), 349-362, 2009.

25

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Caprara and A. Letchford, On the separation of split cuts and related inequalities.
Mathematical Programming 94 279-294, 2003.

S. Ceria, G. Cornuéjols, and M. Dawande. Combining and strengthening Gomory cuts.
In Proceedings of IPCO 1995 (E. Balas and J. Clausen, eds.) Lecture Notes in Computer
Science 920, pp. 438-451, 1995.

W. Cook, S. Dash, M. Goycoolea and R. Fukasawa. Numerically safe Gomory mixed-
integer cuts. Informs Journal On Computing, published online in Articles in Advance,
June 2009, DOI: 10.1287/ijoc.1090.0324.

S. Dash and O. Giinliik. On the strength of Gomory mixed-integer cuts as group cuts.
Mathematical Programming 115 387-407, 2008.

S. Dash, M. Goycoolea, and O. Giinlik. Two-step mir inequalities for mixed-integer
programs. Informs Journal On Computing, published online in Articles in Advance,
August 2009, DOI: 10.1287/ijoc.1090.0337.

S. Dash, O. Giinliik, and A. Lodi. MIR closures of polyhedral sets. Mathematical Pro-
gramming 121(1) 33-60, 2010.

J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming 1(1) 127-
136, 1971.

M. Fischetti and A. Lodi. Optimizing over the first Chvatal closure. Mathematical
Programming B, 110(1) 3-20, 2007.

M. Fischetti and C. Saturni. Mixed integer cuts from cyclic groups, Mathematical
Programming 109 27-53, 2007.

R. Fukasawa and M. Goycoolea. On the exact separation of mixed-integer knapsack
cuts, in Proceedings of IPCO 2007 (M. Fischetti, D. P. Williamson, eds.), Lecture Notes
in Computer Science 4513, pp. 225-239, 2007.

A. M. Geoffrion and G. W. Graves. Multicommodity distribution system design by
Benders Decomposition. Management Science 20 822-844, 1974.

R. E. Gomory. An algorithm for the mixed integer problem. RM-2597, The Rand
Corporation, 1960.

C. Liebchen and R. H. Moehring. Information on the MIPLIB’s timetab-instances.
Technical Report 2003/49, Dept. of Mathematics, Technical University Berlin, Dec.
2003.

H. Marchand and L.A. Wolsey. Aggregation and mixed integer rounding to solve MIPs.
Operations Research, 49 363-371, 2001.

F. Margot. Testing Cut Generators for Mixed-Integer Linear Programming. Mathemat-
ical Programming Computation 1 69-95, 2009.

26

[27] H. M. Markowitz. The elimination from of inverse and its applications to linear pro-
gramming. Management Science 3 255-269, 1957.

[28] H. Mittelmann. MIQPIib. http://plato.asu.edu/ftp/miqp/.

[29] A. Pinar, E. Chow, and A. Pothen. Combinatorial algorithms for computing column
space bases that have sparse inverses. Electronic Transactions on Numerical Analysis
22 122-145, 2006.

[30] U. H. Suhl and L. M. Suhl. Computing Sparse LU Factorizations for Large-Scale Linear
Programming Bases. ORSA Journal On Computing 2(4) 325-335, 1990.

[31] F. Wesselmann. Strengthening Gomory Mixed-Integer Cuts: a computational study.
Working paper 0902, DS&OR. Lab, University of Paderborn, May 2009.

27

