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Abstract

Interior point methods (IPM) have been recognised as an efficient approach
for the solution of large scale stochastic programming problems due to their
ability of exploiting the block-angular structure of the augmented system par-
ticular to this problem class. Stochastic programming problems, however, have
exploitable structure beyond the simple matrix shape: namely the scenarios are
typically a discrete sampling of an underlying (continuous) probability distri-
bution. An appealing way of exploiting this would be to initially use a coarser
discretisation, i.e. less scenarios, to obtain an approximate solution, which could
then be used to warm-start the solver on the full problem.

In this paper we present a multi-step warm-start scheme for stochastic pro-
gramming problems, where a sequence of problems defined over scenario trees
of differing sizes is given and an IPM warm-start point is constructed by suc-
cessively finding approximations to the central path of the problems defined
over the given trees. We analyse the resulting algorithm, argue that it yields
improved complexity over either the coldstart or a naive two-step scheme, and
give numerical results.

Keywords: Stochastic Programming, Interior-point Methods, Warm-starting.
Classification: 90C51, 90C15.

1 Introduction

A stochastic programming problem is defined on a tree T . This target tree encodes
available information about the future as well as the decision structure of the prob-
lem. We intend to approximate the problem by considering a sequence of trees T (k)
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with T (k) → T in some specified sense. We use the notation of P (T ) for the stochas-
tic program on a given tree T . The guiding idea will be to use some information
obtained by solving P (T (k)) to speed up the solution for P (T (k+1)), eventually lead-
ing to a faster solution of the target problem P (T ). Since we are using interior point
methods to solve the problems, we will not attempt to find the optimal solution
for each intermediate problem. Rather, for every tree in the sequence we find an

approximate solution (x(k), y(k), s(k)) ∈ N (k)
∗ , where N∗ is an appropriately chosen

neighbourhood of the central path. We intend to do this in such a way that the ap-
proximate solution for tree T (k) can be used to warm-start an interior point method
on tree T (k+1), possibly after performing a modification step, which might involve
inter-/extrapolation scenarios, a more traditional modification step in the sense of
[11, 4], or a combination thereof.

In an earlier paper [3] the authors suggested the use of one smaller (reduced) tree
TR to speed up the solution on the target tree. The contribution of this paper is to
extend this idea to a sequence of trees, as well as providing some detailed analysis
of the method and arguing for the improved complexity of the multi-tree scheme
over either a coldstart or a two-step scheme. Further, we demonstrate the practical
applicability of the multi-tree warm-start scheme by giving numerical results on a
selection of problems.

In the following section we review the basic background of stochastic program-
ming and IPM, mainly to introduce our notation. In Section 3 we review some
warm-start results for IPM and adapt them to our setting. Section 4 analyses a sin-
gle step of the multi-tree scheme, whereas in Section 5 we give the main results for
the multi-tree warm-start scheme. Finally in Section 6 we present numerical results.

2 Notation

A (linear, two-stage) stochastic programming problem is a mathematical program-
ming problem in which some of the data is unknown a-priori:

min cT x + IEξ[Q(x, ξ)]
s.t. Ax = b, x ≥ 0

where Q(x, ξ) = min{q(ξ)T y(ξ) : W (ξ)y(ξ) = h(ξ) − T (ξ)x}.
(1)

Here ξ is the random variable representing the uncertainty in the data. Q(x, ξ) is the
recourse function depending on the first stage decisions x and the random event ξ,
whereas y(ξ) are the second stage (or recourse) decisions. Note that the stochastic
programming model implies a partition of the decision variables (x, y) into a first
stage x which have to be independent of the observed event ξ (i.e. decision need to
be taken before ξ is observed) and a second stage y whose values can depend on the
observed value of ξ (i.e. decisions can be taken after ξ is observed). Under suitable
conditions (see [8, 9]) problem (1) can be rewritten as

min cT x + IEξ[q(ξ)
T y(ξ)]

s.t. Ax = b,
W (ξ)y(ξ) = h(ξ) − T (ξ)x,
x ≥ 0, y(ξ) ≥ 0.

(2)
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It is usually assumed that the distribution ξ affecting the random data is known.
In general ξ is a continuous distribution, in which case solving (2) becomes very
challenging. To make it computationally tractable, ξ is replaced by a discrete ap-
proximation ξ̃. If ξ̃ takes values ξ̃i with probabilities P (ξ̃ = ξ̃i) = pi, i ∈ I, then (2)
can be rewritten as the deterministic equivalent

min cT x +
∑

i piqiyi

s.t. Ax = b,
Tix + Wiyi = hi, i ∈ I,
x ≥ 0, yi ≥ 0,

(3)

where qi = q(ξ̃i) and analogously for Ti,Wi, hi, yi. We denote by ηi = (Ti,Wi, hi, qi)
the data describing the i-th scenario and use a notional 0-th scenario η0 = (A, b, c)
to denote the data corresponding to the first stage. By analogy with multistage
stochastic programming we will borrow the term tree to denote a scenario set

T := {ηi : i ∈ I} ∪ η0.

Since the tree T contains all information to describe the stochastic programming
problem we will use the notation P (T ) for problem (3) on tree T . In this paper we
assume that we are given a series of successively larger trees T (1), . . . ,T (K) = T ,
each of which serves as an approximation to the next tree in the sequence. To analyse
how well a given tree T (k+1) is approximated by the previous tree T (k) we need to
define the concept of a distance between two trees. As in [3], we base this on scenario
distances, which we define as follows:

Definition 1 The distance between two scenarios i, j ∈ T \ {η0} is

d(ηi, ηj) := ‖Ti − Tj‖2 + ‖Wi − Wj‖2 + ‖hi − hj‖2 + ‖qi − qj‖2.

The distance of a scenario η from a tree T is thus

d(η,T ) := min
ηi∈T

d(η, ηi).

Therefore, the distance between two trees Ti and Tj can be defined as

d(Ti,Tj) := max
ηi∈Ti

d(ηi,Tj). (4)

2.1 Interior Point Methods

Interior point methods have become a standard method for the solution of large
scale stochastic programming problems. They typically enjoy a similar performance
as dedicated active-set based approaches such as the L-shaped method but, unlike
these, they are also applicable to nonlinear formulations. IPMs applied to solve the
linear problem

min cT x s.t. Ax = b, x ≥ 0 (5)
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proceed by replacing the x ≥ 0 constraints in (5) by logarithmic barrier terms added
to the objective function to arrive at

min cT x − µ
∑

i

ln xi s.t. Ax = b. (6)

We define the set of strictly primal–dual feasible points for (6) as

F0 := {(x, y, s) : Ax = b,AT y + s = c, (x, s) > 0}.

Assuming F0 6= ∅, then for every µ > 0 problem (6) is a strictly convex optimization
problem, whose unique solution is given by the solution to the KKT-equation system

Ax = b
AT y + s = c

XSe = µe
x, s > 0,

(7)

where we used the notation X = diag(x1, . . . , xn), S = diag(s1, . . . , sn), e = (1, . . . , 1)T .
The solutions of (7) for different values of µ > 0 trace a trajectory (the central path)
that reaches the solution of (5) for µ = 0. In the analysis of interior point methods
it is common to work with a neighbourhood of the central path. We define the
following:

N2(θ) := {(x, y, s) ∈ F0|‖XSe − µe‖2 ≤ θµ}
N−∞(γ) := {(x, y, s) ∈ F0|γµ ≤ xisi}

Ns(γ) := {(x, y, s) ∈ F0|γµ ≤ xisi ≤ µ/γ}

Of these N2 and N−∞ are in common use, whereas Ns is used in [3, 4].
Interior point methods can be seen as homotopy methods that alternate between

steps of Newton’s method to solve the nonlinear system (7) and reductions of the
barrier parameter µ towards zero. The Newton steps to solve (7) are of the form

A∆x = ξb := b − Ax (8a)

AT ∆y + ∆s = ξc := c − AT y − s (8b)

X∆s + S∆x = rxs := µ+e − XSe, (8c)

where µ+ is the next target µ value in the homotopy sequence. Usually appropriate
globalisation strategies, such as restricting steps to be within a neighbourhood of
the central path are employed.

3 Warmstarting Interior Point Methods

Warm-starting interior point methods is generally seen to be difficult to impossible.
While it is true that interior point methods are unlikely to match the warm-start
efficiency of active set type methods (such as the simplex method), recent results
[2, 3, 4] suggest that typically between 50%-60% of iterations can be saved by using
a warm-start procedure.
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By warm-starting we aim to use information gained from the solution of the
LP problem (5), the original problem, to significantly speed up the solution of the
modified problem:

min c̄T x s.t. Āx = b̄, x ≥ 0, (9)

which is assumed to be close to (5), that is the perturbation of problem data

∆d := (∆A,∆b,∆c) = (Ā − A, b̄ − b, c̄ − c)

is small. Unlike the situation with the simplex method (or other active set based
strategies), it is not a good idea to use the solution of the original problem as a
starting point for the modified problem. Instead, a popular strategy is to select
an advanced µ-centre (that is an approximation to a point of the central path) of
problem (5) and to reason that (under suitable conditions, and possibly after some
modifications) the obtained point is close to the central path of problem (9) and
can hence be used successfully as an advanced iterate for this problem. This is the
approach taken by [4, 5, 11]; however see [2] for a different view.

Several authors [4, 11] have looked at conditions that guarantee a successful
warm-start. These conditions usually impose bounds on the size of ∆d or equivalently
the implied distance from feasibility of the warm-start point in the modified problem,
the centrality of the warm-start point and the size of µ as a measure of distance to
optimality. Typically larger changes in problem data require a warm-start point
corresponding to a larger value of µ.

In the rest of this section we will give variants of the warm-start results in [4] and
[11] that are adapted to our setting. Later we will use these to analyse the complete
multi-tree scheme. An interesting results is that although the warm-start analyses
in [4] and [11] are quite different, the final results when applied to our scheme are
very similar. We have therefore deemed it worthwhile to include both strands of the
analysis.

3.1 Results based on implied infeasibilities

The setup considered in [4] takes an advanced iterate (x, y, s) encountered during
the solution of (5) as the basis for the warm-start point. Since the problem data has
changed, (x, y, s) is not primal–dual feasible in the modified problem (9) but instead
implies residuals

ξ̄b = b̄ − Āx, ξ̄c = c̄ − ĀT y − s.

To re-gain feasibility a modification step is added, which is based on solving the
Newton system (8) with rxs = 0 (i.e. the modification step attempts to gain feasibility
but does not seek to improve centrality). The analysis in [4] considers under what
conditions the full modification step can be taken and hence absorb the residuals
leading to a primal–dual warm-start point in the modified problem. The results are
based on bounds on the implied residuals

δGG
bc := ‖ξc‖2 + ‖ĀT (ĀĀT )−1ξb‖2, (10)

or, rather, its scaled version

δ̃GG
bc := ‖S−1ξc‖2 + ‖X−1ĀT (ĀĀT )−1ξb‖2 = ‖ξ̃c‖2 + ‖ξ̃b‖2.
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However, the analysis in [4] assumes that the perturbations in problem data will
only affect either ξb or ξc but not both at the same time. Moreover, the analysis only
gives conditions under which a full modification step is feasible (i.e. a primal–dual
feasible point for the modified problem is obtained), but makes no claims about the
centrality of this point. The aim of this section is to generalise the results in a way
that addresses both these issues.

Remark 1 The term ĀT (ĀĀT )−1ξb that appears in the definition of δGG
bc is the

“orthogonal distance of x from primal feasibility ({x : Āx = b̄})”:

ĀT (ĀĀT )−1ξb = ĀT (ĀĀT )−1(Āx − b̄)

= x − [(I − ĀT (ĀĀT )−1Ā)x + ĀT (ĀĀT )−1b̄]

= x − P{x:Āx=b̄}(x),

where P{x:Āx=b̄}(x) is the orthogonal projection of x onto the subspace {x : Āx = b̄}.
Similarly, we can interpret

ξc = c̄ − ĀT y − s = s − P{s:∃y:ĀT y+s=c̄}(s)

as the orthogonal distance of s from dual feasibility. In other words δGG
bc measures the

total orthogonal distance of the warm-start point (x, s) from primal–dual feasibility
in the modified problem.

The results in [4] are based on the observation that, using (8), the modification
step satisfies

∆x = −XQξ̃c + X(I − Q)ξ̃b and ∆s = SQξ̃c − S(I − Q)ξ̃b,

that is
X−1∆x = −Qξ̃c + (I − Q)ξ̃b = −S−1∆s, (11)

where

Q = I − S−1ĀT (ĀXS−1ĀT )−1ĀX,

ξ̃c = S−1ξc = S−1(c − AT y + s),

ξ̃b = X−1ĀT (ĀĀT )−1ξb = X−1ĀT (ĀĀT )−1(b̄ − Āx).

As in [4], we can derive bounds on ‖Q‖2 that are used in conditions on a successful
warm-start.

Lemma 1 We have the following bounds for ‖Q‖2:

(x, y, s) ∈ N2(θ), ⇒ ‖Q‖2 ≤
(

1 + θ

1 − θ

)1/2

(x, y, s) ∈ N−∞(γ), ⇒ ‖Q‖2 ≤ (
1 − γ

γ
)1/2√n.

Also, if a bound B∞ : xi, si < B∞ is known, we have

(x, y, s) ∈ N−∞(γ), ⇒ ‖Q‖2 ≤ B∞√
γµ

.
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Proof. The first result is from [4, Lemma 3.1/3.2]. For the other results note that
Q can be written as

Q = X−1/2S−1/2PX1/2S1/2, P = I − X1/2S−1/2ĀT (ĀXS−1ĀT )−1ĀX1/2S−1/2

(12)
with P representing the orthogonal projection onto the null space of ĀX1/2S−1/2

and hence ‖P‖2 = 1. Therefore

‖Q‖2 = ‖X−1/2S−1/2‖2‖X1/2S1/2‖2.

For (x, y, s) ∈ N−∞(γ) we have xisi ≥ γµ and xisi =
∑

j xjsj − ∑j 6=i xjsj ≤
nµ − (n − 1)γµ ≤ (1 − γ)nµ and hence

‖Q‖2 ≤ (
1 − γ

γ
)1/2√n.

Alternatively, in presence of the bound xi, si < B∞ we have ‖X1/2
i S

1/2
i ‖2 ≤ B∞, so

‖Q‖2 ≤ B∞√
γµ .

�

We now give a generalisation of the warm-start results in [4] that applies in the pres-
ence of both primal and dual residuals and is not tied to a particular neighbourhood.

Lemma 2 Let (x, y, s) be the considered warm-start point satisfying xi, si ≤ B∞, xisi ≥
γµ,∀i, where µ = xT s/n. If

δGG
bc ≤ µγ

B∞(1 + ‖Q‖2)
,

then the full modification step from the warm-start iterate can be taken and absorbs
the complete primal–dual infeasibilities.

Proof. Sufficient for a successful warm-start is x + ∆x ≥ 0, s + ∆s ≥ 0, that is

‖X−1∆x‖∞ ≤ 1, ‖S−1∆s‖∞ ≤ 1.

From (11) we have

‖X−1∆x‖2 ≤ ‖Q‖2‖ξ̃c‖2 + (1 + ‖Q‖2)‖ξ̃b‖2 ≤ (1 + ‖Q‖2)(‖ξ̃c‖2 + ‖ξ̃b‖2).

Under the condition of the Lemma we get

‖ξ̃c‖2 = ‖S−1ξc‖2 ≤ 1

mini si
‖ξc‖2 ≤ B∞

µγ
‖ξc‖2,

since xisi ≥ γµ, ‖x‖∞ ≤ B∞ and therefore si ≥ γµ/xi ≥ γµ/B∞. Similarly, we have

‖ξ̃b‖2 = ‖X−1ĀT (ĀĀT )−1ξb‖2 ≤ 1

mini xi
‖ĀT (ĀĀT )−1ξb‖2 ≤ B∞

µγ
‖ĀT (ĀĀT )−1ξb‖2.

Considering the two terms together we obtain

‖S−1∆s‖2 = ‖X−1∆x‖2 ≤ (1 + ‖Q‖2)
B∞
µγ

(‖ξc‖2 + ‖ĀT (ĀĀT )−1ξb‖2),
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so that ‖S−1∆s‖ = ‖X−1∆x‖ ≤ 1 provided that

δGG
bc = ‖ξc‖2 + ‖ĀT (ĀĀT )−1ξb‖2 ≤ µγ

B∞(1 + ‖Q‖2)
.

�

We are now ready to give two extensions of this result that also make statements
about the centrality of the resulting point.

Lemma 3 Let (x, y, s) ∈ N2(θ0) be the warm-start iterate. Let θ : 0 < θ0 < θ
be given and n > 9. Let the modification step (∆x,∆y,∆s) be obtained by solving
system (8) with rxs = 0 in the new problem for the current value of µ. If we have

δGG
bc ≤ βµ(1 − θ0)

B∞(1 + ‖Q‖2)
, (13)

with

β ≤ θ − θ0

7
√

n(1 + θ0)
, (14)

then the full modification step is feasible, absorbs all infeasibilities and satisfies
(x̄, ȳ, s̄) ∈ N̄2(θ).

Proof. As before we need to prove that the complementarity products x̄is̄i do not
deviate too much from the average. Note that under the conditions of the Lemma
we have from a slight generalisation of Lemma 2 that

‖X−1∆x‖∞ ≤ β, ‖S−1∆s‖∞ ≤ β,

and therefore
∆xi ≤ βxi, ∆si ≤ βsi. (15)

We also rely on the fact that for (x, y, s) ∈ N2(θ0) we have

|xisi − µ| ≤ θ0µ, xisi ≤ (1 + θ0)µ.

The rest of the proof follows that of [11, Proposition 4.2]. We start by finding a
bound on the norm of the vector

[(xi + ∆xi)(si + ∆si)]i=1,2,...,n − [(x + ∆x)T (s + ∆s)/n]e. (16)

Using the above relations we can bound

xi∆si = xisi∆si/si ≤ β(1 + θ0)µ ⇒ ‖X∆Se‖2 ≤ √
nβ(1 + θ0)µ,

∆xi∆si = xisi∆si/si∆xi/xi ≤ β2(1 + θ0)µ ⇒ ‖∆X∆Se‖2 ≤ √
nβ2(1 + θ0)µ,

xT ∆s/n = (
∑n

i=1 si∆xi)/n ≤ β(1 + θ0)µ ⇒ ‖[xT ∆s/n]e‖2 ≤ √
nβ(1 + θ0)µ,

which can be used to produce a bound on (16) by

‖(X+ ∆X)(S + ∆S)e − µ̄e‖2

= ‖(X +∆X)(S + ∆S)e − [(x + ∆x)T (s + ∆s)/n]e‖2

≤ ‖XSe − µe‖2 + ‖X∆Se‖2 + ‖S∆Xe‖2 + ‖∆X∆Se‖2

+‖[xT ∆s/n]e‖2 + ‖[sT ∆x/n]e‖2 + ‖[∆xT ∆s/n]e‖2

≤ θ0µ +
√

n(2β + β2 + 2β + β2)(1 + θ0)µ
≤ θ0µ + 6

√
nβ(1 + θ0)µ, since β ≤ 1.
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Meanwhile, we obtain a lower bound on the duality measure after the correction by

µ̄ = (x + ∆x)T (s + ∆s)/n ≥ µ − [2β(1 + θ0)µ + β2(1 + θ0)µ]

≥ µ − 3β(1 + θ0)µ.

Therefore, a sufficient condition for (x + ∆x, y + ∆y, s + ∆s) ∈ N̄2(θ) is that

θ0µ + 6
√

nβ(1 + θ0)µ ≤ θµ − 3βθ(1 + θ0)µ,

which after rearrangement becomes

µ(θ − θ0) ≥ 6
√

nβ(1 + θ0)µ + 3βθ(1 + θ0)µ = β(6
√

n + 3θ)(1 + θ0)µ. (17)

For n large enough,
√

n > 3θ and therefore (14) is sufficient for (17). �

Corollary 1 Under the setup of Lemma 3 we have (x̄, ȳ, s̄) ∈ N̄2(θ) if

δGG
bc ≤ (1 − θ0)

3/2(θ − θ0)

35
√

nB∞
µ.

Proof. From Lemma 1 we have

‖Q‖2 ≤
(

1 + θ0

1 − θ0

)1/2

which, combined with (13) and (14), yields the sufficient condition

δGG
bc ≤ (θ − θ0)

7
√

nB∞(1 + θ0)

(1 − θ0)
(

1 + (1+θ0
1−θ0

)1/2
)µ. (18)

We have

1 − θ0

(1 + θ0)
(

1 + (1+θ0
1−θ0

)1/2
) =

(1 − θ0)
3/2

(1 + θ0)[(1 − θ0)1/2 + (1 + θ0)1/2]
≥ 1

5
(1 − θ0)

3/2,

which when combined with (18) proves the Corollary. �

Finally we give an equivalent of Lemma 3 involving the N−∞ neighbourhood.

Lemma 4 Let (x, y, s) ∈ N−∞(γ0) be the warm-start iterate. Let γ : 0 < γ < γ0 be
given. Let the modification step (∆x,∆y,∆s) be obtained by solving system (8) for
rxs = 0 in the new problem for the current value of µ. If we have

δGG
bc ≤ βµγ0

B∞(1 + ‖Q‖2)
, (19)

with

β ≤ γ0 − γ

6B2∞
µ, (20)

then the full modification step is feasible, absorbs all infeasibilities and satisfies
(x̄, ȳ, s̄) ∈ N̄−∞(γ).
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Proof. The proof follows closely that of [11, Proposition 4.1/4.3]. That proof makes
strong use of the fact that for the Weighted Least Squares (WLS) modification step
(∆xWLS,∆yWLS,∆sWLS) in [11] we have the bounds

‖∆xWLS‖2, ‖∆sWLS‖2 ≤ ‖d‖δY W
bc .

Instead, we use the bounds

‖∆x‖∞ ≤ β‖x‖∞ ≤ βB∞, ‖∆x‖2 ≤ β‖x‖2 ≤ β
√

n‖x‖∞ ≤ β
√

nB∞, (21)

and similarly for ‖∆s‖∞/2 originating from (15). For a lower bound on (xi+∆xi)(si+
∆si) we use

(xi + ∆xi)(si + ∆si) = xisi + xi∆si + si∆xi + ∆si∆xi

≥ γ0µ − ‖x‖∞‖∆s‖∞ − ‖s‖∞‖∆x‖∞ − ‖∆x‖∞‖∆s‖∞
≥ γ0µ − 2B2

∞β − B2
∞β2

≥ γ0µ − 3B2
∞β, since β ≤ 1.

Using condition (20) we get a lower bound

γ0µ − 3B2
∞β ≥ γ0µ − 1

2
(γ0 − γ) ≥ γµ > 0.

It is straightforward to show that this bound is also valid for (xi +α∆xi)(si +α∆si)
for any α ∈ (0, 1). Since we know (x, s) > 0 we conclude xi + ∆xi > 0, si + ∆si > 0.

To show that (x + ∆x, s + ∆s) ∈ N̄−∞(γ) we find an upper bound on µ+ =
(x + ∆x)T (s + ∆s)/n by

µ+ = (x + ∆x)T (s + ∆s)/n ≤ µ + ‖∆x‖2‖s‖2/n + ‖∆s‖2‖x‖2/n

≤ µ + 2nB2
∞β/n + nB2

∞β2/n

≤ µ + 3B2
∞β.

Hence for the conclusion of the proposition we need

γ0µ − 3B2
∞β ≥ γ(µ + 3B2

∞β),

which is equivalent to (20). �

Corollary 2 Under the setup of Lemma 4 we have (x̄, ȳ, s̄) ∈ N̄−∞(γ0) if

δGG
bc ≤ (γ0 − γ)γ

3/2
0

6B4∞
µ5/2. (22)

Proof. From Lemma 1 we have ‖Q‖2 ≤ B∞/(
√

γ0µ). Combining this with (19) and
(20) we get the sufficient condition

δGG
bc ≤ (γ0 − γ)γ0

6B3∞(1 + B∞√
γ0µ)

µ2.

Assuming µ < B2
∞ we have (1 + B∞√

γ0µ) ≤ 2 B∞√
γ0µ and therefore

(γ0 − γ)γ0

6B3∞(1 + B∞√
γ0µ)

µ2 ≥ (γ0 − γ)γ
3/2
0

6B4∞
µ5/2.
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3.2 Results based on changes in problem data

The conditions for a successful warm-start in [11] involve the Renegar condition
number C(d) of the problem and a direct measure of the change in the problem data.
Following [11], we define F as the set of primal–dual feasible data instances

F := {(A, b, c) : ∃(x, y, s) with (x, s) > 0 such that Ax = b,AT y + s = c},

its complement by FC , and their shared boundary as B = cl(F) ∩ cl(FC). For a
problem given by the data d = (A, b, c), let

‖d‖ := max{‖A‖2, ‖b‖2, ‖c‖2}

and the difference to ill-posedness ρ(d) given by

ρ(d) = inf{‖∆d‖ : d + ‖∆d‖ ∈ B}. (23)

The condition number C(d) of the data instance d is then defined as

C(d) = ‖d‖/ρ(d).

Further with ∆d = (0,∆b,∆c) (i.e. assuming ∆A = 0) define the following measures
of (relative) change in the problem data:

δY W
b =

‖∆b‖2

‖d‖ , δY W
c =

‖∆c‖2

‖d‖ , δY W
bc = δb + 2C(d)δc.

The setup of [11] assumes that a point in a neighbourhood of the central path for (5)
is given. Two possible modification steps, a Weighted Least Squares (WLS) step and
a Newton correction (NC), are suggested which have computational effort similar to
the standard IPM step. They derive conditions under which these steps are able
to absorb the whole primal–dual infeasibility introduced by the change of problem
data. A typical result is as follows.

Proposition 1 ([11, Prop. 4.3]) Let (x, y, s) ∈ N−∞(γ0) be given and suppose
that (∆x,∆y,∆s) is obtained by the WLS step. Further let γ be such that 0 < γ <
γ0 < 1, and ξ ∈ (0, γ0 − γ). Assuming that

δY W
bc ≤ γ0 − γ − ξ

(n + 1)C(d)
and µ ≥ ‖d‖

ξ
3C(d)2δY W

bc ,

then (x + ∆x, y + ∆y, s + ∆s) ∈ N̄−∞(γ).

The bound on δY W
bc is inconvenient for our purposes due to its dependency on the

problem size n, which states that the absorbable perturbations become smaller the
larger the problem is. Ultimately this bound originates from the Nunez-Freund
bounds ([7])

‖x(µ)‖2 ≤ K(d, µ), ‖s(µ)‖2 ≤ 2‖d‖2K(d, µ), where K(d, µ) = C(d)2 +
nµ

ρ(d)
,
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which in absence of further conditions are the only general upper bounds on ‖x‖, ‖s‖
that can be used.

In our case we assume that we know a bound B∞ : xi, si ≤ B∞ for all considered
warm-start points (a more detailed discussion will follow in Section 5). Hence it is
possible to derive results with weaker conditions on δY W

bc . We will give the analysis
for the WLS modification step, results for the NC step can be derived similarly. Our
first result is a direct extension of Proposition 4.3 in [11]:

Lemma 5 (WLS and N−∞ neighbourhood) Let (x, y, s) ∈ N−∞(γ0) be given
with γ : 0 < γ < γ0, and assume that a bound ‖x‖2, ‖s‖2 ≤ B2 uniformly for all µ is
known. Suppose that (∆x,∆y,∆s) is obtained by the WLS step. Assuming that

µ ≥ ‖d‖
γ0 − γ

3B2δ
Y W
bc , (24)

then (x + ∆x, y + ∆y, s + ∆s) ∈ N̄−∞(γ).

Proof. The proof closely follows the proof of [11, Propositions 4.1/4.3] and can be
found in the Appendix.

Lemma 6 (WLS and N2 neighbourhood) Let (x, y, s) ∈ N2(θ0) be given with
θ : 1 > θ > θ0, and assume that a bound ‖x‖2, ‖s‖2 ≤ B2 uniformly for all µ is
known. Suppose that (∆x,∆y,∆s) is obtained by the WLS step. Assuming that

µ ≥ ‖d‖
θ − θ0

4B2δ
Y W
bc , (25)

then (x + ∆x, y + ∆y, s + ∆s) ∈ N̄2(θ).

Proof. Again the proof can be found in the Appendix.
We are now ready to apply these results to our application of warm-starting

stochastic programming problems from reduced trees.

4 Warm-starting stochastic programming problems

We now turn our attention to the warm-starting of stochastic programming problems.
In what follows we will limit our analysis to the case of a two stage stochastic
programming problem with fixed recourse where the stochasticity only affects the
right hand side, i.e problem (2) with W (ξ) = W,T (ξ) = T, q(ξ) = q.

As indicated earlier, we assume that we are given a sequence of trees T (1),T (2), . . . ,T (K)

which define a series of problems P (k) = P (T (k)). In this section we will start by
analysing a single step of this scheme, i.e. we assume that we only have two trees
T (1),T (2) and postpone the analysis of the whole sequence to Section 5.

This warm-start application differs from the usual setup in that, rather than
warm-starting from a problem with the same size but different problem data, we are
warm-starting from a problem with the same structure, but different dimensions. As
in [3] we will introduce a notional expanded problem that has the same size as the
problem to be warm-started (the new problem) but using data from the old problem.

12



We now assume that we are given two trees T (1),T (2), where T (1) is obtained by
an aggregation of nodes from T (2). In detail, we partition the scenario set of T (2)

into disjoint clusters

T (2) =
⋃

i

Ci, Ci ∩ Cj = ∅, ∀i 6= j

find the average scenario for each cluster

µ(Ci) =
∑

j∈Ci

pjηj/(
∑

j∈Ci

pj)

and use the set of aggregated scenarios as the reduced tree

T (1) := {µ(Cj)}j .

This implies a function

r(1,2) : T (2) → T (1), r(1,2)(η) = µ(Cj) : η ∈ Cj

that identifies for each scenario of T (2) the corresponding scenario in T (1), and its
(set valued) inverse

I(1,2)(ν) := {η ∈ T (2) : r(η) = ν}, ν ∈ T (1).

For the probabilities pν of scenario ν we have

pν =
∑

η∈I(1,2)(ν)

pν, ∀ν ∈ T (1),

that is tree T (1) is obtained from T (2) by clustering and node aggregation. For
a balanced aggregation we would have pη|T (2)| ≈ pr(η)|T (1)|, where |T | is used to

denote the cardinality of the tree T . We define the balancing parameter ρ(1,2) to be
the maximal deviation from this

ρ(1,2) := min
η∈T (2)

{

pη

pr(η)

|T (2)|
|T (1)| ,

pr(η)

pη

|T (1)|
|T (2)|

}

≤ 1. (26)

In addition we also need a one-sided version

ρ
(1,2)
− := min

η∈T (2)

{

pη

pr(η)

|T (2)|
|T (1)|

}

≤ 1. (27)

An important difference between ρ(1,2) and ρ
(1,2)
− concerns the root node (labelled

‘0’). Since r(0) = 0 and p0 = 1 for all aggregations, we have

ρ(1,2) ≤ |T (1)|/|T (2)|

irrespective of the balancing of the tree aggregation. On the other hand, it is possible

to achieve ρ
(1,2)
− = 1 for a perfectly balanced aggregation. Later results will differ in

whether they depend on ρ or ρ−.
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As in [3] we will use a two-step procedure to construct a warm-start point for
problem P (T (2)) from a (reasonably) central and primal–dual feasible point for
P (T (1)). In a first step, with the mapping r(1,2) we define the expanded tree

T̂ (1,2) := {r(1,2)(t) : t ∈ T (2)},

that is a tree of the same shape as T (2), but with all scenarios replaced by their
corresponding scenarios from T (1). When it is clear which two trees are involved we
will drop the superscript (1,2) from r and T̂ . The warm-start point can be similarly
expanded resulting in a point that is primal–dual feasible for P (T̂ ) but has worsened
centrality. From a primal–dual feasible point (x, y, s) for tree T (1), then as in [3] we
can construct a primal–dual feasible point (x̂, ŷ, ŝ) for problem P (T̂ ) by setting

x̂t = xr(t), (ŷt, ŝt) =
pt

pr(t)
(yr(t), sr(t)). (28)

In a second step we replace the scenarios of T̂ by those of T (2) resulting in implied
residuals ξb, ξc for the constructed warm-start point. We can control the worsening
of centrality (in step 1) by using a balanced aggregation, and the size of the implied
residuals (in step 2) by keeping d(T (1),T (2)) small. The main result of this section
are conditions on ρ(1,2) and d(T (1),T (2)) that guarantee a successful warm-start.

4.1 Step 1: Worsening of centrality

We start by analysing the worsening of centrality. The corresponding result from [3]
(where the Ns neighbourhood is used), is the following.

Lemma 7 ([3, Theorem 3]) Let (x, y, s) ∈ N (1)
s (γ) and let (x̂, ŷ, ŝ) be constructed

from it by (28). Then
(x̂, ŷ, ŝ) ∈ N̂s(ρ

(1,2)γ).

We now give similar results for the N2 and N−∞ neighbourhoods.

Lemma 8 Let (x, y, s) ∈ N (1)
2 (θ) and let (x̂, ŷ, ŝ) be constructed from it by (28).

Then
(x̂, ŷ, ŝ) ∈ N̂2(θ̂)

where θ̂ = n2
n1

θ +
√

n2(1 − ρ(1,2)).

Proof. The slightly technical proof is given in the Appendix.
We also give a version of Lemma 7 using the N−∞ neighbourhood (and ρ−).

Lemma 9 Let (x, y, s) ∈ N (1)
−∞(γ) and let (x̂, ŷ, ŝ) be constructed from it by (28).

Then
(x̂, ŷ, ŝ) ∈ N̂−∞(ρ

(1,2)
− γ).

Proof. Since xisi ≥ γµ we have

x̂t
iŝ

t
i = x

r(t)
i s

r(t)
i

pt

pr(t)
≥ pt

pr(t)
γµ =

pt

pr(t)
γ

n2

n1
µ̂ ≥ ρ

(1,2)
− γµ̂.

�
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4.2 Step 2: Bounds on δbc based on tree distance

The aim of this section is to relate the distance measures δY W
bc , δGG

bc to the distance
between the old and new scenario trees. While δY W

bc measures the change in prob-
lem data, δGG

bc is concerned with the resulting primal–dual infeasibility in the new
problem.

Lemma 10 Let (x̂, ŷ, ŝ) ∈ F̂0 be given. For the primal–dual infeasibilities incurred
by changing the problem from T̂ to T (2) we have

δGG
bc ≤

√

|T (2)|‖W T (WW T )−1‖2d(T (1),T (2)).

Proof: According to Remark 1, δGG
bc is equal to ‖∆x∗‖2 + ‖∆s∗‖2, where ∆x∗,∆s∗

is the minimal change to x̂, ŝ needed to obtain a primal–dual feasible point for
problem T (2). Therefore for any change ∆x,∆s that restores primal–dual feasibility,
‖∆x‖2 + ‖∆s‖2 is an upper bound for δGG

bc .

Since (x̂, ŷ, ŝ) ∈ F̂ we have

ptq̂t − W T ŷt − ŝ2,t = 0 (29a)

c1 − AT ŷ1 − T T ŷ2,t − ŝ1 = 0 (29b)

Ax̂1 = b (29c)

T x̂1 + Wx̂2,t = ĥt (29d)

We now consider the effect of changing the problem from T̂ to T (2), that is replacing

q̂t and ĥt by q
(2)
t and h

(2)
t , respectively. Note that we have

‖∆qt‖ = ‖q̂t − q
(2)
t ‖ ≤ d(T (1),T (2)), ‖∆ht‖ = ‖ĥt − h

(2)
t ‖ ≤ d(T (1),T (2)).

Since the change of problem data only affects qt, ht, equations (29a/c) are still sat-
isfied. For (29b/d) we construct a change ∆x,∆s to restore primal–dual feasibility.

In order to satisfy (29a) we can simply take ∆s2,t = pt(q
(2)
t − q̂t) and get

ptq
(2)
t − W T ŷ1 − (ŝ2,t + ∆s2,t) = ptq̂t − W T ŷ1 − ŝ2,t = 0,

and therefore
‖∆s2,t‖ ≤ pt‖∆qt‖ ≤ d(T (1),T (2)).

For (29d) we look at finding a change ∆x2,t to satisfy

min 1
2∆xT

2,t∆x2,t s.t. T x̂1 + W (x̂2,t + ∆x2,t) = h
(2)
t .

Deriving optimality conditions, one can see easily that this is satisfied by

∆x2,t = W T (WW T )−1(h
(2)
t − ĥt),

hence
‖∆x2,t‖2 ≤ ‖W T (WW T )−1‖d(T (1),T (2)).
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Together we obtain

δGG
bc ≤ ‖∆x‖2 + ‖∆s‖2 ≤ 2

√

|T (2)|max{‖∆x2,t‖2, ‖∆s2,t‖1}

≤ 2

√

|T (2)|‖W T (WW T )−1‖2d(T (1),T (2)).

�

Finding a bound on δY W
bc in terms of d(T (1),T (2)) is even easier.

Lemma 11 Let (x̂, ŷ, ŝ) ∈ F̂0 be given. For the primal–dual infeasibilities incurred
by changing the problem from T̂ to T (2) we have

δY W
bc ≤ 3C(d)

√

|T (2)|
‖d‖ d(T (1),T (2)).

Proof. We have

δY W
bc =

‖∆b‖
‖d‖ + 2C(d)

‖∆c‖
‖d‖ (30)

As in the proof to Lemma 10 we can argue that

‖∆qt‖, ‖∆ht‖ ≤ d(T (1),T (2)), ∀t ∈ T (2),

and hence

‖∆b‖ = ‖∆h‖ ≤
√

T (2)d(T (1),T (2)), ‖∆c‖ = ‖∆q‖ ≤
√

T (2)d(T (1),T (2)). (31)

From (30), (31) and 1 ≤ C(d) we get the assertion. �

4.3 Results for the two-tree scheme

We are now in a position to give conditions under which the whole warm-start process
on two trees is successful. The algorithm we analyse consists of the steps detailed in
Algorithm 1. In what follows we give results for the N2 and N−∞ neighbourhoods

Algorithm 1 Two-tree stochastic warm-start

Require: The full tree T2.
1: Starting from T2 choose a reduced tree T1 (for example by clustering and scenario

selection).
2: Solve the problem on the reduced tree T1 to a duality gap of µ = µ(1), to obtain

a point
(x(1), y(1), s(1)) ∈ N (1)

for a specific choice of neighbourhood N (1).
3: Expand this point by (28) to a solution (x̂, ŷ, ŝ) of the expanded problem.
4: Do a modification step in the full problem (Pure centring step or WLS step).

for each of the two modification steps considered in Sections 3.1 and 3.2, respectively.
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Theorem 1 Let (x(1), y(1), s(1)) ∈ N (1)
−∞(γ0) with (x(1))T s(1) = n1µ. Then the warm-

start according to Algorithm 1 is successful, that is

(x̂ + ∆x, ŷ + ∆y, ŝ + ∆s) ∈ N (2)
−∞(γ),

where (∆x,∆y,∆s) is a pure centring step in the full problem, if

d(T1,T2)
n

5/2
2

√

|T2|
n

5/2
1 ρ

3/2
−

≤ ρ−γ0 − γ

6B4∞‖W T (WW T )−1‖2
γ

3/2
0 µ5/2.

Proof. According to Lemma 9, the expansion procedure of Step 3 leads to a point

(x̂, ŷ, ŝ) ∈ N̂−∞(ρ−γ0), with µ̂ := x̂T ŝ/n2 = µn1/n2.

According to Corollary 2 the warm-start is thus successful if

δGG
bc ≤ ρ−γ0 − γ

6B4∞
(ργ0)

3/2(
n1

n2
µ)5/2.

Combining this with the bound on δGG
bc from Lemma 10 we get the condition

√

|T (2)|‖W T (WW T )−1‖2d(T (1),T (2)) ≤ ρ−γ0 − γ

6B4∞
(ρ−γ0)

3/2(
n1

n2
µ)5/2,

which can be rearranged to obtain the condition of the Theorem. �

A result for the N2 neighbourhood is a bit harder to obtain, since in the worsening-
of-centrality result (Lemma 8) the new centrality measure θ̄ = n2

n1
θ +

√
n2(ρ − 1)

depends on more parameters. We can however control the n2
n1

θ-term by reducing the
initial centrality measure through some additional centering steps. This leads to the
following result.

Theorem 2 Let (x(1), y(1), s(1)) ∈ N (1)
2 (0.5) with (x(1))T s(1) = n1µ. Assume that

n2 ≤ 10n1, 1 − ρ(1,2) ≤ 1

4
√

n2
.

By performing up to two additional centering iterations in the reduced problem we
can obtain a point

(x̃(1), ỹ(1), s̃(1)) ∈ N2(0.15
n1

n2
).

From this point the warm-start according to Algorithm 1 is successful, that is

(x̂ + ∆x, ŷ + ∆y, ŝ + ∆s) ∈ N (2)
2 (0.5),

where (∆x,∆y,∆s) is a pure centring step in the full problem, if

d(T1,T2)
√

|T2|
n

3/2
2

n1
≤ 1

760B∞‖W T (WW T )−1‖2
µ.
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Remark 2 These conditions are obviously very tight:

1 − ρ(1,2) ≤ 1

4
√

n2

means that for moderate tree sizes (n2 ≈ 105) we need ρ > 0.999, i.e. a more or less
perfectly balanced tree.

In order to prove this Theorem we need the following generalisation of the centering
results [10, Lemma 5.8]:

Lemma 12 Let (x, y, s) ∈ N2(θ) with 0 < θ < 0.5 and let (∆x,∆y,∆s) be obtained
by a pure centring step. Then the full step is feasible and

(x + ∆x, y + ∆y, s + ∆s) ∈ N2(θ̄)

where θ̄ = θ2

23/2(1−θ)
.

Proof. By combining Lemmas 5.5/5.4 in [10] we get (setting α = σ = 1):

‖(X + ∆X)(S + ∆S)e − µe‖2 ≤ ‖∆X∆Se‖2 ≤ θ2

23/2(1 − θ)
µ.

The feasibility of the full step follows from [10, Lemma 5.8]. �

Corollary 3 By performing a series of pure centring steps we have the progression

N2(0.5) → N2(0.18) → N2(0.015) → N2(0.001).

Proof (of Theorem 2). According to Corollary 3, a maximum of two centring
steps will take us from N2(0.5) to N2(0.015) ⊂ N2(0.15

n1
n2

) for n2 ≤ 10n1. According
to Lemma 8, the expansion procedure of Step 1 leads to a point

(x̂, ŷ, ŝ) ∈ N̂2(θ̂), with µ̂ := x̂T ŝ/n2 = µn1/n2,

where
θ̂ =

n2

n1
(0.15

n1

n2
) +

√
n2(ρ − 1) ≤ 0.15 + 0.25 = 0.4.

According to Corollary 1, the warm-start is thus successful if

δGG
bc ≤ (1 − θ̂)3/2(θ − θ̂)

35
√

n2B∞

n1

n2
µ.

Combining this with the bound on δGG
bc from Lemma 10 we get the condition

√

|T (2)|‖W T (WW T )−1‖2d(T (1),T (2)) ≤ (1 − θ̂)3/2(θ − θ̂)

35
√

n2B∞

n1

n2
µ.

Rearranging, setting θ = 0.5 and using

θ − θ̂

35
(1 − θ̂)3/2 ≥ 1

760
,

we obtain the condition of the Theorem. �

The final two results concern the WLS modification step and use the results from
Section 3.2.
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Theorem 3 Let (x(1), y(1), s(1)) ∈ N (1)
−∞(γ0) with (x(1))T s(1) = n1µ. Then the warm-

start according to Algorithm 1 is successful, that is

(x̂ + ∆x, ŷ + ∆y, ŝ + ∆s) ∈ N (2)
−∞(γ),

where (∆x,∆y,∆s) is the Weighted Least Squares step according to [11] in the full
problem, if

d(T1,T2)
√

|T2|
n2

n1
≤ γ0ρ− − γ

9B2C(d)
µ.

Proof. The expansion procedure of Step 1 leads according to Lemma 9 to a point
(x̂, ŷ, ŝ) ∈ N̂−∞(γ0ρ−), with µ̂ := x̂T ŝ/n2 = µn1/n2. According to Lemma 5, the
warm-start is thus successful if

δY W
bc ‖d2‖ ≤ γ0ρ− − γ

3B2

n1

n2
µ.

Combining this with the bound on δY W
bc from Lemma 11 we get the condition

3C(d)

√

|T (2)|d(T (1),T (2)) ≤ γ0ρ− − γ

3B2

n1

n2
µ,

which, after rearrangement, proves the Theorem. �

Theorem 4 Let (x(1), y(1), s(1)) ∈ N (1)
2 (0.25) with (x(1))T s(1) = n1µ. Assume that

n2 ≤ 10n1, ρ(1,2) − 1 ≤ 1

4
√

n2
.

By performing up to two additional centring iterations in the reduced problem we
obtain a point

(x̃(1), ỹ(1), s̃(1)) ∈ N2(0.15
n1

n2
).

From this point the warm-start according to Algorithm 1 is successful, that is

(x̂ + ∆x, ŷ + ∆y, ŝ + ∆s) ∈ N (2)
2 (0.5),

where (∆x,∆y,∆s) is the Weighted Least Squares step according to [11] in the full
problem, if

d(T1,T2)
√

|T2|
n2

n1
≤ 1

120B2C(d)
µ.

Proof. The first part (recentering) follows as in the proof to Theorem 2. Accord-
ing to Lemma 8, the expansion procedure of Step 1 leads to a point (x̂, ŷ, ŝ) ∈
N̂2(θ̂), with µ̂ := x̂T ŝ/n2 = µn1/n2, where

θ̂ =
n2

n1
(0.15

n1

n2
) +

√
n2(ρ − 1) ≤ 0.15 + 0.25 = 0.4.

According to Lemma 6 the warm-start is thus successful if

δY W
bc ‖d2‖ ≤ θ − θ̂

4B2

n1

n2
µ,
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which, combined with the bound on δY W
bc from Lemma 11, yields the condition

3C(d)
√

|T (2)|d(T (1),T (2)) ≤ θ − θ̂

4B2

n1

n2
µ.

Rearranging, setting θ = 0.5 and using (θ − θ̂)/12 = 1/120 we obtain the condition
of the Theorem. �

5 Warm-start on a series of trees

The results of Section 4.3 give conditions under which the warm-start from a neigh-
bourhood of the central path in the reduced tree leads to a neighbourhood of the
central path in the full tree. In this chapter we apply these results to a series of
progressively larger trees T (1),T (2), · · · ,T (K) = T . Algorithm 2 details the steps for
the multiple tree stochastic warm-start scheme.

Algorithm 2 Multiple-tree stochastic programming warm-start

Require: A sequence of trees T (1),T (2), · · · ,T (K) with resulting problem sizes n(k)

and closeness measures d(k) = d(T (k),T (k+1)). Further a sequence of µ-values
µ(k).

1: for k = 1 to K do
2: Solve problem P (T (k)) to accuracy µ(k), that is to obtain a point

(x(k), y(k), s(k)) ∈ N (k) for some neighbourhood N (k) with (x(k))T s(k)/n(k) =
µ(k).

3: Perform additional centring steps to obtain a point in a tighter neighbourhood.
4: Expand this point to a solution (x̂(k), ŷ(k), ŝ(k)) of the expanded problem, by

following the scheme in (28).
5: Use (x̂(k), ŷ(k), ŝ(k)) to warm-start the problem on the next tree in the sequence

T (k+1).
6: end for

In order to analyse the Algorithm we could use the results of Section 4. Their
conditions, however, involve quantities like C(d) and B∞, B2, which depend on the
exact problem in the sequence.

We start by deriving global bounds for the quantities C(d) and B∞/B2 that
appear in the conditions for d(T (1),T (2)) in Section 4.3. The proofs of these results
are given in the Appendix.

Lemma 13 Let T be the full tree and let the reduced tree T be obtained from it by
scenario aggregation. Then we have that

ρ(d(T )) ≤ ρ(d(T )),

where d(T ) = d(P (T )) is the problem data d = (A, b, c) describing the problem P (T ).
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Lemma 14 Given a sequence of trees T (1),T (2), · · · ,T (K) where T (k−1) is obtained
from T (k) by scenario aggregation, then

C(d(k)) ≤ C(d) = C(d(K)), ∀k.

Further, given a sequence of µ-values: µ(1) ≥ µ(2) ≥ . . . ≥ µ(K), then with

B2 = 2‖d(K)‖2(C(d)
2
+ n(K)µ(1)/ρ̄)

B∞ = 2‖d(K)‖1(C(d)
2
+ n(K)µ(1)/ρ̄)

we have that all (x(k), s(k)) that are used in the warm-start sequence satisfy

‖x(k)‖∞, ‖s(k)‖∞ ≤ B∞, ‖x(k)‖2, ‖s(k)‖2 ≤ B2.

We are now in a position to state the main results of this paper. We give conditions
under which all the warm-start steps in the algorithm are successful both for the N2

and the N−∞ neighbourhoods.

Theorem 5 Given is a sequence of trees T (1),T (2), · · · ,T (K) with resulting problem
sizes n(k) and closeness measures d(k) = d(T (k),T (k+1)). Further we are given a
sequence of µ-values µ(k). Assume that we have a bound C(d) = C(P (k)). If we have

n(k+1) ≤ 10n(k), ρ(k,k+1) ≤ 1 +
1

4
√

n(k+1)

µ(k) ≥ 120

√

|T (k+1)|B̄2C(d)d(k) n
(k+1)

n(k)
(32)

or

µ(k) ≥ 760

√

|T (k+1)|B̄∞‖W T (WW T )−1‖2d
(k) (n

(k+1))3/2

n(k)
, (33)

with B̄2, B̄∞ from Lemma 14, then Algorithm 2 can be performed successfully, that
is all warm-starts are successful and lead to points

(x(k+1), y(k+1), s(k+1)) ∈ N (k+1)
2 (0.5).

Proof. All the warm-start points are primal–dual feasible for their respective orig-
inating problem. Therefore the bounds from Lemma 14 hold. The assertion of the
Theorem then follows from Theorems 2 and 4. �

We will now give the equivalent result for the N−∞ neighbourhood based on
Theorems 1 and 3. In the N−∞ neighbourhood there are no cheap re-centring steps.
We therefore suggest a scheme in which the centrality measure γ worsens at every
step. In particular we will choose the sequence γ(0) > 0.1, γ(k+1) = (γ(k) + 0.1)/2.

Theorem 6 Given is a sequence of trees T (1),T (2), · · · ,T (K) with resulting problem
sizes n(k) and closeness measures d(k) = d(T (k),T (k+1)). Further we are given a
sequence of µ-values µ(k). Assume that we have a bound C(d) = C(P (k)). If we
choose

γ(k+1) =
1

2
(γ(k) +

1

10
)
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and satisfy the conditions

ρ
(k,k+1)
− − 1 ≤ 1

4
(γ(k) − 1

10
)

d(k)
√

|T (k+1)| ≤ γ(k) − 1
10

6 · 320B4∞‖W T (WW T )−1‖2

( (n(k))

(n(k+1))
µ
)5/2

(34)

or

d(k)
√

|T (k+1)| ≤ γ(k) − 1
10

36B2C(d)

n(k)

n(k+1)
µ, (35)

with B̄2, B̄∞ from Lemma 14, then Algorithm 2 can be performed successfully, that
is all warm-starts are successful and lead to points

(x(k+1), y(k+1), s(k+1)) ∈ N (k+1)
−∞ (γ(k+1)).

Proof. All the warm-start points are primal–dual feasible for their respective orig-
inating problem, so the bounds from Lemma 14 hold. Under the conditions of the
Theorem we have (since γ < 1)

1 − ρ ≤ 1

4
(γ − 1

10
) ≤ 1

4γ
(γ − 1

10
) =

1

4
− 1

40γ
,

and therefore

ρ(k,k+1) ≥ 3

4
+

1

40γ(k)
.

Moreover

γ(k)ρ− − γ(k+1) ≥ 3

4
γ(k) +

1

40
− 1

2
γ(k) − 1

20
=

1

4
(γ(k) − 1

10
), (36)

and therefore with ρ− ≥ 3/4, γ(k) ≥ 1/10:

ρ
3/2
− (ρ−γ(k) − γ(k+1))(γ(k))3/2 ≥ 1

2

1

4
(γ(k) − 1

10
)

1

40
=

1

320
(γ(k) − 1

10
). (37)

Combining (37) with (34) we see that the condition of Theorem 1 is satisfied. Simi-
larly, combining (36) with (35) we see that the condition of Theorem 3 is satisfied.
In both cases we see that the sequence of warm-start is successful as claimed. �

5.1 Complexity analysis

We now take a closer look at Algorithm 2. In step 2 the advanced µ(k)-centre is
found by applying an interior point method. Assuming (as usual) that we know a
primal–dual feasible µ0 centre, the initial µ(1)-centre can be found in

O
(

nτ log
µ0

µ(1)

)

(38)

iterations (see for example [11]). The parameter τ depends on the IPM variant used,
and is τ = 1 for the long-step method and τ = 1/2 for the short-step method. We
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assume that the computational cost of an interior point iteration (which is dominated
by the solution of system (8)) is O(nα), where typically α > 1 (dense linear algebra
would give α = 3, the best structure exploiting solvers are able to reach α ≈ 1 in
specific circumstances).

Since typically α > 1, the computational cost will be dominated by the number
of iterations that have to be performed on the full problem P (T ). It is therefore
crucial to analyse what the latest point (smallest µ) is at which the switch to the
full problem can be performed successfully according to the analysis presented in the
previous sections.

If we use only one reduced tree for warm-starting (as in [3]), then from condition
(33) of Theorem 5 and the fact that typically n(k) ≈ C|T (k)| we get as a condition
for the smallest acceptable µ-value (in the reduced problem) the bound

µ(1) ≥ Cd(T1,T (k))n2
K/n1.

Similar conditions can be obtained using conditions (32), (34), (35) to obtain bounds
of the form

µ(1) ≥ Cd(T1,T (k))anb
K/n1,

where the values of a, b and the constant C depend on which strand of the analysis
we take according to

cond (32) (33) (34) (35)

a 1 1 2/5 1
b 3/2 2 1 1

According to the analysis of the expansion and warm-start steps this yields a
warm-start point in the full problem with a corresponding µ-value

µ = µ(1) n1

nK
≥ Cd(T1,T (k))anb−1

K . (39)

One the other hand if we use a sequence of trees T (1),T (2),T (K), the final warm-
start into the full problem P (T (K)) will be performed from T (2) and by a similar
argument we obtain the bound

µ = µ(2) n2

nK
≥ Cd(T2,T (k))anb−1

K . (40)

We expect that T (2) is chosen such that d(T (2),T (K)) < d(T (1),T (K)). Comparing
(39) and (40) and using (38) we obtain that the number of full problem iterations
saved by performing the multi-step warm-start is

O
(

a log
d(T (2),T (K))

d(T (1),T (K))

)

.

A similar analysis can now be applied to determine whether it is worthwhile to
introduce an additional tree T (3) between T (2) and T (K), or indeed whether problem
P (T (2)) should be warm-started directly from T (1) or from an intermediate tree
between T (1) and T (2).
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We should note that typically there is a large gap between the theoretically
predicted and practically observed behaviour of interior point methods. We therefore
see the bounds in Theorems 5 and 6 only as qualitative guidance, but will not check
them in practice. We think this reasoning is supported by the numerical results
which we present in the final section.

6 Numerical results

The multi-step warm-start algorithm is implemented within OOPS [6], an infeasible
primal–dual long-step interior point code. In fact, OOPS does not enforce that
iterates have to be in a specific neighbourhood. As such the code is quite different
from the exemplary method used in our analysis. Our aim is however to demonstrate
that the warm-starting scheme offers potential for time savings even on production
codes (and not just on a textbook algorithm).

We have tested the multi-step warm-start algorithm (Algorithm 2) on two sets
of test problems. The first set consists of variations of the standard diet problem
in which a set of products have to be mixed from a supply of raw materials in
order to satisfy certain nutrient specifications of the products at minimum cost. The
problem is made stochastic by assuming that demand of products and availability of
raw materials are unknown. The first-stage decision is to decide how much to buy of
each raw material, and the recourse problem decides how to mix each of the products.
We allow to buy in missing raw materials at premium cost to ensure full recourse.
The second set comes from capacity assignment problems with uncertain demand.
Scenarios for both sets of problems are generated by sampling from a (multivariate)
uniform distribution. Details of our test problems and their dimensions are given in
Table 1.

core size problem size
Problem scenarios constraints variables constraints variables

ex1 20000 50 70 960.001 1.780.006
40000 50 70 1.920.001 3.560.006

ex3 10000 72 112 700.001 1.380.009
20000 72 112 1.400.001 2.760.009

s97 10000 147 157 1.450.001 2.390.010
s98 10000 149 141 1.470.001 2.060.006
j99 10000 158 148 1.560.001 2.170.007

Minoux 10000 118 239 1.160.001 3.050.051
Jll gva 4000 350 781 1.392.001 4.180.085
T1B3 10000 50 109 1.070.001 1.350.024
r4c 10000 177 272 2.700.001 2.970.151

Table 1: Dimensions of the test problems.

All computations have been performed on a Dual Core Intel 3.0GHz processor
with 4GB RAM. Starting from the full problem we generate reduced problems by
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clustering scenarios (using k-means++ clustering [1]). In our first set of results
(presented in Table 2) we compare the efficiency of a single step of the stochastic
warm-start (Algorithm 1) for varying sizes of the reduced tree. The numbers given
are the IPM iterations for the full tree (after warm-start), the total solution time
(for the reduced and full problem solve) and the combined residual ‖ξb‖∞ + ‖ξc‖∞
in the first iteration of the full problem.

As expected, the residuals in the full problem decrease as the reduced tree ap-
proximation improves, confirming the assertions of Lemmas 10/11. In all cases, the
warm-start can significantly reduce the number of iterations. Since an iteration in
the reduced problem is much cheaper than an iteration in the full problem, the
savings in iterations are translated into savings of solution time. As expected the
number of iterations needed in the warm-started problem is generally smaller if the
reduced tree is larger, i.e. it approximates the full tree better. However, in terms of
solution time there is a slight tradeoff, since using a large reduced tree means that
a non-negligible time is spent in finding the warm-start point.

To complete the picture, Table 3 gives the smallest target µ-value in the reduced
tree for which the warm-start is successful found by experimentation. Since we
deem the definition of a “successful warm-start” used in the theoretical part of this
paper (namely the modification step itself regains feasibility in the full problem)
too stringent, we have used the criterion that the infeasible IPM used for the full
problem is able to reduce the combined primal–dual infeasibility below 0.1 (or 1/100
of its original value, whichever is smaller) within the first 3 iterations. As can be
seen, the smallest successful µ-value decreases as the quality of the reduced tree
approximation improves, again confirming the results of Theorems 1-4.

In our second set of results we test the performance of the multi-step scheme.
In all instances we have used three trees: for each problem the full tree and the
smallest and largest reduced tree from Table 2. In Table 4 we compare the solution
time for the cold started problem, the problem warm-started from the largest reduced
tree, problem warm-started from the smallest reduced tree and finally the three-tree
scheme. We also report the percentual time savings of the 3-step scheme compared
to the best of the 2-step warm-starts (negative values indicate that the 3-step scheme
is not the fastest). In all cases the multistep warm-start can improve on the solution
time of the of the 2-step scheme when warm-started from the largest tree. In most
cases we can also improve on the solution time when warm-starting from the smallest
reduced tree. Although the 3-step scheme is not in all cases the fastest of the warm-
start schemes, it is always good. Keeping in mind that the optimal size of the reduced
tree for a 2-step scheme can not be determined a-priori, the 3-step warm-start is a
good alternative.

Our numerical results show that the warm-start scheme significantly speeds up
the solution of large two-stage stochastic programming problems when compared to
a cold start and has advantages compared to a simple reduced tree warm-start. Al-
though the analysis has been performed for linear two-stage problems, we would ex-
pect that the scheme can be adapted to nonlinear problems and multi-stage stochas-
tic programming. We leave this for future research.
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size of reduced tree
Problem scenarios cold

4000 2000 1000 100 10

ex1 20000 25 - 12 - 14 12
580s 327s 311s 264s

1.76 4.20 8.34
40000 34 14 - - 14 18

1559s 766s 642s 843s
1.55 3.87 7.40

ex3 10000 34 - - 18 28 27
563s 346s 469s 444s

2.90 6.16 13.2
20000 53 - 16 - 24 29

1793s 626s 804s 961s
2.56 5.75 11.7

s97 10000 31 - - 15 18 15
498s 389s 252s 229s

2.46 4.26 7.88
s98 10000 >100 - - 18 32 30

2278s 826s 951s 878s
7.77 11.8 23.2

j99 10000 76 - - 11 11 11
1796s 375s 282s 275s

4.70 11.0 18.0

Minoux 10000 40 - - 17 30 27
2644s 1212s 1831 1790s

0.081 0.441 3.52
Jll gva 4000 63 - - 30 25 44

4981s 2523s 2284 2995s
0.14 1.00 6.84

T1B3 10000 57 - - 31 40 31
995s 633s 679 557

1.21 1.60 1.91
r4c 10000 41 - - 14 21 24

2098 835 1099 1204
0.36 0.83 2.96

Table 2: Warm-started iterations, solution time and residuals for different sizes of
the reduced tree.
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Problem scenarios 4000 2000 1000 100 10

ex1 20000 - 1.5e-3 - 5e-2 1
40000 5e-4 - - 5e-2 1

ex3 10000 - - 0.2 1 30
20000 - 0.1 - 2 50

s97 10000 - - 1e-4 2e-3 5e-2
s98 10000 - - 0.2 1 50
j99 10000 - - 1e-2 2 100

Minoux 10000 - - 1.5e-4 2.e-3 1.5e-2
Jll gva 4000 - - 1.5e-4 1.5e-3 1.5e-2
T1B3 10000 - - 1.e-4 1.e-3 1.e-2
r4c 10000 - - 5.e-5 1.e-3 2.e-2

Table 3: Smallest µ for successful warm-start.

Problem scenarios cold 2-step (large) 2-step (small) 3-step impr

ex1 20000 580 327 264 302 -14.4
40000 1559 766 642 701 -9.2

ex3 10000 563 346 444 316 +8.7
20000 1793 626 961 586 +6.4

s97 10000 498 389 229 307 -34.1
s98 10000 3189 826 878 481 +41.8
j99 10000 1796 375 275 295 -7.3

Minoux 10000 2644 1212 1790 1176 +3.0
Jll gva 4000 4981 2523 2995 2251 +10.8
T1B3 10000 995 663 557 637 -14.4
r4c 10000 2098 835 1204 749 +10.3

Table 4: Comparison of solution time for cold start, 2-step warm-start and multi-step
warm-start.
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Appendix

Proof of Lemma 5. For a lower bound on (xi + ∆xi)(si + ∆si) we use

(xi + ∆xi)(si + ∆si) = xisi + xi∆si + si∆xi + ∆si∆xi

≥ γ0µ − ‖x‖2‖∆s‖2 − ‖s‖2‖∆x‖2 − ‖∆x‖2‖∆s‖2

≥ γ0µ − B2‖d‖δc − B2C(d)δb − ‖d‖Cδbδc

≥ γ0µ − 2B2‖d‖δY W
bc

where we have used the bounds ‖∆s‖2 ≤ ‖d‖δc, ‖∆x‖2 ≤ C(d)δb appearing in [11,
eq. (4.8)] and (as there) make the mild assumption that δb, δc < 1. Since γ0 > 0 this
provides a positive lower bound on (xi+∆xi)(si+∆si) for µ satisfying the conditions

of the Lemma (actually since γ0−γ < γ0: µ > ‖d‖
γ0−γ 3B2δ

Y W
bc ≥ ‖d‖

γ0
2B2δ

Y W
bc and hence

the bound is positive). It is straightforward to show that this bound is also valid for
(xi + α∆xi)(si + α∆si) for any α ∈ (0, 1). Since we know (x, s) > 0, we conclude
that xi + ∆xi > 0, si + ∆si > 0.

To show that (x + ∆x, s + ∆s) ∈ N−∞(γ) we find an upper bound on (x +
∆x)T (s + ∆s)/n by

(x + ∆x)T (s + ∆s)/n ≤ µ + ‖∆x‖2‖s‖2/n + ‖∆s‖2‖x‖2/n

≤ µ + B2C(d)δb/n + B2‖d‖δc/n

≤ µ + B2‖d‖δY W
bc /n.
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Hence for the conclusion of the Lemma we need

γ0µ − 2B2‖d‖δY W
bc ≥ γ(µ + B2‖d‖δY W

bc /n),

which is equivalent to

µ ≥ B2‖d‖(2 + γ/n)δY W
bc

(γ0 − γ)
,

which is implied by condition (24). �

Proof of Lemma 6. As in the proof of [11, Proposition 4.2] we start by finding a
bound on the norm of the vector

[(xi + ∆xi)(si + ∆si)]i=1,2,...,n − [(x + ∆x)T (s + ∆s)/n]e. (41)

Given two vectors y, z ∈ IRn, we have that

‖[yizi]i=1,2,...,n‖2 ≤ ‖y‖2‖z‖2, |yT z| ≤ ‖y‖2‖z‖2.

By using these elementary inequalities we have that the norm of (41) is bounded by

‖[xisi]i=1,2,...,n − µe‖2 + 2[‖∆x‖2‖s‖2 + ‖∆s‖2‖x‖2] + ‖∆x‖2‖∆s‖2

≤ θ0µ + 2B2‖d‖δY W
bc + C‖d‖δbδc

≤ θ0µ + 3B2‖d‖δY W
bc .

Meanwhile, we obtain a lower bound on the duality measure after the correction by

(x + ∆x)T (s + ∆s)/n ≥ µ − [‖∆x‖2‖s‖2 + ‖∆s‖2‖x‖2]/n

≥ µ − B2‖d‖δY W
bc /2.

Therefore, a sufficient condition for (x + ∆x, y + ∆y, s + ∆s) ∈ N̄2(θ) is that

θ0µ + 3B2‖d‖δY W
bc ≤ θµ − θB2‖d‖δY W

bc /2

which after rearrangement becomes

µ(θ − θ0) ≥ 3B2‖d‖δY W
bc + θB2‖d‖δY W

bc /2. (42)

Since θ < 1, (25) is sufficient for (42). �

Proof of Lemma 8. According to the proof of [3, Theorem 3], (x̂, ŷ, ŝ) is primal–
dual feasible for problem P (T̂ ). Also from the same proof we have

µ̂ := x̂T ŝ/n2 = n1µ1/n2.

We need to prove a bound on ‖X̂Ŝe − µ̂e‖2. (x̂, ŝ) as constructed by (28), are such
that for a perfectly centred x, s, i.e. xisi = µ1, we have

x̂iŝi = µ̃i

where
µ̃

(t)
i =

pt

pr(t)
µ1.
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Here and in what follows we use the notation that µ̃
(t)
i is the i-th component of the

part of µ̃ corresponding to node t ∈ T1.
We have

‖X̂Ŝe − µ̂e‖2 ≤ ‖X̂Ŝe − µ̃‖2 + ‖µ̃ − µ̂e‖2.

We will now derive bounds on these two terms separately:

‖X̂Ŝe − µ̃‖2
2 =

∑

s∈T1

∑

t∈I(s)

∑

i

(x̂
(t)
i ŝ

(t)
i − µ̂

(t)
i )2

=
∑

s∈T1

∑

t∈I(s)

∑

i

(
pt

ps
x

(s)
i s

(s)
i − pt

ps
µ1)

2

≤
∑

s∈T1

∑

t∈I(s)

∑

i

pt

ps
(x

(s)
i s

(s)
i − µ1)

2

=
∑

s∈T1

1

ps

∑

i

(x
(s)
i s

(s)
i − µ1)

2
∑

t∈I(s)

pt

=
∑

s∈T1

∑

i

(x
(s)
i s

(s)
i − µ1)

2 = ‖XSe − µ1e‖2
2 ≤ θ2µ2

1,

and

‖µ1e − µ̃‖2
2 =

∑

s∈T1

∑

t∈I(s)

∑

i

(µ̃
(t)
i − µ̂)2

=
∑

s∈T1

∑

t∈I(s)

∑

i

µ2
1(

pt

ps
− n1

n2
)2

≤
∑

s∈T1

∑

t∈I(s)

∑

i

µ2
1

n2
1

n2
2

(ρ − 1)2

= µ2
1

n2
1

n2
(ρ − 1)2,

so that by combining the two we have

‖X̂Ŝe − µ̂e‖2 ≤ θµ1 +
n1√
n2

(1 − ρ)µ1 = θ
n2

n1
µ̂ +

√
n2(1ρ)µ̂,

from which the assertion follows. �

Proof of Lemma 13. Let ρ̂ = ρ(d(T )). Further let d̄ = d(T ). What we need to
show is that for any perturbation ∆d that satisfies ‖∆d‖ ≤ ρ̂ we have

d̄ + ∆d ∈ F .

For what follows we use the shorthand n = |T |, n̄ = |T |. With this problem
d = P (T ) is

min cT
0 x0 +

∑n
i=1 pic

T
i xi

s.t. W0x0 = h0

piTx0 + piWxi = pihi, i = 1, . . . , n
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Let us write problem d̄ = P (T ) that is obtained by an aggregation of T in the
following form

min c̄T
0 x0 +

∑n̄
i=1 p̄ic̄

T
i xi

s.t.











W̄0 0 · · · 0
p̄1T̄ p̄1W̄ 0 0

... 0
. . .

...
p̄n̄T̄ 0 0 p̄n̄W̄





















x0

x1
...

xn̄











=











h̄0

p̄1h̄1
...

pn̄h̄n̄











where

W̄0 = W0, W̄ = W, T̄ = T, h̄0 = h0, c̄0 = c0,

p̄i =
∑

j∈I(i)

pj, c̄i = (
∑

j∈I(i)

pjcj)/p̄i, h̄i = (
∑

j∈I(i)

pjhj)/p̄i.

Let us know consider the perturbed problem d̄ + ∆d written as

min ([c̄0, p̄1c̄1, . . . , p̄n̄c̄n̄]T + ∆c)T x

s.t.





















W̄0 0 · · · 0
p̄1T̄ p̄1W̄ 0 0

... 0
. . .

...
p̄n̄T̄ 0 0 p̄n̄W̄











+ ∆A





















x0

x1
...

xn̄











=











h̄0

p̄1h̄1
...

pn̄h̄n̄











+ ∆b

with

∆A =











∆W 0 ∆A0,1 · · · ∆A0,n̄

p̄1∆T1 p̄1∆W1 ∆A1,i ∆A1,n̄
... ∆Ai,1

. . .
...

p̄n̄∆Tn̄ ∆An̄,1 ∆An̄,i p̄n̄∆Wn̄











, ∆c =











∆c0

p̄1∆c1
...

p̄n̄∆cn̄











, ∆b =











∆h0

p̄1∆h1
...

p̄n̄∆hn̄











where we assume that ‖∆d‖ ≤ ρ̂. The perturbation ∆d is expanded into a pertur-
bation ∆d = (∆A,∆b,∆c) of the full problem

∆A =











∆A0,0 ∆A0,1 · · · ∆A0,n

∆A1,0 ∆A1,1 · · · ∆A1,n
...

...
. . .

...
∆An,0 ∆An,1 · · · ∆An,n











, ∆b =











∆b0

∆b1
...

∆bn











, ∆c =











∆c0

∆c1
...

∆cn











according to

∆b0 = ∆h0, ∆bi = pi∆hr(i)

∆c0 = ∆c0, ∆ci = pi∆cr(i)

∆A0,0 = ∆W0, ∆Ai,i = pi∆Wr(i)

∆A0,i = pi∆A0,r(i)/p̄r(i), i ∈ T \ {0}
∆Ai,0 = pi∆Tr(i), i ∈ T \ {0}
∆Ai,j = pipj∆Ar(i),r(j)/(p̄r(i)p̄r(j)), i, j ∈ T \ {0}, r(i) 6= r(j)

∆Ai,j = 0, i, j ∈ T \ {0}, r(i) = r(j), i 6= j
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Since ‖∆d‖ ≤ ρ̂ we have

‖∆c‖2, ‖∆b‖2, ‖∆A‖2 ≤ ρ̂.

From p̄j =
∑

i∈I(j) pi we get
∑

i∈I(j) p2
i ≤ p̄2

j and hence

‖∆c‖2
2 = ‖∆c0‖2

2 +
∑

i∈T
‖∆ci‖2

2 = ‖∆c0‖2
2 +

∑

j∈T

∑

i∈I(j)

p2
i ‖∆cj‖2

2

≤ ‖∆c0‖2
2 +

∑

j∈T

p̄2
j‖∆cj‖2

2 = ‖∆c‖2
2 ≤ ρ̂2.

Similarly, we obtain ‖∆b‖2 ≤ ρ̂ and ‖∆A‖2 ≤ ρ̂. Therefore we also have that
‖∆d‖ ≤ ρ̂. Therefore d + ∆d ∈ F , which means that there is a primal–dual feasible
point (x, y, s) for d + ∆d:

(W0 + ∆A0,0)x0 +
n
∑

i=1

∆A0,ixi = h0 + ∆b0 (43a)

(piT + ∆Ai,0)x0 + (piW + ∆Ai,ixi) +
∑

k 6=i

∆Ai,kxk = pihi + ∆bi (43b)

(W0 + ∆A0,0)
T y0 +

n
∑

i=1

(piT + ∆Ai,0)
T yi + s0 = c0 + ∆c0 (43c)

(piW + ∆Ai,i)
T yi +

∑

k 6=i

∆AT
k,iyk + si = pici + ∆ci (43d)

We aim to show that with the aggregations

x̄0 = x0 ȳ0 = y0, s̄0 = s0,
x̄i = (

∑

j∈I(i) pjxj)/p̄i, ȳi = (
∑

j∈I(i) pjyj)/p̄i, s̄i =
∑

j∈I(i) sj,

the point (x̄, ȳ, s̄) is primal–dual feasible for d̄ + ∆d. We have
∑

i∈T
∆A0,ixi =

∑

j∈T

∑

i∈I(j)

∆A0,ixi =
∑

j∈T

∑

i∈I(j)

pi∆A0,j/p̄jxi

=
∑

j∈T

∆A0,j(
∑

i∈I(j)

pixi)/p̄j =
∑

j∈T

∆A0,jx̄j ,

so that from (43a) we get

(W̄0 + ∆W0)x̄0 +
∑

j∈T ∆A0,j x̄j = (W0 + ∆A0,0)x0 +
∑

i∈T ∆A0,ixi

= h0 + ∆b0 = h̄0 + ∆h0.
(44)

We will continue by summing up (43b) for all i ∈ I(j). From the
∑

k 6=i ∆Ai,kxk term
we get thus

∑

i∈I(j)

∑

k 6=i

∆Ai,kxk =
∑

i∈I(j)

∑

k 6=i:r(k)6=j

pipk∆Aj,r(k)/(p̄j p̄r(k))xk

=
∑

i∈I(j)

∑

l∈T :l 6=j

∑

k∈I(l)

pipk∆Aj,l/(p̄j p̄l)xk

=
∑

l∈T :l 6=j

∆Aj,l/p̄l

∑

k∈I(l)

pkxk =
∑

l∈T :l 6=j

∆Aj,lx̄l
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So that summing up (43b) for all i ∈ I(j) we get (using p̄j =
∑

i∈I(j) pi):

p̄j(T + T j)x0 + (W + ∆W j)(
∑

i∈I(j)

pixi) +
∑

l∈T :l 6=j

∆Aj,lx̄l = p̄jh̄j + p̄j∆hj

which yields

p̄j(T + T j)x̄0 + p̄j(W + ∆W j)x̄j +
∑

l∈T :l 6=j

∆Aj,lx̄l = p̄j(h̄j + ∆hj). (45)

Equations (44) and (45) together give the primal feasibility of (x̄, ȳ, s̄) in d̄ + ∆d. In
the same manner as above we can write

∑

i∈T
∆AT

i,0yi =
∑

j∈T

∑

i∈I(j)

pi∆T
T
j yi =

∑

j∈T

p̄j∆T
T
j ȳj,

so that we get from (43c)

(W0 + ∆W 0)ȳ0 +
∑

j∈T

p̄j(T + ∆T j)
T ȳj + s0 = c0 + ∆c0. (46)

Finally, we sum up (43d) over i ∈ I(j). From the
∑

k 6=i ∆AT
k,iyk term we get

∑

i∈I(j)

∑

k 6=i

∆AT
k,iyk =

∑

i∈I(j)

∑

k 6=i:r(k)6=j

pkpi∆A
T
r(k),j/(p̄r(k)p̄j)yk

=
∑

i∈I(j)

∑

l∈T :l 6=j

∑

k∈I(l)

pkpi∆A
T
l,j/(p̄lp̄j)yk

=
∑

l∈T :l 6=j

∆A
T
l,j/p̄l

∑

k∈I(l)

pkyk =
∑

l∈T :l 6=j

∆A
T
l,j ȳl

So that summing up (43d) for all i ∈ I(j) we get (using p̄j =
∑

i∈I(j) pi):

(W + ∆W j)
T (
∑

i∈I(j)

piyi) +
∑

l∈T :l 6=j

∆A
T
l,j ȳl +

∑

i∈I(j)

si = p̄j c̄j + p̄j∆cj

which yields

p̄j(W + ∆W j)ȳj +
∑

l∈T :l 6=j

∆A
T
l,j ȳl + s̄j = p̄j(c̄j + ∆cj). (47)

Equations (46) and (47) together give the dual feasibility of (x̄, ȳ, s̄) in d̄ + ∆d.
Together d̄ + ∆d is primal–dual feasible, which gives d̄ + ∆d ∈ F . Since ∆d was an
arbitrary perturbation with ‖∆d‖ ≤ ρ̂ we have

ρ(d̄) ≤ ρ̂ = ρ(d(T )),

proving the Lemma. �
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Proof of Lemma 14. The existence of an upper bound C(d(k)) ≤ C(d) follows from
C(d) = ‖d‖/ρ(d), ‖d(k)‖ ≤ ‖d(k+1)‖ and the existence of a lower bound ρ̄ ≤ ρ(d(k))
according to Lemma 13. According to [7, Theorem 3.1] and [11, Theorem 2.1] every
primal–dual feasible point (x(k), y(k), s(k)) with µ(k) = (x(k))T s(k)/n(k) satisfies the
bounds

‖x(k)‖2 ≤ C(d(k))2 + n(k)µ(k)/ρ(d(k))

‖s(k)‖2 ≤ 2‖d(k)‖2[C(d(k))2 + n(k)µ(k)/ρ(d(k))]

‖x(k)‖∞ ≤ ‖x(k)‖1 ≤ C(d(k))2 + n(k)µ(k)/ρ(d(k))

‖s(k)‖∞ ≤ 2‖d(k)‖1[C(d(k))2 + n(k)µ(k)/ρ(d(k))].

Since ‖d(k)‖ ≤ ‖d(K)‖, µ(k) ≤ µ(1) and n(k) ≤ n(K) we have the assertion of the
Lemma. �
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