A multi-step interior point warm-start approach for large-scale stochastic linear programming* Marco Colombo † Andreas Grothey[‡] School of Mathematics and Maxwell Institute The University of Edinburgh Mayfield Road, Edinburgh EH9 3JZ United Kingdom Technical Report ERGO 09-007 30 June 2009, revised 22 October 2009 #### Abstract Interior point methods (IPM) have been recognised as an efficient approach for the solution of large scale stochastic programming problems due to their ability of exploiting the block-angular structure of the augmented system particular to this problem class. Stochastic programming problems, however, have exploitable structure beyond the simple matrix shape: namely the scenarios are typically a discrete sampling of an underlying (continuous) probability distribution. An appealing way of exploiting this would be to initially use a coarser discretisation, i.e. less scenarios, to obtain an approximate solution, which could then be used to warm-start the solver on the full problem. In this paper we present a multi-step warm-start scheme for stochastic programming problems, where a sequence of problems defined over scenario trees of differing sizes is given and an IPM warm-start point is constructed by successively finding approximations to the central path of the problems defined over the given trees. We analyse the resulting algorithm, argue that it yields improved complexity over either the coldstart or a naive two-step scheme, and give numerical results. **Keywords:** Stochastic Programming, Interior-point Methods, Warm-starting. Classification: 90C51, 90C15. ## 1 Introduction A stochastic programming problem is defined on a tree \mathcal{T} . This *target* tree encodes available information about the future as well as the decision structure of the problem. We intend to approximate the problem by considering a sequence of trees $\mathcal{T}^{(k)}$ ^{*}This research has been supported by EPSRC grant EP/E036910/1. [†]Email: M.Colombo@ed.ac.uk [‡]Email: A.Grothey@ed.ac.uk, Homepage: http://maths.ed.ac.uk/~agr/ with $\mathcal{T}^{(k)} \to \mathcal{T}$ in some specified sense. We use the notation of $P(\mathcal{T})$ for the stochastic program on a given tree \mathcal{T} . The guiding idea will be to use some information obtained by solving $P(\mathcal{T}^{(k)})$ to speed up the solution for $P(\mathcal{T}^{(k+1)})$, eventually leading to a faster solution of the target problem $P(\mathcal{T})$. Since we are using interior point methods to solve the problems, we will not attempt to find the optimal solution for each intermediate problem. Rather, for every tree in the sequence we find an approximate solution $(x^{(k)}, y^{(k)}, s^{(k)}) \in \mathcal{N}_*^{(k)}$, where \mathcal{N}_* is an appropriately chosen neighbourhood of the central path. We intend to do this in such a way that the approximate solution for tree $\mathcal{T}^{(k)}$ can be used to warm-start an interior point method on tree $\mathcal{T}^{(k+1)}$, possibly after performing a modification step, which might involve inter-/extrapolation scenarios, a more traditional modification step in the sense of [11, 4], or a combination thereof. In an earlier paper [3] the authors suggested the use of one smaller (reduced) tree \mathcal{T}_R to speed up the solution on the target tree. The contribution of this paper is to extend this idea to a sequence of trees, as well as providing some detailed analysis of the method and arguing for the improved complexity of the multi-tree scheme over either a coldstart or a two-step scheme. Further, we demonstrate the practical applicability of the multi-tree warm-start scheme by giving numerical results on a selection of problems. In the following section we review the basic background of stochastic programming and IPM, mainly to introduce our notation. In Section 3 we review some warm-start results for IPM and adapt them to our setting. Section 4 analyses a single step of the multi-tree scheme, whereas in Section 5 we give the main results for the multi-tree warm-start scheme. Finally in Section 6 we present numerical results. # 2 Notation A (linear, two-stage) stochastic programming problem is a mathematical programming problem in which some of the data is unknown a-priori: min $$c^T x + I\!\!E_{\xi}[Q(x,\xi)]$$ s.t. $Ax = b, \quad x \ge 0$ where $Q(x,\xi) = \min\{q(\xi)^T y(\xi) : W(\xi) y(\xi) = h(\xi) - T(\xi)x\}.$ (1) Here ξ is the random variable representing the uncertainty in the data. $Q(x,\xi)$ is the recourse function depending on the *first stage decisions* x and the random event ξ , whereas $y(\xi)$ are the second stage (or recourse) decisions. Note that the stochastic programming model implies a partition of the decision variables (x,y) into a first stage x which have to be independent of the observed event ξ (i.e. decision need to be taken before ξ is observed) and a second stage y whose values can depend on the observed value of ξ (i.e. decisions can be taken after ξ is observed). Under suitable conditions (see [8, 9]) problem (1) can be rewritten as min $$c^T x + I\!\!E_{\xi}[q(\xi)^T y(\xi)]$$ s.t. $Ax = b$, $W(\xi)y(\xi) = h(\xi) - T(\xi)x$, $x \ge 0$, $y(\xi) \ge 0$. (2) It is usually assumed that the distribution ξ affecting the random data is known. In general ξ is a continuous distribution, in which case solving (2) becomes very challenging. To make it computationally tractable, ξ is replaced by a discrete approximation $\tilde{\xi}$. If $\tilde{\xi}$ takes values $\tilde{\xi}_i$ with probabilities $P(\tilde{\xi} = \tilde{\xi}_i) = p_i$, $i \in \mathcal{I}$, then (2) can be rewritten as the deterministic equivalent min $$c^T x + \sum_i p_i q_i y_i$$ s.t. $Ax = b$, $T_i x + W_i y_i = h_i$, $i \in \mathcal{I}$, $x \ge 0, y_i \ge 0$, (3) where $q_i = q(\tilde{\xi}_i)$ and analogously for T_i, W_i, h_i, y_i . We denote by $\eta_i = (T_i, W_i, h_i, q_i)$ the data describing the *i*-th scenario and use a notional 0-th scenario $\eta_0 = (A, b, c)$ to denote the data corresponding to the first stage. By analogy with multistage stochastic programming we will borrow the term *tree* to denote a scenario set $$\mathcal{T} := \{\eta_i : i \in \mathcal{I}\} \cup \eta_0.$$ Since the tree \mathcal{T} contains all information to describe the stochastic programming problem we will use the notation $P(\mathcal{T})$ for problem (3) on tree \mathcal{T} . In this paper we assume that we are given a series of successively larger trees $\mathcal{T}^{(1)}, \ldots, \mathcal{T}^{(K)} = \mathcal{T}$, each of which serves as an approximation to the next tree in the sequence. To analyse how well a given tree $\mathcal{T}^{(k+1)}$ is approximated by the previous tree $\mathcal{T}^{(k)}$ we need to define the concept of a distance between two trees. As in [3], we base this on scenario distances, which we define as follows: Definition 1 The distance between two scenarios $i, j \in \mathcal{T} \setminus \{\eta_0\}$ is $$d(\eta_i, \eta_j) := \|T_i - T_j\|_2 + \|W_i - W_j\|_2 + \|h_i - h_j\|_2 + \|q_i - q_j\|_2.$$ The distance of a scenario η from a tree \mathcal{T} is thus $$d(\eta, \mathcal{T}) := \min_{\eta_i \in \mathcal{T}} d(\eta, \eta_i).$$ Therefore, the distance between two trees \mathcal{T}_i and \mathcal{T}_j can be defined as $$d(\mathcal{T}_i, \mathcal{T}_j) := \max_{\eta_i \in \mathcal{T}_i} d(\eta_i, \mathcal{T}_j). \tag{4}$$ ### 2.1 Interior Point Methods Interior point methods have become a standard method for the solution of large scale stochastic programming problems. They typically enjoy a similar performance as dedicated active-set based approaches such as the L-shaped method but, unlike these, they are also applicable to nonlinear formulations. IPMs applied to solve the linear problem $$\min c^T x \quad \text{s.t.} \quad Ax = b, \ x \ge 0 \tag{5}$$ proceed by replacing the $x \ge 0$ constraints in (5) by logarithmic barrier terms added to the objective function to arrive at $$\min c^T x - \mu \sum_{i} \ln x_i \quad \text{s.t. } Ax = b.$$ (6) We define the set of strictly primal-dual feasible points for (6) as $$\mathcal{F}^0 := \{ (x, y, s) : Ax = b, A^T y + s = c, (x, s) > 0 \}.$$ Assuming $\mathcal{F}^0 \neq \emptyset$, then for every $\mu > 0$ problem (6) is a strictly convex optimization problem, whose unique solution is given by the solution to the KKT-equation system $$Ax = b$$ $$A^{T}y + s = c$$ $$XSe = \mu e$$ $$x, s > 0,$$ (7) where we used the notation $X = \operatorname{diag}(x_1, \ldots, x_n)$, $S = \operatorname{diag}(s_1, \ldots, s_n)$, $e = (1, \ldots, 1)^T$. The solutions of (7) for different values of $\mu > 0$ trace a trajectory (the *central path*) that reaches the solution of (5) for $\mu = 0$. In the analysis of interior point methods it is common to work with a neighbourhood of the central path. We define the following: $$\mathcal{N}_{2}(\theta) := \{(x, y, s) \in \mathcal{F}^{0} | || XSe - \mu e||_{2} \leq \theta \mu \}$$ $$\mathcal{N}_{-\infty}(\gamma) := \{(x, y, s) \in \mathcal{F}^{0} | \gamma \mu \leq x_{i} s_{i} \}$$ $$\mathcal{N}_{s}(\gamma) := \{(x, y, s) \in \mathcal{F}^{0} | \gamma \mu \leq x_{i} s_{i} \leq \mu / \gamma \}$$ Of these \mathcal{N}_2 and $\mathcal{N}_{-\infty}$ are in common use, whereas \mathcal{N}_s is used in [3, 4]. Interior point methods can be seen as homotopy methods that alternate between steps of Newton's method to solve the nonlinear system (7) and reductions of the barrier parameter μ towards zero. The Newton steps to solve (7) are of the form $$A\Delta x = \xi_b := b - Ax \tag{8a}$$ $$A^{T} \Delta y + \Delta s = \xi_c := c - A^{T} y - s \tag{8b}$$ $$X\Delta s + S\Delta x = r_{xs} := \mu^+ e - XSe, \tag{8c}$$ where μ^+ is the next target μ value in the homotopy sequence. Usually appropriate globalisation strategies, such as restricting steps to be within a neighbourhood of the central path are employed. # 3 Warmstarting Interior Point
Methods Warm-starting interior point methods is generally seen to be difficult to impossible. While it is true that interior point methods are unlikely to match the warm-start efficiency of active set type methods (such as the simplex method), recent results [2, 3, 4] suggest that typically between 50%-60% of iterations can be saved by using a warm-start procedure. By warm-starting we aim to use information gained from the solution of the LP problem (5), the *original problem*, to significantly speed up the solution of the *modified problem*: $$\min \ \bar{c}^T x \quad \text{s.t.} \quad \bar{A}x = \bar{b}, \ x \ge 0, \tag{9}$$ which is assumed to be close to (5), that is the perturbation of problem data $$\Delta d := (\Delta A, \Delta b, \Delta c) = (\bar{A} - A, \bar{b} - b, \bar{c} - c)$$ is small. Unlike the situation with the simplex method (or other active set based strategies), it is not a good idea to use the solution of the original problem as a starting point for the modified problem. Instead, a popular strategy is to select an advanced μ -centre (that is an approximation to a point of the central path) of problem (5) and to reason that (under suitable conditions, and possibly after some modifications) the obtained point is close to the central path of problem (9) and can hence be used successfully as an advanced iterate for this problem. This is the approach taken by [4, 5, 11]; however see [2] for a different view. Several authors [4, 11] have looked at conditions that guarantee a successful warm-start. These conditions usually impose bounds on the size of Δd or equivalently the implied distance from feasibility of the warm-start point in the modified problem, the centrality of the warm-start point and the size of μ as a measure of distance to optimality. Typically larger changes in problem data require a warm-start point corresponding to a larger value of μ . In the rest of this section we will give variants of the warm-start results in [4] and [11] that are adapted to our setting. Later we will use these to analyse the complete multi-tree scheme. An interesting results is that although the warm-start analyses in [4] and [11] are quite different, the final results when applied to our scheme are very similar. We have therefore deemed it worthwhile to include both strands of the analysis. #### 3.1 Results based on implied infeasibilities The setup considered in [4] takes an advanced iterate (x, y, s) encountered during the solution of (5) as the basis for the warm-start point. Since the problem data has changed, (x, y, s) is not primal—dual feasible in the modified problem (9) but instead implies residuals $$\bar{\xi}_b = \bar{b} - \bar{A}x,$$ $\bar{\xi}_c = \bar{c} - \bar{A}^T y - s.$ To re-gain feasibility a modification step is added, which is based on solving the Newton system (8) with $r_{xs} = 0$ (i.e. the modification step attempts to gain feasibility but does not seek to improve centrality). The analysis in [4] considers under what conditions the full modification step can be taken and hence absorb the residuals leading to a primal-dual warm-start point in the modified problem. The results are based on bounds on the implied residuals $$\delta_{bc}^{GG} := \|\xi_c\|_2 + \|\bar{A}^T(\bar{A}\bar{A}^T)^{-1}\xi_b\|_2, \tag{10}$$ or, rather, its scaled version $$\tilde{\delta}_{bc}^{GG} := \|S^{-1}\xi_c\|_2 + \|X^{-1}\bar{A}^T(\bar{A}\bar{A}^T)^{-1}\xi_b\|_2 = \|\tilde{\xi}_c\|_2 + \|\tilde{\xi}_b\|_2.$$ However, the analysis in [4] assumes that the perturbations in problem data will only affect $either \xi_b$ or ξ_c but not both at the same time. Moreover, the analysis only gives conditions under which a full modification step is feasible (i.e. a primal-dual feasible point for the modified problem is obtained), but makes no claims about the centrality of this point. The aim of this section is to generalise the results in a way that addresses both these issues. **Remark 1** The term $\bar{A}^T(\bar{A}\bar{A}^T)^{-1}\xi_b$ that appears in the definition of δ_{bc}^{GG} is the "orthogonal distance of x from primal feasibility $(\{x: \bar{A}x=\bar{b}\})$ ": $$\bar{A}^{T}(\bar{A}\bar{A}^{T})^{-1}\xi_{b} = \bar{A}^{T}(\bar{A}\bar{A}^{T})^{-1}(\bar{A}x - \bar{b}) = x - [(I - \bar{A}^{T}(\bar{A}\bar{A}^{T})^{-1}\bar{A})x + \bar{A}^{T}(\bar{A}\bar{A}^{T})^{-1}\bar{b}] = x - P_{\{x:\bar{A}x = \bar{b}\}}(x),$$ where $P_{\{x:\bar{A}x=\bar{b}\}}(x)$ is the orthogonal projection of x onto the subspace $\{x:\bar{A}x=\bar{b}\}$. Similarly, we can interpret $$\xi_c = \bar{c} - \bar{A}^T y - s = s - P_{\{s: \exists y: \bar{A}^T y + s = \bar{c}\}}(s)$$ as the orthogonal distance of s from dual feasibility. In other words δ_{bc}^{GG} measures the total orthogonal distance of the warm-start point (x,s) from primal-dual feasibility in the modified problem. The results in [4] are based on the observation that, using (8), the modification step satisfies $$\Delta x = -XQ\tilde{\xi}_c + X(I-Q)\tilde{\xi}_b$$ and $\Delta s = SQ\tilde{\xi}_c - S(I-Q)\tilde{\xi}_b$ that is $$X^{-1}\Delta x = -Q\tilde{\xi}_c + (I - Q)\tilde{\xi}_b = -S^{-1}\Delta s,\tag{11}$$ where $$\begin{split} Q &= I - S^{-1} \bar{A}^T (\bar{A} X S^{-1} \bar{A}^T)^{-1} \bar{A} X, \\ \tilde{\xi}_c &= S^{-1} \xi_c = S^{-1} (c - A^T y + s), \\ \tilde{\xi}_{\bar{b}} &= X^{-1} \bar{A}^T (\bar{A} \bar{A}^T)^{-1} \xi_{\bar{b}} = X^{-1} \bar{A}^T (\bar{A} \bar{A}^T)^{-1} (\bar{b} - \bar{A} x). \end{split}$$ As in [4], we can derive bounds on $||Q||_2$ that are used in conditions on a successful warm-start. **Lemma 1** We have the following bounds for $||Q||_2$: $$(x, y, s) \in \mathcal{N}_2(\theta), \qquad \Rightarrow \quad \|Q\|_2 \le \left(\frac{1+\theta}{1-\theta}\right)^{1/2}$$ $(x, y, s) \in \mathcal{N}_{-\infty}(\gamma), \qquad \Rightarrow \quad \|Q\|_2 \le \left(\frac{1-\gamma}{\gamma}\right)^{1/2} \sqrt{n}.$ Also, if a bound $B_{\infty} : x_i, s_i < B_{\infty}$ is known, we have $$(x, y, s) \in \mathcal{N}_{-\infty}(\gamma), \quad \Rightarrow ||Q||_2 \le \frac{B_{\infty}}{\sqrt{\gamma \mu}}.$$ **Proof.** The first result is from [4, Lemma 3.1/3.2]. For the other results note that Q can be written as $$Q = X^{-1/2}S^{-1/2}PX^{1/2}S^{1/2}, \quad P = I - X^{1/2}S^{-1/2}\bar{A}^T(\bar{A}XS^{-1}\bar{A}^T)^{-1}\bar{A}X^{1/2}S^{-1/2}$$ (12) with P representing the orthogonal projection onto the null space of $\bar{A}X^{1/2}S^{-1/2}$ and hence $||P||_2 = 1$. Therefore $$||Q||_2 = ||X^{-1/2}S^{-1/2}||_2 ||X^{1/2}S^{1/2}||_2.$$ For $(x, y, s) \in \mathcal{N}_{-\infty}(\gamma)$ we have $x_i s_i \ge \gamma \mu$ and $x_i s_i = \sum_j x_j s_j - \sum_{j \ne i} x_j s_j \le n\mu - (n-1)\gamma \mu \le (1-\gamma)n\mu$ and hence $$||Q||_2 \le (\frac{1-\gamma}{\gamma})^{1/2} \sqrt{n}.$$ Alternatively, in presence of the bound $x_i, s_i < B_{\infty}$ we have $||X_i^{1/2} S_i^{1/2}||_2 \le B_{\infty}$, so $||Q||_2 \le \frac{B_{\infty}}{\sqrt{\gamma \mu}}$. We now give a generalisation of the warm-start results in [4] that applies in the presence of both primal and dual residuals and is not tied to a particular neighbourhood. **Lemma 2** Let (x, y, s) be the considered warm-start point satisfying $x_i, s_i \leq B_{\infty}, x_i s_i \geq \gamma \mu, \forall i, \text{ where } \mu = x^T s/n.$ If $$\delta_{bc}^{GG} \le \frac{\mu \gamma}{B_{\infty} (1 + \|Q\|_2)},$$ then the full modification step from the warm-start iterate can be taken and absorbs the complete primal-dual infeasibilities. **Proof.** Sufficient for a successful warm-start is $x + \Delta x \ge 0$, $s + \Delta s \ge 0$, that is $$||X^{-1}\Delta x||_{\infty} \le 1$$, $||S^{-1}\Delta s||_{\infty} \le 1$. From (11) we have $$||X^{-1}\Delta x||_2 \le ||Q||_2 ||\tilde{\xi}_c||_2 + (1 + ||Q||_2) ||\tilde{\xi}_b||_2 \le (1 + ||Q||_2) (||\tilde{\xi}_c||_2 + ||\tilde{\xi}_b||_2).$$ Under the condition of the Lemma we get $$\|\tilde{\xi}_c\|_2 = \|S^{-1}\xi_c\|_2 \le \frac{1}{\min_i s_i} \|\xi_c\|_2 \le \frac{B_\infty}{\mu\gamma} \|\xi_c\|_2,$$ since $x_i s_i \ge \gamma \mu$, $||x||_{\infty} \le B_{\infty}$ and therefore $s_i \ge \gamma \mu / x_i \ge \gamma \mu / B_{\infty}$. Similarly, we have $$\|\tilde{\xi}_b\|_2 = \|X^{-1}\bar{A}^T(\bar{A}\bar{A}^T)^{-1}\xi_b\|_2 \le \frac{1}{\min_i x_i} \|\bar{A}^T(\bar{A}\bar{A}^T)^{-1}\xi_b\|_2 \le \frac{B_\infty}{\mu\gamma} \|\bar{A}^T(\bar{A}\bar{A}^T)^{-1}\xi_b\|_2.$$ Considering the two terms together we obtain $$||S^{-1}\Delta s||_2 = ||X^{-1}\Delta x||_2 \le (1 + ||Q||_2) \frac{B_{\infty}}{\mu\gamma} (||\xi_c||_2 + ||\bar{A}^T(\bar{A}\bar{A}^T)^{-1}\xi_b||_2),$$ so that $||S^{-1}\Delta s|| = ||X^{-1}\Delta x|| \le 1$ provided that $$\delta_{bc}^{GG} = \|\xi_c\|_2 + \|\bar{A}^T(\bar{A}\bar{A}^T)^{-1}\xi_b\|_2 \le \frac{\mu\gamma}{B_{\infty}(1+\|Q\|_2)}.$$ We are now ready to give two extensions of this result that also make statements about the centrality of the resulting point. **Lemma 3** Let $(x, y, s) \in \mathcal{N}_2(\theta_0)$ be the warm-start iterate. Let $\theta : 0 < \theta_0 < \theta$ be given and n > 9. Let the modification step $(\Delta x, \Delta y, \Delta s)$ be obtained by solving system (8) with $r_{xs} = 0$ in the new problem for the current value of μ . If we have $$\delta_{bc}^{GG} \leq \frac{\beta\mu(1-\theta_0)}{B_{\infty}(1+\|Q\|_2)},$$ (13) with $$\beta \le \frac{\theta - \theta_0}{7\sqrt{n}(1 + \theta_0)},\tag{14}$$ then the full modification step is feasible, absorbs all infeasibilities and satisfies $(\bar{x}, \bar{y}, \bar{s}) \in \bar{\mathcal{N}}_2(\theta)$. **Proof.** As before we need to prove that the complementarity products $\bar{x}_i\bar{s}_i$ do not deviate too much from the average. Note that under the conditions of the Lemma we have from a slight generalisation of Lemma 2 that $$||X^{-1}\Delta x||_{\infty} \le \beta, \qquad ||S^{-1}\Delta s||_{\infty} \le \beta,$$ and therefore $$\Delta x_i \le \beta x_i, \quad \Delta s_i \le \beta s_i.$$ (15) We also rely on the fact that for $(x, y, s) \in
\mathcal{N}_2(\theta_0)$ we have $$|x_i s_i - \mu| < \theta_0 \mu, \qquad x_i s_i < (1 + \theta_0) \mu.$$ The rest of the proof follows that of [11, Proposition 4.2]. We start by finding a bound on the norm of the vector $$[(x_i + \Delta x_i)(s_i + \Delta s_i)]_{i=1,2,\dots,n} - [(x + \Delta x)^T (s + \Delta s)/n]e.$$ (16) Using the above relations we can bound $$x_i \Delta s_i = x_i s_i \Delta s_i / s_i \leq \beta (1 + \theta_0) \mu \qquad \Rightarrow \qquad \|X \Delta Se\|_2 \leq \sqrt{n} \beta (1 + \theta_0) \mu,$$ $$\Delta x_i \Delta s_i = x_i s_i \Delta s_i / s_i \Delta x_i / x_i \leq \beta^2 (1 + \theta_0) \mu \Rightarrow \qquad \|\Delta X \Delta Se\|_2 \leq \sqrt{n} \beta^2 (1 + \theta_0) \mu,$$ $$x^T \Delta s / n = (\sum_{i=1}^n s_i \Delta x_i) / n \leq \beta (1 + \theta_0) \mu \Rightarrow \qquad \|[x^T \Delta s / n]e\|_2 \leq \sqrt{n} \beta (1 + \theta_0) \mu,$$ which can be used to produce a bound on (16) by $$||(X + \Delta X)(S + \Delta S)e - \overline{\mu}e||_{2}$$ $$= ||(X + \Delta X)(S + \Delta S)e - [(x + \Delta x)^{T}(s + \Delta s)/n]e||_{2}$$ $$\leq ||XSe - \mu e||_{2} + ||X\Delta Se||_{2} + ||S\Delta Xe||_{2} + ||\Delta X\Delta Se||_{2}$$ $$+ ||[x^{T}\Delta s/n]e||_{2} + ||[s^{T}\Delta x/n]e||_{2} + ||[\Delta x^{T}\Delta s/n]e||_{2}$$ $$\leq \theta_{0}\mu + \sqrt{n}(2\beta + \beta^{2} + 2\beta + \beta^{2})(1 + \theta_{0})\mu$$ $$\leq \theta_{0}\mu + 6\sqrt{n}\beta(1 + \theta_{0})\mu, \quad \text{since } \beta \leq 1.$$ Meanwhile, we obtain a lower bound on the duality measure after the correction by $$\bar{\mu} = (x + \Delta x)^T (s + \Delta s)/n \ge \mu - [2\beta(1 + \theta_0)\mu + \beta^2(1 + \theta_0)\mu]$$ $\ge \mu - 3\beta(1 + \theta_0)\mu.$ Therefore, a sufficient condition for $(x + \Delta x, y + \Delta y, s + \Delta s) \in \bar{\mathcal{N}}_2(\theta)$ is that $$\theta_0 \mu + 6\sqrt{n}\beta(1+\theta_0)\mu \le \theta\mu - 3\beta\theta(1+\theta_0)\mu$$ which after rearrangement becomes $$\mu(\theta - \theta_0) \ge 6\sqrt{n}\beta(1 + \theta_0)\mu + 3\beta\theta(1 + \theta_0)\mu = \beta(6\sqrt{n} + 3\theta)(1 + \theta_0)\mu.$$ (17) For n large enough, $\sqrt{n} > 3\theta$ and therefore (14) is sufficient for (17). Corollary 1 Under the setup of Lemma 3 we have $(\bar{x}, \bar{y}, \bar{s}) \in \bar{\mathcal{N}}_2(\theta)$ if $$\delta_{bc}^{GG} \le \frac{(1-\theta_0)^{3/2}(\theta-\theta_0)}{35\sqrt{n}B_{\infty}}\mu.$$ **Proof.** From Lemma 1 we have $$||Q||_2 \le \left(\frac{1+\theta_0}{1-\theta_0}\right)^{1/2}$$ which, combined with (13) and (14), yields the sufficient condition $$\delta_{bc}^{GG} \le \frac{(\theta - \theta_0)}{7\sqrt{n}B_{\infty}(1 + \theta_0)} \frac{(1 - \theta_0)}{\left(1 + (\frac{1 + \theta_0}{1 - \theta_0})^{1/2}\right)} \mu. \tag{18}$$ We have $$\frac{1-\theta_0}{(1+\theta_0)\left(1+(\frac{1+\theta_0}{1-\theta_0})^{1/2}\right)} = \frac{(1-\theta_0)^{3/2}}{(1+\theta_0)[(1-\theta_0)^{1/2}+(1+\theta_0)^{1/2}]} \ge \frac{1}{5}(1-\theta_0)^{3/2},$$ which when combined with (18) proves the Corollary. \Box Finally we give an equivalent of Lemma 3 involving the $\mathcal{N}_{-\infty}$ neighbourhood. **Lemma 4** Let $(x, y, s) \in \mathcal{N}_{-\infty}(\gamma_0)$ be the warm-start iterate. Let $\gamma : 0 < \gamma < \gamma_0$ be given. Let the modification step $(\Delta x, \Delta y, \Delta s)$ be obtained by solving system (8) for $r_{xs} = 0$ in the new problem for the current value of μ . If we have $$\delta_{bc}^{GG} \leq \frac{\beta \mu \gamma_0}{B_{\infty} (1 + \|Q\|_2)},\tag{19}$$ with $$\beta \le \frac{\gamma_0 - \gamma}{6B_{\infty}^2} \mu,\tag{20}$$ then the full modification step is feasible, absorbs all infeasibilities and satisfies $(\bar{x}, \bar{y}, \bar{s}) \in \bar{\mathcal{N}}_{-\infty}(\gamma)$. **Proof.** The proof follows closely that of [11, Proposition 4.1/4.3]. That proof makes strong use of the fact that for the Weighted Least Squares (WLS) modification step $(\Delta x_{WLS}, \Delta y_{WLS}, \Delta s_{WLS})$ in [11] we have the bounds $$\|\Delta x_{WLS}\|_2, \|\Delta s_{WLS}\|_2 \le \|d\|\delta_{bc}^{YW}.$$ Instead, we use the bounds $$\|\Delta x\|_{\infty} \le \beta \|x\|_{\infty} \le \beta B_{\infty}, \qquad \|\Delta x\|_{2} \le \beta \|x\|_{2} \le \beta \sqrt{n} \|x\|_{\infty} \le \beta \sqrt{n} B_{\infty}, \qquad (21)$$ and similarly for $\|\Delta s\|_{\infty/2}$ originating from (15). For a lower bound on $(x_i + \Delta x_i)(s_i + \Delta s_i)$ we use $$(x_{i} + \Delta x_{i})(s_{i} + \Delta s_{i}) = x_{i}s_{i} + x_{i}\Delta s_{i} + s_{i}\Delta x_{i} + \Delta s_{i}\Delta x_{i}$$ $$\geq \gamma_{0}\mu - \|x\|_{\infty}\|\Delta s\|_{\infty} - \|s\|_{\infty}\|\Delta x\|_{\infty} - \|\Delta x\|_{\infty}\|\Delta s\|_{\infty}$$ $$\geq \gamma_{0}\mu - 2B_{\infty}^{2}\beta - B_{\infty}^{2}\beta^{2}$$ $$\geq \gamma_{0}\mu - 3B_{\infty}^{2}\beta, \text{ since } \beta \leq 1.$$ Using condition (20) we get a lower bound $$\gamma_0 \mu - 3B_\infty^2 \beta \ge \gamma_0 \mu - \frac{1}{2} (\gamma_0 - \gamma) \ge \gamma \mu > 0.$$ It is straightforward to show that this bound is also valid for $(x_i + \alpha \Delta x_i)(s_i + \alpha \Delta s_i)$ for any $\alpha \in (0, 1)$. Since we know (x, s) > 0 we conclude $x_i + \Delta x_i > 0$, $s_i + \Delta s_i > 0$. To show that $(x + \Delta x, s + \Delta s) \in \bar{\mathcal{N}}_{-\infty}(\gamma)$ we find an upper bound on $\mu^+ = (x + \Delta x)^T (s + \Delta s)/n$ by $$\mu^{+} = (x + \Delta x)^{T} (s + \Delta s)/n \leq \mu + \|\Delta x\|_{2} \|s\|_{2}/n + \|\Delta s\|_{2} \|x\|_{2}/n$$ $$\leq \mu + 2nB_{\infty}^{2}\beta/n + nB_{\infty}^{2}\beta^{2}/n$$ $$\leq \mu + 3B_{\infty}^{2}\beta.$$ Hence for the conclusion of the proposition we need $$\gamma_0 \mu - 3B_\infty^2 \beta \ge \gamma(\mu + 3B_\infty^2 \beta),$$ which is equivalent to (20). Corollary 2 Under the setup of Lemma 4 we have $(\bar{x}, \bar{y}, \bar{s}) \in \bar{\mathcal{N}}_{-\infty}(\gamma_0)$ if $$\delta_{bc}^{GG} \le \frac{(\gamma_0 - \gamma)\gamma_0^{3/2}}{6B_\infty^4} \mu^{5/2}.$$ (22) **Proof.** From Lemma 1 we have $||Q||_2 \leq B_{\infty}/(\sqrt{\gamma_0 \mu})$. Combining this with (19) and (20) we get the sufficient condition $$\delta_{bc}^{GG} \le \frac{(\gamma_0 - \gamma)\gamma_0}{6B_{\infty}^3(1 + \frac{B_{\infty}}{\sqrt{\gamma_0 \mu}})}\mu^2.$$ Assuming $\mu < B_{\infty}^2$ we have $(1 + \frac{B_{\infty}}{\sqrt{\gamma_0 \mu}}) \leq 2 \frac{B_{\infty}}{\sqrt{\gamma_0 \mu}}$ and therefore $$\frac{(\gamma_0 - \gamma)\gamma_0}{6B_{\infty}^3 (1 + \frac{B_{\infty}}{\sqrt{\gamma_0 \mu}})} \mu^2 \ge \frac{(\gamma_0 - \gamma)\gamma_0^{3/2}}{6B_{\infty}^4} \mu^{5/2}.$$ ## 3.2 Results based on changes in problem data The conditions for a successful warm-start in [11] involve the Renegar condition number C(d) of the problem and a direct measure of the change in the problem data. Following [11], we define \mathcal{F} as the set of primal-dual feasible data instances $$\mathcal{F} := \{ (A, b, c) : \exists (x, y, s) \text{ with } (x, s) > 0 \text{ such that } Ax = b, A^T y + s = c \},$$ its complement by \mathcal{F}^C , and their shared boundary as $\mathfrak{B} = \operatorname{cl}(\mathcal{F}) \cap \operatorname{cl}(\mathcal{F}^C)$. For a problem given by the data d = (A, b, c), let $$||d|| := \max\{||A||_2, ||b||_2, ||c||_2\}$$ and the difference to ill-posedness $\rho(d)$ given by $$\rho(d) = \inf\{\|\Delta d\| : d + \|\Delta d\| \in \mathfrak{B}\}. \tag{23}$$ The condition number $\mathcal{C}(d)$ of the data instance d is then defined as $$C(d) = ||d||/\rho(d)$$. Further with $\Delta d = (0, \Delta b, \Delta c)$ (i.e. assuming $\Delta A = 0$) define the following measures of (relative) change in the problem data: $$\delta_b^{YW} = \frac{\|\Delta b\|_2}{\|d\|}, \quad \delta_c^{YW} = \frac{\|\Delta c\|_2}{\|d\|}, \quad \delta_{bc}^{YW} = \delta_b + 2\mathcal{C}(d)\delta_c.$$ The setup of [11] assumes that a point in a neighbourhood of the central path for (5) is given. Two possible modification steps, a Weighted Least Squares (WLS) step and a Newton correction (NC), are suggested which have computational effort similar to the standard IPM step. They derive conditions under which these steps are able to absorb the whole primal—dual infeasibility introduced by the change of problem data. A typical result is as follows. **Proposition 1 ([11, Prop. 4.3])** Let $(x, y, s) \in \mathcal{N}_{-\infty}(\gamma_0)$ be given and suppose that $(\Delta x, \Delta y, \Delta s)$ is obtained by the WLS step. Further let γ be such that $0 < \gamma < \gamma_0 < 1$, and $\xi \in (0, \gamma_0 - \gamma)$. Assuming that $$\delta_{bc}^{YW} \le \frac{\gamma_0 - \gamma - \xi}{(n+1)\mathcal{C}(d)}$$ and $\mu \ge \frac{\|d\|}{\xi} 3\mathcal{C}(d)^2 \delta_{bc}^{YW}$, then $$(x + \Delta x, y + \Delta y, s + \Delta s) \in \bar{\mathcal{N}}_{-\infty}(\gamma)$$. The bound on δ_{bc}^{YW} is inconvenient for our purposes due to its dependency on the problem size n, which states that the absorbable perturbations become smaller the larger the problem is. Ultimately this bound originates from the Nunez-Freund bounds ([7]) $$||x(\mu)||_2 \le K(d,\mu), \quad ||s(\mu)||_2 \le 2||d||_2 K(d,\mu), \quad \text{where} \quad K(d,\mu) = \mathcal{C}(d)^2 + \frac{n\mu}{\rho(d)},$$ which in absence of further conditions are the only general upper bounds on ||x||, ||s|| that can be used. In our case we assume that we know a bound $B_{\infty}: x_i, s_i \leq B_{\infty}$ for all considered warm-start points (a more detailed discussion will follow in Section 5). Hence it is possible to derive results with weaker conditions on δ_{bc}^{YW} . We will give the analysis for the WLS modification step, results for the NC step can be derived similarly. Our first result is a direct extension of Proposition 4.3 in [11]: **Lemma 5 (WLS and** $\mathcal{N}_{-\infty}$ **neighbourhood)** Let $(x, y, s) \in \mathcal{N}_{-\infty}(\gamma_0)$ be given with $\gamma : 0 < \gamma < \gamma_0$, and assume that a bound $||x||_2, ||s||_2 \leq B_2$ uniformly for all μ is known. Suppose that
$(\Delta x, \Delta y, \Delta s)$ is obtained by the WLS step. Assuming that $$\mu \ge \frac{\|d\|}{\gamma_0 - \gamma} 3B_2 \delta_{bc}^{YW},\tag{24}$$ then $(x + \Delta x, y + \Delta y, s + \Delta s) \in \bar{\mathcal{N}}_{-\infty}(\gamma)$. **Proof.** The proof closely follows the proof of [11, Propositions 4.1/4.3] and can be found in the Appendix. **Lemma 6 (WLS and** \mathcal{N}_2 **neighbourhood)** Let $(x, y, s) \in \mathcal{N}_2(\theta_0)$ be given with $\theta: 1 > \theta > \theta_0$, and assume that a bound $||x||_2, ||s||_2 \leq B_2$ uniformly for all μ is known. Suppose that $(\Delta x, \Delta y, \Delta s)$ is obtained by the WLS step. Assuming that $$\mu \ge \frac{\|d\|}{\theta - \theta_0} 4B_2 \delta_{bc}^{YW},\tag{25}$$ then $(x + \Delta x, y + \Delta y, s + \Delta s) \in \bar{\mathcal{N}}_2(\theta)$. **Proof.** Again the proof can be found in the Appendix. We are now ready to apply these results to our application of warm-starting stochastic programming problems from reduced trees. # 4 Warm-starting stochastic programming problems We now turn our attention to the warm-starting of stochastic programming problems. In what follows we will limit our analysis to the case of a two stage stochastic programming problem with fixed recourse where the stochasticity only affects the right hand side, i.e problem (2) with $W(\xi) = W, T(\xi) = T, q(\xi) = q$. As indicated earlier, we assume that we are given a sequence of trees $\mathcal{T}^{(1)}, \mathcal{T}^{(2)}, \ldots, \mathcal{T}^{(K)}$ which define a series of problems $P^{(k)} = P(\mathcal{T}^{(k)})$. In this section we will start by analysing a single step of this scheme, i.e. we assume that we only have two trees $\mathcal{T}^{(1)}, \mathcal{T}^{(2)}$ and postpone the analysis of the whole sequence to Section 5. This warm-start application differs from the usual setup in that, rather than warm-starting from a problem with the same size but different problem data, we are warm-starting from a problem with the same *structure*, but different dimensions. As in [3] we will introduce a notional *expanded problem* that has the same size as the problem to be warm-started (the new problem) but using data from the old problem. We now assume that we are given two trees $\mathcal{T}^{(1)}$, $\mathcal{T}^{(2)}$, where $\mathcal{T}^{(1)}$ is obtained by an aggregation of nodes from $\mathcal{T}^{(2)}$. In detail, we partition the scenario set of $\mathcal{T}^{(2)}$ into disjoint clusters $$\mathcal{T}^{(2)} = \bigcup_{i} C_i, \qquad C_i \cap C_j = \emptyset, \qquad \forall i \neq j$$ find the average scenario for each cluster $$\mu(C_i) = \sum_{j \in C_i} p_j \eta_j / (\sum_{j \in C_i} p_j)$$ and use the set of aggregated scenarios as the reduced tree $$\mathcal{T}^{(1)} := \{ \mu(C_j) \}_j.$$ This implies a function $$r^{(1,2)}: \mathcal{T}^{(2)} \to \mathcal{T}^{(1)}, \quad r^{(1,2)}(\eta) = \mu(C_i): \eta \in C_i$$ that identifies for each scenario of $\mathcal{T}^{(2)}$ the corresponding scenario in $\mathcal{T}^{(1)}$, and its (set valued) inverse $$\mathcal{I}^{(1,2)}(\nu) := \{ \eta \in \mathcal{T}^{(2)} : r(\eta) = \nu \}, \quad \nu \in \mathcal{T}^{(1)}.$$ For the probabilities p_{ν} of scenario ν we have $$p_{\nu} = \sum_{\eta \in \mathcal{I}^{(1,2)}(\nu)} p_{\nu}, \quad \forall \nu \in \mathcal{T}^{(1)},$$ that is tree $\mathcal{T}^{(1)}$ is obtained from $\mathcal{T}^{(2)}$ by clustering and node aggregation. For a balanced aggregation we would have $p_{\eta}|\mathcal{T}^{(2)}| \approx p_{r(\eta)}|\mathcal{T}^{(1)}|$, where $|\mathcal{T}|$ is used to denote the cardinality of the tree \mathcal{T} . We define the balancing parameter $\rho^{(1,2)}$ to be the maximal deviation from this $$\rho^{(1,2)} := \min_{\eta \in \mathcal{T}^{(2)}} \left\{ \frac{p_{\eta}}{p_{r(\eta)}} \frac{|\mathcal{T}^{(2)}|}{|\mathcal{T}^{(1)}|}, \frac{p_{r(\eta)}}{p_{\eta}} \frac{|\mathcal{T}^{(1)}|}{|\mathcal{T}^{(2)}|} \right\} \le 1.$$ (26) In addition we also need a one-sided version $$\rho_{-}^{(1,2)} := \min_{\eta \in \mathcal{T}^{(2)}} \left\{ \frac{p_{\eta}}{p_{r(\eta)}} \frac{|\mathcal{T}^{(2)}|}{|\mathcal{T}^{(1)}|} \right\} \le 1.$$ (27) An important difference between $\rho^{(1,2)}$ and $\rho_{-}^{(1,2)}$ concerns the root node (labelled '0'). Since r(0) = 0 and $p_0 = 1$ for all aggregations, we have $$\rho^{(1,2)} \le |\mathcal{T}^{(1)}|/|\mathcal{T}^{(2)}|$$ irrespective of the balancing of the tree aggregation. On the other hand, it is possible to achieve $\rho_{-}^{(1,2)} = 1$ for a perfectly balanced aggregation. Later results will differ in whether they depend on ρ or ρ_{-} . As in [3] we will use a two-step procedure to construct a warm-start point for problem $P(\mathcal{T}^{(2)})$ from a (reasonably) central and primal-dual feasible point for $P(\mathcal{T}^{(1)})$. In a first step, with the mapping $r^{(1,2)}$ we define the *expanded tree* $$\hat{\mathcal{T}}^{(1,2)} := \{ r^{(1,2)}(t) : t \in \mathcal{T}^{(2)} \},\$$ that is a tree of the same shape as $\mathcal{T}^{(2)}$, but with all scenarios replaced by their corresponding scenarios from $\mathcal{T}^{(1)}$. When it is clear which two trees are involved we will drop the superscript $^{(1,2)}$ from r and $\hat{\mathcal{T}}$. The warm-start point can be similarly expanded resulting in a point that is primal-dual feasible for $P(\hat{\mathcal{T}})$ but has worsened centrality. From a primal-dual feasible point (x, y, s) for tree $\mathcal{T}^{(1)}$, then as in [3] we can construct a primal-dual feasible point $(\hat{x}, \hat{y}, \hat{s})$ for problem $P(\hat{\mathcal{T}})$ by setting $$\hat{x}^t = x^{r(t)}, \qquad (\hat{y}^t, \hat{s}^t) = \frac{p_t}{p_{r(t)}} (y^{r(t)}, s^{r(t)}).$$ (28) In a second step we replace the scenarios of \hat{T} by those of $T^{(2)}$ resulting in implied residuals ξ_b, ξ_c for the constructed warm-start point. We can control the worsening of centrality (in step 1) by using a balanced aggregation, and the size of the implied residuals (in step 2) by keeping $d(T^{(1)}, T^{(2)})$ small. The main result of this section are conditions on $\rho^{(1,2)}$ and $d(T^{(1)}, T^{(2)})$ that guarantee a successful warm-start. ## 4.1 Step 1: Worsening of centrality We start by analysing the worsening of centrality. The corresponding result from [3] (where the \mathcal{N}_s neighbourhood is used), is the following. **Lemma 7 ([3, Theorem 3])** Let $(x, y, s) \in \mathcal{N}_s^{(1)}(\gamma)$ and let $(\hat{x}, \hat{y}, \hat{s})$ be constructed from it by (28). Then $$(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{N}}_s(\rho^{(1,2)}\gamma).$$ We now give similar results for the \mathcal{N}_2 and $\mathcal{N}_{-\infty}$ neighbourhoods. **Lemma 8** Let $(x, y, s) \in \mathcal{N}_2^{(1)}(\theta)$ and let $(\hat{x}, \hat{y}, \hat{s})$ be constructed from it by (28). Then $$(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{N}}_2(\hat{\theta})$$ where $\hat{\theta} = \frac{n_2}{n_1}\theta + \sqrt{n_2}(1 - \rho^{(1,2)})$. **Proof.** The slightly technical proof is given in the Appendix. We also give a version of Lemma 7 using the $\mathcal{N}_{-\infty}$ neighbourhood (and ρ_{-}). **Lemma 9** Let $(x, y, s) \in \mathcal{N}^{(1)}_{-\infty}(\gamma)$ and let $(\hat{x}, \hat{y}, \hat{s})$ be constructed from it by (28). Then $$(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{N}}_{-\infty}(\rho_{-}^{(1,2)}\gamma).$$ **Proof.** Since $x_i s_i \geq \gamma \mu$ we have $$\hat{x}_i^t \hat{s}_i^t = x_i^{r(t)} s_i^{r(t)} \frac{p_t}{p_{r(t)}} \geq \frac{p_t}{p_{r(t)}} \gamma \mu = \frac{p_t}{p_{r(t)}} \gamma \frac{n_2}{n_1} \hat{\mu} \geq \rho_-^{(1,2)} \gamma \hat{\mu}.$$ # 4.2 Step 2: Bounds on δ_{bc} based on tree distance The aim of this section is to relate the distance measures δ_{bc}^{YW} , δ_{bc}^{GG} to the distance between the old and new scenario trees. While δ_{bc}^{YW} measures the change in problem data, δ_{bc}^{GG} is concerned with the resulting primal–dual infeasibility in the new problem. **Lemma 10** Let $(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{F}}^0$ be given. For the primal-dual infeasibilities incurred by changing the problem from $\hat{\mathcal{T}}$ to $\mathcal{T}^{(2)}$ we have $$\delta_{bc}^{GG} \le \sqrt{|\mathcal{T}^{(2)}|} \|W^T(WW^T)^{-1}\|_2 d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}).$$ **Proof:** According to Remark 1, δ_{bc}^{GG} is equal to $\|\Delta x^*\|_2 + \|\Delta s^*\|_2$, where $\Delta x^*, \Delta s^*$ is the minimal change to \hat{x}, \hat{s} needed to obtain a primal–dual feasible point for problem $\mathcal{T}^{(2)}$. Therefore for any change $\Delta x, \Delta s$ that restores primal–dual feasibility, $\|\Delta x\|_2 + \|\Delta s\|_2$ is an upper bound for δ_{bc}^{GG} . Since $(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{F}}$ we have $$p_t \hat{q}_t - W^T \hat{y}_t - \hat{s}_{2,t} = 0 (29a)$$ $$c_1 - A^T \hat{y}_1 - T^T \hat{y}_{2,t} - \hat{s}_1 = 0 (29b)$$ $$A\hat{x}_1 = b \tag{29c}$$ $$T\hat{x}_1 + W\hat{x}_{2:t} = \hat{h}_t \tag{29d}$$ We now consider the effect of changing the problem from $\hat{\mathcal{T}}$ to $\mathcal{T}^{(2)}$, that is replacing \hat{q}_t and \hat{h}_t by $q_t^{(2)}$ and $h_t^{(2)}$, respectively. Note that we have $$\|\Delta q_t\| = \|\hat{q}_t - q_t^{(2)}\| \le d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}), \qquad \|\Delta h_t\| = \|\hat{h}_t - h_t^{(2)}\| \le d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}).$$ Since the change of problem data only affects q_t, h_t , equations (29a/c) are still satisfied. For (29b/d) we construct a change $\Delta x, \Delta s$ to restore primal-dual feasibility. In order to satisfy (29a) we can simply take $\Delta s_{2,t} = p_t(q_t^{(2)} - \hat{q}_t)$ and get $$p_t q_t^{(2)} - W^T \hat{y}_1 - (\hat{s}_{2,t} + \Delta s_{2,t}) = p_t \hat{q}_t - W^T \hat{y}_1 - \hat{s}_{2,t} = 0,$$ and therefore $$\|\Delta s_{2,t}\| \le p_t \|\Delta q_t\| \le d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}).$$ For (29d) we look at
finding a change $\Delta x_{2,t}$ to satisfy $$\min \frac{1}{2} \Delta x_{2,t}^T \Delta x_{2,t} \text{ s.t. } T\hat{x}_1 + W(\hat{x}_{2,t} + \Delta x_{2,t}) = h_t^{(2)}.$$ Deriving optimality conditions, one can see easily that this is satisfied by $$\Delta x_{2,t} = W^T (WW^T)^{-1} (h_t^{(2)} - \hat{h}_t),$$ hence $$\|\Delta x_{2,t}\|_2 \le \|W^T(WW^T)^{-1}\|d(\mathcal{T}^{(1)},\mathcal{T}^{(2)}).$$ Together we obtain $$\delta_{bc}^{GG} \leq \|\Delta x\|_{2} + \|\Delta s\|_{2} \leq 2\sqrt{|\mathcal{T}^{(2)}|} \max\{\|\Delta x_{2,t}\|_{2}, \|\Delta s_{2,t}\|_{1}\}$$ $$\leq 2\sqrt{|\mathcal{T}^{(2)}|} \|W^{T}(WW^{T})^{-1}\|_{2} d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}).$$ Finding a bound on δ_{bc}^{YW} in terms of $d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)})$ is even easier. **Lemma 11** Let $(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{F}}_0$ be given. For the primal-dual infeasibilities incurred by changing the problem from \hat{T} to $\mathcal{T}^{(2)}$ we have $$\delta_{bc}^{YW} \le \frac{3\mathcal{C}(d)\sqrt{|\mathcal{T}^{(2)}|}}{\|d\|}d(\mathcal{T}^{(1)},\mathcal{T}^{(2)}).$$ **Proof.** We have $$\delta_{bc}^{YW} = \frac{\|\Delta b\|}{\|d\|} + 2\mathcal{C}(d) \frac{\|\Delta c\|}{\|d\|}$$ (30) As in the proof to Lemma 10 we can argue that $$\|\Delta q_t\|, \|\Delta h_t\| \le d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}), \quad \forall t \in \mathcal{T}^{(2)},$$ and hence $$\|\Delta b\| = \|\Delta h\| \le \sqrt{\mathcal{T}^{(2)}} d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}), \quad \|\Delta c\| = \|\Delta q\| \le \sqrt{\mathcal{T}^{(2)}} d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}). \quad (31)$$ From (30), (31) and $$1 \leq \mathcal{C}(d)$$ we get the assertion. ### 4.3 Results for the two-tree scheme We are now in a position to give conditions under which the whole warm-start process on two trees is successful. The algorithm we analyse consists of the steps detailed in Algorithm 1. In what follows we give results for the \mathcal{N}_2 and $\mathcal{N}_{-\infty}$ neighbourhoods #### Algorithm 1 Two-tree stochastic warm-start **Require:** The full tree \mathcal{T}_2 . - 1: Starting from \mathcal{T}_2 choose a reduced tree \mathcal{T}_1 (for example by clustering and scenario selection). - 2: Solve the problem on the reduced tree \mathcal{T}_1 to a duality gap of $\mu = \mu^{(1)}$, to obtain a point $$(x^{(1)}, y^{(1)}, s^{(1)}) \in \mathcal{N}^{(1)}$$ for a specific choice of neighbourhood $\mathcal{N}^{(1)}$. - 3: Expand this point by (28) to a solution $(\hat{x}, \hat{y}, \hat{s})$ of the expanded problem. - 4: Do a modification step in the full problem (Pure centring step or WLS step). for each of the two modification steps considered in Sections 3.1 and 3.2, respectively. **Theorem 1** Let $(x^{(1)}, y^{(1)}, s^{(1)}) \in \mathcal{N}^{(1)}_{-\infty}(\gamma_0)$ with $(x^{(1)})^T s^{(1)} = n_1 \mu$. Then the warmstart according to Algorithm 1 is successful, that is $$(\hat{x} + \Delta x, \hat{y} + \Delta y, \hat{s} + \Delta s) \in \mathcal{N}_{-\infty}^{(2)}(\gamma),$$ where $(\Delta x, \Delta y, \Delta s)$ is a pure centring step in the full problem, if $$d(\mathcal{T}_1, \mathcal{T}_2) \frac{n_2^{5/2} \sqrt{|\mathcal{T}_2|}}{n_1^{5/2} \rho_-^{3/2}} \le \frac{\rho_- \gamma_0 - \gamma}{6B_\infty^4 \|W^T (WW^T)^{-1}\|_2} \gamma_0^{3/2} \mu^{5/2}.$$ **Proof.** According to Lemma 9, the expansion procedure of Step 3 leads to a point $$(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{N}}_{-\infty}(\rho_{-}\gamma_{0}), \text{ with } \hat{\mu} := \hat{x}^{T}\hat{s}/n_{2} = \mu n_{1}/n_{2}.$$ According to Corollary 2 the warm-start is thus successful if $$\delta_{bc}^{GG} \le \frac{\rho - \gamma_0 - \gamma}{6B_{\infty}^4} (\rho \gamma_0)^{3/2} (\frac{n_1}{n_2} \mu)^{5/2}.$$ Combining this with the bound on δ_{bc}^{GG} from Lemma 10 we get the condition $$\sqrt{|\mathcal{T}^{(2)}|} \|W^T (WW^T)^{-1}\|_2 d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}) \le \frac{\rho_- \gamma_0 - \gamma}{6B_\infty^4} (\rho_- \gamma_0)^{3/2} (\frac{n_1}{n_2} \mu)^{5/2},$$ which can be rearranged to obtain the condition of the Theorem. A result for the \mathcal{N}_2 neighbourhood is a bit harder to obtain, since in the worsening-of-centrality result (Lemma 8) the new centrality measure $\bar{\theta} = \frac{n_2}{n_1}\theta + \sqrt{n_2}(\rho - 1)$ depends on more parameters. We can however control the $\frac{n_2}{n_1}\theta$ -term by reducing the initial centrality measure through some additional centering steps. This leads to the following result. **Theorem 2** Let $(x^{(1)}, y^{(1)}, s^{(1)}) \in \mathcal{N}_2^{(1)}(0.5)$ with $(x^{(1)})^T s^{(1)} = n_1 \mu$. Assume that $$n_2 \le 10n_1, \quad 1 - \rho^{(1,2)} \le \frac{1}{4\sqrt{n_2}}.$$ By performing up to two additional centering iterations in the reduced problem we can obtain a point $$(\tilde{x}^{(1)}, \tilde{y}^{(1)}, \tilde{s}^{(1)}) \in \mathcal{N}_2(0.15 \frac{n_1}{n_2}).$$ From this point the warm-start according to Algorithm 1 is successful, that is $$(\hat{x} + \Delta x, \hat{y} + \Delta y, \hat{s} + \Delta s) \in \mathcal{N}_2^{(2)}(0.5),$$ where $(\Delta x, \Delta y, \Delta s)$ is a pure centring step in the full problem, if $$d(\mathcal{T}_1, \mathcal{T}_2) \sqrt{|\mathcal{T}_2|} \frac{n_2^{3/2}}{n_1} \le \frac{1}{760B_\infty \|W^T (WW^T)^{-1}\|_2} \mu.$$ Remark 2 These conditions are obviously very tight: $$1 - \rho^{(1,2)} \le \frac{1}{4\sqrt{n_2}}$$ means that for moderate tree sizes $(n_2 \approx 10^5)$ we need $\rho > 0.999$, i.e. a more or less perfectly balanced tree. In order to prove this Theorem we need the following generalisation of the centering results [10, Lemma 5.8]: **Lemma 12** Let $(x, y, s) \in \mathcal{N}_2(\theta)$ with $0 < \theta < 0.5$ and let $(\Delta x, \Delta y, \Delta s)$ be obtained by a pure centring step. Then the full step is feasible and $$(x + \Delta x, y + \Delta y, s + \Delta s) \in \mathcal{N}_2(\bar{\theta})$$ where $\bar{\theta} = \frac{\theta^2}{2^{3/2}(1-\theta)}$. **Proof.** By combining Lemmas 5.5/5.4 in [10] we get (setting $\alpha = \sigma = 1$): $$\|(X + \Delta X)(S + \Delta S)e - \mu e\|_2 \le \|\Delta X \Delta Se\|_2 \le \frac{\theta^2}{2^{3/2}(1-\theta)}\mu.$$ The feasibility of the full step follows from [10, Lemma 5.8]. Corollary 3 By performing a series of pure centring steps we have the progression $$\mathcal{N}_2(0.5) \to \mathcal{N}_2(0.18) \to \mathcal{N}_2(0.015) \to \mathcal{N}_2(0.001).$$ **Proof (of Theorem 2).** According to Corollary 3, a maximum of two centring steps will take us from $\mathcal{N}_2(0.5)$ to $\mathcal{N}_2(0.015) \subset \mathcal{N}_2(0.15\frac{n_1}{n_2})$ for $n_2 \leq 10n_1$. According to Lemma 8, the expansion procedure of Step 1 leads to a point $$(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{N}}_2(\hat{\theta}), \text{ with } \hat{\mu} := \hat{x}^T \hat{s} / n_2 = \mu n_1 / n_2,$$ where $$\hat{\theta} = \frac{n_2}{n_1} (0.15 \frac{n_1}{n_2}) + \sqrt{n_2} (\rho - 1) \le 0.15 + 0.25 = 0.4.$$ According to Corollary 1, the warm-start is thus successful if $$\delta_{bc}^{GG} \le \frac{(1-\hat{\theta})^{3/2}(\theta-\hat{\theta})}{35\sqrt{n_2}B_{\infty}} \frac{n_1}{n_2} \mu.$$ Combining this with the bound on δ_{bc}^{GG} from Lemma 10 we get the condition $$\sqrt{|\mathcal{T}^{(2)}|} \|W^T (WW^T)^{-1}\|_2 d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)}) \le \frac{(1-\hat{\theta})^{3/2} (\theta - \hat{\theta})}{35 \sqrt{n_2} B_{\infty}} \frac{n_1}{n_2} \mu.$$ Rearranging, setting $\theta = 0.5$ and using $$\frac{\theta - \hat{\theta}}{35} (1 - \hat{\theta})^{3/2} \ge \frac{1}{760},$$ we obtain the condition of the Theorem. The final two results concern the WLS modification step and use the results from Section 3.2. **Theorem 3** Let $(x^{(1)}, y^{(1)}, s^{(1)}) \in \mathcal{N}^{(1)}_{-\infty}(\gamma_0)$ with $(x^{(1)})^T s^{(1)} = n_1 \mu$. Then the warmstart according to Algorithm 1 is successful, that is $$(\hat{x} + \Delta x, \hat{y} + \Delta y, \hat{s} + \Delta s) \in \mathcal{N}_{-\infty}^{(2)}(\gamma),$$ where $(\Delta x, \Delta y, \Delta s)$ is the Weighted Least Squares step according to [11] in the full problem, if $$d(\mathcal{T}_1, \mathcal{T}_2)\sqrt{|\mathcal{T}_2|} \frac{n_2}{n_1} \le \frac{\gamma_0 \rho_- - \gamma}{9B_2 C(d)} \mu.$$ **Proof.** The expansion procedure of Step 1 leads according to Lemma 9 to a point $(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{N}}_{-\infty}(\gamma_0 \rho_-)$, with $\hat{\mu} := \hat{x}^T \hat{s}/n_2 = \mu n_1/n_2$. According to Lemma 5, the warm-start is thus successful if $$\delta_{bc}^{YW} ||d_2|| \le \frac{\gamma_0 \rho_- - \gamma}{3B_2} \frac{n_1}{n_2} \mu.$$ Combining this with the bound on δ_{bc}^{YW} from Lemma 11 we get the condition $$3C(d)\sqrt{|\mathcal{T}^{(2)}|}d(\mathcal{T}^{(1)},\mathcal{T}^{(2)}) \le \frac{\gamma_0\rho_- - \gamma}{3B_2} \frac{n_1}{n_2}\mu,$$ which, after rearrangement, proves the Theorem. **Theorem 4** Let $(x^{(1)}, y^{(1)}, s^{(1)}) \in \mathcal{N}_2^{(1)}(0.25)$ with $(x^{(1)})^T s^{(1)} = n_1 \mu$. Assume that $$n_2 \le 10n_1$$, $\rho^{(1,2)} - 1 \le \frac{1}{4\sqrt{n_2}}$. By performing up to two additional centring iterations in the reduced problem we obtain a point $$(\tilde{x}^{(1)}, \tilde{y}^{(1)}, \tilde{s}^{(1)}) \in \mathcal{N}_2(0.15 \frac{n_1}{n_2}).$$ From this point the warm-start according to Algorithm 1 is successful, that is $$(\hat{x} + \Delta x, \hat{y} + \Delta y, \hat{s} + \Delta s) \in \mathcal{N}_2^{(2)}(0.5),$$ where $(\Delta x, \Delta y, \Delta s)$ is the Weighted Least Squares step according to [11] in the full problem, if $$d(\mathcal{T}_1, \mathcal{T}_2)\sqrt{|\mathcal{T}_2|} \frac{n_2}{n_1} \le \frac{1}{120B_2C(d)}\mu.$$ **Proof.** The first part (recentering) follows as in the proof to Theorem 2. According to Lemma 8, the expansion procedure of Step 1 leads to a point $(\hat{x}, \hat{y}, \hat{s}) \in \hat{\mathcal{N}}_2(\hat{\theta})$, with $\hat{\mu} := \hat{x}^T \hat{s}/n_2 = \mu n_1/n_2$, where $$\hat{\theta} = \frac{n_2}{n_1} (0.15 \frac{n_1}{n_2}) +
\sqrt{n_2} (\rho - 1) \le 0.15 + 0.25 = 0.4.$$ According to Lemma 6 the warm-start is thus successful if $$\delta_{bc}^{YW} \|d_2\| \le \frac{\theta - \hat{\theta}}{4B_2} \frac{n_1}{n_2} \mu,$$ which, combined with the bound on δ_{bc}^{YW} from Lemma 11, yields the condition $$3\mathcal{C}(d)\sqrt{|\mathcal{T}^{(2)}|}d(\mathcal{T}^{(1)},\mathcal{T}^{(2)}) \le \frac{\theta - \hat{\theta}}{4B_2} \frac{n_1}{n_2}\mu.$$ Rearranging, setting $\theta = 0.5$ and using $(\theta - \hat{\theta})/12 = 1/120$ we obtain the condition of the Theorem. # 5 Warm-start on a series of trees The results of Section 4.3 give conditions under which the warm-start from a neighbourhood of the central path in the reduced tree leads to a neighbourhood of the central path in the full tree. In this chapter we apply these results to a series of progressively larger trees $\mathcal{T}^{(1)}, \mathcal{T}^{(2)}, \cdots, \mathcal{T}^{(K)} = \mathcal{T}$. Algorithm 2 details the steps for the multiple tree stochastic warm-start scheme. ## Algorithm 2 Multiple-tree stochastic programming warm-start **Require:** A sequence of trees $\mathcal{T}^{(1)}, \mathcal{T}^{(2)}, \cdots, \mathcal{T}^{(K)}$ with resulting problem sizes $n^{(k)}$ and closeness measures $d^{(k)} = d(\mathcal{T}^{(k)}, \mathcal{T}^{(k+1)})$. Further a sequence of μ -values $\mu^{(k)}$. - 1: for k = 1 to K do - 2: Solve problem $P(\mathcal{T}^{(k)})$ to accuracy $\mu^{(k)}$, that is to obtain a point $(x^{(k)}, y^{(k)}, s^{(k)}) \in \mathcal{N}^{(k)}$ for some neighbourhood $\mathcal{N}^{(k)}$ with $(x^{(k)})^T s^{(k)} / n^{(k)} = \mu^{(k)}$. - 3: Perform additional centring steps to obtain a point in a tighter neighbourhood. - 4: Expand this point to a solution $(\hat{x}^{(k)}, \hat{y}^{(k)}, \hat{s}^{(k)})$ of the expanded problem, by following the scheme in (28). - 5: Use $(\hat{x}^{(k)}, \hat{y}^{(k)}, \hat{s}^{(k)})$ to warm-start the problem on the next tree in the sequence $\mathcal{T}^{(k+1)}$. - 6: end for In order to analyse the Algorithm we could use the results of Section 4. Their conditions, however, involve quantities like C(d) and B_{∞} , B_2 , which depend on the exact problem in the sequence. We start by deriving global bounds for the quantities C(d) and B_{∞}/B_2 that appear in the conditions for $d(\mathcal{T}^{(1)}, \mathcal{T}^{(2)})$ in Section 4.3. The proofs of these results are given in the Appendix. **Lemma 13** Let \mathcal{T} be the full tree and let the reduced tree $\overline{\mathcal{T}}$ be obtained from it by scenario aggregation. Then we have that $$\rho(d(T)) \le \rho(d(\overline{T})),$$ where $d(\mathcal{T}) = d(P(\mathcal{T}))$ is the problem data d = (A, b, c) describing the problem $P(\mathcal{T})$. **Lemma 14** Given a sequence of trees $\mathcal{T}^{(1)}, \mathcal{T}^{(2)}, \cdots, \mathcal{T}^{(K)}$ where $\mathcal{T}^{(k-1)}$ is obtained from $\mathcal{T}^{(k)}$ by scenario aggregation, then $$C(d^{(k)}) \le \overline{C(d)} = C(d^{(K)}), \quad \forall k.$$ Further, given a sequence of μ -values: $\mu^{(1)} \ge \mu^{(2)} \ge \ldots \ge \mu^{(K)}$, then with $$\overline{B}_{2} = 2\|d^{(K)}\|_{2}(\overline{C(d)}^{2} + n^{(K)}\mu^{(1)}/\bar{\rho})$$ $$\overline{B}_{\infty} = 2\|d^{(K)}\|_{1}(\overline{C(d)}^{2} + n^{(K)}\mu^{(1)}/\bar{\rho})$$ we have that all $(x^{(k)}, s^{(k)})$ that are used in the warm-start sequence satisfy $$||x^{(k)}||_{\infty}, ||s^{(k)}||_{\infty} \le \overline{B}_{\infty}, \qquad ||x^{(k)}||_{2}, ||s^{(k)}||_{2} \le \overline{B}_{2}.$$ We are now in a position to state the main results of this paper. We give conditions under which all the warm-start steps in the algorithm are successful both for the \mathcal{N}_2 and the $\mathcal{N}_{-\infty}$ neighbourhoods. **Theorem 5** Given is a sequence of trees $\mathcal{T}^{(1)}, \mathcal{T}^{(2)}, \cdots, \mathcal{T}^{(K)}$ with resulting problem sizes $n^{(k)}$ and closeness measures $d^{(k)} = d(\mathcal{T}^{(k)}, \mathcal{T}^{(k+1)})$. Further we are given a sequence of μ -values $\mu^{(k)}$. Assume that we have a bound $\overline{C(d)} = C(P^{(k)})$. If we have $$n^{(k+1)} \leq 10n^{(k)}, \qquad \rho^{(k,k+1)} \leq 1 + \frac{1}{4\sqrt{n^{(k+1)}}}$$ $$\mu^{(k)} \geq 120\sqrt{|\mathcal{T}^{(k+1)}|} \bar{B}_2 \overline{C(d)} d^{(k)} \frac{n^{(k+1)}}{n^{(k)}}$$ $$or \qquad (32)$$ $$\mu^{(k)} \geq 760\sqrt{|\mathcal{T}^{(k+1)}|}\bar{B}_{\infty} \|W^T(WW^T)^{-1}\|_2 d^{(k)} \frac{(n^{(k+1)})^{3/2}}{n^{(k)}}, \tag{33}$$ with $\bar{B}_2, \bar{B}_{\infty}$ from Lemma 14, then Algorithm 2 can be performed successfully, that is all warm-starts are successful and lead to points $$(x^{(k+1)}, y^{(k+1)}, s^{(k+1)}) \in \mathcal{N}_2^{(k+1)}(0.5).$$ **Proof.** All the warm-start points are primal—dual feasible for their respective originating problem. Therefore the bounds from Lemma 14 hold. The assertion of the Theorem then follows from Theorems 2 and 4. We will now give the equivalent result for the $\mathcal{N}_{-\infty}$ neighbourhood based on Theorems 1 and 3. In the $\mathcal{N}_{-\infty}$ neighbourhood there are no cheap re-centring steps. We therefore suggest a scheme in which the centrality measure γ worsens at every step. In particular we will choose the sequence $\gamma^{(0)} > 0.1$, $\gamma^{(k+1)} = (\gamma^{(k)} + 0.1)/2$. **Theorem 6** Given is a sequence of trees $\mathcal{T}^{(1)}, \mathcal{T}^{(2)}, \cdots, \mathcal{T}^{(K)}$ with resulting problem sizes $n^{(k)}$ and closeness measures $d^{(k)} = d(\mathcal{T}^{(k)}, \mathcal{T}^{(k+1)})$. Further we are given a sequence of μ -values $\mu^{(k)}$. Assume that we have a bound $\overline{C(d)} = C(P^{(k)})$. If we choose $$\gamma^{(k+1)} = \frac{1}{2} (\gamma^{(k)} + \frac{1}{10})$$ and satisfy the conditions $$\rho_{-}^{(k,k+1)} - 1 \leq \frac{1}{4} (\gamma^{(k)} - \frac{1}{10})$$ $$d^{(k)} \sqrt{|\mathcal{T}^{(k+1)}|} \leq \frac{\gamma^{(k)} - \frac{1}{10}}{6 \cdot 320 B_{\infty}^{4} ||W^{T} (WW^{T})^{-1}||_{2}} \left(\frac{(n^{(k)})}{(n^{(k+1)})} \mu\right)^{5/2}$$ (34) $$d^{(k)}\sqrt{|\mathcal{T}^{(k+1)}|} \leq \frac{\gamma^{(k)} - \frac{1}{10}}{36B_2\overline{C}(d)} \frac{n^{(k)}}{n^{(k+1)}} \mu, \tag{35}$$ with $\bar{B}_2, \bar{B}_{\infty}$ from Lemma 14, then Algorithm 2 can be performed successfully, that is all warm-starts are successful and lead to points $$(x^{(k+1)}, y^{(k+1)}, s^{(k+1)}) \in \mathcal{N}_{-\infty}^{(k+1)}(\gamma^{(k+1)}).$$ **Proof.** All the warm-start points are primal—dual feasible for their respective originating problem, so the bounds from Lemma 14 hold. Under the conditions of the Theorem we have (since $\gamma < 1$) $$1 - \rho \le \frac{1}{4}(\gamma - \frac{1}{10}) \le \frac{1}{4\gamma}(\gamma - \frac{1}{10}) = \frac{1}{4} - \frac{1}{40\gamma},$$ and therefore $$\rho^{(k,k+1)} \ge \frac{3}{4} + \frac{1}{40\gamma^{(k)}}.$$ Moreover $$\gamma^{(k)}\rho_{-} - \gamma^{(k+1)} \ge \frac{3}{4}\gamma^{(k)} + \frac{1}{40} - \frac{1}{2}\gamma^{(k)} - \frac{1}{20} = \frac{1}{4}(\gamma^{(k)} - \frac{1}{10}),\tag{36}$$ and therefore with $\rho_- \geq 3/4, \gamma^{(k)} \geq 1/10$: $$\rho_{-}^{3/2}(\rho_{-}\gamma^{(k)} - \gamma^{(k+1)})(\gamma^{(k)})^{3/2} \ge \frac{1}{2} \frac{1}{4} (\gamma^{(k)} - \frac{1}{10}) \frac{1}{40} = \frac{1}{320} (\gamma^{(k)} - \frac{1}{10}). \tag{37}$$ Combining (37) with (34) we see that the condition of Theorem 1 is satisfied. Similarly, combining (36) with (35) we see that the condition of Theorem 3 is satisfied. In both cases we see that the sequence of warm-start is successful as claimed. #### 5.1 Complexity analysis We now take a closer look at Algorithm 2. In step 2 the advanced $\mu^{(k)}$ -centre is found by applying an interior point method. Assuming (as usual) that we know a primal–dual feasible μ^0 centre, the initial $\mu^{(1)}$ -centre can be found in $$\mathcal{O}\left(n^{\tau}\log\frac{\mu^0}{\mu^{(1)}}\right) \tag{38}$$ iterations (see for example [11]). The parameter τ depends on the IPM variant used, and is $\tau = 1$ for the long-step method and $\tau = 1/2$ for the short-step method. We assume that the computational cost of an interior point iteration (which is dominated by the solution of system (8)) is $\mathcal{O}(n^{\alpha})$, where typically $\alpha > 1$ (dense linear algebra would give $\alpha = 3$, the best structure exploiting solvers are able to reach $\alpha \approx 1$ in specific circumstances). Since typically $\alpha > 1$, the computational cost will be dominated by the number of iterations that have to be performed on the full problem $P(\mathcal{T})$. It is therefore crucial to analyse what the latest point (smallest μ) is at which the switch to the full problem can be performed successfully according to the analysis presented in the previous sections. If we use only one reduced tree for warm-starting (as in [3]), then from condition (33) of Theorem 5 and the fact that typically $n^{(k)} \approx C|\mathcal{T}^{(k)}|$ we get as a condition for the smallest acceptable μ -value (in the reduced problem) the bound $$\mu^{(1)} \ge Cd(\mathcal{T}_1, \mathcal{T}^{(k)})n_K^2/n_1.$$ Similar conditions can be obtained using conditions (32), (34), (35) to obtain bounds of the form $$\mu^{(1)} \ge Cd(\mathcal{T}_1, \mathcal{T}^{(k)})^a n_K^b / n_1,$$ where the values of a, b and the constant C depend on which strand of the analysis we take according to According to the analysis of the expansion and warm-start steps this yields a warm-start point in the full problem with a corresponding μ -value $$\underline{\mu} = \underline{\mu^{(1)}} \frac{n_1}{n_K} \ge C d(\mathcal{T}_1, \mathcal{T}^{(k)})^a n_K^{b-1}. \tag{39}$$ One the other hand if we use a sequence of trees $\mathcal{T}^{(1)}$, $\mathcal{T}^{(2)}$, $\mathcal{T}^{(K)}$, the final warm-start into the full problem $P(\mathcal{T}^{(K)})$ will be performed from $\mathcal{T}^{(2)}$ and by a similar argument we obtain the bound $$\underline{\mu} = \underline{\mu^{(2)}} \frac{n_2}{n_K} \ge C
d(\mathcal{T}_2, \mathcal{T}^{(k)})^a n_K^{b-1}. \tag{40}$$ We expect that $\mathcal{T}^{(2)}$ is chosen such that $d(\mathcal{T}^{(2)}, \mathcal{T}^{(K)}) < d(\mathcal{T}^{(1)}, \mathcal{T}^{(K)})$. Comparing (39) and (40) and using (38) we obtain that the number of full problem iterations saved by performing the multi-step warm-start is $$\mathcal{O}\left(a\log\frac{d(\mathcal{T}^{(2)},\mathcal{T}^{(K)})}{d(\mathcal{T}^{(1)},\mathcal{T}^{(K)})}\right).$$ A similar analysis can now be applied to determine whether it is worthwhile to introduce an additional tree $\mathcal{T}^{(3)}$ between $\mathcal{T}^{(2)}$ and $\mathcal{T}^{(K)}$, or indeed whether problem $P(\mathcal{T}^{(2)})$ should be warm-started directly from $\mathcal{T}^{(1)}$ or from an intermediate tree between $\mathcal{T}^{(1)}$ and $\mathcal{T}^{(2)}$. We should note that typically there is a large gap between the theoretically predicted and practically observed behaviour of interior point methods. We therefore see the bounds in Theorems 5 and 6 only as qualitative guidance, but will not check them in practice. We think this reasoning is supported by the numerical results which we present in the final section. ## 6 Numerical results The multi-step warm-start algorithm is implemented within OOPS [6], an infeasible primal—dual long-step interior point code. In fact, OOPS does not enforce that iterates have to be in a specific neighbourhood. As such the code is quite different from the exemplary method used in our analysis. Our aim is however to demonstrate that the warm-starting scheme offers potential for time savings even on production codes (and not just on a textbook algorithm). We have tested the multi-step warm-start algorithm (Algorithm 2) on two sets of test problems. The first set consists of variations of the standard diet problem in which a set of products have to be mixed from a supply of raw materials in order to satisfy certain nutrient specifications of the products at minimum cost. The problem is made stochastic by assuming that demand of products and availability of raw materials are unknown. The first-stage decision is to decide how much to buy of each raw material, and the recourse problem decides how to mix each of the products. We allow to buy in missing raw materials at premium cost to ensure full recourse. The second set comes from capacity assignment problems with uncertain demand. Scenarios for both sets of problems are generated by sampling from a (multivariate) uniform distribution. Details of our test problems and their dimensions are given in Table 1. | | | core s | size | problem size | | | |------------|-----------|-------------|-----------|--------------|-----------|--| | Problem | scenarios | constraints | variables | constraints | variables | | | ex1 | 20000 | 50 | 70 | 960.001 | 1.780.006 | | | | 40000 | 50 | 70 | 1.920.001 | 3.560.006 | | | ex3 | 10000 | 72 | 112 | 700.001 | 1.380.009 | | | | 20000 | 72 | 112 | 1.400.001 | 2.760.009 | | | s97 | 10000 | 147 | 157 | 1.450.001 | 2.390.010 | | | s98 | 10000 | 149 | 141 | 1.470.001 | 2.060.006 | | | j99 | 10000 | 158 | 148 | 1.560.001 | 2.170.007 | | | Minoux | 10000 | 118 | 239 | 1.160.001 | 3.050.051 | | | Jll_gva | 4000 | 350 | 781 | 1.392.001 | 4.180.085 | | | T1B3 | 10000 | 50 | 109 | 1.070.001 | 1.350.024 | | | r4c | 10000 | 177 | 272 | 2.700.001 | 2.970.151 | | Table 1: Dimensions of the test problems. All computations have been performed on a Dual Core Intel 3.0GHz processor with 4GB RAM. Starting from the full problem we generate reduced problems by clustering scenarios (using k-means++ clustering [1]). In our first set of results (presented in Table 2) we compare the efficiency of a single step of the stochastic warm-start (Algorithm 1) for varying sizes of the reduced tree. The numbers given are the IPM iterations for the full tree (after warm-start), the total solution time (for the reduced and full problem solve) and the combined residual $\|\xi_b\|_{\infty} + \|\xi_c\|_{\infty}$ in the first iteration of the full problem. As expected, the residuals in the full problem decrease as the reduced tree approximation improves, confirming the assertions of Lemmas 10/11. In all cases, the warm-start can significantly reduce the number of iterations. Since an iteration in the reduced problem is much cheaper than an iteration in the full problem, the savings in iterations are translated into savings of solution time. As expected the number of iterations needed in the warm-started problem is generally smaller if the reduced tree is larger, i.e. it approximates the full tree better. However, in terms of solution time there is a slight tradeoff, since using a large reduced tree means that a non-negligible time is spent in finding the warm-start point. To complete the picture, Table 3 gives the smallest target μ -value in the reduced tree for which the warm-start is successful found by experimentation. Since we deem the definition of a "successful warm-start" used in the theoretical part of this paper (namely the modification step itself regains feasibility in the full problem) too stringent, we have used the criterion that the infeasible IPM used for the full problem is able to reduce the combined primal–dual infeasibility below 0.1 (or 1/100 of its original value, whichever is smaller) within the first 3 iterations. As can be seen, the smallest successful μ -value decreases as the quality of the reduced tree approximation improves, again confirming the results of Theorems 1-4. In our second set of results we test the performance of the multi-step scheme. In all instances we have used three trees: for each problem the full tree and the smallest and largest reduced tree from Table 2. In Table 4 we compare the solution time for the cold started problem, the problem warm-started from the largest reduced tree, problem warm-started from the smallest reduced tree and finally the three-tree scheme. We also report the percentual time savings of the 3-step scheme compared to the best of the 2-step warm-starts (negative values indicate that the 3-step scheme is not the fastest). In all cases the multistep warm-start can improve on the solution time of the of the 2-step scheme when warm-started from the largest tree. In most cases we can also improve on the solution time when warm-starting from the smallest reduced tree. Although the 3-step scheme is not in all cases the fastest of the warm-start schemes, it is always good. Keeping in mind that the optimal size of the reduced tree for a 2-step scheme can not be determined a-priori, the 3-step warm-start is a good alternative. Our numerical results show that the warm-start scheme significantly speeds up the solution of large two-stage stochastic programming problems when compared to a cold start and has advantages compared to a simple reduced tree warm-start. Although the analysis has been performed for linear two-stage problems, we would expect that the scheme can be adapted to nonlinear problems and multi-stage stochastic programming. We leave this for future research. | Problem | scenarios | cold | size of reduced tree | | | | | |----------|-----------|-------|----------------------|------|-------|-------|-------| | 1 Toblem | scenarios | Colu | 4000 | 2000 | 1000 | 100 | 10 | | ex1 | 20000 | 25 | - | 12 | - | 14 | 12 | | | | 580s | | 327s | | 311s | 264s | | | | | | 1.76 | | 4.20 | 8.34 | | | 40000 | 34 | 14 | - | - | 14 | 18 | | | | 1559s | 766s | | | 642s | 843s | | | | | 1.55 | | | 3.87 | 7.40 | | ex3 | 10000 | 34 | - | - | 18 | 28 | 27 | | | | 563s | | | 346s | 469s | 444s | | | | | | | 2.90 | 6.16 | 13.2 | | | 20000 | 53 | - | 16 | - | 24 | 29 | | | | 1793s | | 626s | | 804s | 961s | | | | | | 2.56 | | 5.75 | 11.7 | | s97 | 10000 | 31 | - | - | 15 | 18 | 15 | | | | 498s | | | 389s | 252s | 229s | | | | | | | 2.46 | 4.26 | 7.88 | | s98 | 10000 | >100 | - | - | 18 | 32 | 30 | | | | 2278s | | | 826s | 951s | 878s | | | | | | | 7.77 | 11.8 | 23.2 | | j99 | 10000 | 76 | - | - | 11 | 11 | 11 | | | | 1796s | | | 375s | 282s | 275s | | | | | | | 4.70 | 11.0 | 18.0 | | Minoux | 10000 | 40 | - | - | 17 | 30 | 27 | | | | 2644s | | | 1212s | 1831 | 1790s | | | | | | | 0.081 | 0.441 | 3.52 | | Jll_gva | 4000 | 63 | - | - | 30 | 25 | 44 | | | | 4981s | | | 2523s | 2284 | 2995s | | | | | | | 0.14 | 1.00 | 6.84 | | T1B3 | 10000 | 57 | - | - | 31 | 40 | 31 | | | | 995s | | | 633s | 679 | 557 | | | | | | | 1.21 | 1.60 | 1.91 | | r4c | 10000 | 41 | - | - | 14 | 21 | 24 | | | | 2098 | | | 835 | 1099 | 1204 | | | | | | | 0.36 | 0.83 | 2.96 | | | | • | - | | | • | | Table 2: Warm-started iterations, solution time and residuals for different sizes of the reduced tree. | Problem | scenarios | 4000 | 2000 | 1000 | 100 | 10 | |------------|-----------|------|--------|--------|--------|--------| | ex1 | 20000 | - | 1.5e-3 | - | 5e-2 | 1 | | | 40000 | 5e-4 | - | - | 5e-2 | 1 | | ex3 | 10000 | - | - | 0.2 | 1 | 30 | | | 20000 | - | 0.1 | - | 2 | 50 | | s97 | 10000 | - | - | 1e-4 | 2e-3 | 5e-2 | | s98 | 10000 | - | - | 0.2 | 1 | 50 | | j99 | 10000 | - | - | 1e-2 | 2 | 100 | | Minoux | 10000 | - | - | 1.5e-4 | 2.e-3 | 1.5e-2 | | Jll_gva | 4000 | - | - | 1.5e-4 | 1.5e-3 | 1.5e-2 | | T1B3 | 10000 | - | - | 1.e-4 | 1.e-3 | 1.e-2 | | r4c | 10000 | - | - | 5.e-5 | 1.e-3 | 2.e-2 | Table 3: Smallest μ for successful warm-start. | Problem | scenarios | cold | 2-step (large) | 2-step (small) | 3-step | impr | |---------|-----------|------|----------------|----------------|--------|-------| | ex1 | 20000 | 580 | 327 | 264 | 302 | -14.4 | | | 40000 | 1559 | 766 | 642 | 701 | -9.2 | | ex3 | 10000 | 563 | 346 | 444 | 316 | +8.7 | | | 20000 | 1793 | 626 | 961 | 586 | +6.4 | | s97 | 10000 | 498 | 389 | 229 | 307 | -34.1 | | s98 | 10000 | 3189 | 826 | 878 | 481 | +41.8 | | j99 | 10000 | 1796 | 375 | 275 | 295 | -7.3 | | Minoux | 10000 | 2644 | 1212 | 1790 | 1176 | +3.0 | | Jll_gva | 4000 | 4981 | 2523 | 2995 | 2251 | +10.8 | | T1B3 | 10000 |
995 | 663 | 557 | 637 | -14.4 | | r4c | 10000 | 2098 | 835 | 1204 | 749 | +10.3 | Table 4: Comparison of solution time for cold start, 2-step warm-start and multi-step warm-start. ## References - [1] D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007, pp. 1027–1035. - [2] H. Y. Benson and D. F. Shanno, An exact primal-dual penalty method approach to warmstarting interior-point methods for linear programming, Computational Optimization and Applications, 38 (2007), pp. 371–399. - [3] M. COLOMBO, J. GONDZIO, AND A. GROTHEY, A warm-start approach for large-scale stochastic linear programs, Technical Report MS-06-004, School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK, August 2006. Accepted for publication in Mathematical Programming. - [4] J. Gondzio and A. Grothey, Reoptimization with the primal-dual interior point method, SIAM Journal on Optimization, 13 (2003), pp. 842–864. - [5] —, A new unblocking technique to warmstart interior point methods based on sensitivity analysis, Technical Report MS-06-005, School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK, December 2006. To appear in SIAM Journal on Optimization. - [6] —, Exploiting structure in parallel implementation of interior point methods for optimization, Comput Manag Sci, 6 (2009), pp. 135–160. - [7] M. A. NUNEZ AND R. M. FREUND, Condition measures and properties of the central trajectory, Math Program, 83 (1998), pp. 1–28. - [8] R. T. ROCKAFELLAR, Integral functionals, normal integrands and measurable selections, in Nonlinear Operators and the Calculus of Variations, L. Waelbrock, ed., vol. 543 of Lecture Notes in Mathematics, Springer, 1976, pp. 157–207. - [9] S. E. Wright, Primal-dual aggregation and disaggregation for stochastic linear programs, Math Oper Res, 19 (1994), pp. 893–908. - [10] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997. - [11] E. A. YILDIRIM AND S. J. WRIGHT, Warm-start strategies in interior-point methods for linear programming, SIAM Journal on Optimization, 12 (2002), pp. 782–810. # **Appendix** **Proof of Lemma 5.** For a lower bound on $(x_i + \Delta x_i)(s_i + \Delta s_i)$ we use $$(x_{i} + \Delta x_{i})(s_{i} + \Delta s_{i}) = x_{i}s_{i} + x_{i}\Delta s_{i} + s_{i}\Delta x_{i} + \Delta s_{i}\Delta x_{i}$$ $$\geq \gamma_{0}\mu - \|x\|_{2}\|\Delta s\|_{2} - \|s\|_{2}\|\Delta x\|_{2} - \|\Delta x\|_{2}\|\Delta s\|_{2}$$ $$\geq \gamma_{0}\mu - B_{2}\|d\|\delta_{c} - B_{2}\mathcal{C}(d)\delta_{b} - \|d\|\mathcal{C}\delta_{b}\delta_{c}$$ $$\geq \gamma_{0}\mu - 2B_{2}\|d\|\delta_{bc}^{YW}$$ where we have used the bounds $\|\Delta s\|_2 \leq \|d\|\delta_c$, $\|\Delta x\|_2 \leq \mathcal{C}(d)\delta_b$ appearing in [11, eq. (4.8)] and (as there) make the mild assumption that $\delta_b, \delta_c < 1$. Since $\gamma_0 > 0$ this provides a positive lower bound on $(x_i + \Delta x_i)(s_i + \Delta s_i)$ for μ satisfying the conditions of the Lemma (actually since $\gamma_0 - \gamma < \gamma_0$: $\mu > \frac{\|d\|}{\gamma_0 - \gamma} 3B_2\delta_{bc}^{YW} \geq \frac{\|d\|}{\gamma_0} 2B_2\delta_{bc}^{YW}$ and hence the bound is positive). It is straightforward to show that this bound is also valid for $(x_i + \alpha \Delta x_i)(s_i + \alpha \Delta s_i)$ for any $\alpha \in (0, 1)$. Since we know (x, s) > 0, we conclude that $x_i + \Delta x_i > 0$, $s_i + \Delta s_i > 0$. To show that $(x + \Delta x, s + \Delta s) \in \mathcal{N}_{-\infty}(\gamma)$ we find an upper bound on $(x + \Delta x)^T (s + \Delta s)/n$ by $$(x + \Delta x)^{T} (s + \Delta s)/n \leq \mu + \|\Delta x\|_{2} \|s\|_{2}/n + \|\Delta s\|_{2} \|x\|_{2}/n$$ $$\leq \mu + B_{2} \mathcal{C}(d) \delta_{b}/n + B_{2} \|d\| \delta_{c}/n$$ $$\leq \mu + B_{2} \|d\| \delta_{bc}^{YW}/n.$$ Hence for the conclusion of the Lemma we need $$\gamma_0 \mu - 2B_2 \|d\| \delta_{bc}^{YW} \ge \gamma (\mu + B_2 \|d\| \delta_{bc}^{YW} / n),$$ which is equivalent to $$\mu \ge \frac{B_2 \|d\| (2 + \gamma/n) \delta_{bc}^{YW}}{(\gamma_0 - \gamma)},$$ which is implied by condition (24). **Proof of Lemma 6.** As in the proof of [11, Proposition 4.2] we start by finding a bound on the norm of the vector $$[(x_i + \Delta x_i)(s_i + \Delta s_i)]_{i=1,2,\dots,n} - [(x + \Delta x)^T (s + \Delta s)/n]e.$$ (41) Given two vectors $y, z \in \mathbb{R}^n$, we have that $$||[y_i z_i]_{i=1,2,\ldots,n}||_2 \le ||y||_2 ||z||_2, \qquad |y^T z| \le ||y||_2 ||z||_2.$$ By using these elementary inequalities we have that the norm of (41) is bounded by $$||[x_{i}s_{i}]_{i=1,2,...,n} - \mu e||_{2} + 2[||\Delta x||_{2}||s||_{2} + ||\Delta s||_{2}||x||_{2}] + ||\Delta x||_{2}||\Delta s||_{2}$$ $$\leq \theta_{0}\mu + 2B_{2}||d||\delta_{bc}^{YW} + \mathcal{C}||d||\delta_{b}\delta_{c}$$ $$\leq \theta_{0}\mu + 3B_{2}||d||\delta_{bc}^{YW}.$$ Meanwhile, we obtain a lower bound on the duality measure after the correction by $$(x + \Delta x)^T (s + \Delta s)/n \geq \mu - [\|\Delta x\|_2 \|s\|_2 + \|\Delta s\|_2 \|x\|_2]/n$$ $$\geq \mu - B_2 \|d\| \delta_{bc}^{YW}/2.$$ Therefore, a sufficient condition for $(x + \Delta x, y + \Delta y, s + \Delta s) \in \bar{\mathcal{N}}_2(\theta)$ is that $$\theta_0 \mu + 3B_2 \|d\| \delta_{bc}^{YW} \le \theta \mu - \theta B_2 \|d\| \delta_{bc}^{YW} / 2$$ which after rearrangement becomes $$\mu(\theta - \theta_0) \ge 3B_2 \|d\| \delta_{bc}^{YW} + \theta B_2 \|d\| \delta_{bc}^{YW} / 2. \tag{42}$$ Since $\theta < 1$, (25) is sufficient for (42). **Proof of Lemma 8.** According to the proof of [3, Theorem 3], $(\hat{x}, \hat{y}, \hat{s})$ is primaldual feasible for problem $P(\hat{T})$. Also from the same proof we have $$\hat{\mu} := \hat{x}^T \hat{s} / n_2 = n_1 \mu_1 / n_2.$$ We need to prove a bound on $\|\hat{X}\hat{S}e - \hat{\mu}e\|_2$. (\hat{x},\hat{s}) as constructed by (28), are such that for a perfectly centred x, s, i.e. $x_i s_i = \mu_1$, we have $$\hat{x}_i \hat{s}_i = \tilde{\mu}_i$$ where $$\tilde{\mu}_i^{(t)} = \frac{p_t}{p_{r(t)}} \mu_1.$$ Here and in what follows we use the notation that $\tilde{\mu}_i^{(t)}$ is the *i*-th component of the part of $\tilde{\mu}$ corresponding to node $t \in \mathcal{T}_1$. We have $$\|\hat{X}\hat{S}e - \hat{\mu}e\|_2 \le \|\hat{X}\hat{S}e - \tilde{\mu}\|_2 + \|\tilde{\mu} - \hat{\mu}e\|_2.$$ We will now derive bounds on these two terms separately: $$\begin{split} \|\hat{X}\hat{S}e - \tilde{\mu}\|_{2}^{2} &= \sum_{s \in \mathcal{T}_{1}} \sum_{t \in \mathcal{I}(s)} \sum_{i} (\hat{x}_{i}^{(t)} \hat{s}_{i}^{(t)} - \hat{\mu}_{i}^{(t)})^{2} \\ &= \sum_{s \in \mathcal{T}_{1}} \sum_{t \in \mathcal{I}(s)} \sum_{i} (\frac{p_{t}}{p_{s}} x_{i}^{(s)} s_{i}^{(s)} - \frac{p_{t}}{p_{s}} \mu_{1})^{2} \\ &\leq \sum_{s \in \mathcal{T}_{1}} \sum_{t \in \mathcal{I}(s)} \sum_{i} \frac{p_{t}}{p_{s}} (x_{i}^{(s)} s_{i}^{(s)} - \mu_{1})^{2} \\ &= \sum_{s \in \mathcal{T}_{1}} \frac{1}{p_{s}} \sum_{i} (x_{i}^{(s)} s_{i}^{(s)} - \mu_{1})^{2} \sum_{t \in \mathcal{I}(s)} p_{t} \\ &= \sum_{s \in \mathcal{T}_{1}} \sum_{i} (x_{i}^{(s)} s_{i}^{(s)} - \mu_{1})^{2} = \|XSe - \mu_{1}e\|_{2}^{2} \leq \theta^{2} \mu_{1}^{2}, \end{split}$$ and $$\|\mu_{1}e - \tilde{\mu}\|_{2}^{2} = \sum_{s \in \mathcal{T}_{1}} \sum_{t \in \mathcal{I}(s)} \sum_{i} (\tilde{\mu}_{i}^{(t)} - \hat{\mu})^{2}$$ $$= \sum_{s \in \mathcal{T}_{1}} \sum_{t \in \mathcal{I}(s)} \sum_{i} \mu_{1}^{2} (\frac{p_{t}}{p_{s}} - \frac{n_{1}}{n_{2}})^{2}$$ $$\leq \sum_{s \in \mathcal{T}_{1}} \sum_{t \in \mathcal{I}(s)} \sum_{i} \mu_{1}^{2} \frac{n_{1}^{2}}{n_{2}^{2}} (\rho - 1)^{2}$$ $$= \mu_{1}^{2} \frac{n_{1}^{2}}{n_{2}} (\rho - 1)^{2},$$ so that by combining the two we have $$\|\hat{X}\hat{S}e - \hat{\mu}e\|_2 \le \theta\mu_1 + \frac{n_1}{\sqrt{n_2}}(1-\rho)\mu_1 = \theta\frac{n_2}{n_1}\hat{\mu} + \sqrt{n_2}(1\rho)\hat{\mu},$$ from which the assertion follows. **Proof of Lemma 13.** Let $\hat{\rho} = \rho(d(T))$. Further let $\overline{d} = d(\overline{T})$. What we need to show is that for any perturbation $\overline{\Delta d}$ that satisfies $||\overline{\Delta d}|| \leq \hat{\rho}$ we have $$\bar{d} + \overline{\Delta d} \in \mathcal{F}.$$ For what follows we use the shorthand $n = |\mathcal{T}|$, $\bar{n} = |\overline{\mathcal{T}}|$. With this problem $d = P(\mathcal{T})$ is Let us write problem $\bar{d} = P(\overline{T})$ that is obtained by an aggregation of T in the following form $$\min \quad \bar{c}_{0}^{T} x_{0} + \sum_{i=1}^{\bar{n}} \bar{p}_{i} \bar{c}_{i}^{T} x_{i} \\ \text{s.t.} \quad \begin{bmatrix} \bar{W}_{0} & 0 & \cdots & 0 \\ \bar{p}_{1} \bar{T} & \bar{p}_{1} \bar{W} & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ \bar{p}_{\bar{n}} \bar{T} & 0 & 0 & \bar{p}_{\bar{n}} \bar{W} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{\bar{n}} \end{bmatrix} = \begin{bmatrix} \bar{h}_{0} \\ \bar{p}_{1} \bar{h}_{1} \\ \vdots \\ p_{\bar{n}} \bar{h}_{\bar{n}} \end{bmatrix}$$ where $$\bar{W}_0 = W_0, \quad \bar{W} = W, \quad \bar{T} = T, \quad \bar{h}_0 = h_0, \quad \bar{c}_0 = c_0,$$ $$\bar{p}_i = \sum_{j \in I(i)} p_j, \quad \bar{c}_i = (\sum_{j \in I(i)} p_j c_j) / \bar{p}_i, \quad \bar{h}_i = (\sum_{j \in I(i)} p_j h_j) / \bar{p}_i.$$ Let us know consider the perturbed problem $\bar{d} + \overline{\Delta d}$ written as $$\min \quad ([\bar{c}_0, \bar{p}_1 \bar{c}_1, \dots, \bar{p}_{\bar{n}} \bar{c}_{\bar{n}}]^T + \overline{\Delta c})^T x \\ \text{s.t.} \quad \begin{pmatrix} \bar{W}_0 & 0 & \cdots & 0 \\ \bar{p}_1 \bar{T} & \bar{p}_1 \bar{W} & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ \bar{p}_{\bar{n}} \bar{T} & 0 & 0 & \bar{p}_{\bar{n}} \bar{W} \end{pmatrix} + \overline{\Delta A} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{\bar{n}} \end{pmatrix} = \begin{pmatrix} \bar{h}_0 \\ \bar{p}_1 \bar{h}_1 \\ \vdots \\ p_{\bar{n}} \bar{h}_{\bar{n}} \end{pmatrix} + \overline{\Delta b}$$ with $$\Delta A = \begin{bmatrix} \overline{\Delta W_0} & \overline{\Delta A_{0,1}} & \cdots & \overline{\Delta A_{0,\bar{n}}} \\
\overline{p_1} \overline{\Delta T_1} & \overline{p_1} \overline{\Delta W_1} & \overline{\Delta A_{1,i}} & \overline{\Delta A_{1,\bar{n}}} \\ \vdots & \overline{\Delta A_{i,1}} & \cdots & \vdots \\ \overline{p_{\bar{n}}} \overline{\Delta T_{\bar{n}}} & \overline{\Delta A_{\bar{n},1}} & \overline{\Delta A_{\bar{n},i}} & \overline{p_{\bar{n}}} \overline{\Delta W_{\bar{n}}} \end{bmatrix}, \quad \Delta c = \begin{bmatrix} \overline{\Delta c_0} \\ \overline{p_1} \overline{\Delta c_1} \\ \vdots \\ \overline{p_{\bar{n}}} \overline{\Delta c_{\bar{n}}} \end{bmatrix}, \quad \Delta b = \begin{bmatrix} \overline{\Delta h_0} \\ \overline{p_1} \overline{\Delta h_1} \\ \vdots \\ \overline{p_{\bar{n}}} \overline{\Delta h_{\bar{n}}} \end{bmatrix}$$ where we assume that $\|\Delta d\| \leq \hat{\rho}$. The perturbation $\overline{\Delta d}$ is expanded into a perturbation $\Delta d = (\Delta A, \Delta b, \Delta c)$ of the full problem $$\Delta A = \begin{bmatrix} \Delta A_{0,0} & \Delta A_{0,1} & \cdots & \Delta A_{0,n} \\ \Delta A_{1,0} & \Delta A_{1,1} & \cdots & \Delta A_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta A_{n,0} & \Delta A_{n,1} & \cdots & \Delta A_{n,n} \end{bmatrix}, \quad \Delta b = \begin{bmatrix} \Delta b_0 \\ \Delta b_1 \\ \vdots \\ \Delta b_n \end{bmatrix}, \quad \Delta c = \begin{bmatrix} \Delta c_0 \\ \Delta c_1 \\ \vdots \\ \Delta c_n \end{bmatrix}$$ according to $$\begin{array}{lll} \Delta b_0 & = & \overline{\Delta h_0}, & \Delta b_i = p_i \overline{\Delta h_{r(i)}} \\ \Delta c_0 & = & \overline{\Delta c_0}, & \Delta c_i = p_i \overline{\Delta c_{r(i)}} \\ \Delta A_{0,0} & = & \overline{\Delta W_0}, & \Delta A_{i,i} = p_i \overline{\Delta W_{r(i)}} \\ \Delta A_{0,i} & = & p_i \overline{\Delta A_{0,r(i)}} / \bar{p}_{r(i)}, & i \in \mathcal{T} \setminus \{0\} \\ \Delta A_{i,0} & = & p_i \overline{\Delta T_{r(i)}}, & i \in \mathcal{T} \setminus \{0\} \\ \Delta A_{i,j} & = & p_i p_j \overline{\Delta A_{r(i),r(j)}} / (\bar{p}_{r(i)} \bar{p}_{r(j)}), & i, j \in \mathcal{T} \setminus \{0\}, r(i) \neq r(j) \\ \Delta A_{i,j} & = & 0, & i, j \in \mathcal{T} \setminus \{0\}, r(i) = r(j), i \neq j \end{array}$$ Since $\|\overline{\Delta d}\| \leq \hat{\rho}$ we have $$\|\overline{\Delta c}\|_2, \|\overline{\Delta b}\|_2, \|\overline{\Delta A}\|_2 \le \hat{\rho}.$$ From $\bar{p}_j = \sum_{i \in I(j)} p_i$ we get $\sum_{i \in I(j)} p_i^2 \leq \bar{p}_j^2$ and hence $$\begin{split} \|\Delta c\|_{2}^{2} &= \|\Delta c_{0}\|_{2}^{2} + \sum_{i \in \mathcal{T}} \|\Delta c_{i}\|_{2}^{2} = \|\overline{\Delta c_{0}}\|_{2}^{2} + \sum_{j \in \overline{\mathcal{T}}} \sum_{i \in I(j)} p_{i}^{2} \|\overline{\Delta c_{j}}\|_{2}^{2} \\ &\leq \|\overline{\Delta c_{0}}\|_{2}^{2} + \sum_{j \in \overline{\mathcal{T}}} \bar{p}_{j}^{2} \|\overline{\Delta c_{j}}\|_{2}^{2} = \|\overline{\Delta c}\|_{2}^{2} \leq \hat{\rho}^{2}. \end{split}$$ Similarly, we obtain $\|\Delta b\|_2 \leq \hat{\rho}$ and $\|\Delta A\|_2 \leq \hat{\rho}$. Therefore we also have that $\|\Delta d\| \leq \hat{\rho}$. Therefore $d + \Delta d \in \mathcal{F}$, which means that there is a primal–dual feasible point (x, y, s) for $d + \Delta d$: $$(W_0 + \Delta A_{0,0})x_0 + \sum_{i=1}^n \Delta A_{0,i}x_i = h_0 + \Delta b_0$$ (43a) $$(p_i T + \Delta A_{i,0}) x_0 + (p_i W + \Delta A_{i,i} x_i) + \sum_{k \neq i} \Delta A_{i,k} x_k = p_i h_i + \Delta b_i$$ (43b) $$(W_0 + \Delta A_{0,0})^T y_0 + \sum_{i=1}^n (p_i T + \Delta A_{i,0})^T y_i + s_0 = c_0 + \Delta c_0$$ (43c) $$(p_i W + \Delta A_{i,i})^T y_i + \sum_{k \neq i} \Delta A_{k,i}^T y_k + s_i = p_i c_i + \Delta c_i$$ (43d) We aim to show that with the aggregations the point $(\bar{x}, \bar{y}, \bar{s})$ is primal–dual feasible for $\bar{d} + \overline{\Delta d}$. We have $$\sum_{i \in \mathcal{T}} \Delta A_{0,i} x_i = \sum_{j \in \overline{\mathcal{T}}} \sum_{i \in I(j)} \Delta A_{0,i} x_i = \sum_{j \in \overline{\mathcal{T}}} \sum_{i \in I(j)} p_i \overline{\Delta A}_{0,j} / \overline{p}_j x_i$$ $$= \sum_{j \in \overline{\mathcal{T}}} \overline{\Delta A}_{0,j} (\sum_{i \in I(j)} p_i x_i) / \overline{p}_j = \sum_{j \in \overline{\mathcal{T}}} \overline{\Delta A}_{0,j} \overline{x}_j,$$ so that from (43a) we get $$(\bar{W}_{0} + \overline{\Delta W_{0}})\bar{x}_{0} + \sum_{j \in \overline{T}} \overline{\Delta A_{0,j}}\bar{x}_{j} = (W_{0} + \Delta A_{0,0})x_{0} + \sum_{i \in T} \Delta A_{0,i}x_{i}$$ $$= h_{0} + \Delta b_{0} = \bar{h}_{0} + \overline{\Delta h_{0}}.$$ (44) We will continue by summing up (43b) for all $i \in I(j)$. From the $\sum_{k \neq i} \Delta A_{i,k} x_k$ term we get thus $$\begin{split} \sum_{i \in I(j)} \sum_{k \neq i} \Delta A_{i,k} x_k &= \sum_{i \in I(j)} \sum_{k \neq i: r(k) \neq j} p_i p_k \overline{\Delta A}_{j,r(k)} / (\bar{p}_j \bar{p}_{r(k)}) x_k \\ &= \sum_{i \in I(j)} \sum_{l \in \overline{T}: l \neq j} \sum_{k \in I(l)} p_i p_k \overline{\Delta A}_{j,l} / (\bar{p}_j \bar{p}_l) x_k \\ &= \sum_{l \in \overline{T}: l \neq j} \overline{\Delta A}_{j,l} / \bar{p}_l \sum_{k \in I(l)} p_k x_k = \sum_{l \in \overline{T}: l \neq j} \overline{\Delta A}_{j,l} \bar{x}_l \end{split}$$ So that summing up (43b) for all $i \in I(j)$ we get (using $\bar{p}_j = \sum_{i \in I(j)} p_i$): $$\bar{p}_j(T + \overline{T}_j)x_0 + (W + \overline{\Delta W}_j)(\sum_{i \in I(j)} p_i x_i) + \sum_{l \in \overline{T}: l \neq j} \overline{\Delta A}_{j,l} \bar{x}_l = \bar{p}_j \bar{h}_j + \bar{p}_j \overline{\Delta h}_j$$ which yields $$\bar{p}_{j}(T + \overline{T}_{j})\bar{x}_{0} + \bar{p}_{j}(W + \overline{\Delta W}_{j})\bar{x}_{j} + \sum_{l \in \overline{T}: l \neq j} \overline{\Delta A}_{j,l}\bar{x}_{l} = \bar{p}_{j}(\bar{h}_{j} + \overline{\Delta h}_{j}). \tag{45}$$ Equations (44) and (45) together give the primal feasibility of $(\bar{x}, \bar{y}, \bar{s})$ in $\bar{d} + \overline{\Delta d}$. In the same manner as above we can write $$\sum_{i \in \mathcal{T}} \Delta A_{i,0}^T y_i = \sum_{j \in \overline{\mathcal{T}}} \sum_{i \in I(j)} p_i \overline{\Delta T}_j^T y_i = \sum_{j \in \overline{\mathcal{T}}} \bar{p}_j \overline{\Delta T}_j^T \bar{y}_j,$$ so that we get from (43c) $$(W_0 + \overline{\Delta W}_0)\bar{y}_0 + \sum_{j \in \overline{T}} \bar{p}_j (T + \overline{\Delta T}_j)^T \bar{y}_j + s_0 = c_0 + \Delta c_0.$$ $$(46)$$ Finally, we sum up (43d) over $i \in I(j)$. From the $\sum_{k \neq i} \Delta A_{k,i}^T y_k$ term we get $$\begin{split} \sum_{i \in I(j)} \sum_{k \neq i} \Delta A_{k,i}^T y_k &= \sum_{i \in I(j)} \sum_{k \neq i: r(k) \neq j} p_k p_i \overline{\Delta A}_{r(k),j}^T / (\bar{p}_{r(k)} \bar{p}_j) y_k \\ &= \sum_{i \in I(j)} \sum_{l \in \overline{T}: l \neq j} \sum_{k \in I(l)} p_k p_i \overline{\Delta A}_{l,j}^T / (\bar{p}_l \bar{p}_j) y_k \\ &= \sum_{l \in \overline{T}: l \neq j} \overline{\Delta A}_{l,j}^T / \bar{p}_l \sum_{k \in I(l)} p_k y_k = \sum_{l \in \overline{T}: l \neq j} \overline{\Delta A}_{l,j}^T \bar{y}_l \end{split}$$ So that summing up (43d) for all $i \in I(j)$ we get (using $\bar{p}_j = \sum_{i \in I(j)} p_i$): $$(W + \overline{\Delta W}_j)^T (\sum_{i \in I(j)} p_i y_i) + \sum_{l \in \overline{T}: l \neq j} \overline{\Delta A}_{l,j}^T \bar{y}_l + \sum_{i \in I(j)} s_i = \bar{p}_j \bar{c}_j + \bar{p}_j \overline{\Delta c}_j$$ which yields $$\bar{p}_j(W + \overline{\Delta W}_j)\bar{y}_j + \sum_{l \in \overline{T}: l \neq j} \overline{\Delta A}_{l,j}^T \bar{y}_l + \bar{s}_j = \bar{p}_j(\bar{c}_j + \overline{\Delta c}_j). \tag{47}$$ Equations (46) and (47) together give the dual feasibility of $(\bar{x}, \bar{y}, \bar{s})$ in $\bar{d} + \overline{\Delta d}$. Together $\bar{d} + \overline{\Delta d}$ is primal–dual feasible, which gives $\bar{d} + \overline{\Delta d} \in \mathcal{F}$. Since $\overline{\Delta d}$ was an arbitrary perturbation with $\|\overline{\Delta d}\| \leq \hat{\rho}$ we have $$\rho(\bar{d}) \le \hat{\rho} = \rho(d(T)),$$ proving the Lemma. **Proof of Lemma 14.** The existence of an upper bound $\overline{C(d^{(k)})} \leq \overline{C(d)}$ follows from $C(d) = \|d\|/\rho(d), \|d^{(k)}\| \leq \|d^{(k+1)}\|$ and the existence of a lower bound $\bar{\rho} \leq \rho(d^{(k)})$ according to Lemma 13. According to [7, Theorem 3.1] and [11, Theorem 2.1] every primal–dual feasible point $(x^{(k)}, y^{(k)}, s^{(k)})$ with $\mu^{(k)} = (x^{(k)})^T s^{(k)}/n^{(k)}$ satisfies the bounds $$||x^{(k)}||_{2} \leq C(d^{(k)})^{2} + n^{(k)}\mu^{(k)}/\rho(d^{(k)})$$ $$||s^{(k)}||_{2} \leq 2||d^{(k)}||_{2}[C(d^{(k)})^{2} + n^{(k)}\mu^{(k)}/\rho(d^{(k)})]$$ $$||x^{(k)}||_{\infty} \leq ||x^{(k)}||_{1} \leq C(d^{(k)})^{2} + n^{(k)}\mu^{(k)}/\rho(d^{(k)})$$ $$||s^{(k)}||_{\infty} \leq 2||d^{(k)}||_{1}[C(d^{(k)})^{2} + n^{(k)}\mu^{(k)}/\rho(d^{(k)})].$$ Since $||d^{(k)}|| \le ||d^{(K)}||, \mu^{(k)} \le \mu^{(1)}$ and $n^{(k)} \le n^{(K)}$ we have the assertion of the Lemma.