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Abstract

We consider a multi-product risk-averse newsvendor under the law-invariant coherent measures of
risk. We first establish several fundamental properties of the model regarding the convexity of the prob-
lem, the symmetry of the solution and the impact of risk aversion. Specifically, we show that for identical
products with independent demands, increased risk aversion leads to decreased orders. For a large but
finite number of heterogenous products with independent demands, we derive closed-form approxima-
tions for the optimal order quantities. The approximations are as simple to compute as the classical
risk-neutral solutions. We also show that the risk-neutral solution is asymptotically optimal as the num-
ber of products tends to be infinity, and thus risk aversion has no impact in the limit. For a risk-averse
newsvendor with dependent demands, we show that positively (negatively) dependent demands lead to a
lower (higher) optimal order quantities than independent demands. Using a numerical study, we exam-
ine the convergence rates of the approximations and develop additional insights on the interplay between
dependent demands and risk aversion.

Keywords and Phrases: Multiple products, newsvendor, risk averse, coherent risk measure, diversifi-
cation, portfolio.

1 Introduction

1.1 Motivation

The multi-product newsvendor model is a classical model in the inventory control literature. In this model,
there are multiple products to be sold in a single selling season. On the one hand, when demand exceeds
supply for any product, the excessive demand is lost. On the other hand, when supply exceeds demand,
the excessive inventory is sold at a loss. The firm’s objective is to determine the optimal order quantity for
each product so as to maximize a certain performance measure. This model finds its applications in many
manufacturing, distribution and retailing firms that handle short life-cycle products.
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The literature of the multi-product newsvendor model focuses mainly on risk-neutral performance mea-
sures, when the firm maximizes the expected total profit. Under such a measure, the model decomposes into
multiple single-product newsvendor models, unless resource constraints are imposed or demand substitution
is allowed (see [30, 64]). [47] surveys various newsvendor models.

Our aim is to replace the risk-neutral performance measure by measures taking risk aversion into ac-
count. Such a model is generally not decomposable, and one needs to consider all products simultaneously,
as a portfolio. In this paper, we lay the foundations of the multi-product newsvendor model under coherent
measures of risk and we derive its basic properties. They provide insight into the impact of risk aversion on
the multi-product newsvendor with either independent or dependent demands. Moreover, we study asymp-
totic properties of the solution as the number of products tends to infinity, and we develop simple yet accurate
approximations of risk-averse solutions, which allow fast computation of large-scale problems.

Below, we first review the literature of risk measures and their recent applications in supply chain inven-
tory management. Then, we summarize our model and main results.

1.2 Risk Measures

The risk-neutral inventory models provide the best decision on average. This may be justified by the Law
of Large Numbers. However, we cannot always rely on repeated similar chances. The first few outcomes
may turn out to be very bad and entail unacceptable losses. [56] provide experimental evidence suggesting
that inventory managers may be risk-averse for high-value products. Because of these reasons, attempts to
overcome the drawbacks of the expected value optimization have a long history and there exist four typical
approaches to model decision making under risk. They are expected utility theory, stochastic dominance,
chance constraints and mean-risk analysis. These approaches are related and consistent, to some extent.

The expected utility theory of [65] derives, from simple axioms, the existence of a nondecreasing utility
function, which transforms the observed outcomes in a nonlinear way. The decision maker optimizes, instead
of the expected outcome, the expected value of the utility function. In the maximization context, when the
outcome represents profit, risk-averse decision makers have concave and nondecreasing utility functions.

The second approach is based on the theory of stochastic dominance, developed in statistics and eco-
nomics (see [38, 29] and references therein). Stochastic dominance relations are partial orders on the space
of distributions, and thus allow for pairwise comparison of different solutions. An important feature of the
stochastic dominance theory is its universal character with respect to utility functions. More specifically, the
distribution of a random outcome V is preferred to random outcome Y in terms of a stochastic dominance
relation if and only if expected utility of V is preferred to expected utility of Y for all utility functions in
a certain class, called the generator of the relation. In particular, the second-order stochastic dominance
corresponds to all concave nondecreasing utility functions, and is thus well suited to model risk-averse pref-
erences. For an overview of these issues, see [43, 39]. Unfortunately, the stochastic dominance approach
does not provide us with a simple computational recipe. In fact, it is a multiple criteria model with a con-
tinuum of criteria. Therefore, it has been used as a constraint (see [18]), and also utilized as a reference
standard whether a particular solution approach is appropriate (see [44, 55]).

The third approach specifies constraints on probabilities of unfavorable events. [49] provides a thorough
overview of the state of the art of the optimization theory with chance constraints. Theoretically, a chance
constraint is a relaxed version of the stochastic dominance relation of the first-order, and thus it is related to
the expected utility theory, but there is no equivalence. In finance, chance constraints are known under the
name of Value-at-Risk (VaR) constraints. Chance constraints sometimes lead to non-convex formulations of
the resulting optimization problems.

The fourth approach, originating from finance, is the mean-risk analysis. It quantifies the problem in
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a lucid form of two criteria: the mean (the expected value of the outcome), and the risk (a scalar measure
of the variability of the outcome). In the maximization context, we select from the universe of all possible
solutions those that are efficient: for a given value of the mean they minimize the risk, or equivalently, for
a given value of risk they maximize the mean. Such an approach has many advantages: it allows one to
formulate the problem as a parametric optimization problem, and it facilitates the trade-off analysis between
mean and risk.

In the context of portfolio optimization, [40] used the variance of the return as the risk functional.
It is easy to compute, and it reduces the financial portfolio selection problem to a parametric quadratic
programming problem. One can, however, construct simple counterexamples that show the imperfection
of the variance as the risk measure: it treats over-performance equally as under-performance, and more
importantly it may suggest a portfolio which is stochastically dominated by another portfolio.

To overcome the drawbacks of the mean-variance analysis, the general theory of coherent measures of
risk was suggested by [7] and extended to general probability spaces by [17]. For further generalizations,
see [23, 24, 34, 52, 53]. Dynamic versions for a multi-period case were analyzed, among others, by [50,
35, 13, 54]. In this theory, an integrated performance measure is proposed, comprising both the mean
and variability measures, and four axioms (Convexity, Monotonicity, Translation Equivariance and Positive
Homogeneity; see §3 for a precise definition) are imposed to guarantee consistency with intuition about
rational risk-averse decision making. Coherent measures of risk are extensions of the mean-risk analysis.
It is known that coherent measures of risk are consistent with the 1st and 2nd order stochastic dominance
relations (see [58]).

Expected utility models and coherent risk measures share the properties of convexity and consistency
with stochastic dominance. In addition, the coherent risk measures satisfy the axioms of Translation Equiv-
ariance and Positive Homogeneity. For a multi-product newsvendor, the Translation Equivariance axiom
implies that adding a constant gain is equivalent to changing the vendor’s performance measure by the same
amount; the Positive Homogeneity axiom guarantees that one obtains the same solution when considering
the total profit or the profit rate (i.e., average profit per product), and when one changes the currency in
which the profit is calculated. Under expected utility theory, these two axioms typically do not hold; see,
e.g., the exponential utility function in [32].

For inventory systems where the initial endowment effect is significant, i.e., when the initial wealth
could affect the decision of a risk-averse manager, or when constant demand for some products could affect
order quantities of other products, an expected utility model may be preferred to a model with a coherent
risk measure, because the latter ignores the endowment effect. In newsvendor models, where we are mainly
concerned about the overage and underage costs associated with random demand, and in other problems,
where risk is primarily associated with uncertainty, coherent risk measures may capture risk preferences
better. The following arguments speak in favor of coherent measures of risk: (i) Translation Equivariance
allows us to properly rank risky alternatives by excluding the impact of constant gains or losses (see [7]).
(ii) The Positive Homogeneity axiom ensures that our attitude to risk will not change when the unit system
is changed (e.g., from dollars to cents). More importantly, this axiom indicates no diversification effect
when demands are completely correlated. To see this, we note that the subadditivity property, ρ(X + Y) ≤
ρ(X) + ρ(Y), implies ρ(nX) ≤ nρ(X). However ρ(nX) < nρ(X) would imply diversification effect even
when the random demands are completely correlated. To avoid this counter-intuitive effect, we are left with
ρ(nX) = nρ(X) which is the Positive Homogeneity axiom.

Several modifications and extensions of coherent measures of risk have been suggested in the literature,
including convex measures of risk, insurance risk measures, natural risk statistic and tradeable measures
of risk. We point out that all these risk measures ignore the initial endowment effect, and a coherent risk
measure has certain attractive features as compared to these measures, making it worth considering.
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[23] consider convex measures of risk, in which the Positive Homogeneity axiom is relaxed. Again, in
our context this may lead to a diversification effect when demands are completely correlated; it may also lead
to counter-intuitive effects of changing our attitude to risk when the outcomes are re-scaled, by changing the
currency in which profits are calculated, or by considering the average profit per product.

The other three risk measures do not satisfy the convexity axiom in general. They are based on the
reality of financial markets where non-coherent risk measures, such as VaR (Value-at-Risk), are widely used.
[66] suggest insurance risk measures which are law-invariant, and satisfy the axioms of conditional state
independence, monotonicity, comonotone additivity and continuity. [31] propose the natural risk statistics,
which is also law invariant, and in which the convexity axiom is required only for comonotone random
variables. [5] show that such a risk measure can be represented as a composition of a coherent measure of
risk and a certain law preserving transformation, and thus our insights into models with coherent measures
of risk are relevant for natural risk statistics. [48] propose tradeable measures of risk. They argue that
the proper risk measures should be constructed by historically realized returns. Comparing to the coherent
measures of risk, these risk measures appear to be much more difficult to handle, due to non-convexity
and/or nondifferentiability of the resulting model. We shall see that even in the case of coherent measures
of risk the technical difficulties are substantial.

1.3 Risk-Averse Inventory Models

In recent years, risk-averse inventory models have received increasing attention in the supply chain manage-
ment literature. Table 1 classifies the literature by inventory models and risk measures. Because there is no
research to date directly applying stochastic dominance to this field, we drop it from the table.

Single-product, Single-product, Multi-product, Multi-echelon or
single-period multi-period single-period multi-agent

Utility Function Lau (1980), Eeckhoudt et al.
(1995), Agrawal & Seshadri
(2000a), Gaur & Seshadri
(2005)

Bouakiz & Sobel
(1992), Chen et
al. (2007)

van Mieghem
(2007)

Agrawal & Seshadri
(2000b), van Mie-
ghem (2003), Gan et
al. (2004)

Coherent Measures
of Risk

Gotoh & Takano (2007),
Ahmed et al. (2007), Choi &
Ruszczyński (2008), Chen et al.
(2009)

Ahmed et al.
(2007)

Ağrali & Soylu
(2006), Tomlin
& Wang (2005),
this paper

None

Mean-Variance or
Mean-Standard
Deviation

Anvari (1987), Chung (1990),
Chen & Federgruen (2000),
Gaur & Seshadri (2005),
Martinez-de-Albeniz & Simchi-
Levi (2006)

None van Mieghem
(2007)

Lau & Lau (1999),
Tsay (2002), van
Mieghem (2003),
Gan et al. (2004)

Chance Constraints
or VaR

Lau (1980) None None Gan et al. (2005)

Table 1: Summary of the literature on risk-averse inventory models.

Most work to date dealt with single-product inventory models. For newsvendor models, research focused
on finding the optimal solution under a risk-averse measure, and studying the impact of the degree of risk
aversion (among other model parameters) on the optimal solution. A typical finding is that as the degree of
risk aversion increases, the optimal order quantity tends to decrease.

For single-product but multi-period dynamic inventory models under risk aversion, the literature focuses
on characterizing the structure of the optimal ordering or pricing policies and quantifying the impact of the
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degree of risk aversion on the optimal polices. [11] review results in this direction.

For multi-product risk-averse newsvendor models, [59] study how characteristics of products (e.g., profit
margin, demand correlation), resource reliability and firm’s risk attitude affect the preference of resource
flexibility and supply diversification. Under a downside risk measure and Conditional Value at Risk (CVaR),
they show that for a risk-averse firm with unreliable resources, a supply chain can prefer dedicated resources
than a flexible resource even if the cost of the latter is smaller than the former.

Newsvendor networks are studied by [63], with many products and many resources under mean-variance
and utility function approaches. The networks feature resource diversification, flexibility (e.g., ex post in-
ventory capacity allocation) and/or demand pooling. The paper addresses the question of how the aforemen-
tioned operational strategies reduce total risk and create value. It shows that a risk-averse newsvendor may
invest more resources in certain networks than a risk-neutral newsvendor (i.e., operational hedging) because
such resources may reduce the profit variance and mitigate risk in the network. Among the three networks,
the dedicated one is most related to our model. In this network, there are two products with correlated
demand. The author characterizes the impact of demand correlation on the optimal order quantities in two
extreme cases of complete positive or negative correlation. A numerical study is conducted to cover cases
other than the extreme ones.

Finally, [1] conduct a numerical investigation on a two-product newsvendor model under the risk mea-
sure of CVaR. Assuming a discretized multi-variate normal demand distribution, the authors studied the
sensitivity of the optimal solution with respect to the mean and variance of demand, demand correlation,
and various cost parameters. Interestingly, the report shows that as the demand correlation increases, the
optimal order quantities tend to decrease.

For multi-echelon or multi-agent models, so far all papers consider single-product and single-period
models. [37] study a manufacturer’s pricing strategy and return policy under the mean-variance risk mea-
sure. [3] introduce a risk-neutral intermediaries to offer mutually beneficial contracts to risk-averse retailers.
[61] studies how a manufacturer can use return policies to share risk under the mean-standard deviation
measure. [25] study Pareto-optimality for suppliers and retailers under various risk-averse measures. [26]
design coordination schemes of buyback and risk-sharing contracts in a supply chain under a Value-at-Risk
constraint. For a review of the literature on risk aversion in capacity investment models and on operational
hedging, see [62].

1.4 Our Model and Main Results

This paper considers a multi-product risk-averse newsvendor using a law-invariant coherent risk measure
(see §2-3). As we argued in §1.2, coherent risk measures can be more attractive than the expected utility
theory in the multi-product newsvendor problem due to their properties of Translation Equivariance and
Positive Homogeneity.

The model presents a considerable challenge, both analytically and computationally, because the ob-
jective function cannot be decomposed by product and we have to look at the totality of all products as a
portfolio. In particular, one has to characterize the impact of risk aversion and demand dependence on the
optimal solution, identify efficient ways to find the optimal solution, and connect this model to the financial
portfolio theory. While [59] study a two-product system under CVaR, their focus is on the design of material
flow topology and thus is different from ours.

We should also point out that in most practical cases where this model is relevant (either manufacturing
or retailing), firms may have a large number of heterogenous products. Due to the complex nature of risk
optimization models, they become practically intractable for problems of these dimensions. Thus, it is
theoretically interesting and practically useful to study the asymptotic behavior of the system as the number
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of products tends to infinity and obtain fast approximation for large-size problems.

This work contributes to literature in the following ways: We first establish several fundamental prop-
erties for the model (§4), e.g., the convexity of the model, the symmetry of the solution, and the impact of
risk aversion. We then consider large but finite number of independent heterogenous products, for which we
develop closed-form approximations (§5) which are exact in the single-product case. The approximations
are as simple to compute as the risk-neutral solutions. We also show that under certain regularity conditions,
the risk-neutral solutions are asymptotically optimal under risk aversion, as the number of products tends to
be infinity. This asymptotic result has an important economic implication: companies with many products
or product families with low demand dependence need to look only at risk-neutral solutions, even if they are
risk-averse.

The impact of dependent demands under risk aversion poses a substantial analytical challenge. By
utilizing the concept of associated random variables, we prove in §6 that in a risk-averse two-product model
with positively dependent demands the optimal order quantities are lower than for independent demands,
while for negatively dependent demands the optimal order quantities are higher. Using a sample-based
optimization, we conduct in §7 a numerical study, which demonstrates that the approximations converge
quickly to the optimal solutions as the number of products increases. It also provides additional insights into
the impact of dependent demands. Specifically, we identify counterexamples to show that increased risk
aversion can lead to greater optimal order quantities for strongly negatively dependent demands. In §8, we
summarize the paper and compare the multi-product risk-averse newsvendor model to the financial portfolio
problem.

2 Problem Formulation

Given products j = 1, . . . , n, let x = (x1, x2, . . . , xn) be the vector of ordering quantities and let D =

(D1, . . . ,Dn) be the demand vector. We also define r = (r1, . . . , rn) to be the price vector, c = (c1, . . . , cn) to
be cost vector, and s = (s1, . . . , sn) to be the vector of salvage values. Finally, let fD j(·) and FD j(·) be the
marginal probability density function (pdf), if it exists, and the marginal cumulative distribution function
(cdf) of D j, respectively. Denote F̄D j(ξ) = 1 − FD j(ξ).

Setting c̄ j = c j − s j and r̄ j = r j − s j, we can write the profit function as follows:

Π(x,D) =

n∑
j=1

Π j(x j,D j), (2.1)

where
Π j(x j,D j) = −c̄ jx j + r̄ j min{x j,D j}

= (r j − c j)x j − (r j − s j)(x j − D j)+, j = 1, . . . , n.
(2.2)

We assume that the demand vector D is random and nonnegative. Thus, for every x ≥ 0 the profit Π(x,D) is
a real bounded random variable.

The risk-neutral multi-product newsvendor optimization problem is to maximize the expected profit:

max
x≥0
E[Π(x,D)]. (2.3)

This problem can be decomposed into independent problems, one for each product. Thus, under risk-
neutrality, a multi-product newsvendor problem is equivalent to multiple single-product newsvendor prob-
lems. However, as we have mentioned it in the introduction, this formulation is inappropriate, if we are
concerned with few (or just one) realizations and the Law of Large Numbers cannot be invoked.
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Under a coherent risk measure, the optimization problem of the risk-averse newsvendor is defined as
follows:

min
x≥0

ρ[Π(x,D)], (2.4)

where ρ[·] is a law-invariant coherent measure of risk, and Π(x,D) represents the profit of the newsvendor,
as defined in Eq. (2.1). It is worth stressing that problem (2.4) cannot be decomposed into independent
subproblems, one for each product. Thus, it is necessary to consider the portfolio of products as a whole.

3 Coherent Measures of Risk

We present a formal definition of the coherent measures of risk following the abstract approach of [52, 53].
Let (Ω,F ) be a certain measurable space. In our case, Ω is the probability space on which D is defined. An
uncertain outcome (in our case, Π(x,D)) is represented by a measurable function V : Ω → R. We specify
the vector space Z of possible functions; in our case it is sufficient to consider Z = L∞(Ω,F , P). Indeed,
for a fixed order quantity x, the function ω → Π(x,D(ω)) is bounded. For any V and Y ∈ Z , we write
V � Y if V ≥ Y w.p.1.

In the minimization context, a coherent measure of risk is a functional ρ : Z → R satisfying the
following axioms:
Convexity: ρ(αV + (1 − α)Y) ≤ αρ(V) + (1 − α)ρ(Y), for all V,Y ∈ Z and all α ∈ [0, 1];
Monotonicity: If V,Y ∈ Z and V � Y , then ρ(V) ≤ ρ(Y);
Translation Equivariance: If a ∈ R and V ∈ Z , then ρ(V + a) = ρ(V) − a;
Positive Homogeneity: If t ≥ 0 and V ∈ Z , then ρ(tV) = tρ(V).

A coherent measure of risk ρ(·) is called law-invariant, if the value of ρ(V) depends only on the distri-
bution of V , that is, ρ(V1) = ρ(V2) if V1 and V2 have identical distributions.

Important examples of law-invariant coherent measures of risk are obtained from mean–risk models of
form:

ρ(V) = −E[V] + λr[V], (3.5)

where λ > 0 and r[·] is a variability measure of the random outcome V . Popular examples of functionals r[·]
are the semideviation of order p ≥ 1:

σp[V] = E
[
{(E[V] − V)+}p

] 1
p , (3.6)

and weighted mean-deviation from quantile:

rβ[V] = min
η∈R
E
[
max

(
(1 − β)(η − V), β(V − η)

)]
, β ∈ (0, 1). (3.7)

The optimal η in the problem above is the β-quantile of V . Optimization models with functionals (3.6) and
(3.7) were considered in [44, 45, 46]. In the maximization context, from the practical point of view, it is
most reasonable to consider β ∈ (0, 1/2], because then rβ[V] penalizes the left tail of the distribution of V
much higher than the right tail.

The functional ρ[·] defined in Eq. (3.5), with r[·] = σp[·] and p ≥ 1, is a coherent measure of risk,
provided that λ ∈ [0, 1]. When r[·] = rβ[·], the functional (3.5) is a coherent measure of risk, if λ ∈ [0, 1/β].
All these results can be found in [53].

The mean-deviation from quantile rβ[·] is connected to the Average Value-at-Risk (AVaR), also known
as expected shortfall or CVaR in [51], as follows,

AVaRβ(V) = −max
η∈R

{
η −

1
β
E
[
(η − V)+]} = −E[V] +

1
β

rβ[V]. (3.8)
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All these relations can be found in [46, 55], and [24] (with obvious adjustments for the sign of V). The
relation (3.8) allows us to interpret AVaRβ(V) as a mean–risk model.

One of the fundamental results in the theory of law-invariant measures is the theorem of [34]: For
every lower semicontinuous law-invariant coherent measure of risk ρ[·] on L∞(Ω,F , P), with an atomless
probability space (Ω,F , P), there exists a convex set M of probability measures on (0, 1] such that

ρ[V] = sup
µ∈M

1∫
0

AVaRβ[V] µ(dβ). (3.9)

Using identity (3.8) we can rewrite ρ[V] as follows:

ρ[V] = −E[V] + sup
µ∈M

1∫
0

1
β

rβ[V] µ(dβ). (3.10)

This means that every problem (2.4) with a coherent law-invariant measure of risk is a mean–risk model,
with the risk functional

κM [V] = sup
µ∈M

1∫
0

1
β

rβ[V] µ(dβ). (3.11)

To illustrate the impact of scaling (the unit system) on risk measurement, we compare solutions of a
single-product risk averse newsvendor model under the coherent risk measure (Eqs. (3.5) and (3.7)), the
entropic exponential utility function 1

λ lnE
[
e−λΠ(x;D)

]
, which is an example of a convex measure of risk,

and the mean-variance risk measure. We first set the unit of profit measurement to one dollar and choose
parameters for each risk measure so that they yield an identical solution, i.e., the optimal order quantity,
x̂RA = 20.78. Then we change the unit from a dollar to 30 cents, 10 cents, 3 cents, and 1 cent. We observe
that while x̂RA remains the same under the coherent risk measure, it changes from 20.78, to 17.09 (17.7),
12.29 (14.45), 7.29 (11.42) and 4.86 (9.56) under the entropic exponential (the mean-variance) measure. We
refer to the Appendix for full details.

4 Analytical Results for Independent Demands

In this section, we provide several analytical results for the multi-product newsvendor model under coherent
risk measures. We assume independent demands.

Proposition 1. If ρ[·] is a coherent measure of risk, then ρ[Π(x,D)] is a convex function of x.

Proof. Proof We first note that Π(x,D) =
∑n

j=1 Π j(x j,D j) is concave in x. That is, for any 0 ≤ α ≤ 1 and
all x and y,

Π(αx + (1 − α)y,D) ≥ αΠ(x,D) + (1 − α)Π(y,D) for all D.

Using the monotonicity axiom, we obtain

ρ[Π(αx + (1 − α)y,D)] ≤ ρ[αΠ(x,D) + (1 − α)Π(y,D)]

≤ αρ[Π(x,D)] + (1 − α)ρ[Π(y,D)].

The second inequality follows by the axiom of convexity.

Observe that we did not use the axiom of positive homogeneity, and thus Proposition 1 extends to more
general convex measures of risk. We next prove the intuitively clear statement that identical products should
be ordered in equal quantities under coherent measures of risk.
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Proposition 2. Assume that all products are identical, i.e., prices, ordering costs and salvage values are the
same across all products. Furthermore, let the joint probability distribution of the demand be symmetric,
that is, invariant with respect to permutations of the demand vector. Then, for every law-invariant coherent
measure of risk ρ[·], one of the optimal solutions of problem (2.4) is a vector with equal coordinates, x̂RA

1 =

x̂RA
2 = · · · = x̂RA

n .

Proof. Proof An optimal solution exists, because with no loss of generality we can assume that x is bounded
by some large constant, and ρ[Π(x,D)] is continuous with respect to x (see [53]).

Let us consider an arbitrary order vector x = (x1, . . . , xn) and let P be an n×n permutation matrix. Then,
the distribution of profit associated with Px is the same as that associated with x. There are n! different
permutations of x and let us denote them x1, . . . , xn!. Consider the point

y =
1
n!

n!∑
i=1

xi.

It has all coordinates equal to the average of the coordinates x j. As the joint probability distribution of
D1,D2, . . . ,Dn is symmetric, the distribution of Π(xi,D) is the same for each i. By Proposition 1 and by the
law-invariance of ρ[·] we obtain

ρ[Π(y,D)] ≤
1
n!

n!∑
i=1

ρ[Π(xi,D)] = ρ[Π(x,D)].

This means that for every plan x, the corresponding plan y with equal orders is at least as good. As an
optimal plan exists, there is an optimal plan with equal orders.

Note that Proposition 2 only requires symmetric joint demand distribution, but not independent demands.
To study the impact of the degree of risk aversion, let us first focus on a specific variability functional – the
weighted mean-deviation from quantile, given by Eq. (3.7). The corresponding measure of risk has the
form,

ρ[V] = −E[V] + λrβ[V]. (4.12)

By Eq. (3.8), we can write
ρ[V] = −(1 − λβ)E[V] + λβAVaRβ[V]. (4.13)

We consider the problem
min
x≥0

{
− E[Π(x,D)] + λrβ[Π(x,D)]

}
. (4.14)

Proposition 3. Assume that all products are identical and demands for all products are iid and have a
continuous distribution. Let x̂RA1 be the solution of problem (4.14) for λ = λ1 > 0, having equal coordinates.
If λ2 ≥ λ1 then there exists a solution x̂RA2 of problem (4.14) for λ = λ2, having equal coordinates and such
that x̂RA2

j ≤ x̂RA1
j , j = 1, . . . , n.

Proof. Proof In view of Proposition 2, we can assume that the coordinates of x̂RAi are equal, i = 1, 2. Our
argument extends that in Theorem 1 in [15] from the single-product case to the multi-product case.

Since all coordinates of the solutions are assumed equal, with a slight abuse of notation we consider a
scalar decision variable x and we simplify Eqs. (2.1)–(2.2) to

Π(x,D) = nx(r − c) − (r − s)
n∑

j=1

(x − D j)+ = −n(c − s)x + (r − s)
n∑

j=1

min(x,D j). (4.15)
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For every nonrandom a we have rβ[V + a] = rβ[V] and thus

− E[Π(x,D)] + λ2rβ[Π(x,D)] = −E[Π(x,D)] + λ1rβ[Π(x,D)] + (λ2 − λ1)rβ[Π(x,D)]

= −E[Π(x,D)] + λ1rβ[Π(x,D)] + (λ2 − λ1)(r − s)rβ
[ n∑

j=1

min(x,D j)
]
.

As x̂RA1 minimizes the sum of the first two terms, it remains to show that the function

x 7→ rβ
[ n∑

j=1

min(x,D j)
]

is nondecreasing on R+. Consider the random variable Zx =
∑n

j=1 min(x,D j). From Eq. (3.8) we obtain:

1
β

rβ[Zx] = E[Zx] −max
η∈R

{
η −

1
β
E
[
(η − Zx)+]}.

We shall differentiate both terms of the right hand side with respect to x. We have:

dE[Zx]
dx

=

n∑
j=1

P[D j > x] = nP[D j > x].

To differentiate the second term, we define η̂ to be the maximizer (among η ∈ R) at a given x, equal to the
β-quantile of Zx. Clearly, η̂ depends on x, we suppress this dependence here for the ease of exposition. We
consider two cases.

Case (i): η̂ < nx.

If η̂ is unique, we can use the differential properties of the optimal value:

d
dx

[
max
η∈R

{
η −

1
β
E
[
(η − Zx)+]}] = −

1
β

d
dx

{
E
[
(η̂ − Zx)+]}.

Note that differentiation here is only on Zx (see [8, Theorem 4.13]). Differentiating we obtain

d
dx

{
E
[
(η̂ − Zx)+]} = −E

[
1{Zx<η̂}

n∑
j=1

1{D j>x}
]

= −

n∑
j=1

P
[
{Zx < η̂} ∩ {D j > x}

]
.

The events {Zx < η̂} and {D j > x} are dependent, but for independent D j we have

P
[
{Zx < η̂} ∩ {D j > x}

]
= P

[
Zx < η̂|D j > x

]
P[D j > x] ≤ P[Zx < η̂]P[D j > x] = βP[D j > x].

The inequality holds true because

P
[
Zx < η̂|D j > x

]
= P

[∑
i, j

min(x,Di) < η̂ − x
]

≤ P
[∑

i, j

min(x,Di) < η̂ −min(x,D j)
]

= P[Zx < η̂].

Thus
d
dx

[
max
η∈R

{
η −

1
β
E
[
(η − Zx)+]}] ≤ n∑

j=1

P[D j > x] = nP[D j > x].

10



We conclude that
d
dx

rβ[Zx] ≥ 0.

If η̂ is not unique, we can consider the left and the right derivatives of the optimal value, by substituting the
largest and the smallest β-quantile for η̂ in the calculations above. We observe that the event {Zx < η̂} does
not change, and we conclude that the right derivative is non-negative.

Case (ii): η̂ = nx.

As Zx has an atom at nx, and Zx = nx, for sufficiently small x we can just substitute η̂ = nx in Eq. (3.8):

1
β

rβ[Zx] = E[Zx] −
{
nx −

1
β
E
[
(nx − Zx)

]}
.

Taking derivative with respect to x, we conclude that

d
dx

rβ[Zx] = β{nP[D j > x] − (n −
1
β

(n − nP[D j > x]))} = n(1 − P[D j > x])(1 − β) ≥ 0,

as required. In the general case, we consider the left derivative here, because if η̂(x) = nx then η̂(y) = ny for
all y < x, and we arrive at the same conclusion.

We can extend the monotonicity property to all law-invariant coherent measures of risk. Observe that
our assumption about continuous distribution of the demand implies that the probability space is nonatomic.
Consider the problem

min
x≥0

{
− E[Π(x,D)] + λκM [Π(x,D)]

}
, (4.16)

where κM [V] is given by Eq. (3.11).

Proposition 4. Assume that all products are identical and demands for all products are iid and have a
continuous distribution. Let x̂RA1 be the solution of problem (4.16) for λ = λ1 > 0, having equal coordinates.
If λ2 ≥ λ1 then there exists a solution x̂RA2 of problem (4.16) for λ = λ2, having equal coordinates and such
that x̂RA2

j ≤ x̂RA1
j , j = 1, . . . , n.

Proof. Proof As in the proof of Proposition 3, each function x 7→ rβ[Π(x,D)] is nondecreasing, for every
β ∈ (0, 1). Then the integral over β with respect to any nonnegative measure µ is nondecreasing as well.
Taking the supremum in Eq. (3.11) does not change this property. Therefore, Proposition 4 holds true also
for the mean–risk model with the risk functional r[·] = κM [·].

Finally, we discuss the impact of the shift in mean demand on the optimal order quantities under general
coherent measures of risk. For this purpose, we consider identical products and demands with identical
probability distribution except that µ j = E[D j], j = 1, . . . , n, may be different. Without loss of generality,
we assume that µ1 ≤ µ2 ≤ · · · ≤ µn. Consider the demand vector D̃ j = D j − µ j + µ1. Because it has iid
components, by Proposition 2 there exists an optimal order vector x̃ with equal coordinates: x̃1 = x̃2 = · · · =

x̃n, for the risk-averse multi-product newsvendor with D̃ as the demand vector. We can interpret the demand
D as a sum of the random demand D̃ and a deterministic demand vector h with coordinates h j = µ j − µ1.
If x̃ j > 0, then by the Translation Equivariance axiom, it is easy to see that x̂ = x̃ + h is the solution of the
problem

min
x≥0

ρ[Π(x,D)],

for every coherent measure of risk ρ[·].
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5 Asymptotic Analysis and Closed-Form Approximations

5.1 Asymptotic Optimality of Risk-Neutral Solutions

In this section, we study the asymptotic behavior of the risk-averse newsvendor model, when the number of
products tends to infinity, and we develop closed-form approximations to its optimal solution in the case of
a large but finite number of products. We assume heterogenous products with independent demands.

We start from the derivation of error bounds for the risk-neutral solution. Consider a sequence of prod-
ucts j = 1, 2, . . . , with corresponding prices r j, costs c j, and salvage values s j. We assume that s j < c j < r j,
and that all these quantities are uniformly bounded for j = 1, 2 . . . .

Consider the risk-neutral optimal order quantities

x̂RN
D j

= F̄−1
D j

( c̄ j

r̄ j

)
, j = 1, 2, . . . . (5.17)

We assume that the following conditions are satisfied:

(i) There exist xmin > 0 and xmax such that

xmin ≤ x̂RN
j ≤ xmax, j = 1, 2, . . . .

(ii) There exists σmin > 0 such that

Var
[
min(x̂RN

j ,D j)
]
≥ σ2

min, j = 1, 2, . . . .

Our intention is to evaluate the quality of the risk-neutral solution x̂RN in the risk-averse problem

min
x1,...,xn

ρ
[1
n

n∑
j=1

Π j(x j,D j)
]
. (5.18)

Observe that in problem (5.18) we consider the average profit per product, rather than the total profit, as
in problem (2.4). The reason is that we intend to analyze properties of the optimal value of this problem
as n → ∞ and we want the limit of the objective value of problem (5.18) to exist. Owing to the Positive
Homogeneity axiom, problems (5.18) and (2.4) are equivalent.

We denote by ρ̂n the optimal value of problem (5.18). We also introduce the following notation,

µRN
j = E

[
min(x̂RN

j ,D j)
]
, µ̄n =

1
n

n∑
j=1

r̄ jµ
RN
j ,

(
σRN

j
)2

= Var
[
min(x̂RN

j ,D j)
]
, s̄2

n =
1
n2

n∑
j=1

r̄2
j
(
σRN

j
)2.

Finally, we denote by N the standard normal variable.

Proposition 5. Assume that ρ[·] is a law-invariant coherent measure of risk and the space (Ω,F , P) is
nonatomic. Then

lim sup
n→∞

1
s̄n

ρ[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
− ρ̂n

 ≤ ρ[N ]. (5.19)
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Proof. Proof Denote Zn = 1
n
∑n

j=1 r̄ j min(x̂RN
j ,D j). We have E[Zn] = µ̄n, Var[Zn] = s̄2

n, and

1
n

n∑
j=1

Π j(x̂RN
j ,D j) =

1
n

n∑
j=1

E
[
Π j(x̂RN

j ,D j)
]

+ (Zn − µ̄n).

Owing to conditions (i) and (ii), the sequence {r̄ j min(x̂RN
j ,D j)}, j = 1, 2 . . . , satisfies the Lindeberg condi-

tion (see, e.g, [22, p. 262]). We can therefore apply the Central Limit Theorem for non-identical independent
random variables, to conclude that

Zn − µ̄n

s̄n

D
→ N . (5.20)

Here the symbol
D
→ denotes convergence in distribution. By the Translation Equivariance axiom

ρ
[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
= −

1
n

n∑
j=1

E
[
Π j(x̂RN

j ,D j)
]

+ ρ[Zn − µ̄n].

At any other value of x, in particular, at a solution of problem (5.18), we have

ρ
[1
n

n∑
j=1

Π j(x j,D j)
]
≥ −

1
n

n∑
j=1

E
[
Π j(x j,D j)

]
≥ −

1
n

n∑
j=1

E
[
Π j(x̂RN

j ,D j)
]
,

by Eq. (3.10) and because x̂RN
j maximizes E

[
Π j(x j,D j)

]
. Combining the last two relations we conclude that

ρ
[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
− ρ̂n ≤ ρ[Zn − µ̄n].

Dividing both sides by s̄n and using the Positive Homogeneity axiom we obtain

1
s̄n

ρ[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
− ρ̂n

 ≤ ρ
[
Zn − µ̄n

s̄n

]
. (5.21)

Let Φn(·) be the cdf of (Zn − µ̄n)/s̄n. By Eq. (5.20), Φn → Φ pointwise, where Φ(·) is the cdf of the
standard normal distribution. As the risk measure ρ[·] is law-invariant and the space is nonatomic, we have
ρ
[
(Zn − µ̄n)/s̄n

]
= ρ

[
Φ−1

n (U )
]
, where U is a uniform random variable on [0, 1]. By the continuity of ρ[·] in

the space of integrable random variables, the right-hand side of inequality (5.21) tends to ρ[N ] as n → ∞.
Passing to the limit in inequality (5.21), we obtain inequality (5.19).

Conditions (i) and (ii) imply that s̄n = O
(
1/
√

n
)
, and thus it follows by inequality (5.19) that

ρ
[1
n

n∑
j=1

Π j(x̂RN
j ,D j)

]
≤ min

x1,...,xn
ρ
[1
n

n∑
j=1

Π j(x j,D j)
]

+ O
( 1
√

n

)
.

Asymptotically, the difference between the optimal value of problem (5.18) and the value obtained by
using the risk-neutral solution disappears at the rate of 1/

√
n. For a firm dealing with very many products

having independent demands, the risk-neutral solution is a reasonable sub-optimal alternative to the risk-
averse solution.
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5.2 Adjustments in the Mean–Deviation from Quantile Model

In this subsection, we develop closed-form approximations to the optimal risk-averse solution when the
number of products is moderately large. Our idea is to use the risk-neutral solution as the starting point, and
to calculate an appropriate correction to account for risk aversion.

We first consider the mean–deviation from quantile model in which the measure of variability is defined
at Eq. (3.7). Recall that the corresponding mean–risk model in Eq. (4.12) is equivalent to the minimization
of a combination of the mean and the Conditional Value-at-Risk, as in Eq. (4.13). We then consider the
general coherent risk measure in §5.3. We finally discuss several iterative methods that are based on the
approximations in §5.4.

Similarly to §5.1, we use the notation Zn
x = 1

n
∑n

j=1 r̄ j min(x j,D j) (with x as a subscript to stress the
dependence of Zn

x on x). Using Eqs. (2.1)–(2.2), we can calculate the average profit per product as follows:

Π̄(x,D) =
1
n

n∑
j=1

Π j(x j,D j) = −
1
n

n∑
j=1

c̄ jx j + Zn
x .

Thus,

ρ[Π̄(x,D)] =
1
n

n∑
j=1

c̄ jx j +
(
− E[Zn

x ] + λrβ(Zn
x )
)

=
1
n

n∑
j=1

c̄ jx j +
(
E[Zn

x ](λβ − 1) − λβmax
η∈R

{
η −

1
β
E
[
(η − Zn

x )+]}). (5.22)

Similarly to the proof of Proposition 3, let η̂ be the maximizer in Eq. (5.22), among η ∈ R, at a fixed x. η̂ is
the β-quantile of Zn

x . To take the partial derivative of ρ[Π̄(x,D)] with respect to x j, we consider two cases.

Case (i): η̂ < 1
n
∑n

j=1 r̄ jx j.

Assuming that the quantile η̂ is unique and differentiating the Eq. (5.22), we observe again that

∂ρ[Π̄(x,D)]
∂x j

=
c̄ j

n
+

r̄ j(λβ − 1)
n

P[D j > x j] −
r̄ jλ

n
P
[
{Zn

x < η̂} ∩ {D j > x j}
]
. (5.23)

Here we used [8, Theorem 4.13] to avoid differentiating with respect to η̂.

Let us analyze the last term on the right-hand side for j = 1, 2, . . . , n:

P
[
{Zn

x < η̂} ∩ {D j > x j}
]

= P
[
Zn

x < η̂|D j > x j
]
P[D j > x j]

= P
[1
n

n∑
k, j

r̄k min(xk,Dk) < η̂ −
r̄ jx j

n

]
· P[D j > x j].

(5.24)

Suppose x j ≥ xmin, j = 1, 2, . . . ,. Owing to conditions (i) and (ii), exactly as in §5.1, for large n the
random variable Zn

x is approximately normally distributed with the mean µ̄n = 1
n
∑n

j=1 r̄ jµ j and the variance
s̄2

n = 1
n2

∑n
j=1 r̄2

jσ
2
j , where µ j = E[min{x j,D j}] and σ2

j = Var(min{x j,D j}). Under normal approximation,
the β-quantile of Zn

x can be approximated by η̂ ' µ̄n + zβ s̄n, where zβ is the β-quantile of the standard normal
variable. Similarly, 1

n−1
∑n

k, j r̄k min(xk,Dk) is approximately normal with mean 1
n−1

∑n
k, j r̄kµk and variance

1
(n−1)2

∑n
k, j r̄2

kσ
2
k . Using these approximations and denoting by N the standard normal random variable we
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obtain:

P
[1
n

n∑
k, j

r̄k min(xk,Dk) < η̂ −
r̄ jx j

n

]
' P

[
N <

−r̄ j(x j − µ j) + zβ
√∑n

k=1 r̄2
kσ

2
k√∑

k, j r̄2
kσ

2
k

]

= P
[
N <

−r̄ j(x j − µ j)
√

n − 1γn j
+ zβ

√√√
1 +

r̄2
jσ

2
j

(n − 1)γ2
n j

]
,

(5.25)

where γn j =

√
1

n−1
∑

k, j r̄2
kσ

2
k . As r̄2

kσ
2
k is uniformly bounded from above and below across all products, we

conclude that γn j is bounded from above and below for all j and n.

This estimate can be put into Eq. (5.24) and thus Eq. (5.23) can be approximated as follows:

∂ρ[Π̄(x,D)]
∂x j

'
c̄ j

n
+

r̄ jP[D j > x j]
n

(
λβ − 1 − λP

[
N <

−r̄ j(x j − µ j)
√

n − 1γn j
+ zβ

√√√
1 +

r̄2
jσ

2
j

(n − 1)γ2
n j

])
. (5.26)

Our next step is to approximate the probability on the right-hand side of Eq. (5.26). To this end, we derive
its limit and calculate a correction to this limit for a finite n. When n→ ∞ we have

P
[
N <

−r̄ j(x j − µ j)
√

n − 1γn j
+ zβ

√√√
1 +

r̄2
jσ

2
j

(n − 1)γ2
n j

]
→ β (5.27)

and thus
∂ρ[Π̄(x,D)]

∂x j
→

1
n

(c̄ j − r̄ jP[D j > x j]).

This means that the conditions of the risk-averse solution

∂ρ[Π̄(x,D)]
∂x j

= 0, j = 1, 2, . . . , n, (5.28)

approaches that of the risk-neutral solution in Eq. (5.17). Thus the risk-neutral solution will be used as the
base value, to which corrections will be calculated.

We can estimate the difference between the probability in Eq. (5.27) and β for a large but finite n, by
assuming that x is close to x̂RN. Thus µ j is close to µRN

j = E[min{x̂RN
j ,D j}] and σ j is close to σRN

j =√
Var(min{x̂RN

j ,D j}). Considering only the leading term with respect to 1/
√

n − 1, we obtain

P
[
N <

−r̄ j(x j − µ j)
√

n − 1γn j
+ zβ

√√√
1 +

r̄2
jσ

2
j

(n − 1)γ2
n j

]
' P

[
N <

−r̄ j(x̂RN
j − µ

RN
j )

√
n − 1γRN

n j

+ zβ

]
,

where γRN
n j =

√
1

n−1
∑

k, j r̄2
k (σRN

k )2. The last probability can be estimated by the linear approximation
derived at zβ. Observing that P[N < zβ] = β and that its derivative at z = zβ is the standard normal density
at zβ, we get

P
[
N <

−r̄ j(x̂RN
j − µ

RN
j )

√
n − 1γRN

n j

+ zβ

]
' β − δRN

n j ,

with

δRN
n j =

e−z2
β/2

√
2π

r̄ j(x̂RN
j − µ

RN
j )

√
n − 1γRN

n j

, j = 1, . . . , n. (5.29)
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These estimates can be substituted to Eq. (5.26) for the derivative and yield

∂ρ[Π̄(x,D)]
∂x j

'
c̄ j

n
+

r̄ j

n
(
− 1 + λδRN

n j
)
P[D j > x j]. (5.30)

Using the above approximations of the derivatives in Eq. (5.28), we obtain the first-order approximation of
the risk-averse solution:

x̂RA
j ' F̄−1

D j

[ c̄ j

r̄ j(1 − δRN
n j λ)

]
, j = 1, 2, . . . , n. (5.31)

Clearly, this approximation of x̂RA
j is increasing in n, decreasing in λ and tends to the risk-neutral solution

as n→ ∞.

Case (ii): η̂ = 1
n
∑n

j=1 r̄ jx j.

We have

ρ[Π̄(x,D)] =
1
n

n∑
j=1

c̄ jx j +
(
E[Zn

x ](λβ − 1) − λβ
{1
n

n∑
j=1

r̄ jx j −
1
β
E
[1
n

n∑
j=1

r̄ jx j − Zn
x
]})
.

Taking derivative with respect to x j yields,

∂ρ[Π̄(x,D)]
∂x j

=
1
n
[
c̄ j + r̄ jλ(1 − β) + r̄ jP[D j > x j]

(
λ(β − 1) − 1

)]
.

Equating the right-hand side to 0, we get

x̂RA
j = F̄−1

D j

( c̄ j + r̄ jλ(1 − β)
r̄ j(1 + λ(1 − β))

)
. (5.32)

Note that the solution in Case (ii) does not depend on the number of products, n. Clearly, if λ = 0, x̂RA
j = x̂RN

j .
As λ increases, x̂RA

j is decreasing. For any 0 ≤ λ ≤ 1/β, x̂RA
j is well-defined.

It should be emphasized that Case (i) is more important, because for large n the distribution of Zn
x is

close to normal and for a small β, the β-quantile of Zn
x tends to be smaller than 1

n
∑n

j=1 r̄ jx j, for the values of
x of interest.

Consider the special case of identical products. With a slight abuse of notation, let c j = c, r j = r and
s j = s for all j = 1, 2, . . . , n. In Case (i), the first-order approximation of the risk-averse solution yields:

dρ[Π̄(x,D)]
dx

' c̄ + r̄P[D1 > x](δRN
n λ − 1),

with δRN
n = e−z2

β/2
√

2π
x̂RN − µRN

x√
n − 1σRN

x
, where x̂RN, µRN

x and σRN
x are the counterparts of x̂RN

j , µRN
j and σRN

j , respec-

tively. Equating the right hand side to 0, we obtain

x̂RA
1 ' F̄−1

D1

( c̄

r̄(1 − δRN
n λ)

)
, j = 1, . . . , n. (5.33)

Eq. (5.33) is similar to Eq. (5.31) except that the terms c̄ j, r̄ j and δRN
n j are now identical for all j. In Case

(ii), Eq. (5.32) reduces to

x̂RA = F̄−1
D1

( c̄ + r̄λ(1 − β)
r̄(1 + λ(1 − β))

)
.
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In the special case of a single-product, by Eq. (5.23) in Case (i) we obtain

dρ[Π̄(x,D)]
dx

= c̄ + r̄(λβ − 1)P[D > x] − r̄λP
[
{Zx < η̂} ∩ {D > x}

]
,

where Zx = min(x,D). Observe that in Case (i), P
[
{Zx < η̂} ∩ {D > x}

]
= P

[
Zx < η̂|D > x

]
P[D > x] = 0.

Therefore, dρ[Π̄(x,D)]
dx = c̄+ r̄(λβ−1)P[D > x]. This yields the exact solution of the single product problem

x̂RA = F̄−1
D

( c̄
r̄(1 − λβ)

)
≤ F̄−1

D

( c̄
r̄

)
= x̂RN.

This special case solution is also obtained by [28]. To determine whether Case (i) or Case (ii) applies, one
can compute x̂RA for both cases, and then compute η̂ to check the case conditions.

5.3 General Law-Invariant Coherent Measures of Risk

So far our analysis focused on a special risk measure, weighted mean-deviation from quantile, given in Eq.
(3.7). We now generalize the results to any law-invariant coherent risk measure ρ[·].

Consider problem (4.16) where κM [V] is given by Eq. (3.11). By Kusuoka theorem, for nonatomic
spaces, every law-invariant coherent measure of risk has such representation. Then Eq. (5.22) can be
replaced by

ρ[Π̄(x,D)] =
1
n

n∑
j=1

c̄ jx j + sup
µ∈M

1∫
0

(
E[Zn

x ](λβ − 1) − λβmax
η∈R

{
η −

1
β
E

[
(η − Zn

x )+]}) µ(dβ).

Suppose the maximum over M is attained at a unique measure µ̂ (this is certainly true for spectral measures
of risk, where the set M has just one element). Similarly to Eq. (5.30),

∂ρ[Π̄(x,D)]
∂x j

'
c̄ j

n
+

r̄ j

n

−1 + λ

1∫
0

δRN
n j (β) µ̂(dβ)

 P[D j > x j]. (5.34)

We denote here the quantity given in Eq. (5.29) by δRN
n j (β), to stress its dependence on β. Let us approximate

µ̂ by the measure µ̂RN, obtained for the risk-neutral solution x̂RN. Equating the approximate derivatives in
Eq. (5.34) to zero, we obtain an approximate solution:

x̂RA
j ' F̄−1

D j


c̄ j

r̄ j
(
1 − λ

∫ 1

0
δRN

n j (β) µ̂RN(dβ)
)
 , j = 1, 2, . . . , n. (5.35)

Again, δRN
n j (β) ↓ 0 as n→ ∞, and thus x̂RA

j increases in n and approaches the risk-neutral solution x̂RN
j . This

is consistent with Proposition 5.

In the single-product problem, we obtain

ρ[Π̄(x,D)] = c̄x + sup
µ∈M

1∫
0

(
E[Zx](λβ − 1) − λβmax

η∈R

{
η −

1
β
E
[
(η − Zx)+]}) µ(dβ). (5.36)

17



Assuming that µ̂ is the unique maximizer in (5.36), we obtain

dρ[Π̄(x,D)]
dx

= c̄ +

1∫
0

(
r̄(λβ − 1)P[D > x] − r̄λP

[
{Zx < η̂} ∩ {D > x}

])
µ̂(dβ).

Similarly to the model with mean-deviation from quantile case, P
[
{Zx < η̂} ∩ {D > x}

]
= P

[
Zx < η̂|D >

x
]
P[D > x] = 0. Thus,

dρ[Π̄(x,D)]
dx

= c̄ +

1∫
0

(
r̄(λβ − 1)P[D > x]

)
µ̂(dβ)

= c̄ + r̄

−1 + λ sup
µ∈M

1∫
0

βµ̂(dβ)

 P[D > x].

Therefore, the closed-form exact solution for general coherent measures of risk is given by:

x̂RA = F̄−1
D

(
c̄

r̄(1 − λβ̄)

)
≤ F̄−1

D

( c̄
r̄

)
= x̂RN, where β̄ =

1∫
0

βµ̂RN(dβ).

5.4 Iterative Methods

So far, we discussed approximations based on expansions about the risk-neutral solution x̂RN. But exactly
the same argument can be used to develop an iterative method, in which the best approximation known so
far is substituted for the risk-neutral solution. We explain the simplest idea for the approximation developed
in §5.2; the same idea applies to general coherent measures of risk discussed in §5.3.

The idea of the iterative method is to generate a sequence of approximations x̂(ν), ν = 0, 1, 2, . . . . We set
x̂(0) = x̂RN. Then we calculate x̂(1) by applying Eq. (5.31). In the iteration ν = 1, 2, . . . , we use x̂(ν) instead
of x̂RN in our approximation, calculating:

µ(ν)
j = E[min{x̂(ν)

j ,D j}], σ(ν)
j =

√
Var(min{x̂(ν)

j ,D j}),

γ(ν)
n j =

√
1

n − 1

∑
k, j

r̄2
k (σ(ν)

k )
2
, δ(ν)

n j =
e−z2

β/2

√
2π

r̄ j(x̂(ν)
j − µ

(ν)
j )

√
n − 1γ(ν)

n j

, j = 1, . . . , n.

Finally, Eq. (5.31) is applied to generate the next approximate solution x̂(ν+1), and the iteration continues.

The iterative method is efficient if the initial approximation x̂(0) is sufficiently close to the risk-averse
solution. This is true when the risk aversion coefficient κ = λβ is close to zero or the number of products
is very large. We must point out that the iterative method does not guarantee convergence to the optimal
risk-averse solution. One reason is that our approximation in Eq. (5.31) may result in infeasible solutions

as the term
c̄ j

r̄ j(1 − δ
(ν)
n j λ)

can be negative or greater than 1 (due to approximation). When this occurs less

likely, we say that the approximation is more stable. Generally, the approximation is more stable for larger
number of products and smaller κ. To improve stability, we propose a more accurate method called the
continuation method. In this approach, we apply the iterative method for a small value of κ, starting from
the risk-neutral solution. Then we increase κ a little, and we apply the iterative method again, but starting
from the best solution found for the previous value of κ. In this way, we gradually increase κ, until we reach
the risk aversion coefficients which are of interest (usually, between 0 and 1). The stability of the iterative
and continuation methods is summarized in §7.2.
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6 Impact of Dependent Demands

In this section, we provide some insights on the impact of dependent demands. Due to significant analytical
challenges, we focus on a two-product system and the mean-deviation from quantile model.

Under the risk-neutral measure, dependence of product demands has no impact on the optimal order
quantities. However, under risk-averse measures, it can greatly affect the optimal order decisions for the
newsvendor. Intuitively, positively (negatively) dependent demands entail larger (smaller) variability and
thus increase (decrease) risk, as compared to independent demands. Thus, one tends to decrease (increase)
the order quantity in case of positively (negatively) dependent demands relative to the case of independent
demand.

To characterize the impact of demand dependence on the optimal order quantity under the coher-
ent risk measure, we utilize the concept of “associated” random variables. Consider random variables
D1,D2, . . . ,Dn, denote vector D = (D1,D2, . . . ,Dn). The following definition is due to [19]; see [60]
for a review.

Definition 1. The random variables D1,D2, . . . ,Dn are associated, if Cov[ f (D), g(D)] ≥ 0, or, equivalently,
E[ f (D)g(D)] ≥ E[ f (D)]E[g(D)], for all non-decreasing real functions f , g for which E[ f (D)],E[g(D)] and
E[ f (D)g(D)] exist.

Lemma 1. (i) Any subset of associated random variables is associated.
(ii) If two sets of associated random variables are independent of each other, their union is a set of associ-

ated random variables.
(iii) Non-decreasing (or non-increasing) functions of associated random variables are associated.
(iv) If D1,D2, . . . ,Dn are associated, then for all (y1, y2, . . . , yn) ∈ Rn

P{D1 ≤ y1,D2 ≤ y2, . . . ,Dn ≤ yn} ≥ Πn
k=1P{Dk ≤ yk},

P{D1 ≥ y1,D2 ≥ y2, . . . ,Dn ≥ yn} ≥ Πn
k=1P{Dk ≥ yk}.

We refer to [60] for proofs.

Association is closely related to correlation. By [60, p. 99], a set of multi-variate normal random
variables is associated if their correlation matrix has the structure l ([60, p. 13]) in which the correlation
coefficient ρi j = γiγ j for all i , j and 0 ≤ γi < 1 for all i. This means that we can represent the demands as
having one common factor:

Di = γiD0 + ∆i, i = 1, . . . , n,

where D0 and ∆i, i = 1, . . . , n, are independent. A special case is the bi-variate normal random variable with
a positive correlation coefficient.

Consider a system with two identical products and a solution with equal coordinates. Let Zx = min{x,D1}+

min{x,D2}. Clearly, Π(x,D) = −2cx + rZx and

ρ(Π(x,D)) = 2cx + rρ(Zx), (6.37)

ρ(Zx) = E(Zx)(λβ − 1) − λβmax
η∈R

{
η −

1
β
E[(η − Zx)+]

}
, (6.38)

Let η̂ be the maximizer. If η̂ is not an atom of the distribution of Zx, similarly to Case (i) of Proposition 3,
we obtain

dρ(Zx)
dx

=
dE[Zx]

dx
(λβ − 1) + λ

dE[(η̂ − Zx)+]
dx

,
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where η̂ is the β-quantile of Zx and η̂ < 2x. Because the first term depends only on the marginal distributions
of the demands, we focus on the second term, which is affected by the dependence of D1 and D2. We have

dE[(η̂ − Zx)+]
dx

= −

2∑
j=1

P
[
{Zx < η̂} ∩ {D j > x}

]
= −2P[min{x,D2} < η̂ − x,D1 > x]. (6.39)

Consider three cases of (D1,D2), with the same marginal distributions of D1 and D2. In case 1, (D1,D2)
are associated random variables, and we use η̂P to denote the β-quantile of the corresponding Zx; In case
2, (D1,D2) are independent with η̂I as the β-quantile of Zx; In case 3, (D1,−D2) are associated random
variables with η̂N as the β-quantile of Zx. We also let x∗P, x∗I and x∗N be the optimal order quantities in cases
1, 2, and 3, respectively.

Proposition 6. If η̂P ≤ η̂I ≤ η̂N < 2x, then

x∗P ≤ x∗I ≤ x∗N . (6.40)

That is, positively (negatively) dependent (D1,D2) results in smaller (larger) optimal order quantities than
independent (D1,D2).

Proof. Proof We first consider associated (D1,D2). We have

P[min{x,D2} < η̂P − x,D1 > x] = P[D2 < η̂P − x,D1 > x]

= P[D1 > x] − P[D2 ≥ η̂P − x,D1 > x] ≤ P[D1 > x] − P[D2 ≥ η̂P − x]P[D1 > x]

= P[D2 < η̂P − x]P[D1 > x] ≤ P[D2 < η̂I − x]P[D1 > x].

The first inequality follows by Lemma 1 part (iv). The second inequality follows by η̂P ≤ η̂I . Note that the
last term corresponds to independent (D1,D2). Thus, by Eq. (6.39), associated (D1,D2) have the derivatives
dρ(Zx)/dx at least as large as independent (D1,D2), which implies that x∗P ≤ x∗I .

We then consider associated (D1,−D2). We obtain

P[D2 < η̂N − x,D1 > x] = P[−D2 > −η̂N + x,D1 > x] ≥ P[−D2 > −η̂N + x]P[D1 > x]

= P[D2 < η̂N − x]P[D1 > x] ≥ P[D2 < η̂I − x]P[D1 > x].

The first inequality follows by Lemma 1 part (iv). The second inequality follows by η̂I ≤ η̂N . Note that
the last term corresponds to independent (D1,D2). Thus, by Eq. (6.39), associated (D1,−D2) have the
derivatives dρ(Zx)/dx no larger than independent (D1,D2), which implies that x∗I ≤ x∗N .

The condition η̂P ≤ η̂I ≤ η̂N holds when Y1 = min{x,D1} and Y2 = min{x,D2} follow bivariate normal
distribution and β ≤ 0.5. One can approximate the joint distribution of Y1 and Y2 very closely by bivariate
normal when (D1,D2) follow bivariate normal and x is set to cover most of the demand, which is very likely
in practice when the underage cost r − c is much greater than the overage cost c − s.

7 Numerical Examples

The objective of this section is two-fold. First, we study the accuracy and the convergence rates of the
approximations. Second, we provide insights (in addition to the analysis in §§4-6) on the impact of demand
dependence and risk aversion. We first introduce the sample-based optimization method.
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7.1 Sample-Based Optimization

In all examples considered we apply sample-based optimization to solve the resulting stochastic program-
ming problems. We generate a sample D1,D2, . . . ,DT of the demand vector, where

Dt = (d1t, d2t, . . . , dnt), t = 1, . . . ,T.

Then we replace the original demand distribution by the empirical distribution based on the sample, that
is, we assign to each of the sample points the probability pt = 1/T . It is known that when T → ∞, the
optimal value of the sample problem approaches the optimal value of the original problem (see [57]). In all
our examples we used T = 10, 000.

For the empirical distribution, the corresponding optimization problem (4.14) has an equivalent linear
programming formulation. For each j = 1, . . . , n and t = 1, . . . ,T we introduce the variable w jt to represent
the salvaged number of product j in scenario t. The variable ut represents the shortfall of the profit in
scenario t to the quantile η. It is also convenient to introduce the parameter κ = λβ to represent the relative
risk aversion (0 ≤ κ ≤ 1). We obtain the formulation

max (1 − κ)
n∑

j=1

[
(r j − c j)x j − (r j − s j)

T∑
t=1

ptw jt
]

+ κ
(
η −

1
β

T∑
t=1

ptut
)

(7.41)

subject to
n∑

j=1

[
(r j − c j)x j − (r j − s j)w jt

]
+ ut ≥ η, t = 1, . . . ,T,

x j − d jt ≤ w jt, j = 1, . . . , n; t = 1, . . . ,T,

w jt ≥ 0, j = 1, . . . , n; t = 1, . . . ,T,

ut ≥ 0, t = 1, . . . ,T,

x j ≥ 0, j = 1, . . . , n.

To explain this formulation, suppose the order quantities x j are fixed. Then w jt = (x j − d jt)+ and ut =

(η − Π(x,Dt))+ are optimal, and we maximize with respect to η the last term in problem (7.41), that is,

max
η

{
η −

1
β
E
[
(η − Π(x,D))+]} = −AVaRβ

[
Π(x,D)

]
.

In the last expression we used Eq. (3.8). Therefore, Eq. (7.41) is equal to (1−κ)E
[
Π(x,D)

]
−κAVaRβ

[
Π(x,D)

]
.

7.2 Accuracy of Approximations

In this subsection, we assess the accuracy of the closed-form approximations of §5. We first consider
identical products, then non-identical products.

For identical products, we assume that all products have identical cost structure, and iid demands. We
set r = 15, c = 10 and s = 7. We set the demand distribution of each product to be lognormal with µ = 3
and σ = 0.4724 (to achieve the desirable coefficient of variance (cv) of 0.5). Thus, the mean and standard
deviation of each demand are eµ+σ2/2 = 22.46 and eµ+σ2/2 ·

√
(eσ2
− 1) = 11.23. Because the joint demand

distribution is invariant with respect to the permutations of the demand vector, there exists an order vector
with equal coordinates, which is optimal for the model.

We choose the number of products, n, to be 1, 3, 10 and 30, and we study the impact of the number of
products on the gap between the sample-based LP solutions and the approximate solutions (generated by the
iterative method with ν = 3, see §5.4). The sample-based LP solutions can take hours to solve, especially for
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large n and T . For instance, with n = 30 and a sample size of 10,000, the running time by CPLEX 9.0 at an
Intel Pentium 4 PC is 32,607 seconds for identical products and 50,889 seconds for heterogenous products.
In contrast, the approximate solution can be obtained within one or two seconds. We use β = 0.5, that is, we
are concerned with the shortfall below the median.

In our numerical study of identical products, we set the optimal order quantities for different products
to be identical by Proposition 2. In model (7.41) all variables x j are replaced by a single variable x. The
corresponding results are illustrated in Figure 1, where on the horizontal axis we display the relative risk
aversion parameter κ = λβ. The term “exact”, “numerical” and “approximation” represent the solution
obtained by the exact calculation, the sample-based LP, and the closed-form approximation, respectively.
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Figure 1: Identical products with independent demands – Approximate or exact solutions vs. sample-based
solutions. The terms “exact,” “numerical,” and “approximation” refer to exact solutions, solutions of the
sample-based model, and closed-form approximations, respectively.

Figure 1 shows that our analytical solution is very close to the numerical solution when n = 1. This is
obvious as our solution is exact for the single-product case (here the case η̂ = x is valid). In the case of a 3-
product model, the approximation does not work well, which is quite understandable as the approximation is
based on the Central Limit Theorem. As the number of products increases, our approximations become more
accurate and the gap becomes negligible when n ≥ 10. We also observe that the order quantities decrease as
the degree of risk-aversion increases, which confirms Proposition 3; and as the number of products increases,
the error of the risk neutral solution decreases (consistent with Proposition 5).

For independent but heterogenous products, we tested the accuracy of the approximations on 30 ran-
domly generated problems, 10 for each number of products n = 3, 10, 30. At each value of κ = 0.2, 0.4, 0.6, 0.8, 1,
we calculated the sample-based LP solution and an approximate solution by the continuation method with
ν = 1. Our numerical study shows that the continuation method is much more stable and accurate than
the iterative method with ν = 1, especially for smaller numbers of products, when the difference between
risk-neutral solution and risk-averse solution is larger (e.g., κ is larger). For n = 30 both methods work very
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well.

For each instance in which the continuation method can generate a feasible solution, we compute the
absolute percentage error of the approximate solution relative to the sample-based LP solution, which is
defined by the absolute difference between the approximate solution and the sample-based LP solution over
the sample-based LP solution. For comparison, we also compute the absolute percentage error of the risk-
neutral solution relative to the sample-based LP solution. Then for each value of n and κ, we compute
the average and maximum percentage error over all the solutions generated. The average (and maximum)
percentage errors of the risk-neutral solutions and of the solutions obtained by the continuation method are
displayed in Figures 2 and 3, respectively).
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Figure 2: Heterogeneous products with independent demands – The average percentage error of the approx-
imate solutions and risk-neutral solutions.

In all cases, in terms of the average and maximum errors, our approximation outperforms the risk-neutral
solution. Furthermore, in most cases, the improvement brought by our approximation is significant. Often,
the approximation cuts the error of the risk-neutral solution by 3 to 6 times, although only one step of the
continuation method was made at each κ. Second, we observe that the approximation is quite accurate for all
cases of n = 10 and n = 30. However, the approximation does not work well for n = 3, which is similar to
what we observed in the identical products case. Finally, we observe that the average and maximum errors
of the risk neutral solutions are decreasing in n, as established in Proposition 5.

7.3 Impact of Dependent Demands under Risk Aversion

We first consider a simple system with two identical products, then a system with two heterogenous products.
The numerical results here are obtained by the sample-based LP.

We choose the following cost parameters for the system with two identical products: r1 = r2 = 15,
c1 = c2 = 10 and s1 = s2 = 7. We assume that demand follows bivariate lognormal distribution, which
is generated by exponentiating a bivariate normal with the parameters µ1 = µ2 = 3, σ1 = σ2 = 0.4724

23



0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0 0.2 0.4 0.6 0.8 1

M
ax

im
u

m
 E

rr
o

r 
[%

]

Degree of Relative Risk Aversion (κ)

3-products, risk-neutral

3-products, continuation

10-products, risk-neutral

10-products, continuation

30-products, risk-neutral

30-products, continuation

Figure 3: Heterogeneous products with independent demands – The maximum percentage error of the
approximate solutions and risk-neutral solutions.

and a correlation coefficient of −1,−0.8,−0.6, ..., 1. Thus, the mean and standard deviation of each marginal
distribution are 22.46 and 11.23 respectively, with cv = 0.5. The numerical results are summarized in Figure
4.

Consistent with our analysis in §4, risk aversion reduces optimal order quantities for independent or
positively correlated demands, relative to the risk-neutral solution. But interestingly, this observation may
not hold for strongly negatively correlated demands, where increased risk aversion can result in a greater
optimal order quantity. To explain the intuition behind these counterexamples, let’s consider two identical
products with perfectly negatively correlated demands, D1 and D2. A larger order quantity, Q, increases
negative correlation between the sales min(D1,Q) and min(D2,Q), and thus leads to smaller variability of
the total sales min(D1,Q) + min(D2,Q).

Figure 4 also shows that consistent with our analysis in §6, negatively correlated demands result in
higher optimal order quantities than independent demands under risk aversion, while positively correlated
demand leads to lower optimal order quantity under risk aversion. Indeed, the impact of demand correlation
is almost monotonic with small deviations due to random sample errors.

These observations imply that if the firm is risk-averse, then demand dependence can have a significant
impact on its optimal order quantities. They agree with the intuition that stronger positively (negatively)
correlated demands indicate higher (lower) risk, and therefore lead to lower (higher) order quantities. More
interestingly, while in most cases, the order quantity decreases in the degree of risk aversion, it can increase
when the demands are strongly negatively correlated.

For heterogenous products, we consider a simple system with two products and the following parame-
ters: r1 = 15, c1 = 10, s1 = 7 and r2 = 30, c2 = 10, s2 = 4. The demand is bivariate lognormal generated
by exponentiating a bivariate normal with µ1 = µ2 = 3, σ1 = 0.4724, σ2 = 1.26864 and a correlation
coefficient of −1,−0.8,−0.6, ..., 1. The marginal demand distributions of products 1 and 2 have means 22.46
and 44.913, standard deviations 11.23 and 89.826, and cv’s 0.5 and 2, respectively. Intuitively, product 1 is
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Figure 4: Identical products with dependent demands – The impact of demand correlation and risk aversion
κ.

less risky and less profitable than product 2.

Our numerical study shows that for product 1, the impact of demand correlation is similar to that for
identical products; see Figure 5. For product 2, however, the optimal ordering quantity always decreases in
κ but not in correlation, see Figure 6.

The implication is that for heterogenous products, the impact of demand correlation under risk aversion
can be product-specific. Specifically, as the firm becomes more risk-averse, it should always order less of
the more risky and more profitable products. However, for the less risky and less profitable products, while
it should order less when demands are positively correlated, it may order more when demands are strongly
negatively correlated.

For more details on the numerical study, we refer the readers to [14].

8 Conclusions

The multi-product newsvendor problem with coherent measures of risk does not decompose into indepen-
dent problems, one for each product. The portfolio of products has to be considered as a whole. Our ana-
lytical results focus on the impact of risk aversion and demand dependence on the optimal order quantities.
We analyze the asymptotic behavior of the optimal risk-averse solution and derive in Eq. (5.31) and in Eq.
(5.35), simple and accurate approximations of the optimal order quantities for a large number of products
with independent demands, and for general law-invariant coherent measures of risk. Our numerical study
confirms the accuracy of these approximations for the numbers of products as small as 10, and enriches our
understanding of the interplay of demand dependence and risk aversion.

It is perhaps appropriate to conclude this paper by comparing the multi-product risk-averse newsven-
dor problem (2.4) to the risk-averse portfolio optimization problem. In a portfolio problem, we have n
assets with random returns R1, . . . ,Rn and our objective is to determine investment quantities x1, . . . , xn to
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Figure 5: Heterogenous products with dependent demands – The impact of demand correlation and risk
aversion κ for the product with low risk and low profit.
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Figure 6: Heterogenous products with dependent demands – The impact of demand correlation and risk
aversion κ for the product with high risk and high profit.
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obtain desirable characteristics of the total portfolio return P(x,R) = R1x1 + · · · + Rnxn. In the classical
mean–variance approach of [40], the mean of the return and its variance are used to find efficient portfolio
allocations. See also [21]. In more modern approaches (e.g., [33, 55, 42]) more general mean–risk mod-
els and coherent measures of risk are used, similarly to problem (2.4). There are, however, fundamental
structural differences which make the multi-product newsvendor problem significantly different from the
financial portfolio problem.

The most important difference is that the portfolio return P(x,R) is linear with respect to the decision
vector x, while the newsvendor profit Π(x,D) is concave and nonlinear with respect to the order quantities
x. This leads to the following different properties of the problems.

• The risk-neutral portfolio problem has no solution, unless we restrict the total amount invested (e.g.,
to 1), in which case the optimal solution is to invest everything in the asset(s) having highest expected
returns. On the contrary, the risk-neutral newsvendor problem always has a solution, because of
natural limitations of the demand.

• The effect of using risk measures in the portfolio problem is a diversification of the solution, which
otherwise would remain completely non-diversified. In the newsvendor problem the use of risk mea-
sures results in changes of the already diversified risk-neutral solution, by ordering more of products
having less variable or negatively correlated demands and less of products having more variable or
positively correlated demands. Products are unlikely to be eliminated because of risk aversion, be-
cause very small amounts will almost always be sold and thus they introduce very little risk.

• In the portfolio problem, independently of the number of assets considered, the risk-neutral solu-
tion remains structurally different from the risk-averse solution. On the contrary, in the newsvendor
problem the risk-neutral solution is asymptotically optimal under risk aversion, when the number of
independent products approaches infinity.

Finally, it is worth stressing that the nonlinearity of the newsvendor profit Π(x,D) is the source of
formidable technical difficulties in the analysis of the composite function (2.4), which involves two nondif-
ferentiable functions.
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[1] Ağrali, S. and A. Soylu. 2006. Single Period Stochastic Problem with CVaR Risk Constraint. Presenta-
tion, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL.

[2] Agrawal, V. and S. Seshadri. 2000. Impact of Uncertainty and Risk Aversion on Price and Order Quan-
tity in the Newsvendor Problem. Manufacturing and Service Operations Management, 2(4), 410-423.

[3] Agrawal, V. and S. Seshadri. 2000b. Risk Intermediation in Supply Chains. IIE Transactions, 32, 819-
831.
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[5] Ahmed, S., D. Filipović and G. Svindland. 2008. A note on natural risk staistics, Operations Research
Letters, 36, 662-664.

[6] Anvari, M. 1987. Optimality Criteria and Risk in Inventory Models: The Case of the Newsboy Problem.
The Journal of the Operational Research Society, 38(7), 625-632.

[7] Artzner, P., F. Delbaen, J. Eber and D. Heath. 1999. Coherent Measures of Risk. Mathematical Finance,
9(3), 203-228.

[8] Bonnans, J. F. and A. Shapiro. 2000. Perturbation Analysis of Optimization Problems, Springer-Verlag,
New York, NY.

[9] Bouakiz, M. and M. Sobel. 1992. Inventory Control with an Exponential Utility Criterion. Operations
Research, 40(3), 603-608.

[10] Chen, F. and A. Federgruen. 2000. Mean-Variance Analysis of Basic Inventory Models. Working paper,
Division of Decision, Risk and Operations, Columbia University, New York, NY.

[11] Chen, X., M. Sim, D. Simchi-Levi and P. Sun. 2007. Risk Aversion in Inventory Management. Opera-
tions Research, 55, 828-842.

[12] Chen, Y., M. Xu and Z. Zhang. 2009. A Risk-Averse Newsvendor Model Under the CVaR Criterion.
Operations Research, 57(4), 1040-1044.

[13] Cheridito, P., F. Delbaen and M. Kupper. 2006. Dynamic monetary risk measures for bounded discrete-
time processes. Electronic Journal of Probability, 11, 57-106.

[14] Choi, S. 2009. Risk-Averse Newsvendor Models. PhD Dissertation, Department of Management Sci-
ence and Information Systems, Rutgers University, Newark, NJ.
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Appendix

We compare solutions of a single-product newsvendor model under the coherent measure of risk, the
entropic exponential utility function, and mean-variance risk measure. The entropic exponential utility
function is an example of a convex measure of risk which is not coherent and is equivalent to an exponential
utility function by a “certainty equivalent” operator.

We select parameters for each risk measure so that they have the same optimal solution when the unit
of profit measurement is one dollar. Specifically, we set r = 15, c = 10 and s = 7 (in dollars) for all
three risk measures. Demand follows a lognormal distribution with µ = 3 and σ = 0.4724. This demand
distribution is used in all instances. For the coherent measure of risk, we set β = 0.5 and λ = λ1 = 0.2. By
the sample-based LP method, the optimal solution is x̂RA1 = 20.7824. For the entropic exponential utility
function model, defined as

min
x≥0

1
λ2

lnE
[
e−λ2Π(x;D)

]
, (8.42)

we set λ2 = 0.0072, which results in a sample-based solution x̂RA2 = 20.7786. For the mean-variance model,
defined as

min
x≥0
−E

[
Π(x; D)

]
+ λ3Var

[
Π(x; D)

]
, (8.43)

we set λ3 = 0.0037, which results in a sample-based solution x̂RA3 = 20.7918. Then we change the unit of r
(price), c (cost) and s (salvage value) from dollar to 30 cents, 10 cents, 3 cents and 1 cent while keeping all
other parameters unchanged. Our results are summarized in Table 2.

As we can see from this table, while the numerical solution under a coherent measure of risk is invariant
with respect to the unit system, it varies significantly under other risk measures.
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Unit of Profit Measurement
1 Dollar 30 Cents 10 Cents 3 Cents 1 Cent

Coherent 20.7824 20.7824 20.7824 20.7824 20.7824
Entropic Exponential 20.7786 17.0952 12.2944 7.2879 4.8568

Mean-Variance 20.7918 17.6962 14.4454 11.4197 9.5603

Table 2: The impact of rescaling on solutions - a coherent measure of risk, entropic exponential utility
function and a mean–variance model.
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