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functional systems to algebraic

structures

Dávid Papp Ricardo A. Collado Farid Alizadeh

Abstract. We extend Nesterov’s semidefinite programming (SDP) characterization
of the cone of functions that can be expressed as sums of squares (SOS) of functions
in finite dimensional linear functional spaces. Our extension is to algebraic systems
that are endowed with a binary operation which map two elements of a finite dimen-
sional vector space to another vector space; the binary operation must follow the
distributive laws. We derive a number of previously known SOS characterizations
as a special case of our framework. In addition to Nesterov’s result [10] for finite
dimensional linear functional spaces, we show that the cone of positive semidefinite
univariate polynomials with symmetric matrices as coefficients, SOS polynomials
with coefficients from Euclidean Jordan algebras (first studied by Kojima and Mu-
ramatsu [6]), and numerous other problems involving vector-valued functions not
previously considered can be expressed in our framework. Some potential applica-
tions in geometric design problems with constraints on curvature of space curves,
and in multivariate approximation theory problems with convexity as constraint are
briefly discussed.
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1 Introduction

Optimization models involving sum of squares (SOS) functional systems have raised signif-
icant interest, particularly in connection with polynomial programming (POP), that is, op-
timization models involving polynomial minimization, or equivalently, positive polynomial
constraints. For example, POP was found to be applicable in combinatorial optimization
problems [15]. A key underlying result in all POP models is that a univariate polynomial
is nonnegative everywhere if and only if it is sum of perfect squares, and for multivariate
polynomials, sums of squared polynomials form a proper subset of nonnegative polynomials.
Nested hierarchies of SOS models, such as those proposed by Lasserre [8] and Parrilo [12]
define nested sequences of SOS polynomial cones to approximate the cone of multivariate
polynomials.

Another important family of applications of more general SOS functional systems (not
only polynomials) is shape constrained estimation, that is, function estimation involving
constraints, such as monotonicity or convexity, on the shape of the estimator [11]. Again,
the key steps in expressing these estimation problems as tractable optimization problems are
(i) the translation of the shape constraints to the nonnegativity of some linear transform of
the estimator, and (ii) the replacement of the nonnegativity constraint by a constraint that
the function belongs to some SOS functional system.

Nonnegativity is an intractable constraint in even the most fundamental functional sys-
tems. For example, recognizing nonnegative (multivariate) polynomials of degree four is
known to be NP-hard, by a very simple reduction from the Partition problem. On the
other hand, the constraint that a function belong to a specific SOS functional system can al-
ways be cast as a semidefinite programming constraint, using a result of Nesterov [10], which
says that for every finite set of linearly independent, real valued functions F = {f1, . . . , fm},
the set {

k∑
i=1

f 2
i

∣∣∣∣∣ fi ∈ span(F)

}
is a linear image of the cone of m×m positive semidefinite matrices, and this mapping can be
easily constructed from the set F . This result makes it possible to cast optimization problems
over SOS functional systems (including the common SOS restrictions of POP problems) as
tractable semidefinite optimization problems.

Our paper is primarily motivated by shape constrained optimization problems. As the
following examples show, not all natural shape constraints can be translated to nonnegativity
of some linear transform of the shape constrained function.

1. (Convexity of a multivariate function.) A twice continuously differentiable real valued
function f is convex over S ⊂ Rn if and only if its Hessian H is positive semidefinite
over S, which we denote by H(x) < 0 ∀x ∈ S. Magnani et. al [9] consider this problem
in the case when f is a polynomial, and suggest the following solution: H(x) < 0 for
every x ∈ S if and only if y>H(x)y ≥ 0 for every x ∈ S and y ∈ Rn. This solution
is not completely satisfying for two reasons. First, it calls for doubling the number
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of variables in the problem, which is a serious complication, as the complexity of the
resulting semidefinite program increases highly. Second, if f is not a polynomial, and
H is not a polynomial matrix, then H is still a linear transform of f , however, the
function (x, y)→ y>H(x)y belongs to an entirely different functional system, in which
it is generally difficult to establish a connection between nonnegativity and sum of
squares.

2. (Functions with bounded curvature.) Consider a problem in which we are trying to find
a twice differentiable curve given by its parametric representation x(t) ∈ Rn, t ∈ [0, T ],
under the constraint that the curvature of the curve must be bounded above by some
constant C ≥ 0. If t is the arc-length parameter of the curve, this constraint can be
written as

‖x′′(t)‖2 ≤ C ∀ t ∈ (0, T ),

where x′′ is the component-wise second derivative of the vector function x, and ‖ · ‖2
denotes the Euclidean norm [14, Section 1-4]. Equivalently, the constraint can be
written as (

C
x′′(t)

)
∈ Qn+1 ∀ t ∈ (0, T ),

where Qn+1 is the (n+ 1)-dimensional second order cone, or Lorentz cone [1].

Both examples suggest that we should consider constraints of the form f(x) ∈ K ∀x ∈ S,
where f is a (perhaps multivariate) vector valued function, and K is some convex cone. As in
the motivating one-dimensional case, this will generally be an intractable constraint, but we
can try to find a tractable approximation for it, in the form of f(x) being “sum of squares”
with respect to some multiplication of vector-valued functions. This is particularly appeal-
ing when K is a symmetric cone, as symmetric cones are cones of squares with respect to
a Euclidean (or, equivalently, formally real) Jordan algebra multiplication [2]. Kojima and
Muramatsu [6] consider this problem in the special case when f is a vector valued polyno-
mial whose coefficients multiplied according to a Euclidean Jordan algebra multiplication,
and derive a semidefinite programming characterization for these sum of squares polynomi-
als. As we show in Section 3, polynomials in this construction can be replaced by other
functional systems, and the coefficients can be chosen from arbitrary (not Jordan) algebras.
Multivariate SOS matrix polynomials are also considered in [7].

In this paper we consider the following, even more general problem. We take an arbitrary
bilinear mapping � : A× A→ B, where A and B are finite dimensional real linear spaces, and
show that the set of vectors that are sums of squares of vectors from A (with respect to the
multiplication �) is a linear image of positive semidefinite matrices. The linear transformation
is explicitly constructed. This generalizes the above mentioned results from [10] and [6], and
it is also applicable to the previous two shape constrained optimization problems.
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2 Semidefinite Characterization of Sums of Squares

Consider two finite dimensional real linear spacesA andB, and a bilinear mapping � : A× A→ B.
We define the cone of sum of squares vectors Σ ⊆ B by

Σ
def
=

{
N∑
i=1

ai � ai

∣∣∣∣∣ N ≥ 1; a1, . . . , aN ∈ A

}
.

Clearly, Σ is a convex cone, but it not necessarily proper, as it may not be either full-
dimensional or pointed.

Let E = {e1, . . . , em} be a basis of A, and V = {v1, . . . , vn} be a basis of a vector space
B′ ⊇ B. Furthermore, let the vector λij ∈ Rn (i, j = 1, . . . ,m) be the coefficient vector of
ei � ej ∈ B in basis V :

ei � ej =
∑
`

λij`v`. (1)

Finally, we define the linear operator Λ: Rn → Rm×m, coordinate-wise, by the formula

(Λ(w))ij
def
= 〈w, λij〉 ∀w ∈ Rn (i, j = 1, . . . ,m);

its adjoint operator is denoted by Λ∗. If � is commutative, then Λ attains only symmetric
values, and it is more natural to define Λ as an Rn → Sm operator, where Sm is the space of
m×m real symmetric matrices.

Our main theorem is the characterization of the sum of squares cone Σ as a linear image
of the cone of positive semidefinite matrices.

Theorem 1. Let u = (u1, . . . , un)> ∈ Rn be arbitrary. Then
∑n

`=1 u`v` ∈ Σ if and only if
there exists a real symmetric positive semidefinite matrix Y ∈ Rm×m satisfying u = Λ∗(Y ).

Proof. Let us assume first that
∑n

`=1 u`v` ∈ Σ, that is,

n∑
`=1

u`v` =
N∑
k=1

ak � ak

for some ak ∈ A. Each ak can be written in the basis E as ak =
∑m

j=1 y
(k)
j ej, with y

(k)
j ∈ R.
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By choosing Y =
∑N

k=1 y
(k)y(k)

>
, which is clearly positive semidefinite, we obtain

n∑
`=1

u`v` =
N∑
k=1

ak � ak =
N∑
k=1

((
m∑
i=1

y
(k)
i ei

)
�

(
m∑
j=1

y
(k)
j ej

))

=
N∑
k=1

m∑
i=1

m∑
j=1

y
(k)
i y

(k)
j (ei � ej)

=
m∑
i=1

m∑
j=1

Yij (ei � ej)

=
m∑
i=1

m∑
j=1

Yij

n∑
`=1

λij`v`,

where the last equation comes from Equation (1). Using the symbol 1` for the `-th unit
vector (0, . . . , 0, 1, 0 . . . , 0) ∈ Rn, the last expression can be simplified further:

m∑
i=1

m∑
j=1

Yij

n∑
`=1

λij`v` =
n∑

`=1

〈Y,Λ(1`)〉v` =
n∑

`=1

〈Λ∗(Y ), 1`〉v`.

Since {v`} is a basis, comparing the coefficients in
∑

` u`v` to those in the last expression
yields u = Λ∗(Y ), completing the proof in the “if” direction.

To prove the converse claim, reverse the steps of the above proof: if u = Λ∗(Y ), and Y

is positive semidefinite, then obtain vectors y(k) satisfying Y =
∑

k y
(k)y(k)

>
(for example,

from the spectral decomposition of Y ), and use the above identities to deduce

n∑
`=1

u`v` =
∑
k

((
m∑
i=1

y
(k)
i ei

)
�

(
m∑
j=1

y
(k)
j ej

))
∈ Σ,

as claimed.

After fixing the basis V forB′, the cone Σ is naturally identified with the cone {u |
∑n

`=1 u`v` ∈ Σ}.
It shall raise no ambiguities to denote the latter cone by Σ, too.

In optimization applications it is necessary to characterize the dual cone of Σ, denoted by
Σ∗. Using our main theorem, and the well-known fact that the cone of positive semidefinite
matrices is self-dual (in the space of symmetric matrices), Σ∗ is easily characterized, especially
when � is commutative.

Theorem 2. Using the notation above,

Σ∗ =
{
v
∣∣ ∃S < 0, A = −A> : Λ(v) = S + A

}
.

In particular, if � is commutative, then

Σ∗ = {v | Λ(v) < 0}.
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Proof. By definition, a vector v ∈ Rn is in Σ∗ if and only if 〈u, v〉 ≥ 0 for every u ∈ Σ. By
Theorem 1, u ∈ Σ if and only if u = Λ∗(Y ) for some Y < 0, consequently v ∈ Σ∗ if and only
if

〈u, v〉 = 〈Λ∗(Y ), v〉 = 〈Y,Λ(v)〉 ≥ 0 (2)

for every Y < 0. The dual cone of positive semidefinite matrices (embedded in Rn×n as
opposed to Sn) is the cone of matrices that can be written in the form of S +A, where S is
positive semidefinite and A is skew-symmetric. This proves our first claim.

If � is commutative, then Λ(v) is symmetric for every v. Hence, in the decomposition
Λ(v) = S + A we must have A = 0. This proves the second part of the theorem.

2.1 Examples

First, we consider two very simple examples.

Example 1. Let A = B = B′ = C, the algebra of complex numbers, viewed as a two-
dimensional space over R, with � being the usual multiplication: ( a1

b1 ) � ( a2
b2 ) =

(
a1a2−b1b2
a1b2+a2b1

)
.

Using the standard basis as V , we obtain that Λ(w) = ( w1 w2
w2 −w1

), and that

Σ =
{(

Y11−Y22
2Y12

) ∣∣ ( Y11 Y12
Y12 Y22

)
< 0
}

= R2

is the entire space. We conclude that every complex number is sum of squares, in concordance
with the fact that every complex number is, in fact, a square. Similar situation holds for
quaternions and octonions.

Example 2. Consider any finite dimensional anticommutative algebra (A, �) over R, that is,
assume x�y = −y�x for every x, y ∈ A. Then ei�ej = −ej �ei; thus Λ(v) is skew-symmetric
for every v. Comparing this to Theorem 2 we conclude that Σ∗ = A, therefore Σ = {0}, as
expected, since zero is the only vector that can be obtained as sum of squares.

Alternatively, since Λ(v) is skew-symmetric, Λ∗(Y ) = −Λ∗(Y >). Therefore, Λ∗(Y ) = 0
for every symmetric Y , and in particular for every positive semidefinite Y . Now we conclude,
using Theorem 1 directly, that Σ = {0}.

To avoid trivial examples such as the first one, it is useful to consider when Σ is a pointed
cone. A convex cone K is pointed if it does not contain a line, or equivalently, if 0 6= x ∈ K
implies −x 6∈ K. As the following lemma shows, a condition sufficient to obtain a pointed
Σ is that the multiplication � be formally real: � is said to be formally real if for for every
a1, . . . , ak ∈ A,

∑k
i=1(ai � ai) = 0 implies that each ai = 0.

Lemma 3. If � is formally real, then Σ is pointed.

Proof. Suppose that for some nonzero vector x, both x and −x are in K. But then 0 =

x+ (−x) is sum of squares with respect to �: 0 =
∑
i

ai � ai︸ ︷︷ ︸
x

+
∑
i

bi � bi︸ ︷︷ ︸
−x

, implying that each

ai and bi are zero. Consequently x = 0.
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Another special case of Theorem 1 is Nesterov’s well-known characterization of sum of
squares functional systems [10].

Example 3. Let f1, . . . , fn be arbitrary functions mapping a set ∆ to R, andA = span({f1, . . . , fn}).
Then Σ ⊆ span({f 2

1 , f1f2, . . . , f
2
n}). The semidefinite characterization of Σ obtained from

Theorem 1 is identical to the one in [10].

It is well-known [4, 13] that a univariate polynomial of degree 2n is nonnegative over the
real line if and only if it is the sum of squares of polynomials of degree n. This yields a
semidefinite characterization of nonnegative univariate polynomials that is also well-known.
For completeness we repeat this important special case of Example 3, and generalize it below,
in Corollary 8.

Corollary 4. A polynomial p(t) =
∑2n

i=0 pit
i is nonnegative for every t ∈ R if and only if

there exists a positive semidefinite matrix Y ∈ R(n+1)×(n+1) such that p` =
∑

i+j=l yij, where
yij is the (i, j)-th entry of Y .

Proof. Immediate from the previous paragraph and Theorem 1, using the standard monomial
bases 1, t, . . . , tn as the basis of A and 1, . . . , t2n as the basis of B = B′. Following the general
construction of the Λ operator we have that for every w = (w0, . . . , w2n),

Λ(w) =


w0 w1 · · · wn

w1
. . . wn+1

...
. . .

...
wn wn+1 · · · w2n

 .

Now the claim follows from Theorem 1.

2.2 Simplified characterizations

If A′ is a proper subspace of A, then the corresponding sum of squares cone Σ′ is a subset of
Σ, but it need not be a proper subset. The simplest example where Σ′ = Σ is obtained when
we define the product of any two vectors in A to be the zero vector. A non-trivial example
is given by the Cracovian algebra [5], which will be instrumental in the characterization of
positive semidefinite matrix polynomials. (See Corollary 8.)

Example 4. (Cracovian algebra.) Let A = B = B′ be the space of k × k real matrices
Rk×k equipped with the product � defined as U � V = UV >. This non-commutative, non-
associative, but formally real multiplication is also known as the Cracovian multiplication.
A basis for A = Rk×k is the set of unit matrices Eij. (Eij is the zero-one matrix with a single
1 in the position (i, j).) Consider the subspace A′ spanned by the matrices Ei1. The sum
of squares cones corresponding to A and A′ are identical. (This is the same as saying that
any positive semidefinite matrix V V > can be written as a sum of rank one positive definite
matrices vv>.)
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The order of the matrix Y in Theorem 1 is the dimension of the space A. Thus, using
the space A′ instead of A may considerably simplify the semidefinite characterization of Σ.
In optimization models, this reduces the size of the semidefinite constraint Y < 0.

2.3 Weighted sums of squares cones

The above theory extends to the semidefinite representability of weighted sum of squares
vectors. (We call a set semidefinite representable if it is the linear image or preimage of the
cone of real symmetric positive semidefinite matrices of a fixed order.) To simplify notation,
let us assume that A = B = B′. Given a set of weights w1, . . . , wr ∈ A, we define the set of
weighted sum of squares (or WSOS) vectors Σw as

Σw def
=

{
r∑

k=1

(
wk �

Nk∑
i=1

(ai � ai)

) ∣∣∣∣∣ Nk ≥ 1; a1, . . . , aN ∈ A

}
.

Our treatment of weighted sum of squares systems differs from the one in [10], as we
cannot assume to have access to “square roots” of the weights.

The intuition behind the semidefinite representability of Σw is the following. The cone
Σw corresponding to r weights w1, . . . , wr can be written as a Minkowski sum of r cones,
each corresponding to a single weight:

Σw = Σ1 + · · ·+ Σr; Σk =

{
wk �

Nk∑
i=1

(ai � ai)

∣∣∣∣∣ Nk ≥ 1; a1, . . . , aN ∈ A

}
(k = 1, . . . , r),

where + denotes the Minkowski sum. Now each Σi has a semidefinite representation analo-
gous to that of Σ, in fact, each Σi is a linear transform of Σ. Finally, the Minkowski sum of
semidefinite representable sets is semidefinite representable by definition. Theorem 5 below
gives the precise formulation of this result.

As before, let E = {e1, . . . , em} be a basis of A, but now let the vector λkij ∈ Rm

(i, j = 1, . . . ,m, k = 1, . . . , r) be the coefficient vector of wk � (ei � ej) ∈ A in basis E:

wk � (ei � ej) =
∑
`

λkij`e`. (3)

Finally, for each k = 1, . . . , r we define the linear operator Λk : Rm → Rm×m coordinate-wise,
by the formula

(Λk(w))ij
def
= 〈w, λkij〉 ∀w ∈ Rm (i, j = 1, . . . ,m);

its adjoint operator is denoted by (Λk)∗. If � is commutative, then Λ attains only symmetric
values, and it is more natural to define Λ as an Rn → Sm operator, where Sm is the space of
m×m real symmetric matrices.

With this notation, the above argument leads to the following semidefinite characteriza-
tion of WSOS vectors.
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Theorem 5. Let u = (u1, . . . , um)> ∈ Rm be arbitrary. Then
∑m

`=1 u`e` ∈ Σw if and only
if there exists real symmetric positive semidefinite matrices Y (1), . . . , Y (r) ∈ Rm×m satisfying
u =

∑r
k=1(Λ

k)∗(Y (k)).

3 Application to Vector-valued Functions

While many of the examples in the previous sections can be regarded as basic, they serve
as building blocks of some truly non-trivial results, such as the semidefinite characterization
of (weighted) sums of squares of vector-valued functions, and positive semidefinite matrix
polynomials. All the results of this section could be obtained by the direct application of
Theorem 1; however, the following lemma considerably simplifies their presentation.

Lemma 6. Let Ai and Bi, i = 1, . . . , k be finite dimensional real vector spaces, and �i : Ai×
Ai → Bi be bilinear mappings. Define A = A1 × · · · × Ak, B = B1 × · · · × Bk, and
� : A× A→ B by the identity

(x1, . . . , xk) � (y1, . . . , yk) = (x1 �1 y1, . . . , xk �k yk).

Then the Λ operator corresponding to � is Λ1 ⊗ · · · ⊗ Λk, where Λi is the Λ operator corre-
sponding to �i, and ⊗ denotes the Kronecker product.

Proof. Apply the construction preceding Theorem 1 to the direct product of the bases of Ai,
which is a basis of A.

Our next example relies on a consequence of Youla’s spectral factorization theorem [16].
For completeness we recall the specific corollary we use.

Proposition 7 ([16, Theorem 2 and Corollary 2]). Let P (t) be an m × m real symmetric
polynomial matrix, and let r be the largest integer such that P (t) has at least at least one
minor of order r that does not vanish identically. Then there exists an m × r polynomial
matrix Q(t) satisfying the identity P (t) = Q(t)Q(t)>.

Example 5. By Proposition 7, a univariate real matrix polynomial P (t) of degree 2n is
positive semidefinite for every t if and only if it is the sum of squares of degree n matrix
polynomials, where squaring is with respect to the Cracovian multiplication. This yields
a semidefinite characterization analogous to the characterization of complex semidefinite
matrix polynomials in [3]:

Corollary 8. The k × k matrix polynomial P (t) =
∑2n

i=0 Pit
i is positive semidefinite for

every t ∈ R if and only if there exists a positive semidefinite block matrix Y ∈ R(n+1)k×(n+1)k

consisting of blocks Yij, i, j = 0, . . . , n or order k such that P` =
∑

i+j=` Yij for each ` =
0, . . . , 2n.
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Proof. By Proposition 7, P (t) is nonnegative for every t ∈ R if and only if it is sum of
squares with respect to the multiplication R(t) � S(t) = R(t)S(t)>. We can characterize
separately the sum of squares cone of the coefficient matrices (with respect to the Cracovian
multiplication) and the sum of squares cone of ordinary polynomials (with respect to the
ordinary polynomial multiplication), and then use Lemma 6 to obtain the characterization
of sum of squares matrix polynomials.

In fact, we have already determined the Λ operators corresponding to the Cracovian
algebra in Example 4 and to the nonnegative polynomials in Corollary 4. Now, the theorem
follows from Lemma 6 and Theorem 1.

Similarly, Lemma 6 can be used to characterize the sums of squares of arbitrary vector-
valued functions, not only of semidefinite valued matrix polynomials. More precisely, let
(A, ◦) be a (not necessarily commutative or associative) finite dimensional algebra, f1, . . . , fn
be given real valued functions, and let A be the space{

n∑
i=0

vifi | vi ∈ A

}
.

Then the cone Σ = A2 is semidefinite representable via Theorem 1. This generalizes
Lemma 2 of [6], where a similar characterization is obtained in the special case when fi = ti,
and (A, ◦) is a Euclidean (or formally real) Jordan algebra.

4 A Coordinate-free Approach

The semidefinite representations of Σ and Σ∗ given in Theorems 1 and 2 use an explicitly
constructed operator Λ, which in turn depends on the selected bases of the linear spaces A
and B′. To better understand the structure of the cones Σ and Σ∗, or to prove theorems about
them, a coordinate-free approach might be more fruitful. In this section we outline such an
approach for vector valued functions whose coefficients are vectors from a (not necessarily
associative) algebra. We also hope that this direction may lead to efficient algorithms for
optimization problems involving sum of squares cones, without the (sometimes inefficient)
translation of these constraints to semidefinite programming constraints.

As before, we consider a bilinear mapping � : A × A → B, where A and B are finite
dimensional real linear spaces. A particularly interesting special case is � is the multipli-
cation of an algebra (A, �), that is, when A = A = B; in the remainder of this section we
only consider this special case. We define an A-vector of dimension n and an A-matrix of
dimension m × n as an element of An and Am×n, respectively. A-matrices and A-vectors
will be denoted by boldface letters. Matrix and vector multiplication is extended in the
straightforward way: if A is m× n and B is n× `, then A �B is m× `:

(A �B)ij
def
=
∑
k

Aik �Bkj.
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This definition also extends to the case when A or B (or both) are are replaced by real
matrices of the same dimension.

We also extend the notation of an inner product 〈·, ·〉 to A-vectors and matrices, with
the usual meaning, except that multiplication of A-vectors and A-matrices are with respect
to �. For example

〈a,b〉 =
∑
i

(ai � bi)

We say that an A-matrix A is A-positive semidefinite or A-psd, denoted by A <A 0, if
there are A-vectors a1, . . . , ak such that

A =
k∑

i=1

ai � a>i .

Turning to A-vector valued functions, let f1, . . . , fm be linearly independent real valued
functions (similarly to Example 3), and consider the set of vector valued functions

F =

{
m∑
i=1

aifi

∣∣∣∣∣ ai ∈ A

}
.

The set of sum of squares functions ΣA is then defined as

ΣA =

{
N∑
i=1

g2i

∣∣∣∣∣ N ≥ 1 gi ∈ F

}
.

If V = {v1, . . . , vn} denotes a basis of span{f 2
1 , f1f2, . . . , f1fm, f

2
2 , . . . , f

2
m}, then elements of

ΣA can be expressed as
∑n

i=1 aivi for some ai ∈ A, and the question of our interest is for
which A-vectors a = (a1, . . . , an)> does the function

∑n
i=1 aivi belong to ΣA.

Theorems 1 and 2 give a semidefinite characterization of Σ, but this characterization
depends on the selected basis of A. As we shall see, it is also possible to characterize Σ in
terms of the above defined A-psd A-matrices in a coordinate-free manner. To state our main
theorem, we need some more notation.

For every i, j = 1, . . . ,m let the vector λij ∈ Rn be the coefficient vector of fifj in basis
V :

fifj =
∑
`

λij`v`, (4)

and we define the linear operator Λ: Rn → Rm×m, coordinate-wise, by the formula

(Λ(w))ij
def
= 〈w, λij〉 ∀w ∈ Rn (i, j = 1, . . . ,m).

In other words, Λ is the unique operator satisfying uu> = Λ(v). Finally, we define another
linear operator, Λ∗ : An×n → An such that for every A-matrix Y ,

Λ∗(Y ) =
(
〈Y, λ(1)〉, . . . , 〈Y, λ(n)〉

)>
,
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where λ(k) ∈ Rm×m is the matrix made up of the kth entries of the vectors λij. While Λ∗ is
not the adjoint of Λ, nor is 〈·, ·〉 an inner product, this notation is motivated by the following
identity, which resembles to the definition of the adjoint.

Lemma 9. For every Y ∈ Am×m and w ∈ Rn, 〈Y,Λ(w)〉 = 〈Λ∗(Y ), w〉.

Proof.

〈Y,Λ(w)〉 =
∑
i,j

Yij〈w, λij〉 =
∑
i,j

Yij
∑
k

wkλ
(k)
ij =

∑
k

wk

∑
i,j

Yijλ
(k)
ij = 〈Λ∗(Y ), w〉

Denoting the vector (f1, . . . , fm)> by f and the vector (u1, . . . , un)> by u, the A-vector
valued functional version of Theorem 1 can be formulated as follows.

Theorem 10. An A-vector valued function p = 〈a, u〉 is in ΣA if and only if there exists an
A-psd matrix Y satisfying

p = 〈Λ∗(Y), v〉

Proof. The proof is analogous to that of Theorem 1. If p =
∑

i p
2
i with pi = 〈ai, u〉, then

p =
∑
i

(〈ai, u〉)2

=
∑
i

〈ai � a>i , uu
>〉

=

〈∑
i

ai � a>i , uu
>

〉

=

〈∑
i

ai � a>i ,Λ(v)

〉

=

〈
Λ∗

(∑
i

(ai � a>i )

)
, v

〉
,

using, in the last step, Lemma 9. Setting Y =
∑

i(ai � a>i ) we see that Y <A 0. Conversely,
if p = 〈Λ∗(Y), v〉, then by reversing the above argument we obtain that p =

∑
i p

2
i for some

pi = 〈ai, u〉.

It follows from the definition that ΣA is a convex cone, but it is not necessarily a proper
(closed, full-dimensional, pointed) cone. As the following lemma shows, to make ΣA pointed,
it is sufficient to choose an A that is formally real: An algebra (A, �) is said to be formally
real if for for every a1, . . . , ak ∈ A,

∑k
i=1(ai � ai) = 0 implies that each ai = 0.

Lemma 11. If (A, �) is formally real, then the cone of A-psd matrices is pointed.
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Proof. Suppose that B <A 0. For every A-vector b, the diagonal entries of b � b> are
squares, consequently the diagonal entries of B =

∑
k(bk �b>k ) are sums of squares. If (A, �)

is formally real, then the (i, i)-th entry of B can be zero only if the ith entry of every bk is
zero. Hence, the diagonal of B can only be zero if every bk is zero. This implies that the
zero matrix cannot be expressed as the sum of two nonzero A-psd matrix, and the cone of
A-psd matrices is indeed pointed.

5 Conclusion

A couple of questions related to A-positive semidefiniteness remain open. From the algorith-
mic viewpoint, it would be interesting to see if numerically efficient self-concordant barrier
functions can be designed for A-psd cones, at least under some assumptions on the underlying
algebra. Theorem 1 can be used to give a characterization of A-psd cones via real positive
semidefinite matrices, but this is not necessarily the most efficient way of solving optimiza-
tion problems involving A-psd cones. Exploring the connections between the properties of
the algebra (A, �) and the properties of A-psd cones might also be an interesting direction
for future research. Finally, it would be interesting to see how the semidefinite programming
models suggested by Theorems 1 and 2 perform in practice, when used in shape constrained
optimization problems like the ones mentioned in Section 1.
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